WO2004037773A1 - Phenethanolamine derivative for the treatment of respiratory diseases - Google Patents
Phenethanolamine derivative for the treatment of respiratory diseases Download PDFInfo
- Publication number
- WO2004037773A1 WO2004037773A1 PCT/EP2003/012035 EP0312035W WO2004037773A1 WO 2004037773 A1 WO2004037773 A1 WO 2004037773A1 EP 0312035 W EP0312035 W EP 0312035W WO 2004037773 A1 WO2004037773 A1 WO 2004037773A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- formula
- phenyl
- hexyl
- amino
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- IIHPXGKEZWLUIL-MRVPVSSYSA-N C[C@H](CC1)c2c(C)ccc(O)c2NC1=O Chemical compound C[C@H](CC1)c2c(C)ccc(O)c2NC1=O IIHPXGKEZWLUIL-MRVPVSSYSA-N 0.000 description 1
- NQYGGOUCIQZRGU-UHFFFAOYSA-N Cc(ccc(O)c1N2)c1OCC2=O Chemical compound Cc(ccc(O)c1N2)c1OCC2=O NQYGGOUCIQZRGU-UHFFFAOYSA-N 0.000 description 1
- FTOOXNWAROFHEP-UHFFFAOYSA-N Cc1cccc(N2)c1OCS2(=O)=O Chemical compound Cc1cccc(N2)c1OCS2(=O)=O FTOOXNWAROFHEP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/62—Oxygen or sulfur atoms
- C07D213/63—One oxygen atom
- C07D213/65—One oxygen atom attached in position 3 or 5
- C07D213/66—One oxygen atom attached in position 3 or 5 having in position 3 an oxygen atom and in each of the positions 4 and 5 a carbon atom bound to an oxygen, sulphur, or nitrogen atom, e.g. pyridoxal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/145—Amines having sulfur, e.g. thiurams (>N—C(S)—S—C(S)—N< and >N—C(S)—S—S—C(S)—N<), Sulfinylamines (—N=SO), Sulfonylamines (—N=SO2)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/08—Bronchodilators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/06—Antiabortive agents; Labour repressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/02—Drugs for disorders of the nervous system for peripheral neuropathies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/16—Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton
- C07C317/22—Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/10—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
- C07C323/18—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
- C07C323/19—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton with singly-bound oxygen atoms bound to acyclic carbon atoms of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/62—Oxygen or sulfur atoms
- C07D213/63—One oxygen atom
- C07D213/65—One oxygen atom attached in position 3 or 5
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/16—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D215/20—Oxygen atoms
- C07D215/22—Oxygen atoms attached in position 2 or 4
- C07D215/227—Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/16—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D215/20—Oxygen atoms
- C07D215/24—Oxygen atoms attached in position 8
- C07D215/26—Alcohols; Ethers thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D261/00—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
- C07D261/02—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
- C07D261/06—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
- C07D261/10—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/02—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
- C07D263/08—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D263/16—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D263/18—Oxygen atoms
- C07D263/20—Oxygen atoms attached in position 2
- C07D263/22—Oxygen atoms attached in position 2 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to other ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D309/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
- C07D309/34—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D309/36—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with oxygen atoms directly attached to ring carbon atoms
- C07D309/40—Oxygen atoms attached in positions 3 and 4, e.g. maltol
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D319/00—Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D319/04—1,3-Dioxanes; Hydrogenated 1,3-dioxanes
- C07D319/08—1,3-Dioxanes; Hydrogenated 1,3-dioxanes condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/06—Systems containing only non-condensed rings with a five-membered ring
- C07C2601/08—Systems containing only non-condensed rings with a five-membered ring the ring being saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Definitions
- the present invention is concerned with phenethanolamine derivatives, processes for their preparation, compositions containing them and their use in medicine, particularly in the prophylaxis and treatment of respiratory diseases.
- phenethanolamine compounds are known in the art as having selective stimulant action at ⁇ r adrenoreceptors and therefore having utility in the treatment of bronchial asthma and related disorders.
- GB 2 140 800 describes phenethanolamine compounds including 4-hydroxy- ⁇ 1 -[[[6-(4-phenylbutoxy)hexyl]amino]methyl]-1 ,3- benzenedimethanol 1-hydroxy-2-naphthalenecarboxylate (salmeterol xinafoate) which is now used clinically in the treatment of such medical conditions.
- n is an integer of from 3 to 11 , preferably from 3 to 7; with the proviso that m + n is 5 to 19, preferably 5 to 12;
- R 1 is SR 6 , SOR 6 , or SO 2 R 6 , wherein R 6 is a C3_ 7 cycloalkyl or C3. 7 cycloalkenyl group; R 2 and R 3 are independently selected from hydrogen, dialkyl, C ⁇ alkoxy, halo, phenyl, and C ⁇ haloalkyl;
- R 4 and R 5 are independently selected from hydrogen and C ⁇ alkyl with the proviso that the total number of carbon atoms in R 4 and R 5 is not more than 4;
- Ar is a group selected from
- R 8 represents hydrogen, halogen, -(CH 2 ) q OR 1 ⁇ -NR 11 C(O)R 12 , -NR 11 SO 2 R 12 , -SO 2 NR 11 R 12 , -NR 11 R 12 , -OC(O)R 13 or OC(O)NR 11 R 12
- R 7 represents hydrogen, halogen, or C- M alkyl
- R 8 represents -NHR 14 and R 7 and -NHR 14 together form a 5- or 6- membered heterocyclic ring;
- R 9 represents hydrogen, halogen, -OR 11 or -NR 11 R 12 ;
- R 10 represents hydrogen, halogen, t ⁇ aloC alkyl, -OR 11 , -NR 11 R 12 , -OC(O)R 13 or OC(O)NR 11 R 12 ;
- R 11 and R 12 each independently represents hydrogen or C ⁇ alkyl, or in the groups
- -NR 1 R 12 , -SO 2 NR 11 R 12 and -OC(O)NR 11 R 12 , R 11 and R 12 independently represent hydrogen or d ⁇ alkyl or together with the nitrogen atom to which they are attached form a 5-, 6- or 7- membered nitrogen-containing ring,
- R 13 represents an aryl (eg phenyl or naphthyl) group which may be unsubstituted or substituted by one or more substituents selected from halogen, C ⁇ alkyl, hydroxy, C ⁇ alkoxy or halo C ⁇ alkyl; and
- q is zero or an integer from 1 to 4.
- the present invention provides compounds of formula (I) and salts, solvates and physiologically functional derivatives thereof, wherein formula (I) is as defined hereinabove, except that R 8 does not represent hydrogen.
- the group R 1 is preferably attached to the meta-position relative to the -O-(CH 2 ) n - link.
- R 1 preferably represents SOR 6 or SO 2 R 6 , most preferably SO 2 R 6 .
- R 6 preferably represents C 3 _ 7 cycloalkyl, most preferably cyclopentyl.
- R 4 and R 5 are preferably independently selected from hydrogen and methyl, more preferably R 4 and R 5 are both hydrogen.
- n is suitably 4, 5, or 6, and n is suitably 3, 4, 5 or 6.
- m is 5 or 6 and n is 3 or 4, such that m + n is 8, 9 or 10, preferably 9.
- the group Ar is preferably selected from groups (a) and
- R 8 represents halogen this is preferably chlorine or fluorine.
- R 11 and R 12 preferably each independently represent hydrogen or methyl.
- R 13 preferably represents substituted phenyl.
- the integer q preferably represents zero or 1.
- -(CH 2 ) p OR 11 preferably represents OH or-CH 2 OH;
- NR 11 C(O)R 12 preferably represents -NHC(O)H;
- -SO 2 NR 11 R 12 preferably represents -SO 2 NH 2 or SO 2 NHCH 3 ;
- NR 11 R 12 preferably represents -NH 2 ;
- -OC(O)R 13 preferably represents substituted benzoyloxy eg. OC(O)-C 6 H -( p -CH 3 ); and -OC(O)N R 11 R 12 preferably represents OC(O)N(CH 3 ) 2 .
- R 8 represents NHR 14 and together with R 7 forms a 5- or 6- membered heterocyclic ring -NHR 14 -R 7 - preferably represents a group:
- R 15 is an alkyl, alkenyl or alkyloxy moiety
- R 17 is an alkyl or alkenyl moiety optionally substituted by COOR 18 where
- R 18 is d. 4 alkyl; or -NH-CO-S-; wherein said alkyl, and alkenyl groups and moieties contain 1 or 2 carbon atoms.
- Particularly preferred groups (a) and (b) may be selected from the following groups (i) to (xxi):
- Ar represents a group (i).
- the present invention provides a compound of formula (la)
- n is an integer of from 3 to 11 , preferably from 3 to 7; with the proviso that m + n is 5 to 19, preferably 5 to 12;
- R 1 is SR 6 , SOR 6 , or SO 2 R 6 , wherein R 6 is a C 3 . 7 cycloalkyl or C 3 . 7 cycloalkenyl group;
- R 2 and R 3 are independently selected from hydrogen, C h alky!, halo, phenyl, and C ⁇ haloalkyl; and R 4 and R 5 are independently selected from hydrogen and dialkyl with the proviso that the total number of carbon atoms in R 4 and R 5 is not more than 4.
- the group R 1 is preferably attached to the meta-position relative to the -O-(CH 2 ) n - link.
- R 1 preferably represents SOR 6 or SO 2 R 6 , most preferably SO 2 R 6 .
- R 6 preferably represents C 3 .7 cycloalkyl, most preferably cyclopentyl.
- R 4 and R 5 are preferably independently selected from hydrogen and methyl, more preferably R 4 and R 5 are both hydrogen.
- n is suitably 4, 5, or 6, and n is suitably 2, 3, 4, 5 or 6.
- m is 5 or 6 and n is 3 or 4, such that m + n is 8, 9 or 10, preferably 9.
- Preferred compounds of formulae (I) and (la) include:
- a particularly preferred compound of formula (I) is:
- the compounds may therefore exist in four different isomeric forms.
- the present invention includes both (S) and (R) enantiomers at both chiral centres either in substantially pure form or admixed in any proportions.
- R 4 and R 5 are different groups
- the carbon atom to which they are attached is an asymmetric centre and the present invention includes both (S) and (R) enantiomers at this centre either in substantially pure form or admixed in any proportions.
- the compounds of formula (I) and (la) include all enantiomers and diastereoisomers as well as mixtures thereof in any proportions.
- Salts and solvates of compounds of formula (I) and (la) which are suitable for use in medicine are those wherein the counterion or associated solvent is pharmaceutically acceptable.
- salts and solvates having non-pharmaceutically acceptable counterions or associated solvents are within the scope of the present invention, for example, for use as intermediates in the preparation of other compounds of formula (I) and (la) and their pharmaceutically acceptable salts, solvates, and physiologically functional derivatives.
- physiologically functional derivative is meant a chemical derivative of a compound of formula (I) or (la) having the same physiological function as the parent compound of formula (I) or (la) for example, by being convertible in the body thereto.
- physiologically functional derivatives include esters.
- Suitable salts according to the invention include those formed with both organic and inorganic acids or bases.
- Pharmaceutically acceptable acid addition salts include those formed from hydrochloric, hydrobromic, sulphuric, citric, tartaric, phosphoric, lactic, pyruvic, acetic, trifluoroacetic, triphenylacetic, sulphamic, sulphanilic, succinic, oxalic, fumaric, maleic, malic, glutamic, aspartic, oxaloacetic, methanesulphonic, ethanesulphonic, arylsulphonic (for example p-toluenesulphonic, m-toluenesulphonic, benzenesulphonic, 4-chlorobenzenesulphonic, 4-bromobenzenesulphonic, 4-phenylbenzenesulphonic, naphthalenesulphonic or naphthalenedisulphonic), salicylic, glutaric, gluconic
- Pharmaceutically acceptable base salts include ammonium salts, alkali metal salts such as those of sodium and potassium, alkaline earth metal salts such as those of calcium and magnesium and salts with organic bases such as dicyclohexyl amine and N-methyl-D-glucamine.
- preferred compounds of the invention such as 4- ⁇ (1f?)-2-[(6- ⁇ 4-[3- (cyclopentylsulfonyl)phenyl]butoxy ⁇ hexyl)amino]-1-hydroxyethyl ⁇ -2- (hydroxymethyl)phenol, are provided in the form of a crystalline salt, for example selected from those exemplified in the experimental section below.
- Particularly preferred salts include benzenesulfonate derivatives such as the p-toluenesulfonate, m-toluenesulfonate, 4-chlorobenzenes ⁇ lfonate, 4-bromobenzenes ⁇ lfonate, 4-phenylbenzenesulfonate and naphthalene-2-sulfonate salts.
- esters of the compounds of formula (I) and (la) may have a hydroxyl group converted to a dialkyl, aryl, aryl d-e alkyl, or amino acid ester.
- the compounds of formula (I) and (la) are selective ⁇ 2 - adrenoreceptor agonists as demonstrated using functional or reporter gene readout from cell lines transfected with human beta-adrenoreceptors, or membranes derived from these cells, as described below.
- Compounds according to the present invention also have the potential to combine long duration of effect with rapid onset of action.
- certain compounds have shown an improved therapeutic index in animal models relative to existing long-acting ⁇ 2 -agonist bronchodilators.
- compounds of the invention may be suitable for once-daily administration.
- Preferred compounds of the invention also exhibit relatively low absorption in the rat following oral administration.
- the compounds of the invention are principally intended for administration by inhalation, a certain proportion of the dose, which can be as much as 80%, may be swallowed by the patient, with the potential for unwanted systemic effects. Low oral absorption is therefore a desirable property for compounds of the invention.
- Compounds of formula (I) and (la) and their pharmaceutically acceptable salts, solvates, and physiologically functional derivatives have use in the prophylaxis and treatment of clinical conditions for which a selective ⁇ 2 -adrenoreceptor agonist is indicated.
- Such conditions include diseases associated with reversible airways obstruction such as asthma, chronic obstructive pulmonary diseases (COPD) (e.g. chronic and whez bronchitis, emphysema), respiratory tract infection and upper respiratory tract disease (e.g. rhinitis, including seasonal and allergic rhinitis).
