WO2004033730A1 - 酸化チタン含有スラグの製造方法 - Google Patents

酸化チタン含有スラグの製造方法 Download PDF

Info

Publication number
WO2004033730A1
WO2004033730A1 PCT/JP2003/011003 JP0311003W WO2004033730A1 WO 2004033730 A1 WO2004033730 A1 WO 2004033730A1 JP 0311003 W JP0311003 W JP 0311003W WO 2004033730 A1 WO2004033730 A1 WO 2004033730A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
slag
oxide
reduction
iron
Prior art date
Application number
PCT/JP2003/011003
Other languages
English (en)
French (fr)
Inventor
Hidetoshi Tanaka
Itsuo Miyahara
Hiroshi Uemura
Takao Harada
Isao Kobayashi
Hiroshi Sugitatsu
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to CA2462831A priority Critical patent/CA2462831C/en
Priority to UA20040604383A priority patent/UA77989C2/uk
Priority to AU2003261814A priority patent/AU2003261814B2/en
Priority to BRPI0306566-9A priority patent/BR0306566B1/pt
Priority to EP03799416A priority patent/EP1437420A4/en
Priority to KR1020047008782A priority patent/KR100645618B1/ko
Priority to US10/495,577 priority patent/US20050028643A1/en
Publication of WO2004033730A1 publication Critical patent/WO2004033730A1/ja
Priority to NO20042204A priority patent/NO20042204L/no
Priority to US11/936,549 priority patent/US8088195B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/006Starting from ores containing non ferrous metallic oxides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/008Use of special additives or fluxing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • C21B13/143Injection of partially reduced ore into a molten bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/54Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1218Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1281Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using carbon containing agents, e.g. C, CO, carbides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing slag containing titanium oxide, and more particularly to a method for efficiently producing slag containing titanium oxide by previously reducing iron oxide contained in raw material ores and the like.
  • a carbonaceous reducing agent for example, coke While the supply amount is adjusted by the supply amount adjusting means 3, each of them is supplied to an electric furnace (Submerged Arc Furnace, sometimes abbreviated as SAF) 9 to reduce and melt the iron oxide. It is known to remove molten iron and remove slag containing titanium oxide from the outlet of the furnace wall.
  • SAF Submerged Arc Furnace
  • ilmenite ore is mixed with a carbonaceous reducing agent such as coke and a small amount of calcium oxide, and the mixture is granulated and charged into an electric furnace, which is then heated to form molten iron and molten titanium oxide.
  • a carbonaceous reducing agent such as coke and a small amount of calcium oxide
  • the present invention has been made in view of the above-described conventional technology.
  • the present invention suppresses the reduction of titanium dioxide and reduces power consumption.
  • An object of the present invention is to provide a method capable of efficiently producing a slag containing titanium oxide while minimizing the amount of slag. Disclosure of the invention
  • the present invention that has solved the above-mentioned problems is that a raw material mixture containing titanium oxide, iron oxide, and a carbonaceous reducing agent, or a raw material mixture further containing a calcium oxide source is heated in a reduction furnace, and the iron oxide in the mixture is heated. Is reduced to reduced iron, and then supplied to a heating-type melting furnace, heated in the melting furnace to melt the reduced iron and separate from the slag containing titanium oxide, and the slag containing titanium oxide obtained is taken out of the furnace.
  • This is a method for producing slag containing titanium oxide, which has the gist of discharging and collecting.
  • the temperature of the mixture after reduction is 350 ° C. or less, preferably 65 ° C. or less. Preferably, it is 900 and does not mean the following.
  • the present invention provides a raw material mixture containing titanium oxide, iron oxide, and a carbonaceous reducing agent, or a raw material mixture further containing a calcium oxide source, which is heated in a reduction melting furnace to reduce iron oxide in the mixture. Reduced iron is obtained, and then further heated to melt the reduced iron and separate it from the titanium oxide-containing slag. The resulting titanium oxide-containing slag is discharged out of the furnace and collected.
  • a method for producing a titanium oxide-containing slag which comprises using a moving bed type reduction melting furnace as the reduction melting furnace.
  • the furnace is divided into at least two or more in the direction of movement of the hearth, and among the divided sections, the upstream side in the direction of movement of the hearth is a reduction section, The downstream side of the hearth moving direction is a heating and melting section, and it is desirable to adjust the temperature for each of these sections.
  • the temperature of the reduction zone is set to 1200 to 150 :
  • the temperature of the heating / melting zone is set to 130 to 150
  • the temperature of the heating / melting zone is lower than the temperature of the reduction zone. Is preferably 100 to 300 t: high temperature.
  • FIG. 1 is a schematic diagram showing an example of an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an example of the embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing an example of the embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a conventional embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • titanium oxide-containing slag (hereinafter referred to as titanium slag) from a raw material mixture containing titanium oxide, iron oxide, and a carbonaceous reducing agent, or a raw material mixture further containing a calcium oxide source.
  • the above object can be attained by using a bed-type reduction melting furnace, or by adopting a method in which the raw materials are charged into a reduction furnace to reduce the iron oxide by heating and then charged into a heating-type melting furnace to be melted.
  • the present inventors have found that the present invention can be achieved, and have reached the present invention.
  • the iron oxide contained in the raw material mixture is sufficiently reduced in advance as described above.
  • the power consumption for maintaining the furnace temperature can be greatly reduced, the consumption of the electrodes can be reduced, and the amount of molten FeO generated can be reduced to reduce the furnace wall refractories.
  • the raw material mixture used in the present invention is a mixture of titanium oxide, iron oxide, a carbonaceous reducing agent, or a mixture further containing a calcium oxide source.
  • the types of titanium oxide and iron oxide are not particularly limited.
  • natural ores such as ilmenite (ilmenite ore), titanium magnetite, and pseudoplated titanium
  • centrifugation in a titanium oxide production process using a sulfuric acid method is also possible.
  • Titanium oxide and by-products from the production of titanium can be used, such as residue in a separator ⁇ residue after a filter or residue separated after a chlorination furnace in the chlorine method.
  • These raw materials may be mixed as needed.
  • the amount of iron oxide is adjusted by adding iron ore or iron dust, or the amount of titanium oxide is adjusted by adding rutile, anatase, synthetic rutile, or the like. You may. It is preferable to use an iron dust containing carbon and iron oxide, such as blast furnace wet dust, because a carbonaceous reducing agent can be added at the same time.
  • an iron dust containing carbon and iron oxide such as blast furnace wet dust
  • a carbonaceous reducing agent can be added at the same time.
  • a raw material mixture in which ilmenite ore and a carbonaceous reducing agent are mixed will be described as a representative example, but ilmenite ore may be naturally occurring, and the ratio of titanium, iron, and the like is not particularly specified. It is not limited to.
  • ilmenite ore contains 40 to 60% by mass of titanium oxide and 30 to 50% by mass of iron oxide.
  • the iron oxide component in the raw material mixture is preferably at least 1/20, more preferably at least 3/20, of the titanium oxide component.
  • the energy of dissolving titanium oxide in the melting furnace can be reduced by preferably 10% or more, more preferably 30% or more.
  • the native Irumenai Bokuko is such a significant amount of S i ⁇ 2 is contained as gangue components, A 1 2 0 3, C A_ ⁇ , including Umate gangue component and M G_ ⁇ is It is desirable that the content in the raw material mixture is small, since it is mixed with titanium slag and causes a reduction in titanium purity.
  • the carbonaceous reducing agent is not particularly limited as long as it contains carbon, and examples thereof include coal, charred coal, coke, oil coke, charcoal, organic carbide, and waste plastic. Although the amount of the carbonaceous reducing agent is not particularly limited, it is preferable to appropriately change the amount of the carbonaceous reducing agent so as to be sufficient for reducing iron oxide.
  • the number is more than the number of moles of oxygen combined with iron oxide. Since the utilization rate of carbon differs for each raw material and carbon, it is desirable to adjust it appropriately. Excess carbon in the reduction reaction can be carburized into reduced iron and become carbon in pig iron, or can be used as a heat source by burning it in a melting furnace. Of course, the carbonaceous reducing agent may be charged into the furnace together with the mixture, or may be previously laid on the hearth, but a sufficient amount of the carbonaceous reducing agent is kneaded with the other materials into the mixture. This is desirable because the vicinity of iron oxide can be maintained in a highly reducing atmosphere during reduction, and thus reoxidation of reduced iron can be suppressed.
  • the raw material mixture may be obtained by kneading the above raw materials in powder form using any mixing means such as a mixer, and the kneading method is not particularly limited.
  • the resulting mixture may be used as it is in powder form.
  • the raw material mixture is pre-kneaded using any molding method such as briquetting press, rolling granulation or extrusion molding.
  • any molding method such as briquetting press, rolling granulation or extrusion molding.
  • It is desirable to form an agglomerate compact such as a pellet or plate.
  • a briquette shaped body hereinafter referred to as “raw material shaped body” will be described as a representative example.
  • an appropriate amount of calcium oxide source eg, slaked lime, limestone, etc.
  • titanium slag forming components titanium oxide and raw materials used in the raw material compact
  • the slag component such as C A_ ⁇
  • the slag component contained as such ash gangue component Ya carbonaceous material in stomach ore, produced at the time of melting of changing Mototetsu This is desirable because the melting point of the titanium slag decreases and the fluidity of the titanium slag increases, and the separation between the titanium slag and the molten iron increases.
  • the raw material compact may be granulated by blending calcium oxide, or the calcium oxide source may be provided on the raw material compact to perform the oxidation treatment. Alternatively, a calcium oxide source may be separately charged during melting.
  • the furnace temperature is set to a high slag melting temperature (for example, from 160 It is necessary to increase it to 175), which increases the energy consumption and damages the refractory and wears out the electrodes, increasing the manufacturing cost. Therefore, the calcium oxide source should be used as necessary, taking into account the quality of the product and the production cost.
  • a binder such as bentonite, starch, slaked lime, or an organic binder may be used as necessary.
  • the movable hearth furnace is not limited as long as it includes a movable type hearth.
  • a movable bed type reduction melting furnace or a movable hearth furnace having any structure such as a straight-grate type or a rotary hearth furnace
  • a moving-bed type reduction furnace The moving hearth furnace is easy to control the temperature, and the iron oxide can be selectively removed in a short time while maintaining a lower temperature compared to the conventional melting furnace and reduction furnace, that is, a temperature below the temperature at which the reduction of titanium oxide starts. This is desirable because it allows efficient reduction treatment.
  • a rotary hearth furnace requires relatively little space for installation, it is easy to adjust the atmosphere inside the furnace, and it is possible to increase the reduction rate of iron oxide while suppressing the reduction of titanium dioxide. Is desirable.
  • the rotary hearth In operating the rotary hearth furnace, the rotary hearth may be rotated at a predetermined speed, and the raw material compact may be supplied onto the rotary hearth from the charging means so as to have an appropriate thickness.
  • the raw material compact placed on the hearth is heated and reduced by receiving the combustion heat and radiant heat from a combustion means such as a combustion burner provided at an appropriate position on the wall of the furnace body.
  • the highly reducing atmosphere is maintained by the large amount of C ⁇ gas generated by the combustion of the carbonaceous reducing agent in the raw material compact due to the combustion heat and radiant heat, and iron oxide is reduced, so the adjustment of the furnace atmosphere gas is easy. It is.
  • the carbonaceous reducing agent contributes as fuel by increasing the reduction potential in the vicinity of the raw material compact and then burning in the furnace, so that burner fuel consumption such as natural gas can be reduced.
  • the iron oxide in the raw material compact is almost completely reduced in a reducing atmosphere in the furnace, and then a scraper method provided downstream in the hearth moving direction, or It is desirable that the liquid be discharged sequentially by a discharge device such as a screw-type method.
  • heating and melting is performed after reducing the reduction of iron oxide to a reduction rate of less than 30%, the above problem due to an endothermic reaction may occur.
  • the heating and melting in the next step is performed after securing a reduction ratio of 60% or more, preferably 70% or more, more preferably 85% or more, the temperature decrease due to the endothermic reaction is suppressed, and the electric power is reduced. Continuous operation can be performed stably without increasing consumption.
  • the amount of molten Fe F generated can be reduced, so that damage to the furnace refractory can be minimized.
  • the furnace temperature is set to 1200 to 150O, more preferably 120%. It is desirable to carry out the reduction while maintaining the range of 0 to 140. This is because, in the range of 1200 to 1500X :, only iron oxide can be selectively and efficiently reduced without reducing titanium oxide.