- COPD chronic obstructive pulmonary diseases
- rhinitis e.g. chronic and whez bronchitis, emphysema
- respiratory tract infection e.g. rhinitis, including seasonal and allergic rhinitis.
- the present invention provides a method for the prophylaxis or treatment of a clinical condition in a mammal, such as a human, for which a selective ⁇ 2 -adrenoreceptor agonist is indicated, which comprises administration of a therapeutically effective amount of a compound of formula (I) or (la) or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof.
- the present invention provides such a method for the prophylaxis or treatment of a disease associated with reversible airways obstruction such as asthma, chronic obstructive pulmonary disease (COPD), respiratory tract infection or upper respiratory tract disease.
- a disease associated with reversible airways obstruction such as asthma, chronic obstructive pulmonary disease (COPD), respiratory tract infection or upper respiratory tract disease.
- COPD chronic obstructive pulmonary disease
- the present invention provides such a method for the prophylaxis or treatment of a clinical condition selected from premature labour, depression, congestive heart failure, skin diseases (e.g. inflammatory, allergic, psoriatic, and proliferative skin diseases), conditions where lowering peptic acidity is desirable (e.g. peptic and gastric ulceration) or muscle wasting disease.
- skin diseases e.g. inflammatory, allergic, psoriatic, and proliferative skin diseases
- conditions where lowering peptic acidity is desirable e.g. peptic and gastric
- a compound of formula (I) or (la) or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof for use in medical therapy, particularly, for use in the prophylaxis or treatment of a clinical condition in a mammal, such as a human, for which a selective ⁇ 2 -adrenoreceptor agonist is indicated.
- a compound of formula (I) or (la) or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof for the prophylaxis or treatment of a disease associated with reversible airways obstruction such as asthma, chronic obstructive pulmonary disease (COPD), respiratory tract infection or upper respiratory tract disease.
- COPD chronic obstructive pulmonary disease
- a clinical condition selected from premature labour, depression, congestive heart failure, skin diseases (e.g. inflammatory, allergic, psoriatic, and proliferative skin diseases), conditions where lowering peptic acidity is desirable (e.g. peptic and gastric ulceration) or muscle wasting disease.
- the present invention also provides the use of a compound of formula (I) or (la) or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof in the manufacture of a medicament for the prophylaxis or treatment of a clinical condition for which a selective ⁇ 2 -adrenoreceptor agonist is indicated, for example a disease associated with reversible airways obstruction such as asthma, chronic obstructive pulmonary disease (COPD), respiratory tract infection or upper respiratory tract disease.
- COPD chronic obstructive pulmonary disease
- a clinical condition selected from premature labour, depression, congestive heart failure, skin diseases (e.g. inflammatory, allergic, psoriatic, and proliferative skin diseases), conditions where lowering peptic acidity is desirable (e.g. peptic and gastric ulceration) and muscle wasting disease.
- the amount of a compound of formula (I) or (la) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof which is required to achieve a therapeutic effect will, of course, vary with the particular compound, the route of administration, the subject under treatment, and the particular disorder or disease being treated.
- the compounds of the invention may be administered by inhalation at a dose of from 0.0005mg to 10mg, preferably 0.005mg to 0.5mg. eg. 0.05mg to 0.5mg.
- the dose range for adult humans is generally from 0.0005mg to 10mg per day and preferably 0.01 mg to 1mg per day, most preferrably 0.05mg to 0.5mg.
- the present invention further provides a pharmaceutical formulation comprising a compound of formula (I) or (la) or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof, and a pharmaceutically acceptable carrier or excipient, and optionally one or more other therapeutic ingredients.
- active ingredient means a compound of formula (I) or (la) or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof.
- the formulations include those suitable for oral, parenteral (including subcutaneous, intradermal, intramuscular, intravenous and intraarticular), inhalation (including fine particle dusts or mists which may be generated by means of various types of metered dose pressurised aerosols, nebulisers or insufflators), rectal and topical (including dermal, buccal, sublingual and intraocular) administration although the most suitable route may depend upon for example the condition and disorder of the recipient.
- the formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the active ingredient into association with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both and then, if necessary, shaping the product into the desired formulation.
- Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water- in-oil liquid emulsion.
- the active ingredient may also be presented as a bolus, electuary or paste.
- a tablet may be made by compression or moulding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, lubricating, surface active or dispersing agent.
- Moulded tablets may be made by moulding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- the tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein.
- Formulations for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
- the formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example saline or water-for-injection, immediately prior to use.
- Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
- Dry powder compositions for topical delivery to the lung by inhalation may, for example, be presented in capsules and cartridges of for example gelatine, or blisters of for example laminated aluminium foil, for use in an inhaler or insufflator.
- Powder blend formulations generally contain a powder mix for inhalation of the compound of the invention and a suitable powder base (carrier/diluent/excipient substance) such as mono-, di or poly- saccharides (eg. lactose or starch). Use of lactose is preferred.
- Each capsule or cartridge may generally contain between 20 ⁇ g-10mg of the compound of formula (I) or (la) optionally in combination with another therapeutically active ingredient.
- the compound of the invention may be presented without excipients.
- Packaging of the formulation may be suitable for unit dose or multi-dose delivery. In the case of multi-dose delivery, the formulation can be pre-metered (eg as in Diskus, see GB 2242134, US Patent Nos. 6,632,666, 5,860,419.
- the Diskus inhalation device comprises an elongate strip formed from a base sheet having a plurality of recesses spaced along its length and a lid sheet hermetically but peelably sealed thereto to define a plurality of containers, each container having therein an inhalable formulation containing a compound of formula (I) or (la) preferably combined with lactose.
- the strip is sufficiently flexible to be wound into a roll.
- the lid sheet and base sheet will preferably have leading end portions which are not sealed to one another and at least one of the said leading end portions is constructed to be attached to a winding means.
- the hermetic seal between the base and lid sheets extends over their whole width.
- the lid sheet may preferably be peeled from the base sheet in a longitudinal direction from a first end of the said base sheet.
- Spray compositions for topical delivery to the lung by inhalation may for example be formulated as aqueous solutions or suspensions or as aerosols delivered from pressurised packs, such as a metered dose inhaler, with the use of a suitable liquefied propellant.
- Aerosol compositions suitable for inhalation can be either a suspension or a solution and generally contain the compound of formula (I) or (la) optionally in combination with another therapeutically active ingredient and a suitable propellant such as a fluorocarbon or hydrogen-containing chlorofluorocarbon or mixtures thereof, particularly hydrofluoroalkanes, e.g.
- the aerosol composition may be excipient free or may optionally contain additional formulation excipients well known in the art such as surfactants eg oleic acid or lecithin and cosolvents eg ethanol. Pressurised formulations will generally be retained in a canister (eg an aluminium canister) closed with a valve (eg a metering valve) and fitted into an actuator provided with a mouthpiece.
- a canister eg an aluminium canister
- a valve eg a metering valve
- Medicaments for administration by inhalation desirably have a controlled particle size.
- the optimum particle size for inhalation into the bronchial system is usually 1-1 O ⁇ m, preferably 2-5 ⁇ m. Particles having a size above 20 ⁇ m are generally too large when inhaled to reach the small airways.
- the particles of the active ingredient as produced may be size reduced by conventional means eg by micronisation.
- the desired fraction may be separated out by air classification or sieving.
- the particles will be crystalline.
- an excipient such as lactose is employed, generally, the particle size of the excipient will be much greater than the inhaled medicament within the present invention.
- the excipient is lactose it will typically be present as milled lactose, wherein not more than 85% of lactose particles will have a MMD of 60-90 ⁇ m and not less than 15% will have a MMD of less than 15 ⁇ m.
- Intranasal sprays may be formulated with aqueous or non-aqueous vehicles with the addition of agents such as thickening agents, buffer salts or acid or alkali to adjust the pH, isotonicity adjusting agents or anti-oxidants.
- agents such as thickening agents, buffer salts or acid or alkali to adjust the pH, isotonicity adjusting agents or anti-oxidants.
- Solutions for inhalation by nebulation may be formulated with an aqueous vehicle with the addition of agents such as acid or alkali, buffer salts, isotonicity adjusting agents or antimicrobials. They may be sterilised by filtration or heating in an autoclave, or presented as a non-sterile product.
- Formulations for rectal administration may be presented as a suppository with the usual carriers such as cocoa butter or polyethylene glycol.
- Formulations for topical administration in the mouth include lozenges comprising the active ingredient in a flavoured basis such as sucrose and acacia or tragacanth, and pastilles comprising the active ingredient in a basis such as gelatin and glycerin or sucrose an acacia.
- Preferred unit dosage formulations are those containing an effective dose, as hereinbefore recited, or an appropriate fraction thereof, of the active ingredient.
- formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavouring agents.
- the compounds and pharmaceutical formulations according to the invention may be used in combination with or include one or more other therapeutic agents, for example selected from anti-inflammatory agents, anticholinergic agents (particularly an M L M 2 , M ⁇ / ⁇ vk or M 3 receptor antagonist), other ⁇ 2 -adrenoreceptor agonists, antiinfective agents (e.g. antibiotics, antivirals), or antihistamines.
- anti-inflammatory agents particularly an M L M 2 , M ⁇ / ⁇ vk or M 3 receptor antagonist
- antiinfective agents e.g. antibiotics, antivirals
- antihistamines e.g. antibiotics, antivirals
- the invention thus provides, in a further aspect, a combination comprising a compound of formula (I) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with one or more other therapeutically active agents, for example selected from an anti-inflammatory agent (for example a corticosteroid or an NSAID), an anticholinergic agent, another ⁇ 2 - adrenoreceptor agonist, an antiinfective agent (e.g. an antibiotic or an antiviral), or an antihistamine.
- an anti-inflammatory agent for example a corticosteroid or an NSAID
- an anticholinergic agent for example a corticosteroid or an NSAID
- an antiinfective agent e.g. an antibiotic or an antiviral
- Preferred combinations comprising a compound of formula (I) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with a corticosteroid, and/or an anticholinergic, and/or a PDE-4 inhibitor.
- the other therapeutic ingredient(s) may be used in the form of salts, (e.g. as alkali metal or amine salts or as acid addition salts), or prodrugs, or as esters (e.g. lower alkyl esters), or as solvates (e.g. hydrates) to optimise the activity and/or stability and/or physical characteristics (e.g. solubility) of the therapeutic ingredient.
- the therapeutic ingredients may be used in optically pure form.
- Suitable anti-inflammatory agents include corticosteroids and NSAIDs.
- Suitable corticosteroids which may be used in combination with the compounds of the invention are those oral and inhaled corticosteroids and their pro-drugs which have anti- inflammatory activity. Examples include methyl prednisolone, prednisolone, dexamethasone, fluticasone propionate, 6 ⁇ ,9 ⁇ -difluoro-17 ⁇ -[(2-furanylcarbonyl)oxy]-11 ⁇ - hydroxy-16 ⁇ -methyl-3-oxo-androsta-1,4-diene-17 ⁇ -carbothioic acid S-fluoromethyl ester, 6 ⁇ ,9 ⁇ -difluoro-11 ⁇ -hydroxy-16 ⁇ -methyl-3-oxo-17 ⁇ -propionyloxy- androsta-1 ,4-diene-17 ⁇ - carbothioic acid S-(2-oxo-tetrahydro-furan-3S-yl) ester, beclomethasone esters (
- the 17-propionate ester or the 17,21-dipropionate ester the 17-propionate ester or the 17,21-dipropionate ester
- budesonide flunisolide
- mometasone esters e.g. the furoate ester
- triamcinolone acetonide e.g. the furoate ester
- rofleponide triamcinolone acetonide
- ciclesonide butixocort propionate
- RPR-106541 the 17-propionate ester or the 17,21-dipropionate ester
- ST-126 the 17-propionate ester or the 17,21-dipropionate ester
- Preferred corticosteroids include fluticasone propionate, 6 ⁇ ,9 ⁇ -difluoro-11 ⁇ -hydroxy-16 ⁇ -methyl-17 ⁇ -[(4-methyl- 1 ,3-thiazole-5-carbonyl)oxy]-3-oxo-androsta-1 ,4-diene-17 ⁇ -carbothioic acid S- fluoromethyl ester and 6 ⁇ ,9 ⁇ -difluoro-17 ⁇ -[(2-furanylcarbonyl)oxy]-11 ⁇ -hydroxy-16 ⁇ - methyl-3-oxo-androsta-1 ,4-diene-17 ⁇ -carbothioic acid S-fluoromethyl ester, more preferably 6 ⁇ ,9 ⁇ -difluoro-17 ⁇ -[(2-furanylcarbonyl)oxy]-11 ⁇ -hydroxy-16 ⁇ -methyl-3-oxo- androsta-1,4-diene-17 ⁇ -carbothioic acid S-fluoromethyl ester.
- Suitable NSAIDs include sodium cromoglycate, nedocromil sodium, phosphodiesterase (PDE) inhibitors (e.g. theophylline, PDE4 inhibitors or mixed PDE3/PDE4 inhibitors), leukotriene antagonists, inhibitors of leukotriene synthesis, iNOS inhibitors, tryptase and elastase inhibitors, beta-2 integrin antagonists and adenosine receptor agonists or antagonists (e.g. adenosine 2a agonists), cytokine antagonists (e.g. chemokine antagonists) or inhibitors of cytokine synthesis.
- PDE phosphodiesterase
- Suitable other ⁇ 2 -adrenoreceptor agonists include salmeterol (e.g. as the xinafoate), salbutamol (e.g. as the sulphate or the free base), formoterol (e.g. as the fumarate), fenoterol or terbutaline and salts thereof.
- PDE4-specific inhibitor useful in this aspect of the invention may be any compound that is known to inhibit the PDE4 enzyme or which is discovered to act as a PDE4 inhibitor, and which are only PDE4 inhibitors, not compounds which inhibit other members of the PDE family as well as PDE4.
- a PDE4 inhibitor which has an IC50 ratio of about 0.1 or greater as regards the IC50 for the PDE4 catalytic form which binds rolipram with a high affinity divided by the IC50 for the form which binds rolipram with a low affinity.