  • the heating temperature is lower than 1200 ° C., the progress of the reduction reaction of iron oxide is slow, and the residence time in the furnace must be prolonged, resulting in poor productivity.
  • the furnace temperature exceeds 1500, the reduction reaction of titanium dioxide proceeds, and the recovery rate as titanium slag decreases.
  • it exceeds 150 bleeding of low melting point slag containing FeO occurs in the reduction step, so that the hearth refractory material is significantly melted and continuous operation may be difficult.
  • the bleeding phenomenon may occur in the temperature range of 140 to 1500, but the frequency and possibility are relatively small.
  • the temperature inside the furnace should be set to 1200 ° C or less in the early stage of the reduction period, and then the temperature should be raised to 1200 to 150 ° C to proceed with the reduction. It is possible. Although there are slight differences depending on the ratio of iron oxide and titanium oxide constituting the raw material compact, the type of carbonaceous material, and the like, the reduction of iron oxide can be completed in about 5 to 20 minutes.
  • a mixture (referred to as a raw material for producing titanium slag) in which titanium oxide is hardly reduced although most of the iron oxide is reduced.
  • the shape of the raw material for titanium slag production is not always the same as the shape before charging the moving hearth furnace, and the shape in which some components such as slag are separated and the shape in which reduced iron is partially separated Etc., which vary depending on the composition of the raw material mixture, reduction conditions, and the like.
  • the titanium slag production raw material of the present invention obtained by the reduction treatment has a low iron oxide content, the above-mentioned problems caused by the iron oxide during the melting treatment are suppressed, the power consumption is reduced, and the electrode consumption is reduced. Reduction of refractory in the furnace, and reduction of titanium dioxide reduction. Further, since the melting of the reduced iron proceeds in a short time, the problem of reduction of titanium dioxide due to a long residence time does not occur, and the titanium oxide slag can be efficiently produced.
  • the iron oxide in the raw material is sufficiently reduced prior to the heat-melting treatment, and most of the iron oxide has been reduced. Therefore, the reduction of titanium dioxide can be suppressed.
  • the atmosphere in the furnace may be controlled by additionally introducing a carbonaceous reducing agent during the melting process. If the atmosphere in the furnace is maintained in a reducing state, the reduction of the remaining iron oxide is promoted, and the melting point is lowered by carburizing of the reduced iron, so that the reduced iron can be melted at a relatively low temperature. By the way, if the amount of carbon is insufficient, the melting point of reduced iron will not drop sufficiently, and the temperature for heating and melting may need to be increased to 150 or more.
  • the operating temperature should be kept below about 150 ° C. Is desirable. Therefore, it is desirable to appropriately adjust the atmosphere gas composition during the melting treatment so that the reduced iron can be quickly melted in the temperature range of 1300 to 1500.
  • the raw materials for titanium slag production in the reduction furnace are charged into a known heating type melting furnace used in the production of titanium slag, such as an electric furnace, for carburizing and melting.
  • the raw material compact may be charged into a moving bed type reduction / melting furnace, and may be heated and melted following the reduction treatment in the furnace.
  • the iron oxide in the mixture is reduced to reduced iron, and then supplied to a heating-type melting furnace, the iron oxide is reduced. It is desirable that the raw material is continuously supplied to the heating type melting furnace without cooling, and the raw material for titanium slag production discharged from the reduction furnace is cooled to a temperature below the melting point. This is because it has a heat of about 0 to 1300 and it is wasteful in terms of thermal energy to cool it down to room temperature and then supply it to the heating type melting furnace. Therefore, if it is supplied to a heating type melting furnace while maintaining this high temperature state, it becomes extremely practical in terms of reducing heat loss.
  • this heat is used as it is as a heat source for the melting furnace, it can contribute to a reduction in energy consumption for heating the melting furnace.
  • the reduction furnace and the heating type melting furnace may be directly connected by a shoot or the like, or may be once transferred to a refractory-lined container and then put into the heating type melting furnace.
  • “not cooling substantially” means not actively cooling, and excludes, for example, a case where cooling is performed by cooling a device component such as a shoot.
  • the heating type melting furnace for example, an electric furnace or a melting furnace using fossil fuel is exemplified, but any melting furnace which is used for manufacturing titanium slag can be adopted.
  • the molten iron can be efficiently heated by arc heat without forcibly stirring, thereby reducing the melting loss of the refractory lining and reducing it. It is preferable because melting can be efficiently advanced.
  • This arc includes a submerged arc generated by inserting an electrode into a titanium slag floating on the molten iron in the melting furnace and energizing the electrode.
  • a raw material charging section is provided near the arc heating section (that is, the electrode insertion section) so that the raw material for titanium slag charged into the arc heating type melting furnace receives the arc heat and is quickly reduced and melted. It is good to provide.
  • a charging means may be provided toward the charging position of the raw material for producing titanium slag.
  • molten iron is produced by melting the charged raw material for titanium slag production, which is sequentially taken into the molten iron already generated and retained before that, and The gangue component and titanium oxide that coexist in the slag become molten titanium slag and join the molten slag floating on the surface of the molten metal. Therefore, when a predetermined amount of molten iron or molten titanium slag has accumulated in the arc-heating type melting furnace, the molten iron is sequentially extracted from a position below the side wall of the melting furnace, and an interface position between the molten titanium slag and the molten iron. The molten titanium slag may be appropriately extracted from slightly above. The molten titanium slag and the molten iron or molten iron may be discharged by tilting the furnace.
  • the obtained molten titanium slag may be used as it is after cooling, or may be crushed and then separated from other slag components by screening or the like.
  • the obtained molten metallic iron may be used as a raw material for ironmaking.
  • the melting process is performed after the reduction process in the rotary hearth furnace. If the two-stage heating method is adopted, which reduces the remaining iron oxide and melts the generated reduced iron, the titanium oxide can be stabilized together with the reduced iron. And can be manufactured efficiently. Therefore, such a 2
  • the step heating method for example, the inside of the rotary hearth furnace is partitioned into at least two or more in the moving direction of the hearth by a partition, and the upstream of the partitioned sections is the reduction section, and the downstream side is heated.
  • the melting section has a structure in which the temperature and the atmosphere gas composition can be individually controlled in each section.
  • the inside of the furnace may be divided into four or more sections by three or more partition walls so that more strict control of the temperature and the composition of the atmosphere gas can be performed. It can be arbitrarily increased or decreased according to the scale or structure.
  • a cooling section provided with any cooling means is provided in the furnace to cool and solidify the molten iron, the molten iron can be easily extracted by a discharge device provided on the downstream side. At this time, the by-product slag is also discharged as titanium slag, but these may be separated by any separation means (crushing / screening, etc.).
  • the temperature in the furnace is set at 100 to 300 t: more preferably 120 to 2 to be higher than the temperature at the time of the above-mentioned melting at the time of the reduction in order to promote reduction and melting more smoothly and efficiently. It is desirable to set the temperature to about 50 at about high temperature.
  • the titanium slag does not have to be melted.
  • slag containing high titanium can be obtained by crushing after discharging outside the furnace and then sorting by any means such as magnetic separation.
  • the method for producing slag containing titanium oxide of the present invention is also applicable to a method for producing slag containing vanadium oxide and niobium oxide.
  • Vanadium oxide-containing substances include titanium vanadium-containing magnetite, smoke ash from boilers, and waste catalysts.
  • a material containing a carbonaceous reducing agent added to a raw material containing vanadium oxide and iron oxide is charged into a reduction furnace to reduce iron oxide, and then melted in a melting furnace to form a slag containing vanadium oxide. Can be obtained.
  • niobium ore such as prote-columbite is used as the niobium oxide-containing substance.
  • a reduction furnace containing niobium oxide and iron oxide and a carbonaceous reducing agent added is charged to the reduction furnace. Then, iron oxide is reduced and then melted in a melting furnace to obtain a niobium oxide-containing slag.
  • a reduction melting furnace can be employed for this reduction and melting.
  • pre-ground carbonaceous reducing agent (coal, fixed carbon content 74.0%, volatile content 15.5%, ash content 10.5%) and ilmenite ore (Ti 0 2 : 44.4%, Total Fe: 31.3% (Fe 0: 36.7%), Si ⁇ 2 and other components: the rest) are supplied through line 1 and line 2, respectively.
  • mixing means 4 mixing means 4 (mixer) (mixing ratio: 10.2 parts by mass of coal: 89.8 parts by mass of ilmenite ore), and molasses as a binder is about 3%.
  • the raw material for titanium slag discharged from the rotary hearth furnace of Example 1 is shown in FIG. 1 in a state where the temperature is kept as low as possible (900 ° C) so as not to come into contact with the atmosphere as much as possible.
  • the heating furnace 9 was continuously placed in the vicinity of the rotary hearth furnace, and was continuously heated and melted. At this time, a fixed amount of molten iron is held in the melting furnace, and an electrode for arc heating is energized while protruding into the molten slag layer to adopt a submerged arc heating method. Used. Then, a raw material for producing titanium slag was charged toward the vicinity of the arc heating section, and melting by arc heating was advanced.
  • Example 1 The raw material for titanium slag production obtained in Example 1 was melted in an arc-heating type melting furnace 9 in the same manner as in Example 2 except that the raw material for titanium slag production was allowed to cool to room temperature in the cooling equipment 7 shown in FIG. Slag and molten iron were produced.
  • composition of the obtained molten iron and the composition of titanium slag were the same as in Example 2, but the power unit for the arc heating electrode in this example was about 220 KW h Z tmi (mi : Molten iron produced).
  • Example 4 The briquette-shaped compact used in Example 1 was not charged into the rotary hearth furnace (iron oxide was not previously reduced), but was charged into the heating electric furnace 9 used in Example 2. Under the same conditions as in Example 2, molten titanium slag and molten iron were produced from the compact. The composition of the obtained molten iron was C: 4.0% hot metal. The composition of the titanium slag T i ⁇ 2: 6 90%.. Examination of the inside of the furnace revealed damage to some of the furnace wall refractories. The power consumption for the arc heating electrode in this example was about 340 KW h Z tmi (mi: molten iron produced). ) Example 4
  • the prepcket-shaped compact used in Example 1 was reduced in a rotary hearth furnace 8 and then subjected to a melting process.
  • the inside of the rotary hearth furnace 8 is divided into two parts by a partition plate (reduction section / melting section).
  • the iron oxide was reduced under the same conditions as in Example 1 above, and then melted (atmosphere temperature of 130-
  • the molten iron and titanium slag produced were cooled to about 100,000 and solidified, and then discharged outside the furnace by a discharger (about from raw material charging to discharge). 8 to 15 minutes.)
  • the obtained reduced iron had a high iron grade (iron content: about 96%).
  • Matachi Tansuragu is high titanium content (T i ⁇ 2: 70%) had.
  • the separation residue obtained in the centrifugal separation step when producing titanium oxide using the sulfuric acid method was used as a raw material for titanium oxide and iron oxide.
  • the main composition of the residue Total F e: 1 5 ⁇ 2 0%, H 2 SO 4: 1 0 ⁇ : 1 5%, M g: 1 ⁇ 2%, T i ⁇ 2: 4-7 % And other balance.
  • Iron and magnesium were oxidized in the residue after removing the water and volatile components by roasting the residue. Residue after this roasting
  • the reduction treatment of iron oxide can be performed in a short time, so that the reduction ratio of iron oxide can be increased while suppressing the reduction of titanium dioxide.
  • the thus obtained raw material for producing titanium slag of the present invention has a low iron oxide content and can suppress a decrease in the furnace temperature due to a reduction reaction of iron oxide, so that the electric power required for maintaining the furnace temperature is reduced. Consumption can also be reduced. Also, as a result of reducing the amount of molten FeO generated, damage to the refractory in the furnace can be suppressed. Moreover, since it is not necessary to maintain the inside of the furnace in a highly reducing atmosphere as before, the reduction of titanium oxide can be suppressed. Furthermore, when the raw material for producing titanium slag of the present invention is heated, melting is started in a short time, so that titanium oxide slag can be efficiently produced without the problem of reduction of titanium oxide due to long-term residence. .
  • titanium slag can be efficiently produced from a substance containing titanium oxide and iron oxide, such as ilmenite ore.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Tunnel Furnaces (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