- the cAMP catalytic site which binds R and S rolipram with a low affinity is denominated the "low affinity" binding site (LPDE 4) and the other form of this catalytic site which binds rolipram with a high affinity is denominated the "high affinity” binding site (HPDE 4).
- the preferred PDE4 inhibitors of use in this invention will be those compounds which have a salutary therapeutic ratio, i.e., compounds which preferentially inhibit cAMP catalytic activity where the enzyme is in the form that binds rolipram with a low affinity, thereby reducing the side effects which apparently are linked to inhibiting the form which binds rolipram with a high affinity.
- the preferred compounds will have an IC 50 ratio of about 0.1 or greater as regards the IC50 for the PDE4 catalytic form which binds rolipram with a high affinity divided by the IC50 for the form which binds rolipram with a low affinity.
- a further refinement of this standard is that of one wherein the PDE4 inhibitor has an IC50 ratio of about 0.1 or greater; said ratio is the ratio of the IC50 value for competing with the binding of 1nM of [ ⁇ HjR-rolipram to a form of PDE4 which binds rolipram with a high affinity over the IC50 value for inhibiting the PDE4 catalytic activity of a form which binds rolipram with a low affinity using 1 ⁇ M[3H]-cAMP as the substrate.
- PDE4 inhibitors which have an IC50 ratio of greater than 0.5, and particularly those compounds having a ratio of greater than 1.0.
- Preferred compounds are cis 4-cyano-4-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan-1- carboxylic acid, 2-carbomethoxy-4-cyano-4-(3-cyclopropylmethoxy-4- difluoromethoxyphenyl)cyclohexan-1-one and c s-[4-cyano-4-(3-cyclopropylmethoxy-4- difluoromethoxyphenyl)cyclohexan-1-ol]; these are examples of compounds which bind preferentially to the low affinity binding site and which have an IC50 ratio of 0.1 or greater.
- PDE-4 and mixed PDE3/PDE4 inhibitors include those listed in WO01/13953, the disclosure of which is hereby incorporated by reference.
- Suitable anticholinergic agents are those compounds that act as antagonists at the muscarinic receptor, in particular those compounds which are antagonists of the M ⁇ and M 2 receptors.
- Exemplary compounds include the alkaloids of the belladonna plants as illustrated by the likes of atropine, scopolamine, homatropine, hyoscyamine; these compounds are normally administered as a salt, being tertiary amines.
- These drugs, particularly the salt forms, are readily available from a number of commercial sources or hail can be made or prepared from literature data via, to wit:
- Atropine - CAS-51-55-8 or CAS-51-48-1 (anhydrous form), atropine sulfate - CAS-5908- 99-6; atropine oxide - CAS-4438-22-6 or its HCl salt - CAS-4574-60-1 and methylatropine nitrate - CAS-52-88-0.
- Preferred anticholinergics include ipratropium (e.g. as the bromide), sold under the name Atrovent, oxitropium (e.g. as the bromide) and tiotropium (e.g. as the bromide) (CAS- 139404-48-1).
- methantheline (CAS-53-46-3), propantheline bromide (CAS- 50-34-9), anisotropine methyl bromide or Valpin 50 (CAS- 80-50-2), clidinium bromide (Quarzan, CAS-3485-62-9), copyrrolate (Robinul), isopropamide iodide (CAS-71- 81-8), mepenzolate bromide (U.S. patent 2,918,408), tridihexethyl chloride (Pathilone, CAS-4310-35-4), and hexocyclium methylsulfate (Tral, CAS-115-63-9).
- Suitable antihistamines include any one or more of the numerous antagonists known which inhibit H receptors, and are safe for human use. All are reversible, competitive inhibitors of the interaction of histamine with Hi-receptors. The majority of these inhibitors, mostly first generation antagonists, have a core structure, which can be represented by the following formula:
- This generalized structure represents three types of antihistamines generally available: ethanolamines, ethylenediamines, and alkylamines.
- first generation antihistamines include those which can be characterized as based on piperizine and phenothiazines.
- Second generation antagonists which are non-sedating, have a similar structure-activity relationship in that they retain the core ethylene group (the alkylamines) or mimic the tertiary amine group with piperizine or piperidine.
- Exemplary antagonists are as follows:
- Ethanolamines carbinoxamine maleate, clemastine fumarate, diphenylhydramine hydrochloride, and dimenhydrinate.
- Ethylenediamines pyrilamine amleate, tripelennamine HCl, and tripelennamine citrate.
- Alkylamines chloropheniramine and its salts such as the maleate salt, and acrivastine.
- Piperazines hydroxyzine HCl, hydroxyzine pamoate, cyclizine HCl, cyclizine lactate, meclizine HCl, and cetirizine HCl.
- Piperidines Astemizole, levocabastine HCl, loratadine or its descarboethoxy analogue, and terfenadine and fexofenadine hydrochloride or another pharmaceutically acceptable salt.
- Azelastine hydrochloride is yet another H, receptor antagonist which may be used in combination with a PDE4 inhibitor.
- Examples of preferred anti-histamines include methapyrilene and loratadine.
- the invention thus provides, in a further aspect, a combination comprising a compound of formula (I) or (la) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with a PDE4 inhibitor.
- the invention provides a combination comprising a compound of formula (la) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with a preferred PDE4 inhibitor as described hereinabove, e.g. c/ ' s-4-cyano-4-[3- (cyclopentyloxy)-4-methoxyphenyl]cyclohexane-1 -carboxylic acid.
- the invention thus provides, in a further aspect, a combination comprising a compound of formula (I) or (la) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with a corticosteroid.
- the invention provides a combination comprising a compound of formula (la) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with a preferred corticosteroid as described hereinabove, e.g.
- the invention thus provides, in a further aspect, a combination comprising a compound of formula (I) or (la) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with an anticholinergic.
- the invention provides a combination comprising a compound of formula (la) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with a preferred anticholinergic as described hereinabove, e.g. ipratropium, oxitropium or tiotropium
- a preferred anticholinergic as described hereinabove, e.g. ipratropium, oxitropium or tiotropium
- the invention thus provides, in a further aspect, a combination comprising a compound of formula (1) or 0 a ) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with an antihistamine.
- the invention provides a combination comprising a compound of formula (la) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative
- the invention thus provides, in a further aspect, a combination comprising a compound of formula (I) or (la) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with a PDE4 inhibitor and a corticosteroid.
- the invention provides a combination comprising a compound of formula (la) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with a preferred antihistamine and a preferred corticosteroid as described hereinabove.
- the invention thus provides, in a further aspect, a combination comprising a compound of formula (I) or (la) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with an anticholinergic and a PDE-4 inhibitor.
- the invention provides a combination comprising a compound of formula (la) or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof together with a preferred PDE4 inhibitor and a preferred anticholinergic as described hereinabove.
- compositions comprising a combination as defined above together with a physiologically acceptable diluent or carrier represent a further aspect of the invention.
- the individual compounds of such combinations may be administered either sequentially or simultaneously in separate or combined pharmaceutical formulations. Appropriate doses of known therapeutic agents will be readily appreciated by those skilled in the art.
- a process for preparing a compound of formula (I) or (la) or a salt, solvate, or physiologically functional derivative thereof which comprises a process as defined below followed by the following steps in any order: (i) optional removal of any protecting groups;
- a compound of formula (I) or (la) may be obtained by deprotection of a protected intermediate, for example of formula (II):
- R 1 , R 2 , R 3 , R 4 , R 5 , m, and n are as defined for the compound of formula (I) or (la)
- R 19 represents an optionally protected form of Ar
- R 20 and R 21 are each independently either hydrogen or a protecting group, provided that the compound of formula (II) contains at least one protecting group.
- Optionally protected forms of the preferred groups Ar may be selected from:
- R 22 and R 23 are each independently either hydrogen or a protecting group provided that at least one of R 22 and R 23 is a protecting group.and the dotted line in (xvia) and (xixa) denotes an optional double bond.
- R 19 represents the structure (ia) above.
- Suitable protecting groups may be any conventional protecting group such as those described in "Protective Groups in Organic Synthesis” by Theodora W Greene and Peter G M Wuts, 3rd edition (John Wiley & Sons, 1999).
- suitable hydroxyl protecting groups represented by R 22 and R 23 are esters such as acetate ester, aralkyl groups such as benzyl, diphenylmethyl, or triphenylmethyl, and tetrahydropyranyl.
- suitable amino protecting groups represented by R 20 include benzyl, ⁇ - methylbenzyl, diphenylmethyl, triphenylmethyl, benzyloxycarbonyl, tert-butoxycarbonyl, and acyl groups such as trichloroacetyl or trifluoroacetyl.
- acyl groups such as trichloroacetyl or trifluoroacetyl.
- use of such protecting groups may include orthogonal protection of groups in the compounds of formula (II) to facilitate the selective removal of one group in the presence of another, thus enabling selective functionalisation of a single amino or hydroxyl function.
- the -CH(OH) group may be orthogonally protected as -CHOR 21 using, for example, a trialkylsilyl group such as triethylsilyl.
- a trialkylsilyl group such as triethylsilyl.
- orthogonal protection strategies available by conventional means as described in Theodora W Greene (see above).
- the deprotection to yield a compound of formula (I) or (la) may be effected using conventional techniques.
- R 22 , R 23 , and/or R 20 is an aralkyl group, this may be cleaved by hydrogenolysis in the presence of a metal catalyst (e.g. palladium on charcoal).
- a metal catalyst e.g. palladium on charcoal
- R 23 and/or R 24 When R 23 and/or R 24 is tetrahydropyranyl this may be cleaved by hydrolysis under acidic conditions.
- Acyl groups represented by R 20 may be removed by hydrolysis, for example with a base such as sodium hydroxide, or a group such as trichloroethoxycarbonyl may be removed by reduction with, for example, zinc and acetic acid.
- Other deprotection methods may be found in Theodora W Greene (see above).
- R 22 and R 23 may together represent a protecting group as in the compound of formula (III).
- R 24 and R 25 are independently selected from hydrogen, d- ⁇ alkyl, or aryl or R 24 and R 25 together form a C 3 . 7 alkyl group. In a preferred aspect, both R 24 and R 25 are methyl.
- a compound of formula (III) may be converted to a compound of formula (I) by hydrolysis with dilute aqueous acid, for example acetic acid or hydrochloric acid in a suitable solvent or by transketalisation in an alcohol, for example ethanol, in the presence of a catalyst such as an acid (for example, toluenesulphonic acid) or a salt (such as pyridinium tosylate) at normal or elevated temperature.
- a catalyst such as an acid (for example, toluenesulphonic acid) or a salt (such as pyridinium tosylate) at normal or elevated temperature.
- protecting groups R 22 , R 23 , R 20 and R 21 may be removed in a single step or sequentially.
- the precise order in which protecting groups are removed will in part depend upon the nature of said groups and will be readily apparent to the skilled worker.
- R 22 and R 23 together form a protecting group as in formula (III) this protecting group is removed together with any protecting group on the CH(OH) moiety, followed by removal of R 20 .
- R 1 , R 2 , R 3 , R 4 , R 5 , R 19 , m, and n are as defined for the compound of formula (II) or (III).
- a compound of formula (IV) to a compound of formula (II) or (III) may be effected by treatment with a base, for example a non-aqueous base, such as potassium trimethylsilanolate, or an aqueous base such as aqueous sodium hydroxide, in a suitable solvent such as tetrahydrofuran.
- a base for example a non-aqueous base, such as potassium trimethylsilanolate, or an aqueous base such as aqueous sodium hydroxide, in a suitable solvent such as tetrahydrofuran.
- R 2 , R 3 , R 4 , R 5 , R 19 , m, and n are as defined for formula (II) and L is a leaving group, for example a halo group, (preferably iodo);
- Oxidation may be carried out using conventional oxidising agents, for example sodium periodate, in a suitable solvent, for example an alcohol such as ethanol, or a peracid, for example, metachloroperbenzoic acid in a suitable solvent such as dichloromethane, or hydrogen peroxide in a suitable solvent such as acetic acid.
- a suitable solvent for example an alcohol such as ethanol
- a peracid for example, metachloroperbenzoic acid in a suitable solvent such as dichloromethane, or hydrogen peroxide in a suitable solvent such as acetic acid.
- R 1 represents SOR 6
- the product may initially be obtained as a mixture of diastereoisomers. These may be separated by conventional methods, for example using chiral chromatography, such as chiral HPLC. Alternatively the sulphoxides can be prepared selectively in one of the diastereomeric forms by the use of a chiral oxidising agent.
- a compound of formula (IV) wherein R 1 represents SO 2 R 6 may be prepared by oxidation of a corresponding compound of formula (IV) wherein R 1 represents SOR 6 or SR 6 by reaction with a peracid, for example metachloroperbenzoic acid.
- a peracid for example metachloroperbenzoic acid.
- R 1 represents SOR 6 or SR 6
- the peracid should be used in excess, to ensure complete oxidation.
- a sulphoxide starting material may conveniently be employed as a mixture of diastereoisomers.
- a compound of formula (V) may be prepared by coupling a compound of formula (VI):
- R 4 , R 5 , L, m and n are as defined for the compound of formula (V) and L 1 is a leaving group, for example a halo group (typically bromo or iodo) or a sulfonate such as an alkyl sulfonate (typically, methanesulfonate), an arylsulfonate (typically, toluenesulfonate), or a haloalkyl sulfonate (typically, trifluoromethanesulfonate).
- a halo group typically bromo or iodo
- a sulfonate such as an alkyl sulfonate (typically, methanesulfonate), an arylsulfonate (typically, toluenesulfonate), or a haloalkyl sulfonate (typically, trifluoromethanesulfonate).
- the coupling of a compound of formula (VI) with a compound of formula (VII) may be effected in the presence of a base, such as a metal hydride, for example sodium hydride, or an inorganic base such as cesium carbonate, in an aprotic solvent, for example N,N- dimethylformamide or tetrahydrofuran.
- a base such as a metal hydride, for example sodium hydride, or an inorganic base such as cesium carbonate
- an aprotic solvent for example N,N- dimethylformamide or tetrahydrofuran.
- R 4 , R 5 and m are as defined for compounds of formula (I) and each L 1 represents a halo, typically bromo;
- R , R , L and n are as defined for compounds of formula (VII).
- the coupling of compounds (Vlll) and (IX) may be effected in the presence of an — inorganic base, such as aqueous sodium hydroxide, under phase transfer conditions in the presence of an ammonium salt such as tetraalkylammonium bromide.
- an — inorganic base such as aqueous sodium hydroxide
- R 19 is an optionally protected form of Ar
- R 20 and R 21 each independently represent hydrogen or a protecting group
- each R 26 independently represents hydrogen or dialkyl
- x and y each represent 0, 1 or 2;
- Ring closure may be effected by olefin metathesis chemistry.
- a compound of formula (X) is reacted with a ruthenium catalyst (Grubbs catalyst) such as benzylidene- bis(tricyclohexylphosphine)-dichlororuthenium, or a molybdenum (Schrock) catalyst, to effect formation of the desired cycloalkene moiety, with concomitant generation of ethylene or a substituted ethylene, preferably as a gas.
- R 26 is preferably a small moiety, eg. hydrogen or methyl, most preferably hydrogen.
- a ruthenium catalyst is employed.
- the catalyst may if desired be polymer-supported.
- a compound of formula (X) may be prepared by reacting a compound of formula (XI):
- R , R , R , x and y are as defined for formula (X) and L is halo eg. bromo.
- a compound of formula (XI) is initially reacted with a sterically hindered borane compound eg. a cyclic borane derivative such as 9-borabicyclo[3.3.1]nonane, thexylborane, catecholborane or disiamylborane, and followed by coupling with the compound (XII) in the presence of a catalyst such as palladium acetate, PdCI , Pd(PPh 3 ) , or Pd 2 (dba) 3 ; and a phosphine such as triphenylphosphine, (di-tert- butylphosphino)biphenyl, tricyclohexylphosphine, triisopropylphosphine, tricyclopentylphosphine, or tri-tert-butylphosphine; and a base such as aqueous potassium or sodium phosphate, potassium or sodium carbonate, or sodium a sterically
- a compound of formula (XI) may be prepared for example by reacting a compound of formula (XIII):
- R 19 , R 20 and R 21 are as hereinbefore defined;
- a compound of formula (XIV) may be prepared by standard methods, e.g.from the corresponding dihaloalkane and hydroxyalkene by conventional chemistry, typically in the presence of an inorganic base, such as aqueous sodium hydroxide, under phase transfer conditions in the presence of an ammonium salt such as tetraalkylammonium bromide.
- a compound of formula (XII) may be prepared by reacting a compound of formula (XV):
- R 4 , R 5 , R 19 , m and n are as defined for compounds of formula (II), which in turn may be prepared by reacting a compound of formula (VI) with a compound of formula (XIV) in an analogous manner to the reaction of a compound (Xlll) with a compound (XIV).
- step of forming the cycloalkenyl group R 6 may be carried out at any convenient stage of the reaction. However, in order to retain the cycloalkenyl moiety, this step should be carried out after any stages involving hydrogenation, hydroboration or oxidation reactions.
- a compound of formula (I), (II) or (III) may be obtained by alkylation of an amine of formula (Xlll):
- R 19 represents an optionally protected form of Ar and R 20 and R 21 are each independently either hydrogen or a protecting group, eg. as defined hereinabove for formula (II); with a compound of formula (XVII):
- R 1 , R 2 , R 3 , R 4 , R 5 , m, and n are as defined for the compound of formula (I) and L 1 is a leaving group such as halo (typically bromo) or a sulfonate eg a haloalkyl sulfonate (typically trifluoromethane sulfonate); followed by removal of any protecting groups present by conventional methods as described above for the deprotection of compounds of formula (II).
- halo typically bromo
- a sulfonate eg a haloalkyl sulfonate (typically trifluoromethane sulfonate)
- reaction of a compound of formula (Xlll) with a compound of formula (XVII) is optionally effected in the presence of an organic base such as a trialkylamine, for example, diisopropylethylamine, and in a suitable solvent for example dimethyl formamide.
- organic base such as a trialkylamine, for example, diisopropylethylamine, and in a suitable solvent for example dimethyl formamide.
- a compound of formula (XVII) may be prepared by reacting an olefin of formula (XIV):
- R , R and R are as defined hereinabove for formula (I) and L is a halo, eg. bromo; in an analogous manner to the reaction of a compound (XI) with a compound (XII) as described hereinabove in process (b);
- a compound of formula (XVII) may also be prepared by reduction of a compound of formula (XX) as defined hereinafter.
- R 19 represents an optionally protected form of Ar and R 20 and R 21 are each independently hydrogen or a protecting group as defined above.
- the reduction may be effected by any suitable method such as hydrogenation in the presence of a catalyst, for example, palladium/charcoal or platinum oxide.
- a catalyst for example, palladium/charcoal or platinum oxide.
- R 19 represents Ar and R 20 and R 21 each represent hydrogen
- the reduction will yield a compound of formula (I)
- one or more of R 19 , R 20 and R 21 contains or represents a protecting group
- reduction will yield a compound of formula (II) or (III), which may then be deprotected to give a compound of formula (I).
- a compound of formula (XIX) may be prepared by reacting a compound of formula (Xlll):
- R 1 , R 2 , R 3 , R 4 , R 5 , m, and n are as defined for the compound of formula (I) and L 1 is as defined for the compound of formula (VII) hereinabove.
- reaction of a compound of formula (Xlll) with a compound of formula (XX) is optionally effected in the presence of an organic base such as a trialkylamine, for example, diisopropylethylamine, and in a suitable solvent for example N , N-dimethylformamide.
- organic base such as a trialkylamine, for example, diisopropylethylamine, and in a suitable solvent for example N , N-dimethylformamide.
- a compound of formula (XX) may be prepared by coupling a compound of formula (XVIII):
- a compound of formula (XIX) may be prepared by reacting a compound of formula (XVIII) as hereinbefore defined with a compound of formula (XXII):
- a compound of formula (XXII) may be prepared by coupling a compound of formula (VI) as hereinbefore defined with a compound of formula (XXI) as hereinbefore defined.
- the coupling of a compound of formula (VI) with a compound of formula (XXI) may be effected in the presence of a base, such as a metal hydride, for example sodium hydride, or an inorganic base such as caesium carbonate, in an aprotic solvent, for example dimethylformamide.
- a base such as a metal hydride, for example sodium hydride, or an inorganic base such as caesium carbonate
- an aprotic solvent for example dimethylformamide.
- Compounds of formula (XXI) may be prepared from the corresponding dihaloalkane and hydroxyalkyne by conventional chemistry, typically in the presence of an inorganic base, such as aqueous sodium hydroxide, under phase transfer conditions in the presence of an ammonium salt such as tetraalkylammonium bromide.
- an inorganic base such as aqueous sodium hydroxide
- an ammonium salt such as tetraalkylammonium bromide.
- a compound of formula (I), (II) or (III) may be prepared by reacting a compound of formula (XXIII):
- R 19 is as hereinbefore defined and L 3 is a leaving group as defined above for L 1 or L 2 ;
- the reaction may be effected using conventional conditions for such displacement reactions.
- a compound of formula (XXV) may be prepared by reacting a compound of formula (XVII) with an amine R ⁇ NHa.
- a compound of formula (I), (II) or (III) may be prepared by removal of a chiral auxiliary from a compound of formula (Ha):
- R 1 - R 5 , m and n are as defined for formula (I), R 19 represents an optionally protected form of Ar, R 21 represent hydrogen or a protecting group and R 27 represents a chiral auxiliary.
- a “chiral auxiliary” is a moiety that is introduced into a molecule to influence the stereochemistry of the product formed, and is removed in whole or part at a later time.
- a chiral auxiliary may simultaneously function as a protecting group.
- Chiral auxiliaries are commercially available, and persons skilled in the art would choose one based on the properties desired i.e. the absolute stereochemistry desired and compatibility with the processes being used.
- Chiral auxiliaries suitable for use in this process include but are not limited to the S-isomer and/or the R-isomer of phenyl glycinol and substituted derivatives thereof.
- the chiral auxiliary is preferably a moiety of the formula:
- R 28 represents dialkyl or optionally substituted phenyl or benzyl wherein the optional substitution is one or more independently selected from halogen, hydroxy, or nitro e.g. para-hydroxyphenyl.
- chiral auxiliary is a moiety:
- R 28 is as defined above. Alternatively it may be a moiety of formula:
- R 28 is as defined above.
- R 28 represents phenyl optionally substituted as described above.
- R 28 represents unsubstituted phenyl.
- the chiral auxiliary in this process may typically be removed by hydrogenolysis using for example a palladium on carbon catalyst or preferably using palladium hydroxide (Peariman's catalyst).
- a palladium on carbon catalyst or preferably using palladium hydroxide (Peariman's catalyst).
- Peariman's catalyst the removal of the chiral auxiliary is most efficient. This method of removal is especially suitable where R 18 is phenyl or a substituted phenyl.
- the nitrogen, to which the auxiliary is attached may be derivatised under oxidising conditions to form the N-oxide before elimination by heating to give a secondary amine.
- a compound of formula (Ha) may be prepared by methods analogous to those described above, for example process (c).
- the enantiomeric compounds of the invention may be obtained (i) by separation of the components of the corresponding racemic mixture, for example, by means of a chiral chromatography column, enzymic resolution methods, or preparing and separating suitable diastereoisomers, (ii) by direct synthesis from the appropriate chiral intermediates by the methods described above, or (iii) by enantioselective oxidation of the sulphur atom.
- Optional conversions of a compound of formula (I) or (la) to a corresponding salt may conveniently be effected by reaction with the appropriate acid or base.
- Optional conversion of a compound of formula (I) or (la) to a corresponding solvate or physiologically functional derivative may be effected by methods known to those skilled in the art.
- R 19 represents a group (ia):
- the present invention provides a novel intermediate for the preparation of compounds of formula (I) and/or (la) for example: a compound of formula (II) (III) (IV) (X) or (XIX) as defined above, or as named in the specific examples hereinbelow, or an optical isomer, a salt, or a protected derivative thereof.
- Figure 1 shows an X-ray powder diffraction pattern of 4- ⁇ (1R)-2-[(6- ⁇ 4-[3- (cyclopentylsulfonyl)phenyl]butoxy ⁇ hexyl)amino]-1-hydroxyethyl ⁇ -2-(hydroxymethyl)phenol 4-chlorobenzene sulfonate.
- Figure 2 shows an X-ray powder diffraction pattern of 4- ⁇ (1R)-2-[(6- ⁇ 4-[3- (cyclopentylsulfonyl)phenyl]butoxy ⁇ hexyl)amino]-1-hydroxyethyl ⁇ -2-(hydroxymethyl)phenol 4-biphenyl sulfonate.
- Figure 3 shows an X-ray powder diffraction pattern of the naphthalene-2-sulfonate salt of 4- ⁇ (1R)-2-[(6- ⁇ 4-[3-(cyclopentylsulfonyl)phenyl]butoxy ⁇ hexyl)amino]-1-hydroxyethyl ⁇ -2- (hyd roxymethyl )phenol .
- Figure 4 shows an X-ray powder diffraction pattern of 4- ⁇ (1R)-2-[(6- ⁇ 4-[3- (cyclopentylsulfonyl)phenyl]butoxy ⁇ hexyl)amino]-1-hydroxyethyl ⁇ -2-(hydroxymethyl)phenol 4-bromobenzene sulfonate.
- Figure 5 shows an X-ray powder diffraction pattern of 4- ⁇ (1 ?)-2-[(6- ⁇ 4-[3- (cyclopentylsulfonyl)phenyl]butoxy ⁇ hexyl)amino]-1-hydroxyethyl ⁇ -2-(hydroxymethyl)phenol 3-toluene sulfonate.
- Silica gel refers to Merck silica gel 60 Art number 7734.
- Flash silica gel refers to Merck silica gel 60 Art number 9385.
- Biotage refers to prepacked silica gel cartridges containing KP-Sil run on flash 12i chromatography module.
- SPE Bond Elut are prepacked cartridges used in parallel purifications, normally under vacuum. These are commercially available from Varian.
- LCMS was conducted on a Supelcosil LCABZ+PLUS column (3.3 cm x 4.6 mm ID) eluting with 0.1% HCO 2 H and 0.01 M ammonium acetate in water (solvent A), and 0.05% HCO 2 H 5% water in acetonitrile (solvent B), using the following elution gradient 0-0.7 min 0%B, 0.7-4.2 min 100%B, 4.2-5.3 min 100%B, 5.3-5.5 min 0%B at a flow rate of 3 ml/min.
- the mass spectra were recorded on a Fisons VG Platform spectrometer using electrospray positive and negative mode (ES+ve and ES-ve).
- the XRPD analysis shown in the Figures were performed on a Phillips X'pert Pro powder diffractometer, Model PW3040/60, serial number DY1379 using an X'Celerator detector. The method runs from 2 to 40 degrees 2Theta with 0.0167 degree 2Theta step size and a 31.75 seconds collection time at each step.
- Example 1 4-1(1 ffl-2-r(6-f4-r3-(Cvclopentylsulfinyl)phenvnbutoxy)hexyl)amino1-1-hvdroxyethyll-2- (hvdroxymethyl)phenol acetate ⁇ 6-Bromohexyl 4-.3-bromophenyl)butyl ether
- Example 7 4-((1f?)-2-fr6-((4-r3-.3-Cvclopenten-1-ylsulfonyl)phenyllbutyl>oxy)hexynamino -1- hvdroxyethyl)-2-(hvdroxymethyl)phenol acetate
- the solution was hydrogenated using 10% palladium on carbon (50% water by weight, 4 mg) and 20% palladium hydroxide on carbon (4mg) for 20 h.
- the catalyst was removed by filtration and the filtrate was evaporated in vacuo.
- the residue was purified on an isolute aminopropyl cartridge (2g), eluting with MeOH-DCM mixtures. Evaporation of the appropriate fractions with AcOH gave a mixture of the title compound, (4mg).