酸化チタンと酸化鉄を含む物質から酸化チタン含有スラグを製造するにあたり、二酸化チタンの還元を抑制すると共に、電力消費量を最小限に抑制しつつ、効率的に酸化チタン含有スラグを製造することのできる方法を提供することを目的とする発明であって、酸化チタン、酸化鉄、炭素質還元剤を含む原料混合物、又は更に酸化カルシウム源を含む原料混合物を還元炉で加熱し、該混合物中の酸化鉄を還元して還元鉄とした後、加熱式溶融炉へ供給し、該溶融炉で加熱し該還元鉄を溶融させて酸化チタン含有スラグと分離させ、得られる酸化チタン含有スラグを炉外へ排出して回収することに要旨を有する酸化チタン含有スラグの製造方法。

Description

明 細 書 酸化チタン含有スラグの製造方法 技術分野
本発明は酸化チタン含有スラグの製造方法に関し、詳細には原料 鉱石等に含まれる酸化鉄を予め還元させておく ことによって酸化 チタン含有スラグを効率的に製造する方法に関する。 背景技術
ィルメナイ ト鉱などの酸化チタンと酸化鉄を含有する物質から 鉄分を分離して酸化チタン含有スラグを製造する方法として、 図 4に例示する如くィルメナイ ト鉱 1 と共に炭素質還元剤 (例えば コークスゃチヤ一化した石炭など) 2 を夫々供給量調整手段 3で 供給量を調整しながら電気炉 (Submerged Arc Furnace、 以下 SAF と略記することがある。) 9へ供給し、 酸化鉄を還元 · 溶融 して溶融鉄を取出すと共に、 酸化チタン含有スラグを炉壁の取出 口から取出す方法が知られている。
この様な技術として、 ィルメナイ ト鉱をコ一クスなどの炭素質 還元剤や少量の酸化カルシウムと共に混合して造粒した物を電気 炉に装入し、 加熱することによって溶融鉄と溶融酸化チタン含有 スラグとに分離する方法が知られている (例えば、 米国特許第 3 9 9 6 3 3 2号)。
また溶解炉に相当量の溶融鉄を貯えておき、 この溶融鉄浴中に 石炭、 コ一クス、 ピッチ、 重油等の炭素質物質を酸素と共に吹込 んでガス化すると同時に、 砂跌、 チタン鉄鉱などのチタン原料を 鉄浴中に投入し、 このチタン原料に含まれている F e 、 C r等の 金属酸化物等を選択的に還元することにより、 スラグ中酸化チタ ンの含有率を上昇させて酸化チタンを濃縮する方法が知られてい る (例えば、 特開昭 5 8 - 4 9 6 2 2号公報)。
電気炉(SAF)などの溶融炉を利用して原料中の酸化鉄の還元 · 溶融を行って鉄分と酸化チタン含有スラグを分離させる従来の方 法では、 吸熱反応である酸化鉄の還元反応の進行によって炉内温 度が低下するため、 炉内温度を維持するのに多量の電力が使用さ れる。 しかも処理工程で大量の溶融 F e 0が発生し、 該溶融 F e Oによる炉内耐火物の損傷が激しいという問題もあって、 電気炉 では効率的な酸化チタン含有スラグの製造は難い。 また酸化鉄を 還元するためには炉内を高還元性雰囲気に維持しなければならず、 該還元性雰囲気によつて酸化チタンも還元されてしまうという問 題が生じていた。
本発明は上記従来技術に鑑みてなされたものであって、 その目 的は酸化チタンと酸化鉄を含む物質から酸化チタン含有スラグを 製造するにあたり、 二酸化チタンの還元を抑止すると共に、 電力 消費量を最小限に抑制しつつ、 効率的に酸化チタン含有スラグを 製造することのできる方法を提供することである。 発明の開示
上記課題を解決し得た本発明とは、 酸化チタン、 酸化鉄、 炭素 質還元剤を含む原料混合物、 又は更に酸化カルシウム源を含む原 料混合物を還元炉で加熱し、 該混合物中の酸化鉄を還元して還元 鉄とした後、 加熱式溶融炉へ供給し、 該溶融炉で加熱し該還元鉄 を溶融させて酸化チタン含有スラグと分離させ、 得られる酸化チ タン含有スラグを炉外へ排出して回収することに要旨を有する酸 化チタン含有スラグの製造方法である。
該方法を実施するにあたっては、 酸化鉄を還元し還元炉から排 出した後、 混合物を実質的に冷却することなく加熱式溶融炉へ供 給することが望ましい。 尚、 実質的に冷却しないとは、 混合物を 積極的に冷却しない意味であるが、 具体的には還元後の混合物の 温度を 3 5 0 °C以下、 好ましくは 6 5 0 °C以下、 より好ましくは 9 0 0で以下にしないことをいう。
また還元炉として回転炉床炉を用いると、 炉内温度の調節が容 易であるため、 二酸化チタンの低価の酸化物への還元を抑制しつ つ、 効率的な酸化鉄の還元を行なうことができるので望ましい。 また本発明は酸化チタン、 酸化鉄、 炭素質還元剤を含む原料混 合物、 又は更に酸化カルシウム源を含む原料混合物を、 還元溶融 炉内で加熱して該混合物中の酸化鉄を還元して還元鉄を得、 次い でこれらを更に加熱して該還元鉄を溶融させて酸化チタン含有ス ラグから分離させ、 得られる酸化チタン含有スラグを炉外へ排出 して回収する酸化チタン含有スラグの製法において、 前記還元溶 融炉として移動床式還元溶融炉を用いることに要旨を有する酸化 チタン含有スラグの製造方法である。
本発明では移動床式還元溶融炉として回転炉床炉を採用するこ とが推奨される。 ―
また上記本発明を実施するにあたって、 前記炉は、 炉床の移動 方向に少なく とも 2以上に仕切られており、 仕切られた該区画の うち、 炉床移動方向上流側は還元区画とすると共に、 炉床移動方 向下流側は加熱溶融区画とし、 これら各区画毎に温度を調整する ことが望ましい。
そしてこの際の温度は、 還元区画を 1 2 0 0〜 1 5 0 0 :、 加 熱溶融区画を 1 3 0 0〜 1 5 0 0でとし、 且つ該還元区画の温度 よりも該加熱溶融区画の温度を 1 0 0〜 3 0 0 t:高温とすること が好ましい。
本発明においては、 原料混合物を塊成状にした成形体を用いる ことが取扱性の観点から推奨される。 更に塊成化された成形体を 用いることで還元溶融炉又は還元炉内での伝熱効率が向上し高い 生産性を得ることができる。 図面の簡単な説明
図 1は、 本発明の実施態様の一例を示す概略図である。
図 2は、 本発明の実施態様の一例を示す概略図である。
図 3は、 本発明の実施態様の一例を示す概略図である。
図 4は、 従来の実施態様を示す概略図である。 発明を実施するための最良の形態
本発明者らは、 酸化チタン、 酸化鉄、 炭素質還元剤を含む原料 混合物、 又は更に酸化カルシウム源を含む原料混合物から酸化チ タン含有スラグ (以下、 チタンスラグという) を製造する際に移 動床式還元溶融炉を利用したり、 或いは該原料を還元炉に装入し て酸化鉄を加熱還元してから加熱式溶融炉へ装入して溶融させる 方式を採用すれば、 上記課題が達成できることを見出し、 本発明 に至った。
即ち本発明は、 従来の様に原料混合物を溶融炉へ装入して酸化 鉄の還元と溶融をほぼ同時に進行させるのではなく、 上記の如く 原料混合物に含まれる酸化鉄を予め十分に還元してから加熱溶融 すれば、炉内温度を維持するための電力消費量を大幅に削減でき、 また電極の消耗量も削減でき、 しかも溶融 F e Oの発生量も低減 して炉壁耐火物の焼損も可及的に抑えられ、 更には酸化鉄の還元 時に二酸化チタンが還元されてしまうという問題も解消できるこ とを知った。
本発明で用いる原料混合物とは、 酸化チタン、 酸化鉄、 炭素質 還元剤を混合したもの、 又は更に酸化カルシウム源を含むもので ある。 酸化チタンと酸化鉄の種類等については特に限定されない が、 例えばチタン鉄鉱 (ィルメナイ ト鉱)、 チタン磁鉄鉱、 偽板チ タン石などの天然鉱石以外にも、 硫酸法による酸化チタン製造ェ 程の遠心分離機での残渣ゃフィルター後の残渣、 または塩素法で の塩素化炉後に分離された残渣など酸化チタンやチタン製造時の 副産物が使用できる。 またこれらの原料は必要に応じて調合すれ ばよく、 例えば鉄鉱石や製鉄ダス トなどを加えて酸化鉄量を調整 したり、 ルチル、 アナターゼ、 合成ルチルなどを加えて酸化チタ ン量を調整してもよい。 尚、 高炉湿ダストなどの炭素分と酸化鉄 分を含む製鉄ダス トを用いると、 炭素質還元剤も同時に添加でき るので望ましい。 以下、 ィルメナイ ト鉱と炭素質還元材を混合し た原料混合物を代表例として説明するが、 ィルメナイ ト鉱は、 天 然に存在するものでよく、 チタンや鉄分などの割合については特 に限定されない。