- Example 11ii ⁇ /-Benzyl-6-(4-r3-(cvclopentylsulfonyl)phenvnbutoxy)hexan-1 -amine 1- ⁇ 4-[(6-Bromohexyl)oxy]butyl ⁇ -3-(cyclopentylsulfonyl)benzene (Example 11ii) (50mg) was dissolved in benzylamine (0.5ml), and heated in a microwave oven at 150° for 10min.
- L-Aspartate salt A hot solution of L-aspartic acid (2.55g) in water (250ml) was added to a solution of the free base (10g) in ethanol (100ml). The resulting solution was evaporated to an oil which was re-evaporated twice with water to ensure removal of ethanol affording the title salt as a gum.
- Sulfamate salt A solution of sulfamic acid (1.86g) in water (50ml) was added to a solution of the free base (10g) in ethanol (100ml). The resulting solution was evaporated to an oil which was re-evaporated twice with water to ensure removal of ethanol affording the title salt as a gum.
- Napthalene-2 -sulfonate salt A solution of the free base (55mg) in propan-2-ol (0.5ml) was added to napthalene-2-sulfonic acid hydrate (27mg) pre-weighed into a vial. The mixture was warmed to give a solution then cooled and left to stir at room temperature for 2 hours. The resulting solid was isolated by filtration, washed with a little propan-2-ol and
- Example 18 20 The following salts of the compound of Example 16 were prepared as described below.
- Method 1 The potencies of the compounds of Examples 1 - 4 were determined using frog melanophores transfected with the human beta 2 adrenoreceptor. The cells were incubated with melatonin to induce pigment aggregation. Pigment dispersal was induced by compounds acting on the human beta 2 adrenoreceptor. The beta 2 agonist activity of test compounds was assessed by their ability to induce a change in light transmittance across a melanophore monolayer (a consequence of pigment dispersal). At the human beta 2 adrenoreceptor, compounds of said examples had IC 50 values below 1 ⁇ M.
- Potency of compounds of the invention at the human beta 2, 1 and 3 receptors was also determined using Chinese hamster ovary cells co-expressing the human receptor with a reporter gene. Studies were performed using either whole cells or membranes derived from those cells.
- the three beta-receptors are coupled via the Gs G-protein to cause a stimulation of adenylate cyclase resulting in increased levels of cAMP in the cell.
- adenylate cyclase resulting in increased levels of cAMP in the cell.
- membranes or frozen cells have been used with either the HitHunter enzyme fragment complementation kit (DiscoveRx) or the FP 2 fluorescence polarisation kit (Perkin Elmer) to quantify the levels of cAMP present.
- DiscoveRx HitHunter enzyme fragment complementation kit
- FP 2 fluorescence polarisation kit Perkin Elmer
- These assays provide a measure of agonist potency and intrinsic activity of the compounds at the various receptors.
- the reporter gene in the cells has also been used to quantify potency at the beta 1 and 3 receptors. This is a reporter of cAMP levels using the cAMP response element upstream of a firefly luciferase gene. After stimulation of the receptor with an agonist an
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Pulmonology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Dermatology (AREA)
- Biomedical Technology (AREA)
- Psychiatry (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Gynecology & Obstetrics (AREA)
- Pregnancy & Childbirth (AREA)
- Endocrinology (AREA)
- Reproductive Health (AREA)
- Pain & Pain Management (AREA)
- Epidemiology (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Steroid Compounds (AREA)
- Quinoline Compounds (AREA)
- Pyridine Compounds (AREA)
Priority Applications (14)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DK03776873T DK1556342T3 (da) | 2002-10-28 | 2003-10-24 | Phenethanolaminderivat til behandling af respiratoriske sygdomme |
| AU2003286143A AU2003286143A1 (en) | 2002-10-28 | 2003-10-24 | Phenethanolamine derivative for the treatment of respiratory diseases |
| US10/532,869 US7442839B2 (en) | 2002-10-28 | 2003-10-24 | Phenethanolamine derivative for the treatment of respiratory diseases |
| BR0315720-2A BR0315720A (pt) | 2002-10-28 | 2003-10-24 | Composto, método para a profilaxia ou tratamento de uma condição clìnica em um mamìmefero, formulação farmacêutica, combinação, uso de um composto, processo para a preparação de um composto, e, intermediário |
| NZ539676A NZ539676A (en) | 2002-10-28 | 2003-10-24 | Phenethanolamine derivative for the treatment of respiratory diseases |
| MXPA05004527A MXPA05004527A (es) | 2002-10-28 | 2003-10-24 | Derivados de fenetanolamina para el tratamiento de enfermedades respiratorias. |
| DE60320007T DE60320007T2 (de) | 2002-10-28 | 2003-10-24 | Phenthanolamin-Derivate zur Behandlung von Atemwegserkrankungen |
| SI200331215T SI1556342T1 (sl) | 2002-10-28 | 2003-10-24 | Fenetanolaminski derivat za zdravljenje respiratornih bolezni |
| HK06101090.1A HK1081173B (en) | 2002-10-28 | 2003-10-24 | Phenethanolamine derivative for the treatment of respiratory diseases |
| CA002503588A CA2503588A1 (en) | 2002-10-28 | 2003-10-24 | Phenethanolamine derivative for the treatment of respiratory diseases |
| JP2004546022A JP2006503888A (ja) | 2002-10-28 | 2003-10-24 | 呼吸器疾患を治療するためのフェネタノールアミン誘導体 |
| EP03776873A EP1556342B1 (en) | 2002-10-28 | 2003-10-24 | Phenethanolamine derivative for the treatment of respiratory diseases |
| IS7814A IS7814A (is) | 2002-10-28 | 2005-04-20 | Fenetanólamín afleiða í meðhöndlun á öndunarfærasjúkdómum. |
| NO20051962A NO20051962L (no) | 2002-10-28 | 2005-04-21 | Fenetanolaminderivater for behandling av respiratoriske sykdommer |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB0225028A GB0225028D0 (en) | 2002-10-28 | 2002-10-28 | Chemical compounds |
| GB0225022.3 | 2002-10-28 | ||
| GB0225028.0 | 2002-10-28 | ||
| GB0225022A GB0225022D0 (en) | 2002-10-28 | 2002-10-28 | Chemical compounds |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2004037773A1 true WO2004037773A1 (en) | 2004-05-06 |
| WO2004037773A8 WO2004037773A8 (en) | 2004-07-22 |
Family
ID=32178883
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2003/012035 Ceased WO2004037773A1 (en) | 2002-10-28 | 2003-10-24 | Phenethanolamine derivative for the treatment of respiratory diseases |
Country Status (23)
| Country | Link |
|---|---|
| US (1) | US7442839B2 (enExample) |
| EP (1) | EP1556342B1 (enExample) |
| JP (1) | JP2006503888A (enExample) |
| KR (1) | KR20050057681A (enExample) |
| AR (1) | AR041724A1 (enExample) |
| AT (1) | ATE390407T1 (enExample) |
| AU (1) | AU2003286143A1 (enExample) |
| BR (1) | BR0315720A (enExample) |
| CA (1) | CA2503588A1 (enExample) |
| DE (1) | DE60320007T2 (enExample) |
| DK (1) | DK1556342T3 (enExample) |
| ES (1) | ES2302956T3 (enExample) |
| IS (1) | IS7814A (enExample) |
| MA (1) | MA27697A1 (enExample) |
| MX (1) | MXPA05004527A (enExample) |
| NO (1) | NO20051962L (enExample) |
| NZ (1) | NZ539676A (enExample) |
| PL (1) | PL377122A1 (enExample) |
| PT (1) | PT1556342E (enExample) |
| RU (1) | RU2332400C2 (enExample) |
| SI (1) | SI1556342T1 (enExample) |
| TW (1) | TWI285195B (enExample) |
| WO (1) | WO2004037773A1 (enExample) |
Cited By (99)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005005451A1 (en) | 2003-07-11 | 2005-01-20 | Glaxo Group Limited | Specific glucocorticosteroid compound having anti- inflammatory activity |
| WO2005044787A1 (en) * | 2003-10-24 | 2005-05-19 | Glaxo Group Limited | Phenetanolamine derivatives |
| WO2005116037A1 (en) | 2004-05-24 | 2005-12-08 | Glaxo Group Limited | Purine derivative |
| WO2006015870A1 (en) | 2004-08-12 | 2006-02-16 | Glaxo Group Limited | Tetrahydro-naphthalene derivatives as glucocorticoid receptor modulators |
| WO2006056471A1 (en) | 2004-11-29 | 2006-06-01 | Novartis Ag | 5-hydroxy-benzothiazole derivatives having beta-2-adrenorecptor agonist activity |
| WO2006108643A2 (en) | 2005-04-14 | 2006-10-19 | Novartis Ag | Organic compounds |
| WO2007009757A1 (en) | 2005-07-19 | 2007-01-25 | Glaxo Group Limited | Purine derivatives as agonists of the adenosine a2a receptor |
| WO2007122165A1 (en) | 2006-04-20 | 2007-11-01 | Glaxo Group Limited | Novel compounds |
| WO2007121920A2 (en) | 2006-04-21 | 2007-11-01 | Novartis Ag | Purine derivatives for use as adenosin a2a receptor agonists |
| WO2007144327A2 (en) | 2006-06-12 | 2007-12-21 | Glaxo Group Limited | Phenyl-pyrazole derivatives as non-steroidal glucocoricoid receptor ligands |
| WO2007150016A2 (en) | 2006-06-23 | 2007-12-27 | Smithkline Beecham Corporation | Il-8 receptor antagonist |
| WO2008015416A1 (en) | 2006-08-01 | 2008-02-07 | Glaxo Group Limited | Pyrazolo[3,4-b]pyridine compounds, and their use as pde4 inhibitors |
| WO2008118724A1 (en) | 2007-03-23 | 2008-10-02 | Smithkline Beecham Corporation | Indole carboxamides as ikk2 inhibitors |
| WO2009087224A1 (en) | 2008-01-11 | 2009-07-16 | Novartis Ag | Pyrimidines as kinase inhibitors |
| US7579335B2 (en) | 2005-01-10 | 2009-08-25 | Glaxo Group Limited | Androstane 17α-carbonate derivatives for use in the treatment of allergic and inflammatory conditions |
| WO2009147187A1 (en) | 2008-06-05 | 2009-12-10 | Glaxo Group Limited | 4-carboxamide indazole derivatives useful as inhibitors of p13-kinases |
| WO2009150137A2 (en) | 2008-06-10 | 2009-12-17 | Novartis Ag | Organic compounds |
| EP2157087A1 (en) | 2005-12-20 | 2010-02-24 | Glaxo Group Limited | 3-(4-{[4-(4-{[3-(3,3-dimethyl-1-piperidinyl)propyl]oxy}phenyl)-1-piperidinyl]carbonyl}-1-naphthalenyl)propanoic or propenoic acid as h1 and h3 receptor antagonists for the treatment of inflammatory and/or allergic disorders |
| WO2010068311A1 (en) | 2008-05-23 | 2010-06-17 | Amira Pharmaceuticals, Inc. | 5-lipoxygenase-activating protein inhibitor |
| EP2206499A1 (en) | 2004-11-02 | 2010-07-14 | Novartis AG | Quinuclidine derivatives and their use as muscarinic m3 receptor antagonists |
| WO2010094643A1 (en) | 2009-02-17 | 2010-08-26 | Glaxo Group Limited | Quinoline derivatives and their uses for rhinitis and urticaria |
| WO2010102958A1 (en) | 2009-03-09 | 2010-09-16 | Glaxo Group Limited | 4-oxadiazol-2 -yl- indazoles as inhibitors of p13 kinases |
| WO2010102968A1 (en) | 2009-03-10 | 2010-09-16 | Glaxo Group Limited | Indole derivatives as ikk2 inhibitors |
| WO2010107952A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF CONNECTIVE TISSUE GROWTH FACTOR (CTGF) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| WO2010107958A1 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 6 (STAT6) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| WO2010107955A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF BTB AND CNC HOMOLOGY 1, BASIC LEUCINE ZIPPER TRANSCRIPTION FACTOR 1 (BACH 1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) SEQUENCE LISTING |
| WO2010107957A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF GATA BINDING PROTEIN 3 (GATA3) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| WO2010106016A1 (en) | 2009-03-17 | 2010-09-23 | Glaxo Group Limited | Pyrimidine derivatives used as itk inhibitors |
| WO2010111490A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE THYMIC STROMAL LYMPHOPOIETIN (TSLP) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| WO2010111471A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1 (STAT1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| WO2010111497A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE INTERCELLULAR ADHESION MOLECULE 1 (ICAM-1)GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| WO2010111464A1 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF APOPTOSIS SIGNAL-REGULATING KINASE 1 (ASK1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| WO2010111468A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE NERVE GROWTH FACTOR BETA CHAIN (NGFß) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (SINA) |
| WO2010122089A1 (en) | 2009-04-24 | 2010-10-28 | Glaxo Group Limited | N-pyrazolyl carboxamides as crac channel inhibitors |