尚、 一般にィルメナイ ト鉱は 4 0〜6 0質量%の酸化チタン、 3 0〜 5 0質量%の酸化鉄を含有している。 チタンスラグを効率 的に製造するには、 原料混合物中の酸化鉄成分が酸化チタン成分 の 1 / 2 0以上、 より好ましくは 3 / 2 0以上であることが好ま しい。 これにより溶解炉での酸化チタンの溶解エネルギーの好ま しくは 1 0 %以上、 より好ましくは 3 0 %以上のエネルギーを減 少させることができる。
また天然のィルメナイ 卜鉱には、 脈石成分として相当量の S i 〇 2などが含まれているが、 A 1 2 0 3、 C a〇、 M g〇などを含 めて脈石成分はチタンスラグに混入してチタン純度を低減させる 要因となるため、 原料混合物中の含有量は少ない方が望ましい。 炭素質還元材としては、 炭素を含むものであれば特に限定され ず、 石炭、 チヤ一化した石炭、 コ一クス、 オイルコークス、 木炭、 有機物の炭化物、 廃プラスチックなどが例示される。 また炭素質 還元剤の配合量も特に限定されないが、 該炭素質還元剤が酸化鉄 の還元に十分な量となる様に適宜配合量を変えることが望ましく、 例えば原料混合物中の固定炭素のモル数が酸化鉄と結合した酸素 のモル数以上となる様に配合することが好ましい。 炭素の利用率 は原料や炭素毎に異なるので、 適宜調整することが望ましい。 還 元反応に余剰な炭素は還元鉄に浸炭し、銑鉄中の炭素になったり、 溶融炉で燃焼させて熱源として利用することもできる。 勿論、 該 混合物と共に、 炭素質還元剤を炉に装入したり、 予め炉床に敷い ておいてもよいが、 他の原料と共に十分な量の炭素質還元剤を混 合物中に混練しておけば、 還元時に酸化鉄近傍を高い還元性雰囲 気に維持できるため、還元鉄の再酸化を抑止できるので望ましい。 原料混合物は上記原料を粉末状にしたものをミキサ一など任意 の混合手段を用いて混練すればよく、 混練方法については特に限 定されない。 得られた混合物は粉末状のままで用いてもよいが、 取扱性を向上させるためには、 ブリゲッ トプレス、 転動造粒や押 出し成形などの任意成形法を用いて原料混合物をプリケッ ト状、 ペレッ ト状、 板状などの塊成状の成形体にすることが望ましい。 尚、 本発明ではブリゲッ ト状の成形体 (以下、 「原料成形体」 とい う) を代表例として説明する。
原料成形体を製造する際に、 該原料成形体中に適量の酸化カル シゥム源 (例えば消石灰、 石灰石など) を配合し、 原料成形体中 に含まれるチタンスラグ形成成分 (酸化チタン及び原料として用 いた鉱石中の脈石成分ゃ炭材中の灰分などとして含まれる S i O 2 , A 1 2 0 3, C a〇等のスラグ成分) の組成を調整すれば、 還 元鉄の溶融時に生成するチタンスラグの融点が低下すると共に、 該チタンスラグの流動性も高まり、 チタンスラグと溶融鉄との分 離性が高まるので望ましい。 酸化カルシウム源は溶融処理時に存 在していればよく、 例えば酸化カルシウムを配合して原料成形体 を造粒したり、.原料成形体に酸化カルシウム源を外装して酸化処 理してもよく、 或いは酸化カルシウム源を溶融時に別途装入して もよい。
尚、 溶融処理時に酸化カルシウム源を配合しない場合は、 脈石 成分が少ないためチタン純度が高いチタンスラグを得ることがで きるが、 炉内温度を高温のスラグ溶融温度 (例えば 1 6 5 0〜 1 7 5 0 ) にまで高める必要があり、 エネルギー消費量が増大す ると共に、 耐火物の損傷や電極の消耗が増え製造コストが高くな る。 したがって酸化カルシウム源は製品の品質と製造コストを勘 案し、 必要に応じて使用すればよい。
上記原料成形体の造粒にあたっては、 必要に応じてベントナイ ト、 澱粉、 消石灰、 有機粘結剤などのバインダーを使用してもよ い。
本発明で使用される還元溶融炉、 又は還元炉としては、 移動床 式還元溶融炉(又は移動床式還元炉)を用いることが推奨される。 移動炉床炉としては移動タイプの炉床を含むものであれば限定さ れず、 例えばス トレー トグレー トタイプや回転炉床炉 ( Rotary Hearth Furnace) など全ゆる構造の移動床式還元溶融炉 (又は移 動床式還元炉) を活用できる。 移動炉床炉は温度制御が容易であり、 従来の溶融炉ゃ還元炉に 比べて低温、 即ち酸化チタンの還元が開始する温度以下の温度に 維持しつつ、 酸化鉄を選択的に短時間で効率良く還元処理できる ので望ましい。 特に回転炉床炉は、 設置に必要なスペースが比較 的少なくてよく、 また炉内の雰囲気調整も容易であり、 二酸化チ タンの還元を抑制しつつ酸化鉄の還元率を高めることができるの で望ましい。
以下、 還元溶融炉又は還元炉として回転炉床炉を用いた場合を 代表例として説明するが、 本発明の方法を回転炉床炉に限定する 趣旨ではない。
回転炉床炉を稼動するに当たっては、 回転炉床を所定の速度で 回転させておき、 該回転炉床上に、 原料成形体を装入手段から適 当な厚さとなる様に供給すればよい。 炉床上に装入された原料成 形体は、 炉内を移動する過程で炉体の壁面適所に設けた燃焼バー ナなどの燃焼手段による燃焼熱及び輻射熱を受けて加熱還元され、 また炉内は燃焼熱及び輻射熱による原料成形体中の炭素質還元剤 の燃焼によって発生する多量の C〇ガスによって高度の還元性雰 囲気が維持され、 酸化鉄は還元されるので炉内雰囲気ガスの調整 は容易である。 しかも該炭素質還元剤は原料成形体近傍の還元ポ テンシャルを高めた後、 炉内で燃焼することにより燃料としても 寄与するので、天然ガスなどのバーナー燃料消費量を低減できる。
回転炉床炉を還元炉として利用する場合、 原料成形体中の酸化 鉄は炉内の還元性雰囲気下でほぼ完全に還元してから、 炉床移動 方向下流側に設けられたスクレーパー方式、 或いはスクリユー方 式などの排出装置によって順次搔き出すことが望ましい。
尚、 上記の様に原料成形体中の酸化鉄を還元して還元鉄とした 後、 更に加熱して溶融させるが、 還元が不十分で該溶融時に酸化 鉄が多量に残存していると、 溶融 F e〇が生じたり、 或いは該酸 化鉄の還元 (溶融還元或いは固体還元) に伴う吸熱反応により炉 内温度が低下することがある。 尚、 溶融処理時に吸熱反応が生じ ると炉内温度を維持するために電力消費量が増大する。 これに従 い電極の消耗量も増大する。 また溶融 F e Oの生成によって炉耐 火物の損傷も激しくなる。 したがって溶融処理する前に酸化鉄は できる限り還元しておく ことが望ましい。 特に酸化鉄の還元を 3 0 %未満の還元率に止めてから加熱溶融を行なうと、 吸熱反応に よる上記問題が生じることがある。 ところが、 6 0 %以上、 好ま しくは 7 0 %以上、 より好ましくは 8 5 %以上の還元率を確保し た上で次工程の加熱溶融を行なうと、 吸熱反応による温度低下が 抑えられ、 電力消費量を増大することなく安定して連続操業を行 なうことができる。 勿論、 酸化鉄の総量を減少させることによつ て、 発生する溶融 F e〇量も減少できるため、 炉耐火物の損傷も 可及的に抑えられる。
酸化鉄の還元を 6 0 %以上、 好ましくは 7 0 %以上、 より好ま しくは 8 5 %以上にまで進めるには炉内温度を 1 2 0 0〜 1 5 0 O , より好ましくは 1 2 0 0〜 1 4 0 0 の範囲に保って還元 を行なうことが望ましい。 1 2 0 0〜 1 5 0 0 X:の範囲であれば、 酸化チタンを還元することなく、 酸化鉄のみを選択的に効率よく 還元できるからである。
ちなみに加熱温度が 1 2 0 0 °C未満では、 酸化鉄の還元反応の 進行が遅く、 炉内滞留時間を長く しなければならないので生産性 が悪くなる。 一方炉内温度が 1 5 0 0 を超えると、 二酸化チタ ンの還元反応が進行してチタンスラグとしての回収率が低くなる。 また 1 5 0 を超えると還元工程で F e Oを含む低融点スラグ の滲み出しが起こり、 炉床耐火物の溶損が著しくなって連続操業 が困難になることがある。 なお原料成形体の組成や配合量によつ ては、 1 4 0 0〜 1 5 0 0 の温度領域で滲み出し現象を起こす こともあるが、 その頻度と可能性は比較的少ない。 従って還元期 の好適温度としては 1 2 0 0〜 1 5 0 0 :、 より好ましくは 1 2 0 0〜 1 4 0 0 °Cの範囲を採用することが望ましい。 なお実操業 においては、 還元期の初期には炉内温度を 1 2 0 0 °C以下に設定 し、 その後に 1 2 0 0〜 1 5 0 0 Cに温度を高めて還元を進める ことも勿論可能である。 原料成形体を構成する酸化鉄や酸化チタンの割合、 炭材の種類 等によって若干の違いはあるが、 通常は 5分から 2 0分程度で酸 化鉄の還元を完了させることができる。
上記の如く原料混合物を還元処理すると、 酸化鉄の大部分が還 元されているにもかかわらず、 酸化チタンは殆ど還元されていな い混合物(チタンスラグ製造用原料という。)を得ることができる。 尚、 チタンスラグ製造用原料の形状は必ずしも移動炉床炉装入前 の形状を留めているとは限らず、 スラグなど一部の成分が分離し た形状や還元鉄の一部が分離した形状など、 様々な形状を呈して おり、 これらは原料混合物の組成や還元条件等により異なる。 還元処理して得られた本発明のチタンスラグ製造用原料は、 酸 化鉄含有量が少ないため、 溶融処理時に酸化鉄に起因する上記問 題を抑制し、 電力消費量の削減、 電極消耗量の削減、 炉内耐火物 の損傷低減、 二酸化チタンの還元を抑えることができる。 更に短 時間で還元鉄の溶融が進行するので、 長時間滞留による二酸化チ タンの還元という問題を生じることがなく、 効率的に酸化チタン スラグを製造できる。
前述の如く本発明では、 原料中の酸化鉄は加熱溶融処理に先立 つて十分に還元処理され、 その殆どが還元されているため、 加熱 溶融処理では比較的短時間で還元鉄の溶融が進行するので、 二酸 化チタンの還元を抑制できる。
尚、 原料成形体中に配合した炭素質還元剤が酸化鉄の還元処理 時に殆ど消費されている場合、 溶融処理時における C Oガスの放 出量が少なくなり、 還元鉄が酸化性ガスによって再酸化を起こす 恐れがある。 よってこうした懸念を無くすため、 溶融処理時に炭 素質還元剤を追加装入して炉内雰囲気を制御してもよい。 炉内雰 囲気を還元性に維持すれば、 残存する酸化鉄の還元が促進される と共に、 還元鉄の浸炭も加味されて融点が降下するので、 比較的 低温で還元鉄を溶融できる。 ちなみに炭素量が不足すると、 還元 鉄の融点が十分に降下せず、 加熱溶融のための温度を 1 5 0 0 : 以上に高めなければならないこともあるが、 実用炉においては炉 床耐火物にかかる熱負荷を軽減するため操業温度はできるだけ低 温に抑えることが望ましく、 また副生するスラグの融点を考慮す ると、 操業温度は 1 5 0 0 °C程度以下に抑えることが望ましい。 従って 1 3 0 0 〜 1 5 0 0 の温度域で速やかに還元鉄を溶融 させることができる様に、 溶融処理時には適切な雰囲気ガス組成 の調整を行なう ことが望ましい。
上記の様な加熱溶融処理を行なうにあたっては、 還元炉で製造 されたチタンスラグ製造用原料を、 電気炉など従来公知のチタン スラグの製造に用いられる加熱式溶融炉へ装入して浸炭 · 溶融処 理してもよいし、 原料成形体を移動床式還元溶融炉へ装入し、 該 炉内での還元処理に引き続いて加熱溶融処理をしてもよい。
原料混合物を還元炉で加熱し、 該混合物中の酸化鉄を還元して 還元鉄としてから、 加熱式溶融炉へ供給する場合、 酸化鉄を還元 した後、 得られるチタンスラグ製造用原料は、 その後引続いて実 質的に冷却することなく加熱式溶融炉へ供給することが望ましレ 還元炉から排出されるチタンスラグ製造用原料は融点以下の温 度に冷却されているとはいえ依然として 9 0 0 〜 1 3 0 0 程度 の熱を保有しており、 これを常温にまで冷却してから加熱式溶融 炉へ供給することは、 熱エネルギー的に無駄となるからである。 そこで、 この高温状態を維持したままで加熱式溶融炉へ供給すれ ば、 熱ロス低減の上でも極めて実用的となる。 この熱は実質的に そのまま該溶融炉の熱源として利用されるので、 溶融炉の加熱の ための消費エネルギー低減に寄与できる。 このとき還元炉と加熱 式溶融炉はシュー トなどで直結してもよいし、 耐火物張りの容器 に一旦移送してから加熱式溶融炉に投入してもよい。 この際、 実 質的に冷却しないとは、 積極的に冷却しないという意味であり、 例えばシュー トなどの装置構成部を冷却することにより副次的に 冷却される場合は除く。
加熱式溶融炉としては例えば、 電気炉や化石燃料を使用する溶 解炉が例示されるが、 チタンスラグの製造に用いられているもの であれば、 何れも採用可能である。 加熱式溶融炉として例えばアーク加熱式溶融炉を使用すれば、 溶融鉄を強制撹拌することなくアーク熱で効率よく加熱すること ができ、 内張り耐火物の溶損を可及的に抑えつつ還元と溶融を効 率よく進めることができるので好ましい。 このアークには、 溶融 炉内の溶鉄に浮上するチタンスラグ内に電極を装入して通電する ことにより生じるサブマージアークが含まれる。 そして、 アーク 加熱式溶融炉へ装入されるチタンスラグ製造用原料がアーク熱を 受けて速やかに還元され且つ溶融する様、 アーク加熱部 (即ち、 電極の挿入部) 付近に原料装入部を設けるのがよい。 また炭素質 還元剤を追加装入する場合は、 チタンスラグ製造用原料の装入位 置に向けて装入手段を設ければよい。
アーク加熱式溶融炉では、 装入されたチタンスラグ製造用原料 の溶融によって溶融鉄が生成し、 これは、 その前に既に生成し滞 留している溶融鉄に逐次取り込まれ、 該成形体中に共存している 脈石成分や酸化チタンは、 溶融チタンスラグとなり湯面上に浮遊 している溶融スラグに合流していく。 従って、 該アーク加熱式溶 融炉内に溶融鉄や溶融チタンスラグが所定量溜った時点で、 該溶 融炉の側壁下方位置から溶融鉄を逐次抜き出し、 また溶融チタン スラグと溶融鉄の界面位置よりやや上方から溶融チタンスラグを 適宜抜き出していけばよい。 溶融チタンスラグおよびノまたは溶 融鉄は炉を傾動させて排出してもよい。
得られた溶融チタンスラグは冷却後、 そのまま使用するか、 破 砕してからスク リーニング等によって酸化チタンを他のスラグ成 分から分離してもよい。 また得られた溶融金属鉄は、 製鉄原料と して用いてもよい。
一方、 移動炉床炉 (例えば回転炉床炉) 内で上記還元処理と溶 融処理を一連の処理工程として行なう場合は、 溶融処理は回転炉 床炉における還元処理後、 引き続いて該炉内温度を 1 3 0 0 〜 1 5 0 0でに高め、 一部残された酸化鉄を還元すると共に生成した 還元鉄を溶融させる 2段加熱方式を採用すれば、 還元鉄と共に酸 化チタンを安定して効率よく製造できる。 したがつてこの様な 2 段加熱方式を採用する場合は、 例えば回転炉床炉内を隔壁によつ て炉床の移動方向に少なく とも 2以上に仕切り、 仕切られた区画 のうち上流側は還元区画、 下流側は加熱溶融区画として、 夫々の 区画で温度および雰囲気ガス組成を個別に制御できる様な構造と することが望ましい。 尚、 炉内を 3枚以上の隔壁によって 4区画 以上に仕切り、 より厳密な温度と雰囲気ガス組成の制御が行なえ る様にしてもよく、 こうした分割区画の数は、 移動床式還元溶融 炉の規模や構造などに応じて任意に増減することが可能である。 更に該炉内に任意の冷却手段を備えた冷却部を設けて溶融鉄を冷 却 · 固化すれば、 その下流側に設けた排出装置によって容易に搔 き出すことができる。 この時、 副生したスラグもチタンスラグと して排出されるが、 これらは任意の分離手段 (破砕ゃスクリー二 ングなど) により分離すればよい。
この際、 炉内の温度は還元と溶融をより円滑且つ効率よく進行 させるため、 上記溶融時の温度 還元時の温度よりも 1 0 0〜 3 0 0 t:、 より好ましくは 1 2 0〜 2 5 0で程度高温に設定するこ とが望ましい。
尚、 還元溶融炉を用いる場合は、 チタンスラグは溶融しなくて もよい。 排出物を粒鉄とスラグ粒の混合物として回収する場合に は、 炉外排出後に破砕してから磁選等の任意の手段で選別するこ とによって高チタン含有スラグを得ることができる。