| WO2010122088A1 (en) | 2009-04-24 | 2010-10-28 | Glaxo Group Limited | Pyrazole and triazole carboxamides as crac channel inhibitors |
| WO2010150014A1 (en) | 2009-06-24 | 2010-12-29 | Pulmagen Therapeutics (Inflammation) Limited | 5r- 5 -deuterated glitazones for respiratory disease treatment |
| EP2279777A2 (en) | 2007-01-10 | 2011-02-02 | Irm Llc | Compounds and compositions as channel activating protease inhibitors |
| EP2280006A1 (en) | 2005-08-08 | 2011-02-02 | Pulmagen Therapeutics (Synergy) Limited | Pharmaceutical composition for inhalation comprising an oxazole or thiazole m3 muscarinic receptor antagonist |
| EP2281819A1 (en) | 2004-01-21 | 2011-02-09 | Novartis AG | Benzimidazolyl or benzoxazolyl derivatives |
| EP2281813A1 (en) | 2005-08-08 | 2011-02-09 | Pulmagen Therapeutics (Synergy) Limited | Bicyclo[2.2.1]hept-7-ylamine derivatives and their uses |
| EP2286813A2 (en) | 2006-01-31 | 2011-02-23 | Novartis AG | Use of naphthyridine derivatives as medicaments |
| EP2292619A1 (en) | 2004-10-22 | 2011-03-09 | Novartis AG | Purine derivatives for use as adenonsin A-2A receptor agonists |
| WO2011050325A1 (en) | 2009-10-22 | 2011-04-28 | Vertex Pharmaceuticals Incorporated | Compositions for treatment of cystic fibrosis and other chronic diseases |
| WO2011051673A1 (en) | 2009-10-28 | 2011-05-05 | Vantia Limited | Aminothiazole derivatives useful as klk1 inhibitors |
| WO2011051672A1 (en) | 2009-10-28 | 2011-05-05 | Vantia Limited | Azaindole derivatives |
| WO2011051671A1 (en) | 2009-10-28 | 2011-05-05 | Vantia Limited | Aminopyridine derivatives as kallikrein inhibitors |
| WO2011061527A1 (en) | 2009-11-17 | 2011-05-26 | Astrazeneca Ab | Combinations comprising a glucocorticoid receptor modulator for the treatment of respiratory diseases |
| WO2011067364A1 (en) | 2009-12-03 | 2011-06-09 | Glaxo Group Limited | Novel compounds |
| WO2011067365A1 (en) | 2009-12-03 | 2011-06-09 | Glaxo Group Limited | Benzpyrazole derivatives as inhibitors of p13 kinases |
| WO2011067366A1 (en) | 2009-12-03 | 2011-06-09 | Glaxo Group Limited | Indazole derivatives as pi 3 - kinase inhibitors |
| EP2332933A1 (en) | 2007-05-07 | 2011-06-15 | Novartis AG | Epithelial sodium channel (ENaC) inhibitors |
| WO2011084316A2 (en) | 2009-12-16 | 2011-07-14 | 3M Innovative Properties Company | Formulations and methods for controlling mdi particle size delivery |
| WO2011098746A1 (en) | 2010-02-09 | 2011-08-18 | Pulmagen Therapeutics (Inflammation) Limited | Crystalline acid addition salts of ( 5r) -enanti0mer of pioglitazone |
| WO2011098801A1 (en) | 2010-02-10 | 2011-08-18 | Pulmagen Therapeutics (Inflammation) Limited | Inflammatory disease treatment |
| WO2011098799A2 (en) | 2010-02-10 | 2011-08-18 | Pulmagen Therapeutics (Inflammation) Limited | Respiratory disease treatment |
| WO2011110575A1 (en) | 2010-03-11 | 2011-09-15 | Glaxo Group Limited | Derivatives of 2-[2-(benzo- or pyrido-) thiazolylamino]-6-aminopyridine, useful in the treatment of respiratoric, allergic or inflammatory diseases |
| WO2011113894A1 (en) | 2010-03-19 | 2011-09-22 | Novartis Ag | Pyridine and pyrazine derivative for the treatment of cf |
| WO2011134971A1 (en) | 2010-04-29 | 2011-11-03 | Glaxo Group Limited | 7-(1h-pyrazol-4-yl)-1,6-naphthyridine compounds as syk inhibitors |
| WO2012034091A1 (en) | 2010-09-09 | 2012-03-15 | Irm Llc | Imidazo [1, 2] pyridazin compounds and compositions as trk inhibitors |
| WO2012032067A1 (en) | 2010-09-08 | 2012-03-15 | Glaxo Group Limited | Polymorphs and salts of n- [5- [4- (5- { [(2r,6s) -2, 6 - dimethyl - 4 -morpholinyl] methyl} - 1, 3 - oxazol - 2 - yl) - 1h- inda zol-6-yl] -2- (methyloxy) - 3 - pyridinyl] methanesulfonamide |
| WO2012034095A1 (en) | 2010-09-09 | 2012-03-15 | Irm Llc | Compounds and compositions as trk inhibitors |
| WO2012035055A1 (en) | 2010-09-17 | 2012-03-22 | Glaxo Group Limited | Novel compounds |
| WO2012035158A1 (en) | 2010-09-17 | 2012-03-22 | Novartis Ag | Pyrazine derivatives as enac blockers |
| EP2436686A1 (en) | 2005-03-25 | 2012-04-04 | Glaxo Group Limited | Pyrimidopyridine compound used as a CSBP/RK/p38 modulator |
| WO2012046050A1 (en) | 2010-10-07 | 2012-04-12 | Astrazeneca Ab | Novel combinations |
| EP2444120A1 (en) | 2007-12-10 | 2012-04-25 | Novartis AG | Spirocyclic amiloride analogues as ENac blockers |
| WO2012052458A1 (en) | 2010-10-21 | 2012-04-26 | Glaxo Group Limited | Pyrazole compounds acting against allergic, immune and inflammatory conditions |
| WO2012052459A1 (en) | 2010-10-21 | 2012-04-26 | Glaxo Group Limited | Pyrazole compounds acting against allergic, inflammatory and immune disorders |
| WO2012055846A1 (en) | 2010-10-27 | 2012-05-03 | Glaxo Group Limited | Polymorphs and salts of 6-(1h-indol-4-yl)-4-(5- { [4-(1-methylethyl)-1-pi perazinyl] methyl} -1,3-oxazol-2-yl)-1h-indazole as pi3k inhibitors for use in the treatment of e.g. respiratory disorders |
| US8236786B2 (en) | 2008-08-07 | 2012-08-07 | Pulmagen Therapeutics (Inflammation) Limited | Respiratory disease treatment |
| WO2012116217A1 (en) | 2011-02-25 | 2012-08-30 | Irm Llc | Compounds and compositions as trk inhibitors |
| WO2012123311A1 (en) | 2011-03-11 | 2012-09-20 | Glaxo Group Limited | Pyridinyl- and pyrazinyl -methyloxy - aryl derivatives useful as inhibitors of spleen tyrosine kinase (syk) |
| WO2012123312A1 (en) | 2011-03-11 | 2012-09-20 | Glaxo Group Limited | Pyrido[3,4-b]pyrazine derivatives as syk inhibitors |
| EP2532679A1 (en) | 2005-10-21 | 2012-12-12 | Novartis AG | Human antibodies against il13 and therapeutic uses |
| US8337816B2 (en) | 2001-09-17 | 2012-12-25 | Glaxo Group Limited | Dry powder medicament formulations |
| US8362064B2 (en) | 2008-12-30 | 2013-01-29 | Pulmagen Theraputics (Inflammation) Limited | Sulfonamide compounds for the treatment of respiratory disorders |
| WO2013030802A1 (en) | 2011-09-01 | 2013-03-07 | Novartis Ag | Bicyclic heterocycle derivatives for the treatment of pulmonary arterial hypertension |
| WO2013038373A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Pyridine amide derivatives |
| WO2013038386A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Heterocyclic compounds for the treatment of cystic fibrosis |
| WO2013038378A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Pyridine amide derivatives |
| WO2013038381A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Pyridine/pyrazine amide derivatives |
| WO2013038390A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | N-substituted heterocyclyl carboxamides |
| WO2013140319A1 (en) | 2012-03-19 | 2013-09-26 | Novartis Ag | Crystalline form of a succinate salt |
| WO2014132220A1 (en) | 2013-03-01 | 2014-09-04 | Novartis Ag | Solid forms of bicyclic heterocyclic derivatives as pdgf receptor mediators |
| WO2015055691A1 (en) | 2013-10-17 | 2015-04-23 | Glaxosmithkline Intellectual Property Development Limited | Pi3k inhibitor for treatment of respiratory disease |
| WO2015055690A1 (en) | 2013-10-17 | 2015-04-23 | Glaxosmithkline Intellectual Property Development Limited | Pi3k inhibitor for treatment of respiratory disease |
| EP2899191A1 (en) | 2009-04-30 | 2015-07-29 | Glaxo Group Limited | Oxazole substituted indazoles as pi3-kinase inhibitors |
| WO2015162461A1 (en) | 2014-04-24 | 2015-10-29 | Novartis Ag | Pyrazine derivatives as phosphatidylinositol 3-kinase inhibitors |
| WO2015162456A1 (en) | 2014-04-24 | 2015-10-29 | Novartis Ag | Amino pyridine derivatives as phosphatidylinositol 3-kinase inhibitors |
| WO2015162459A1 (en) | 2014-04-24 | 2015-10-29 | Novartis Ag | Amino pyrazine derivatives as phosphatidylinositol 3-kinase inhibitors |
| WO2015173701A2 (en) | 2014-05-12 | 2015-11-19 | Glaxosmithkline Intellectual Property (No. 2) Limited | Pharmaceutical compositions for treating infectious diseases |
| WO2017137535A1 (en) | 2016-02-12 | 2017-08-17 | Glaxosmithkline Intellectual Property Development Limited | Chemical compounds as inhibitors of kinase activity |
| WO2018029126A1 (en) | 2016-08-08 | 2018-02-15 | Glaxosmithkline Intellectual Property Development Limited | Chemical compounds |
| WO2018192864A1 (en) | 2017-04-18 | 2018-10-25 | Glaxosmithkline Intellectual Property Development Limited | Oxepinopyrazole derivatives as inhibitors of pi3-kinase activity |
| WO2019020657A1 (en) | 2017-07-27 | 2019-01-31 | Glaxosmithkline Intellectual Property Development Limited | PYRIDINE-3-SULFONAMIDE COMPOUNDS AS PI3-KINASE INHIBITORS |
| EP3603634A1 (en) | 2004-05-18 | 2020-02-05 | Novartis AG | Pharmaceutical composition containing glycopyrrolate and a beta2 adrenoceptor agonist |
| WO2020250116A1 (en) | 2019-06-10 | 2020-12-17 | Novartis Ag | Pyridine and pyrazine derivative for the treatment of cf, copd, and bronchiectasis |
| WO2021038426A1 (en) | 2019-08-28 | 2021-03-04 | Novartis Ag | Substituted 1,3-phenyl heteroaryl derivatives and their use in the treatment of disease |
| WO2023097697A1 (zh) * | 2021-12-03 | 2023-06-08 | 广东莱佛士制药技术有限公司 | 一种合成(1r)-1-(2,2-二甲基-4h-1,3-苯并二噁英-6-基)噁唑啉-2-酮的方法 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2140800A (en) * | 1983-04-18 | 1984-12-05 | Glaxo Group Ltd | Phenethanolamine derivatives |
| WO2002066422A1 (en) * | 2001-02-14 | 2002-08-29 | Glaxo Group Limited | Phenethanolamine derivatives for treatment of respiratory diseases |
| WO2003024439A1 (en) * | 2001-09-14 | 2003-03-27 | Glaxo Group Limited | Phenethanolamine derivatives for treatment of respiratory diseases |
Family Cites Families (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2918408A (en) | 1957-04-08 | 1959-12-22 | Lakeside Lab Inc | Anti-spasmodic compositions specific for treating spasm of the colon |
| CY1308A (en) | 1979-12-06 | 1985-12-06 | Glaxo Group Ltd | Device for dispensing medicaments |
| GB2129691B (en) | 1982-10-08 | 1987-08-05 | Glaxo Group Ltd | Devices for administering medicaments to patients |
| GB2169265B (en) | 1982-10-08 | 1987-08-12 | Glaxo Group Ltd | Pack for medicament |
| US4778054A (en) | 1982-10-08 | 1988-10-18 | Glaxo Group Limited | Pack for administering medicaments to patients |
| DK173685A (da) | 1984-04-17 | 1985-10-18 | Glaxo Group Ltd | Ethanolaminderivater |
| GR850936B (enExample) | 1984-04-17 | 1985-11-25 | Glaxo Group Ltd | |
| KR910000932B1 (ko) | 1984-04-18 | 1991-02-19 | 가부시기가이샤 다이킨세이사꾸쇼 | 차량용 트랜스퍼장치 |
| CH665632A5 (fr) | 1984-07-13 | 1988-05-31 | Glaxo Group Ltd | Composes d'aminophenol. |
| GB8426191D0 (en) | 1984-10-17 | 1984-11-21 | Glaxo Holdings Ltd | Chemical compounds |
| FI88112C (fi) | 1985-07-30 | 1993-04-13 | Glaxo Group Ltd | Anordning foer administrering av laekemedel till patienter |
| EP0220054A3 (en) | 1985-10-16 | 1987-12-02 | Glaxo Group Limited | Ethanolamine derivatives |
| GB2230523A (en) | 1989-04-14 | 1990-10-24 | Glaxo Group Ltd | 1-(3-Bromoisoxazol-5-yl)-2-aminoethanol derivatives |
| GB9004781D0 (en) | 1990-03-02 | 1990-04-25 | Glaxo Group Ltd | Device |
| CA2133439C (en) | 1992-04-02 | 2005-07-26 | Siegfried Benjamin Christensen, Iv | Compounds useful for treating allergic and inflammatory diseases |
| US5998428A (en) | 1995-05-31 | 1999-12-07 | Smithkline Beecham Corporation | Compounds and methods for treating PDE IV-related diseases |
| US6632955B1 (en) | 1996-12-02 | 2003-10-14 | Chisso Corporation | Optically active nitro alcohol derivatives, optically active amino alcohol derivatives, and process for preparing the same |
| CA2271885A1 (en) | 1996-12-30 | 1998-07-09 | American Home Products Corporation | Substituted benzo[1,4]dioxanes as antiobesity agents |
| GB9700226D0 (en) | 1997-01-08 | 1997-02-26 | Glaxo Group Ltd | Inhalation device |
| AU9281298A (en) | 1997-10-01 | 1999-04-23 | Kyowa Hakko Kogyo Co. Ltd. | Benzodioxole derivatives |
| US6255303B1 (en) | 1998-03-14 | 2001-07-03 | Byk Gulden Lomberg Chemische Fabrik Gmbh | Phthalazinone PDE III/IV inhibitors |
| AR035987A1 (es) | 1999-03-01 | 2004-08-04 | Smithkline Beecham Corp | Uso de un compuesto inhibidor de la pde 4 para la manufactura de un medicamento y el medicamento para tratar asma inducida por ejercicio |