尚、 本発明の上記酸化チタン含有スラグの製造方法は、 酸化バ ナジゥム含有スラグゃ酸化ニオブ含有スラグの製造方法にも適用 可能である。 酸化バナジウム含有物質としてチタンバナジウム含 有磁鉄鉱やボイラーなどの煙灰、 廃触媒が挙げられる。 例えば酸 化バナジウム及び酸化鉄を含む原料に炭素質還元剤を添加したも のを還元炉へ装入して酸化鉄の還元を行い、 次いで溶融炉でこれ を溶融させることによって、 酸化バナジウム含有スラグを得るこ とができる。 また酸化ニオブ含有物質としてはパイクロアゃコロ ンバイ トなどのニオブ鉱石が挙げられる。 例えば酸化ニオブ及び 酸化鉄を含む減量に炭素質還元剤を添加したものを還元炉へ装入 して酸化鉄の還元を行い、 次いで溶融炉でこれを溶融させること によって、 酸化ニオブ含有スラグを得ることができる。 勿論、 こ の還元と溶融には還元溶融炉を採用することもできる。
実施例
実施例 1
図 1 に示す如く、 予め粉砕された炭素質還元剤 (石炭、 固定炭 素分 7 4. 0 %、 揮発分 1 5. 5 %、 灰分 1 0. 5 %) とィルメ ナイ ト鉱 (T i 02 : 4 4. 4 %、 Total F e : 3 1 . 3 % ( F e 0 : 3 6. 7 %)、 S i 〇 2等その他成分 : 残部) を夫々ライン 1、 ライン 2を通して各供給量調整手段 3に供給した後、 混合手 段 4 (ミキサー) で混合 (混合比 石炭 1 0. 2質量部 : ィルメ ナイ ト鉱 8 9. 8質量部) し、 またバインダーとして糖蜜を約 3 % 外装で添加すると共に、 更に酸化カルシウム源及びバインダーと して消石灰を約 1 %外装で添加して、 造粒機 5 (ブリゲッ トプレ ス) でブリゲッ ト状 (サイズ 5. 5 c m3) の成形体とした。 該 成形体を回転炉床炉 6に装入し、 炉壁に設置したバーナーで炉内 が 1 2 0 0〜 1 5 0 O となる様に加熱すると共に、 炉内での平 均滞留時間 5〜 1 2分間で酸化鉄の加熱還元を行い、 酸化鉄の金 属化率が約 8 5 %となる様に加熱還元条件を調整した。 得られた チタンスラグ製造用原料の組成を調べたところ、 T i O 2: 4 6. 0 3 %、 F e O : 6. 3 4 %、 Total F e : 3 2. 4 5 %、 その 他 : 残部であった。 また排出されたチタンスラグ製造用原料の形 状はプリケッ ト状であった。
実施例 2
上記実施例 1の回転炉床炉から排出されたチタンスラグ製造用 原料を、 可能な限り大気と接触しない様に、 且つ高温を保った状 態 ( 9 0 0 °C) で、 図 1に示す様に回転炉床炉に近接して設けら れた加熱式溶融炉 9 (アーク加熱式溶融炉) に連続的に装入して 加熱溶融を行なった。 このとき、 溶融炉内には一定量の溶融鉄を 保持させておく と共に、 アーク加熱のための電極は該溶融スラグ 層内に突っ込んだ状態で通電し、 サブマージアーク加熱方式を採 用した。 そしてチタンスラグ製造用原料を該アーク加熱部近傍に 向けて投入し、 アーク加熱による溶融を進めた。 本実施例では必 要な炭素分および酸化カルシウム分は還元炉から排出されたチタ ンスラグ製造用原料に内装していたため、 炭素質還元剤やフラッ クスの追装の必要はなかった。 該炉内に所定量の溶融鉄が溜まつ た時点で、 出湯孔から取鍋へ溶湯(Molten Iron)を抜出すと共に、 炉側壁に設けたスラグ排出孔から適宜溶融チタンスラグ(Slag)を 抜出し、 炉内に残留する溶融チタンスラグ量を調整した。 得られ た溶融鉄の組成は C : 4 . 0 %の溶銑であった。 またチタンスラ グの組成は T i O 2 : 7 0 . 0 %であった。 この実施例における アーク加熱電極への電力原単位は約 1 3 4 0 KW h / t m i ( m i : 製造される溶融鉄) であった。
実施例 3
上記実施例 1で得られたチタンスラグ製造用原料を、 図 2に示 す冷却設備 7で常温まで放冷した以外は実施例 2 と同様にアーク 加熱式溶融炉 9で溶融を行ない、 溶融チタンスラグと溶融鉄を製 造した。
得られた溶融鉄の組成と、 チタンスラグの組成は実施例 2 と同 様であつたが、 この実施例におけるアーク加熱電極への電力原単 位は約 2 0 2 0 KW h Z t m i ( m i : 製造される溶融鉄) であ つた。
比較例 1
実施例 1で用いたブリゲッ ト状の成形体を回転炉床炉に装入せ ず(予め酸化鉄の還元を行なっていない)、 実施例 2で用いた加熱 式電気炉 9 に装入して実施例 2 と同様の条件で該成形体から溶融 チタンスラグと溶融鉄を製造した。 得られた溶融鉄の組成は C : 4 . 0 %の溶銑であった。 またチタンスラグの組成は T i 〇 2 : 6 9 . 0 %であった。 尚、 炉内を調べたところ炉壁耐火物の一部 に損傷が見つかった。 この実施例におけるアーク加熱電極への電 力原単位は約 3 4 3 0 KW h Z t m i ( m i : 製造される溶融鉄) であった。 ) 実施例 4
実施例 1で用いたプリケッ ト状成形体を、 図 3に示す様に回転 炉床炉 8内で還元処理を行なった後に溶融処理を行なった。 尚、 該回転炉床炉 8は炉内が仕切り板によって 2つに仕切 (還元区 画 · 溶融区画) られている。 還元区画では上記実施例 1 と同様の 条件で酸化鉄を還元した後、 溶融区画 (雰囲気温度を 1 3 0 0〜
1 5 0 0で) で溶融を行ない、 生成した溶融鉄とチタンスラグを 約 1 0 0 0でまで冷却して凝固させた後、 排出装置によって炉外 へ排出した (原料装入から排出まで約 8〜 1 5分である。)。 得ら れた還元鉄は高い鉄品位 (鉄分約 9 6 %) を有していた。 またチ タンスラグも高いチタン含有率 (T i 〇 2 : 7 0 %) を有してい た。
実施例 5
硫酸法を用いて酸化チタンを製造する際の遠心分離工程で得ら れた分離残渣を酸化チタンと酸化鉄の原料として用いた。 尚、 該 残渣の主な組成は、 Total F e : 1 5〜 2 0 %、 H2 S O4 : 1 0 〜 : 1 5 %、 M g : 1〜 2 %、 T i 〇 2 : 4〜 7 %、 その他残部で あった。 該残渣を焙焼して水分や揮発分を除去した後の残渣中で は、 鉄分、 マグネシウム分は酸化されていた。 この焙焼後の残渣
8 0質量部に対して、 炭素質還元剤として石炭を 2 0質量部混合 し、 造粒機でブリゲッ ト状に成形したものに、 塩基度が C a OZ
S i 02 = 1. 1 となる様に消石灰 0. 6質量部を添加して、 1 0 0. 6質量部の原料成形体を形成した。 該原料成形体を一定の 速度で炉床が移動する回転炉床炉に厚さが均一となる様に装入し、 炉内を 1 2 0 0〜 1 5 0 0 に維持して原料成形体中の酸化鉄の 還元を行なった後、 炉外に排出し、 6 5質量部のチタンスラグ製 造用原料を得た。 得られたチタンスラグ製造用原料の組成を調べ たところ、 Total F e : 7 0 %, C : 6 %、 T i O 2 : 1 0 %、
M g O : 4 %、 C a O : 1 %、 S i O 2 : 1 %、 A 1 2 O 3 : 1 % であった。 このチタンスラグ製造用原料 6 5質量部を、 実施例 2 と同様にしてアーク加熱式溶融炉 9で溶融処理を行なった。 溶融後、 溶融炉から溶銑 4 5質量部とチタンスラグ 1 3質量部 が得られた。 尚、 該溶銑中鉄分は 9 6 %であった。 また該チタン スラグ中酸化チタンは 5 1 %であった。 産業上の利用性
以上の様に、 本発明の方法を採用すれば、 短時間で酸化鉄の還 元処理を行なう ことができるため、 二酸化チタンの還元を抑制し つつ、 酸化鉄の還元率を高めることができる。 こう して得られた 本発明のチタンスラグ製造用原料は、 酸化鉄含有量が少なく、 酸 化鉄の還元反応による炉内温度の低下を抑止できるため、 炉内温 度の維持に必要な電力消費量も削減できる。 また溶融 F e O発生 量も低減できる結果、 炉内耐火物の損傷も抑止できる。 しかも従 来の様に炉内を高還元性雰囲気に維持する必要もないので酸化チ タンの還元を抑制できる。 更に本発明のチタンスラグ製造用原料 を加熱すれば、 短時間で溶融が開始されるため、 長時間滞留によ る酸化チタンの還元という問題を生じることなく、 効率的に酸化 チタンスラグを製造できる。
したがって本発明の方法を採用すればィルメナイ ト鉱などの様 に酸化チタンと酸化鉄を含む物質からチタンスラグを効率的に製 造することができる。

Claims

請求の範囲
1 . 酸化チタン、 酸化鉄、 炭素質還元剤を含む原料混合物を還 元炉にて加熱し、 該混合物中の酸化鉄を還元して還元鉄とした後、 加熱式溶融炉へ供給し、該溶融炉で加熱して該還元鉄を溶融させて チタンスラグと分離させ、得られる酸化チタン含有スラグを炉外へ 排出して回収することを特徴とする酸化チタン含有スラグの製造 方法。
2 . 前記酸化鉄を還元し、 前記還元炉から排出した後、 前記混 合物を実質的に冷却することなく加熱式溶融炉へ供給する請求項 1 に記載の方法。
3 . 前記還元炉が回転炉床炉である請求項 1 に記載の方法。
4 . 前記原料混合物として塊成状の成形体を使用する請求項 1 に記載の方法。
5 . 前記原料混合物が更に酸化カルシウム源を含むものである 請求項 1 に記載の方法。
6 . 酸化チタン、 酸化鉄、 炭素質還元剤を含む原料混合物を、 還元溶融炉内で加熱して該混合物中の酸化鉄を還元して還元鉄を 得、次いでこれらを更に加熱し該還元鉄を溶融させて酸化チタン含 有スラグから分離させ、得られる酸化チタン含有スラグを炉外へ排 出して回収する酸化チタン含有スラグの製法であって、前記還元溶 融炉として移動床式還元溶融炉を用いることを特徴とする酸化チ 夕ン含有スラグの製造方法。
7 . 前記移動床式還元溶融炉が回転炉床炉である請求項 6 に 記載の方法。 .
8. 前記炉は、 炉床の移動方向に少なく とも 2以上に仕切ら れており、 仕切られた該区画のうち、 炉床移動方向上流側は還元 区画とすると共に、 炉床移動方向下流側は加熱溶融区画とし、 こ れら各区画毎に温度を調整する請求項 6に記載の方法。
9. 前記還元区画の温度を 1 2 0 0〜: I 5 0 0 :、 前記加熱 溶融区画の温度を 1 3 0 0〜 1 5 0 0 とし、 且つ該還元区画の 温度よりも該加熱溶融区画の温度を 1 0 0〜 3 0 0 高温とする 請求項 8に記載の方法。
1 0. 前記原料混合物として塊成状の成形体を使用する請求 項 6に記載の方法。
1 1. 前記原料混合物が更に酸化カルシウム源を含むもので ある請求項 6に記載の方法。
PCT/JP2003/011003 2002-10-08 2003-08-29 酸化チタン含有スラグの製造方法 WO2004033730A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2462831A CA2462831C (en) 2002-10-08 2003-08-29 Method for manufacturing titanium oxide-containing slag
UA20040604383A UA77989C2 (en) 2002-10-08 2003-08-29 Method for producing titanium containing slag (variants)
AU2003261814A AU2003261814B2 (en) 2002-10-08 2003-08-29 Method for producing titanium oxide containing slag
BRPI0306566-9A BR0306566B1 (pt) 2002-10-08 2003-08-29 mÉtodo para fabricar escària contendo àxido de titÂnio.
EP03799416A EP1437420A4 (en) 2002-10-08 2003-08-29 PROCESS FOR PRODUCING SCORIE CONTAINING TITANIUM OXIDE
KR1020047008782A KR100645618B1 (ko) 2002-10-08 2003-08-29 산화티탄 함유 슬래그의 제조 방법
US10/495,577 US20050028643A1 (en) 2002-10-08 2003-08-29 Method for producing titanium oxide containing slag
NO20042204A NO20042204L (no) 2002-10-08 2004-05-27 Fremgangsmate for fremstilling av titanoksidholdig slagg
US11/936,549 US8088195B2 (en) 2002-10-08 2007-11-07 Method for manufacturing titanium oxide-containing slag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002294830A JP4153281B2 (ja) 2002-10-08 2002-10-08 酸化チタン含有スラグの製造方法
JP2002/294830 2002-10-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10495577 A-371-Of-International 2003-08-29
US11/936,549 Continuation US8088195B2 (en) 2002-10-08 2007-11-07 Method for manufacturing titanium oxide-containing slag

Publications (1)

Publication Number Publication Date
WO2004033730A1 true WO2004033730A1 (ja) 2004-04-22

Family

ID=32089193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011003 WO2004033730A1 (ja) 2002-10-08 2003-08-29 酸化チタン含有スラグの製造方法

Country Status (16)

Country Link
US (2) US20050028643A1 (ja)
EP (1) EP1437420A4 (ja)
JP (1) JP4153281B2 (ja)
KR (1) KR100645618B1 (ja)
CN (2) CN1306044C (ja)
AU (1) AU2003261814B2 (ja)
BR (1) BR0306566B1 (ja)
CA (1) CA2462831C (ja)
MX (1) MXPA04005098A (ja)
MY (1) MY140955A (ja)
NO (1) NO20042204L (ja)
RU (1) RU2004117592A (ja)
TW (1) TWI298350B (ja)
UA (1) UA77989C2 (ja)
WO (1) WO2004033730A1 (ja)
ZA (1) ZA200402650B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063360A (zh) * 2015-08-14 2015-11-18 北京神雾环境能源科技集团股份有限公司 处理低钛料的方法和系统
CN109306386A (zh) * 2018-08-29 2019-02-05 攀钢集团攀枝花钢铁研究院有限公司 一种用于高炉冶炼的高钛高铝渣系