| HRP20020158B1 (en) | 1999-08-21 | 2007-08-31 | Altana Pharma Ag | Action of synergistic combination |
| GB0014546D0 (en) | 2000-06-14 | 2000-08-09 | Glaxo Group Ltd | A novel process |
| US20060205790A1 (en) | 2002-10-22 | 2006-09-14 | Coe Diane M | Medicinal arylethanolamine compounds |
-
2003
- 2003-10-24 DE DE60320007T patent/DE60320007T2/de not_active Expired - Fee Related
- 2003-10-24 WO PCT/EP2003/012035 patent/WO2004037773A1/en not_active Ceased
- 2003-10-24 CA CA002503588A patent/CA2503588A1/en not_active Abandoned
- 2003-10-24 PL PL377122A patent/PL377122A1/pl not_active Application Discontinuation
- 2003-10-24 AU AU2003286143A patent/AU2003286143A1/en not_active Abandoned
- 2003-10-24 NZ NZ539676A patent/NZ539676A/en unknown
- 2003-10-24 US US10/532,869 patent/US7442839B2/en not_active Expired - Fee Related
- 2003-10-24 BR BR0315720-2A patent/BR0315720A/pt not_active IP Right Cessation
- 2003-10-24 KR KR1020057007275A patent/KR20050057681A/ko not_active Ceased
- 2003-10-24 SI SI200331215T patent/SI1556342T1/sl unknown
- 2003-10-24 PT PT03776873T patent/PT1556342E/pt unknown
- 2003-10-24 JP JP2004546022A patent/JP2006503888A/ja active Pending
- 2003-10-24 ES ES03776873T patent/ES2302956T3/es not_active Expired - Lifetime
- 2003-10-24 RU RU2005111975/04A patent/RU2332400C2/ru not_active IP Right Cessation
- 2003-10-24 AR ARP030103896A patent/AR041724A1/es unknown
- 2003-10-24 AT AT03776873T patent/ATE390407T1/de not_active IP Right Cessation
- 2003-10-24 MX MXPA05004527A patent/MXPA05004527A/es active IP Right Grant
- 2003-10-24 EP EP03776873A patent/EP1556342B1/en not_active Expired - Lifetime
- 2003-10-24 DK DK03776873T patent/DK1556342T3/da active
- 2003-10-27 TW TW092129753A patent/TWI285195B/zh not_active IP Right Cessation
-
2005
- 2005-04-20 IS IS7814A patent/IS7814A/is unknown
- 2005-04-21 NO NO20051962A patent/NO20051962L/no not_active Application Discontinuation
- 2005-05-11 MA MA28274A patent/MA27697A1/fr unknown
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2140800A (en) * | 1983-04-18 | 1984-12-05 | Glaxo Group Ltd | Phenethanolamine derivatives |
| WO2002066422A1 (en) * | 2001-02-14 | 2002-08-29 | Glaxo Group Limited | Phenethanolamine derivatives for treatment of respiratory diseases |
| WO2003024439A1 (en) * | 2001-09-14 | 2003-03-27 | Glaxo Group Limited | Phenethanolamine derivatives for treatment of respiratory diseases |
Cited By (120)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8337816B2 (en) | 2001-09-17 | 2012-12-25 | Glaxo Group Limited | Dry powder medicament formulations |
| WO2005005452A1 (en) | 2003-07-11 | 2005-01-20 | Glaxo Group Limited | Specific glucocorticosteroid compound having anti- inflammatory activity |
| US7288536B2 (en) | 2003-07-11 | 2007-10-30 | Glaxo Group Limited | Specific glucocorticosteroid compound having anti-inflammatory activity |
| US7291609B2 (en) | 2003-07-11 | 2007-11-06 | Glaxo Group Limited | Specific glucocorticosteroid compound having anti-inflammatory activity |
| US7524970B2 (en) | 2003-07-11 | 2009-04-28 | Glaxo Group Limited | Compounds |
| US7638508B2 (en) | 2003-07-11 | 2009-12-29 | Glaxo Group Limited | Glucocorticosteroid compound having anti-inflammatory activity |
| EP2380898A1 (en) | 2003-07-11 | 2011-10-26 | Glaxo Group Limited | Process to make glucocortisoid compounds |
| WO2005005451A1 (en) | 2003-07-11 | 2005-01-20 | Glaxo Group Limited | Specific glucocorticosteroid compound having anti- inflammatory activity |
| WO2005044787A1 (en) * | 2003-10-24 | 2005-05-19 | Glaxo Group Limited | Phenetanolamine derivatives |
| EP2281819A1 (en) | 2004-01-21 | 2011-02-09 | Novartis AG | Benzimidazolyl or benzoxazolyl derivatives |
| EP3603634A1 (en) | 2004-05-18 | 2020-02-05 | Novartis AG | Pharmaceutical composition containing glycopyrrolate and a beta2 adrenoceptor agonist |
| WO2005116037A1 (en) | 2004-05-24 | 2005-12-08 | Glaxo Group Limited | Purine derivative |
| WO2006015870A1 (en) | 2004-08-12 | 2006-02-16 | Glaxo Group Limited | Tetrahydro-naphthalene derivatives as glucocorticoid receptor modulators |
| US7902224B2 (en) | 2004-08-12 | 2011-03-08 | Glaxo Group Limited | Tetrahydro-naphthalene derivatives as glucocorticoid receptor modulators |
| EP2292619A1 (en) | 2004-10-22 | 2011-03-09 | Novartis AG | Purine derivatives for use as adenonsin A-2A receptor agonists |
| EP2206499A1 (en) | 2004-11-02 | 2010-07-14 | Novartis AG | Quinuclidine derivatives and their use as muscarinic m3 receptor antagonists |
| WO2006056471A1 (en) | 2004-11-29 | 2006-06-01 | Novartis Ag | 5-hydroxy-benzothiazole derivatives having beta-2-adrenorecptor agonist activity |
| EP2305659A1 (en) | 2004-11-29 | 2011-04-06 | Novartis AG | 5-hydroxy-benzothiazole derivatives having beta-2-adrenoreceptor agonist activity |
| US7579335B2 (en) | 2005-01-10 | 2009-08-25 | Glaxo Group Limited | Androstane 17α-carbonate derivatives for use in the treatment of allergic and inflammatory conditions |
| EP2436686A1 (en) | 2005-03-25 | 2012-04-04 | Glaxo Group Limited | Pyrimidopyridine compound used as a CSBP/RK/p38 modulator |
| EP2447266A1 (en) | 2005-03-25 | 2012-05-02 | Glaxo Group Limited | Pyrimidopyridine compound used as a CSBP/RK/p38 modulator |
| EP2253612A1 (en) | 2005-04-14 | 2010-11-24 | Novartis AG | Organic compounds |
| WO2006108643A2 (en) | 2005-04-14 | 2006-10-19 | Novartis Ag | Organic compounds |
| WO2007009757A1 (en) | 2005-07-19 | 2007-01-25 | Glaxo Group Limited | Purine derivatives as agonists of the adenosine a2a receptor |
| EP2281813A1 (en) | 2005-08-08 | 2011-02-09 | Pulmagen Therapeutics (Synergy) Limited | Bicyclo[2.2.1]hept-7-ylamine derivatives and their uses |
| EP2280006A1 (en) | 2005-08-08 | 2011-02-02 | Pulmagen Therapeutics (Synergy) Limited | Pharmaceutical composition for inhalation comprising an oxazole or thiazole m3 muscarinic receptor antagonist |
| EP2532679A1 (en) | 2005-10-21 | 2012-12-12 | Novartis AG | Human antibodies against il13 and therapeutic uses |
| EP2532677A1 (en) | 2005-10-21 | 2012-12-12 | Novartis AG | Human antibodies against il13 and therapeutic uses |
| EP2157087A1 (en) | 2005-12-20 | 2010-02-24 | Glaxo Group Limited | 3-(4-{[4-(4-{[3-(3,3-dimethyl-1-piperidinyl)propyl]oxy}phenyl)-1-piperidinyl]carbonyl}-1-naphthalenyl)propanoic or propenoic acid as h1 and h3 receptor antagonists for the treatment of inflammatory and/or allergic disorders |
| EP2286813A2 (en) | 2006-01-31 | 2011-02-23 | Novartis AG | Use of naphthyridine derivatives as medicaments |
| WO2007122165A1 (en) | 2006-04-20 | 2007-11-01 | Glaxo Group Limited | Novel compounds |
| WO2007121920A2 (en) | 2006-04-21 | 2007-11-01 | Novartis Ag | Purine derivatives for use as adenosin a2a receptor agonists |
| EP2322525A1 (en) | 2006-04-21 | 2011-05-18 | Novartis AG | Purine derivatives for use as adenosin A2A receptor agonists |
| WO2007144327A2 (en) | 2006-06-12 | 2007-12-21 | Glaxo Group Limited | Phenyl-pyrazole derivatives as non-steroidal glucocoricoid receptor ligands |
| WO2007150016A2 (en) | 2006-06-23 | 2007-12-27 | Smithkline Beecham Corporation | Il-8 receptor antagonist |
| WO2008015416A1 (en) | 2006-08-01 | 2008-02-07 | Glaxo Group Limited | Pyrazolo[3,4-b]pyridine compounds, and their use as pde4 inhibitors |
| EP2279777A2 (en) | 2007-01-10 | 2011-02-02 | Irm Llc | Compounds and compositions as channel activating protease inhibitors |
| WO2008118724A1 (en) | 2007-03-23 | 2008-10-02 | Smithkline Beecham Corporation | Indole carboxamides as ikk2 inhibitors |
| EP2332933A1 (en) | 2007-05-07 | 2011-06-15 | Novartis AG | Epithelial sodium channel (ENaC) inhibitors |
| EP2444120A1 (en) | 2007-12-10 | 2012-04-25 | Novartis AG | Spirocyclic amiloride analogues as ENac blockers |
| EP2520574A1 (en) | 2007-12-10 | 2012-11-07 | Novartis AG | Amiloride analogues substituted on the cyclic guanidine moiety as ENaC blockers for treating respiratory diseases |
| WO2009087224A1 (en) | 2008-01-11 | 2009-07-16 | Novartis Ag | Pyrimidines as kinase inhibitors |
| WO2010068311A1 (en) | 2008-05-23 | 2010-06-17 | Amira Pharmaceuticals, Inc. | 5-lipoxygenase-activating protein inhibitor |
| WO2009147187A1 (en) | 2008-06-05 | 2009-12-10 | Glaxo Group Limited | 4-carboxamide indazole derivatives useful as inhibitors of p13-kinases |
| WO2009150137A2 (en) | 2008-06-10 | 2009-12-17 | Novartis Ag | Organic compounds |
| US8236786B2 (en) | 2008-08-07 | 2012-08-07 | Pulmagen Therapeutics (Inflammation) Limited | Respiratory disease treatment |
| US9078885B2 (en) | 2008-08-07 | 2015-07-14 | Pulmagen Therapeutics (Inflammation) Limited | Respiratory disease treatment |
| US8815837B2 (en) | 2008-08-07 | 2014-08-26 | Pulmagen Therapeutics (Inflammation) Limited | Respiratory disease treatment |
| US8362064B2 (en) | 2008-12-30 | 2013-01-29 | Pulmagen Theraputics (Inflammation) Limited | Sulfonamide compounds for the treatment of respiratory disorders |
| WO2010094643A1 (en) | 2009-02-17 | 2010-08-26 | Glaxo Group Limited | Quinoline derivatives and their uses for rhinitis and urticaria |
| WO2010102958A1 (en) | 2009-03-09 | 2010-09-16 | Glaxo Group Limited | 4-oxadiazol-2 -yl- indazoles as inhibitors of p13 kinases |
| WO2010102968A1 (en) | 2009-03-10 | 2010-09-16 | Glaxo Group Limited | Indole derivatives as ikk2 inhibitors |
| WO2010106016A1 (en) | 2009-03-17 | 2010-09-23 | Glaxo Group Limited | Pyrimidine derivatives used as itk inhibitors |
| WO2010107958A1 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 6 (STAT6) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| WO2010107957A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF GATA BINDING PROTEIN 3 (GATA3) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| WO2010107955A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF BTB AND CNC HOMOLOGY 1, BASIC LEUCINE ZIPPER TRANSCRIPTION FACTOR 1 (BACH 1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) SEQUENCE LISTING |
| WO2010107952A2 (en) | 2009-03-19 | 2010-09-23 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF CONNECTIVE TISSUE GROWTH FACTOR (CTGF) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| WO2010111471A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1 (STAT1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| WO2010111490A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE THYMIC STROMAL LYMPHOPOIETIN (TSLP) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| WO2010111468A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE NERVE GROWTH FACTOR BETA CHAIN (NGFß) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (SINA) |
| WO2010111464A1 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF APOPTOSIS SIGNAL-REGULATING KINASE 1 (ASK1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| WO2010111497A2 (en) | 2009-03-27 | 2010-09-30 | Merck Sharp & Dohme Corp. | RNA INTERFERENCE MEDIATED INHIBITION OF THE INTERCELLULAR ADHESION MOLECULE 1 (ICAM-1)GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| WO2010122089A1 (en) | 2009-04-24 | 2010-10-28 | Glaxo Group Limited | N-pyrazolyl carboxamides as crac channel inhibitors |
| WO2010122088A1 (en) | 2009-04-24 | 2010-10-28 | Glaxo Group Limited | Pyrazole and triazole carboxamides as crac channel inhibitors |
| EP3260453A1 (en) | 2009-04-30 | 2017-12-27 | Glaxo Group Limited | Oxazole substituted indazoles as pi3-kinase inhibitors |
| EP2899191A1 (en) | 2009-04-30 | 2015-07-29 | Glaxo Group Limited | Oxazole substituted indazoles as pi3-kinase inhibitors |
| WO2010150014A1 (en) | 2009-06-24 | 2010-12-29 | Pulmagen Therapeutics (Inflammation) Limited | 5r- 5 -deuterated glitazones for respiratory disease treatment |
| EP2813227A1 (en) | 2009-10-22 | 2014-12-17 | Vertex Pharmaceuticals Incorporated | Compositions for treatment of cystic fibrosis and other chronic diseases |
| WO2011050325A1 (en) | 2009-10-22 | 2011-04-28 | Vertex Pharmaceuticals Incorporated | Compositions for treatment of cystic fibrosis and other chronic diseases |
| WO2011051673A1 (en) | 2009-10-28 | 2011-05-05 | Vantia Limited | Aminothiazole derivatives useful as klk1 inhibitors |
| WO2011051671A1 (en) | 2009-10-28 | 2011-05-05 | Vantia Limited | Aminopyridine derivatives as kallikrein inhibitors |
| WO2011051672A1 (en) | 2009-10-28 | 2011-05-05 | Vantia Limited | Azaindole derivatives |
| WO2011061527A1 (en) | 2009-11-17 | 2011-05-26 | Astrazeneca Ab | Combinations comprising a glucocorticoid receptor modulator for the treatment of respiratory diseases |
| WO2011067364A1 (en) | 2009-12-03 | 2011-06-09 | Glaxo Group Limited | Novel compounds |
| WO2011067365A1 (en) | 2009-12-03 | 2011-06-09 | Glaxo Group Limited | Benzpyrazole derivatives as inhibitors of p13 kinases |
| WO2011067366A1 (en) | 2009-12-03 | 2011-06-09 | Glaxo Group Limited | Indazole derivatives as pi 3 - kinase inhibitors |
| WO2011084316A2 (en) | 2009-12-16 | 2011-07-14 | 3M Innovative Properties Company | Formulations and methods for controlling mdi particle size delivery |
| EP3020393A1 (en) | 2009-12-16 | 2016-05-18 | 3M Innovative Properties Company of 3M Center | Formulations and methods for controlling mdi particle size delivery |
| WO2011098746A1 (en) | 2010-02-09 | 2011-08-18 | Pulmagen Therapeutics (Inflammation) Limited | Crystalline acid addition salts of ( 5r) -enanti0mer of pioglitazone |
| WO2011098801A1 (en) | 2010-02-10 | 2011-08-18 | Pulmagen Therapeutics (Inflammation) Limited | Inflammatory disease treatment |
| WO2011098799A2 (en) | 2010-02-10 | 2011-08-18 | Pulmagen Therapeutics (Inflammation) Limited | Respiratory disease treatment |
| WO2011110575A1 (en) | 2010-03-11 | 2011-09-15 | Glaxo Group Limited | Derivatives of 2-[2-(benzo- or pyrido-) thiazolylamino]-6-aminopyridine, useful in the treatment of respiratoric, allergic or inflammatory diseases |
| EP2845593A1 (en) | 2010-03-19 | 2015-03-11 | Novartis AG | Pyridine and pyrazine derivative for the treatment of chronic obstructive pulmonary disease |
| WO2011113894A1 (en) | 2010-03-19 | 2011-09-22 | Novartis Ag | Pyridine and pyrazine derivative for the treatment of cf |
| WO2011134971A1 (en) | 2010-04-29 | 2011-11-03 | Glaxo Group Limited | 7-(1h-pyrazol-4-yl)-1,6-naphthyridine compounds as syk inhibitors |
| WO2012032067A1 (en) | 2010-09-08 | 2012-03-15 | Glaxo Group Limited | Polymorphs and salts of n- [5- [4- (5- { [(2r,6s) -2, 6 - dimethyl - 4 -morpholinyl] methyl} - 1, 3 - oxazol - 2 - yl) - 1h- inda zol-6-yl] -2- (methyloxy) - 3 - pyridinyl] methanesulfonamide |
| WO2012034091A1 (en) | 2010-09-09 | 2012-03-15 | Irm Llc | Imidazo [1, 2] pyridazin compounds and compositions as trk inhibitors |
| WO2012034095A1 (en) | 2010-09-09 | 2012-03-15 | Irm Llc | Compounds and compositions as trk inhibitors |
| WO2012035158A1 (en) | 2010-09-17 | 2012-03-22 | Novartis Ag | Pyrazine derivatives as enac blockers |
| WO2012035055A1 (en) | 2010-09-17 | 2012-03-22 | Glaxo Group Limited | Novel compounds |
| WO2012046050A1 (en) | 2010-10-07 | 2012-04-12 | Astrazeneca Ab | Novel combinations |
| WO2012052458A1 (en) | 2010-10-21 | 2012-04-26 | Glaxo Group Limited | Pyrazole compounds acting against allergic, immune and inflammatory conditions |
| WO2012052459A1 (en) | 2010-10-21 | 2012-04-26 | Glaxo Group Limited | Pyrazole compounds acting against allergic, inflammatory and immune disorders |
| EP3447055A1 (en) | 2010-10-27 | 2019-02-27 | Glaxo Group Limited | Combinations of polymorphs and salts of 6-(1h-indol-4-yl)-4-(5-{[4-(1-methylethyl)-1-piperazinyl]methyl}-1,3-oxazol-2-yl)-1h-indazole as pi3k inhibitors for use in the treatment of e.g. respiratory disorders |
| WO2012055846A1 (en) | 2010-10-27 | 2012-05-03 | Glaxo Group Limited | Polymorphs and salts of 6-(1h-indol-4-yl)-4-(5- { [4-(1-methylethyl)-1-pi perazinyl] methyl} -1,3-oxazol-2-yl)-1h-indazole as pi3k inhibitors for use in the treatment of e.g. respiratory disorders |
| WO2012116217A1 (en) | 2011-02-25 | 2012-08-30 | Irm Llc | Compounds and compositions as trk inhibitors |
| WO2012123312A1 (en) | 2011-03-11 | 2012-09-20 | Glaxo Group Limited | Pyrido[3,4-b]pyrazine derivatives as syk inhibitors |
| WO2012123311A1 (en) | 2011-03-11 | 2012-09-20 | Glaxo Group Limited | Pyridinyl- and pyrazinyl -methyloxy - aryl derivatives useful as inhibitors of spleen tyrosine kinase (syk) |
| EP2937344A1 (en) | 2011-03-11 | 2015-10-28 | Glaxo Group Limited | Pyridinyl- and pyrazinyl -methyloxy - aryl derivatives useful as inhibitors of spleen tyrosine kinase (syk) |
| WO2013030802A1 (en) | 2011-09-01 | 2013-03-07 | Novartis Ag | Bicyclic heterocycle derivatives for the treatment of pulmonary arterial hypertension |
| WO2013038390A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | N-substituted heterocyclyl carboxamides |
| WO2013038381A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Pyridine/pyrazine amide derivatives |
| WO2013038378A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Pyridine amide derivatives |
| WO2013038386A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Heterocyclic compounds for the treatment of cystic fibrosis |
| WO2013038373A1 (en) | 2011-09-16 | 2013-03-21 | Novartis Ag | Pyridine amide derivatives |
| WO2013140319A1 (en) | 2012-03-19 | 2013-09-26 | Novartis Ag | Crystalline form of a succinate salt |
| WO2014132220A1 (en) | 2013-03-01 | 2014-09-04 | Novartis Ag | Solid forms of bicyclic heterocyclic derivatives as pdgf receptor mediators |
| WO2015055690A1 (en) | 2013-10-17 | 2015-04-23 | Glaxosmithkline Intellectual Property Development Limited | Pi3k inhibitor for treatment of respiratory disease |
| WO2015055691A1 (en) | 2013-10-17 | 2015-04-23 | Glaxosmithkline Intellectual Property Development Limited | Pi3k inhibitor for treatment of respiratory disease |
| WO2015162456A1 (en) | 2014-04-24 | 2015-10-29 | Novartis Ag | Amino pyridine derivatives as phosphatidylinositol 3-kinase inhibitors |
| WO2015162459A1 (en) | 2014-04-24 | 2015-10-29 | Novartis Ag | Amino pyrazine derivatives as phosphatidylinositol 3-kinase inhibitors |
| WO2015162461A1 (en) | 2014-04-24 | 2015-10-29 | Novartis Ag | Pyrazine derivatives as phosphatidylinositol 3-kinase inhibitors |
| WO2015173701A2 (en) | 2014-05-12 | 2015-11-19 | Glaxosmithkline Intellectual Property (No. 2) Limited | Pharmaceutical compositions for treating infectious diseases |
| WO2017137535A1 (en) | 2016-02-12 | 2017-08-17 | Glaxosmithkline Intellectual Property Development Limited | Chemical compounds as inhibitors of kinase activity |
| WO2018029126A1 (en) | 2016-08-08 | 2018-02-15 | Glaxosmithkline Intellectual Property Development Limited | Chemical compounds |
| WO2018192864A1 (en) | 2017-04-18 | 2018-10-25 | Glaxosmithkline Intellectual Property Development Limited | Oxepinopyrazole derivatives as inhibitors of pi3-kinase activity |
| WO2019020657A1 (en) | 2017-07-27 | 2019-01-31 | Glaxosmithkline Intellectual Property Development Limited | PYRIDINE-3-SULFONAMIDE COMPOUNDS AS PI3-KINASE INHIBITORS |
| WO2020250116A1 (en) | 2019-06-10 | 2020-12-17 | Novartis Ag | Pyridine and pyrazine derivative for the treatment of cf, copd, and bronchiectasis |
| WO2021038426A1 (en) | 2019-08-28 | 2021-03-04 | Novartis Ag | Substituted 1,3-phenyl heteroaryl derivatives and their use in the treatment of disease |
| WO2023097697A1 (zh) * | 2021-12-03 | 2023-06-08 | 广东莱佛士制药技术有限公司 | 一种合成(1r)-1-(2,2-二甲基-4h-1,3-苯并二噁英-6-基)噁唑啉-2-酮的方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| PL377122A1 (pl) | 2006-01-23 |
| JP2006503888A (ja) | 2006-02-02 |
| ES2302956T3 (es) | 2008-08-01 |
| AR041724A1 (es) | 2005-05-26 |
| HK1081173A1 (en) | 2006-05-12 |
| SI1556342T1 (sl) | 2008-08-31 |
| EP1556342A1 (en) | 2005-07-27 |
| EP1556342B1 (en) | 2008-03-26 |
| PT1556342E (pt) | 2008-04-28 |
| AU2003286143A1 (en) | 2004-05-13 |
| TW200418772A (en) | 2004-10-01 |
| NZ539676A (en) | 2006-10-27 |
| CA2503588A1 (en) | 2004-05-06 |
| US7442839B2 (en) | 2008-10-28 |
| IS7814A (is) | 2005-04-20 |
| KR20050057681A (ko) | 2005-06-16 |
| RU2005111975A (ru) | 2006-01-20 |
| US20060205794A1 (en) | 2006-09-14 |
| DK1556342T3 (da) | 2008-07-21 |
| DE60320007D1 (de) | 2008-05-08 |
| MXPA05004527A (es) | 2005-07-26 |
| MA27697A1 (fr) | 2006-01-02 |
| WO2004037773A8 (en) | 2004-07-22 |
| NO20051962L (no) | 2005-05-19 |
| BR0315720A (pt) | 2005-09-06 |
| TWI285195B (en) | 2007-08-11 |
| ATE390407T1 (de) | 2008-04-15 |
| RU2332400C2 (ru) | 2008-08-27 |
| DE60320007T2 (de) | 2009-06-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1556342B1 (en) | Phenethanolamine derivative for the treatment of respiratory diseases | |
| EP1554264B1 (en) | Medicinal arylethanolamine compounds | |
| EP1497261B1 (en) | Phenethanolamine derivatives | |
| US7361787B2 (en) | Phenethanolamine derivatives for treatment of respiratory diseases | |
| EP1675823B1 (en) | Phenethanolamine derivatives for the treatment of respiratory diseases | |
| US20070135490A1 (en) | Phenetanolamine derivatives | |
| EP1592656A2 (en) | Medicinal compounds | |
| EP1525180A2 (en) | Arylethanolamine beta2-adrenoreceptor agonist compounds | |
| WO2004039766A1 (en) | Phenylethanolamine derivatives for the treatment of respiratory diseases | |
| WO2004022547A1 (en) | Phenethanolamine derivatives and their use in the treatment of respiratory diseases | |
| WO2004037768A2 (en) | Phenethanolamine derivatives | |
| AU2002326026A1 (en) | Phenethanolamine derivatives for treatment of respiratory diseases | |
| WO2004039762A1 (en) | Phenethanolamine derivatives for the treatment of respiratory diseases | |
| US20070172385A1 (en) | Benzothiophen and thiochrone containing phenethanolamine derivatives for the treatment of respiratory disorders | |
| WO2005058299A1 (en) | Phenethanolamine derivatives for treatment of respiratory diseases | |
| HK1081173B (en) | Phenethanolamine derivative for the treatment of respiratory diseases | |
| ZA200503333B (en) | Phenethanolamine derivative for the treatment of respiratory diseases |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| CFP | Corrected version of a pamphlet front page | ||
| CR1 | Correction of entry in section i |
Free format text: IN PCT GAZETTE 19/2004 UNDER (71) THE NAME SHOULD READ "GLAXO GROUP LIMITED" |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 168095 Country of ref document: IL |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 672/KOLNP/2005 Country of ref document: IN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2003286143 Country of ref document: AU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2005/03333 Country of ref document: ZA Ref document number: 2503588 Country of ref document: CA Ref document number: 200503333 Country of ref document: ZA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2004546022 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2005/004527 Country of ref document: MX Ref document number: 05040024 Country of ref document: CO Ref document number: 1020057007275 Country of ref document: KR Ref document number: 539676 Country of ref document: NZ |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 377122 Country of ref document: PL Ref document number: 1-2005-500806 Country of ref document: PH |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2003776873 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: DZP2005000172 Country of ref document: DZ |
|
| ENP | Entry into the national phase |
Ref document number: 2005111975 Country of ref document: RU Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1200500733 Country of ref document: VN |
|
| WWP | Wipo information: published in national office |
Ref document number: 1020057007275 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 20038A76915 Country of ref document: CN |
|
| WWP | Wipo information: published in national office |
Ref document number: 2003776873 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 10532869 Country of ref document: US |
|
| WWP | Wipo information: published in national office |
Ref document number: 10532869 Country of ref document: US |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2003776873 Country of ref document: EP |