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438297B2 (ja) * 2003-03-10 2010-03-24 株式会社神戸製鋼所 還元金属の製造方法および炭材内装塊成物
JP4295544B2 (ja) * 2003-04-09 2009-07-15 株式会社神戸製鋼所 冶金用改質炭の製造方法、ならびに冶金用改質炭を用いた還元金属および酸化非鉄金属含有スラグの製造方法
DE602006018967D1 (de) * 2005-08-30 2011-01-27 Du Pont Erzreduktionsverfahren und titanoxid- und eisenmetallisierungsprodukt
EP2190623A4 (en) * 2007-09-04 2012-04-18 Cardero Resource Corp DIRECT FURTHER PROCESSING OF METALLIC OIL CONCENTRATES TO IRON ALLOYS
WO2009052066A1 (en) * 2007-10-15 2009-04-23 E. I. Du Pont De Nemours And Company Ore reduction process using carbon based materials having a low sulfur content and titanium oxide and iron metallization product therefrom
CN100532593C (zh) * 2007-11-26 2009-08-26 攀钢集团攀枝花钢铁研究院 一种含钛原料的还原碳化方法
JP5384175B2 (ja) * 2008-04-10 2014-01-08 株式会社神戸製鋼所 粒状金属鉄製造用酸化チタン含有塊成物
MY146001A (en) * 2009-03-31 2012-06-15 Iop Specialists Sdn Bhd A process for producing sponge iron
CN102414530B (zh) * 2009-05-05 2014-11-19 纳幕尔杜邦公司 用于钛矿石提选的耐火衬
CN103209926A (zh) * 2010-04-06 2013-07-17 艾绿卡资源有限公司 改进的合成金红石的方法b
EP2572005B1 (en) * 2010-05-18 2020-11-18 Tata Steel Limited Direct smelting process
CN103025900B (zh) * 2010-06-30 2016-08-03 K·H·伽达 一种从铝铁矿石、钛铁矿石和残渣中提取金属元素的方法
KR101903434B1 (ko) 2010-09-15 2018-10-02 타타 스틸 리미티드 직접 제련 방법
WO2012149635A1 (en) * 2011-05-04 2012-11-08 Wei-Kao Lu Process of the production and refining of low-carbon dri (direct reduced iron)
JP6307448B2 (ja) * 2012-03-15 2018-04-04 ハンツマン ペー アンド アー イェルディンゲン ゲーエムベーハー 工業プロセスから得られた粒子含有材料の造粒方法、そのように製造された造粒物、および、その使用
JP2013249496A (ja) * 2012-05-30 2013-12-12 Kobe Steel Ltd 還元鉄とスラグの混合物の製造方法
CN102936635B (zh) * 2012-10-25 2015-01-14 攀钢集团攀枝花钢铁研究院有限公司 一种从含钛铁精矿中提取铁和钛的方法
CN103421925B (zh) * 2013-08-26 2015-04-22 江苏大学 一种制备氯化钛渣的方法
KR101586741B1 (ko) 2013-12-23 2016-01-19 주식회사 포스코 금속 산화물 회수방법
FI20155066A (fi) 2015-01-30 2016-07-31 Outotec Finland Oy Menetelmä titaanioksidia sisältävän kuonan ja raakaraudan tuottamiseksi ilmeniitistä, sekä laitos
US20170208079A1 (en) * 2016-01-19 2017-07-20 Qualcomm Incorporated Methods for detecting security incidents in home networks
CN106082315B (zh) * 2016-06-06 2017-05-31 攀钢集团攀枝花钢铁研究院有限公司 双反应室低温沸腾氯化炉
CN109789426A (zh) * 2016-07-29 2019-05-21 甘迪库姆资源私人有限公司 使用时变磁场来提高含铁钛矿物精矿品位的冶金工艺
KR101795467B1 (ko) * 2016-12-05 2017-11-10 주식회사 포스코 용선 제조 설비 및 용선 제조 방법
RU2669674C1 (ru) * 2017-08-24 2018-10-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ гранулирования шихты, содержащей ильменитовый концентрат и антрацит
CN107794381A (zh) * 2017-10-25 2018-03-13 攀钢集团攀枝花钢铁研究院有限公司 一种钛渣的制备方法
CN111392768A (zh) * 2020-03-20 2020-07-10 王绍云 一种钛白粉生产用钛渣处理装置
DE102020205493A1 (de) * 2020-04-30 2021-11-04 Sms Group Gmbh Verfahren zum Herstellen von flüssigem Roheisen aus einem DRI-Produkt
CN111717933B (zh) * 2020-06-29 2022-07-05 攀钢集团攀枝花钢铁研究院有限公司 一种降低钛渣中金红石型TiO2的钛渣快速冷却系统及方法
CN111593168A (zh) * 2020-07-02 2020-08-28 攀钢集团攀枝花钢铁研究院有限公司 渣铁分离促进剂及其制备方法和使用方法
CN112410481B (zh) * 2020-10-29 2022-06-03 攀枝花环业冶金渣开发有限责任公司 一种低品位铁高钛型高炉渣制备热压块的方法
CN114703381B (zh) * 2022-06-07 2022-08-12 中国恩菲工程技术有限公司 钛渣烧结碳化装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252712A (ja) * 1988-03-31 1989-10-09 Nippon Steel Corp 浴融還元炉の操業方法
JP2001064733A (ja) * 1999-08-26 2001-03-13 Toshio Nasu 金属酸化物の還元方法,製錬方法,および超微細結晶粒金属の製造方法
US20010052272A1 (en) * 1992-08-11 2001-12-20 Schoukens Albert F.S. Production of high titania slag from ilmenite
US20020022208A1 (en) * 2000-08-07 2002-02-21 Kawasaki Steel Corporation Method and apparatus for charging raw and carbonaceous materials into a moving hearth furnace
US20020033075A1 (en) * 2000-06-28 2002-03-21 Midrex International B.V. Method of producing iron nuggets
US20020053307A1 (en) * 2000-10-31 2002-05-09 Natsuo Ishiwata Method for discharging reduced product from a moveable-hearth furnace and a discharging device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB641738A (en) * 1946-11-18 1950-08-16 Titan Company As Improvements in or relating to the separation of iron and titanium compounds from ores containing iron and titanium
GB1008407A (en) * 1960-12-06 1965-10-27 Yawata Iron & Steel Co Process for separating non-molten slag from titanium-containing iron sands
US3765868A (en) * 1971-07-07 1973-10-16 Nl Industries Inc Method for the selective recovery of metallic iron and titanium oxide values from ilmenites
US3865574A (en) * 1972-07-20 1975-02-11 Lummus Co Process for the production of low-sulfur prereduced iron pellets
US4701214A (en) * 1986-04-30 1987-10-20 Midrex International B.V. Rotterdam Method of producing iron using rotary hearth and apparatus
ZA935072B (en) 1992-08-11 1994-02-07 Mintek The production of high titania slag from ilmenite
CN1135946A (zh) 1995-05-15 1996-11-20 昆明西山焊条材料厂 电焊条用还原钛铁矿粉的制取方法
KR100327848B1 (ko) * 1996-11-11 2002-08-19 스미토모 긴조쿠 고교 가부시키가이샤 환원철의제조방법및장치
KR200171628Y1 (ko) 1996-12-19 2000-04-01 정몽규 자동차용 패키지 트레이지지 구조
JPH10195513A (ja) * 1996-12-27 1998-07-28 Kobe Steel Ltd 金属鉄の製法
US5997606A (en) * 1997-08-11 1999-12-07 Billiton Sa Limited Production of titanium slag
KR20010032730A (ko) * 1997-12-03 2001-04-25 제이. 더리크 산화철 환원 및 철 용융 방법과 그 설비
EP0952230A1 (en) * 1998-03-24 1999-10-27 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Method of producing reduced iron agglomerates
JP2997459B1 (ja) * 1998-11-04 2000-01-11 株式会社神戸製鋼所 還元鉄塊成物の製造方法
AUPP442698A0 (en) 1998-07-01 1998-07-23 Technological Resources Pty Limited A direct smelting process
US6685761B1 (en) * 1998-10-30 2004-02-03 Midrex International B.V. Rotterdam, Zurich Branch Method for producing beneficiated titanium oxides
US6413295B2 (en) * 1998-11-12 2002-07-02 Midrex International B.V. Rotterdam, Zurich Branch Iron production method of operation in a rotary hearth furnace and improved furnace apparatus
US6126718A (en) * 1999-02-03 2000-10-03 Kawasaki Steel Corporation Method of producing a reduced metal, and traveling hearth furnace for producing same
CN1219891C (zh) * 1999-05-06 2005-09-21 株式会社神户制钢所 直接还原法及回转炉床炉
US6419714B2 (en) * 1999-07-07 2002-07-16 The Lubrizol Corporation Emulsifier for an acqueous hydrocarbon fuel
US6306195B1 (en) * 2000-03-24 2001-10-23 Council Of Scientific And Industiral Research Process for the preparation of high grade synthetic rutile and pig iron
PE20020070A1 (es) * 2000-03-30 2002-02-05 Midrex Internat B V Metodo de producir hierro metalico y dispositivo de alimentacion de materia prima
TW562860B (en) * 2000-04-10 2003-11-21 Kobe Steel Ltd Method for producing reduced iron
US6550596B2 (en) * 2000-06-29 2003-04-22 Usui Kokusai Sangyo Kaisha Limited Externally controlled fan coupling device
US6648942B2 (en) * 2001-01-26 2003-11-18 Midrex International B.V. Rotterdam, Zurich Branch Method of direct iron-making / steel-making via gas or coal-based direct reduction and apparatus
CN1478908A (zh) * 2002-08-29 2004-03-03 中国科学院过程工程研究所 一种分离铁和钛制备高钛渣的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252712A (ja) * 1988-03-31 1989-10-09 Nippon Steel Corp 浴融還元炉の操業方法
US20010052272A1 (en) * 1992-08-11 2001-12-20 Schoukens Albert F.S. Production of high titania slag from ilmenite
JP2001064733A (ja) * 1999-08-26 2001-03-13 Toshio Nasu 金属酸化物の還元方法,製錬方法,および超微細結晶粒金属の製造方法
US20020033075A1 (en) * 2000-06-28 2002-03-21 Midrex International B.V. Method of producing iron nuggets
US20020022208A1 (en) * 2000-08-07 2002-02-21 Kawasaki Steel Corporation Method and apparatus for charging raw and carbonaceous materials into a moving hearth furnace
US20020053307A1 (en) * 2000-10-31 2002-05-09 Natsuo Ishiwata Method for discharging reduced product from a moveable-hearth furnace and a discharging device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1437420A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063360A (zh) * 2015-08-14 2015-11-18 北京神雾环境能源科技集团股份有限公司 处理低钛料的方法和系统
CN109306386A (zh) * 2018-08-29 2019-02-05 攀钢集团攀枝花钢铁研究院有限公司 一种用于高炉冶炼的高钛高铝渣系

Also Published As

Publication number Publication date
AU2003261814B2 (en) 2009-01-22
CN1936027A (zh) 2007-03-28
CN1602363A (zh) 2005-03-30
UA77989C2 (en) 2007-02-15
EP1437420A4 (en) 2007-08-22
MXPA04005098A (es) 2004-08-19
US20080069763A1 (en) 2008-03-20
BR0306566B1 (pt) 2013-04-24
CA2462831C (en) 2010-11-30
ZA200402650B (en) 2004-10-21
AU2003261814A1 (en) 2004-05-04
KR100645618B1 (ko) 2006-11-14
JP2004131753A (ja) 2004-04-30
KR20040064730A (ko) 2004-07-19
US20050028643A1 (en) 2005-02-10
TWI298350B (en) 2008-07-01
JP4153281B2 (ja) 2008-09-24
CN1306044C (zh) 2007-03-21
US8088195B2 (en) 2012-01-03
EP1437420A1 (en) 2004-07-14
RU2004117592A (ru) 2005-06-10
TW200406490A (en) 2004-05-01
MY140955A (en) 2010-02-12
BR0306566A (pt) 2004-11-30
CA2462831A1 (en) 2004-04-08
NO20042204L (no) 2004-05-27

Similar Documents

Publication Publication Date Title
WO2004033730A1 (ja) 酸化チタン含有スラグの製造方法
US6036744A (en) Method and apparatus for making metallic iron
JP4757982B2 (ja) 粒状金属鉄の歩留まり向上方法
US8262766B2 (en) Method for reducing chromium containing raw material
EP1027461B1 (en) Method and apparatus for making metallic iron
WO1999016913A1 (fr) Four a sole mobile pour la reduction d'oxydes, et son procede de fonctionnement
JP2003073717A (ja) 金属鉄の製法
JP2010111941A (ja) フェロバナジウムの製造方法
WO2013011521A1 (en) A method for direct reduction of oxidized chromite ore fines composite agglomerates in a tunnel kiln using carbonaceous reductant for production of reduced chromite product/ agglomerates applicable in ferrochrome or charge chrome production.
JPH11172312A (ja) 移動型炉床炉の操業方法および移動型炉床炉
US9534275B2 (en) Methods and systems for reducing chromium containing raw material
JP2004183070A (ja) 溶鉄の製法
JP2010090431A (ja) ニッケルおよびバナジウムを含む合金鉄の製造方法
JP2000045008A (ja) 還元金属の製造方法
JP3732024B2 (ja) 還元鉄ペレットの製造方法
JP3451901B2 (ja) 移動型炉床炉の操業方法
JP2009062557A (ja) 移動型炉床炉の操業方法
JP3864506B2 (ja) 半還元鉄塊成鉱およびその製造方法ならびに銑鉄の製造方法
JP2008184682A (ja) 還元金属の製造方法
JP2003239007A (ja) 金属含有物からの還元金属の製造方法
JPS58171511A (ja) 銑鉄製造方法及びその装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2003799416

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004/02650

Country of ref document: ZA

Ref document number: 200402650

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2462831

Country of ref document: CA

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10495577

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/005098

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 20038017024

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047008782

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003261814

Country of ref document: AU

Ref document number: 1267/CHENP/2004

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003799416

Country of ref document: EP