WO2004031070A1 - Micro movable device - Google Patents

Micro movable device Download PDF

Info

Publication number
WO2004031070A1
WO2004031070A1 PCT/JP2003/012664 JP0312664W WO2004031070A1 WO 2004031070 A1 WO2004031070 A1 WO 2004031070A1 JP 0312664 W JP0312664 W JP 0312664W WO 2004031070 A1 WO2004031070 A1 WO 2004031070A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
movable device
microcell
micro movable
forming member
Prior art date
Application number
PCT/JP2003/012664
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Morishita
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to AU2003271081A priority Critical patent/AU2003271081A1/en
Priority to JP2004541276A priority patent/JP4312717B2/en
Publication of WO2004031070A1 publication Critical patent/WO2004031070A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0058Packages or encapsulation for protecting against damages due to external chemical or mechanical influences, e.g. shocks or vibrations

Definitions

  • the present invention relates to a micro movable device that can be incorporated as a part of an integrated circuit on a substrate, and more particularly to a micro movable device that forms a micro 'elect port' mechanism.
  • FIG. 5 is a cross-sectional view showing a conventional micro movable device.
  • This microphone opening movable device produces a sealing structure for sealing the micro movable portion as described below. That is, the first silicon nitride film 55 2 is formed on the silicon substrate 55 so as to cover the micro filter 55 1 as a micro movable portion and the sacrificial film used for manufacturing the micro filter 55 1. Is deposited.
  • the silicon oxide film serving as the sacrificial film is etched and removed with a diluted hydrofluoric acid solution to form a cavity portion 555. Then, a second silicon nitride film 554 is deposited on the first silicon nitride film 552 by a CVD method, and the opening 553 is closed to complete a sealing structure.
  • the resonance frequency of the micro movable part strongly depends on the pressure of the cavity in the sealing structure in which the micro movable part is arranged (for example, Ref. 1: YT Cheng et al. et al.), Proceedings of MEMS Conf., 2001, pi 8). Therefore, in the microphone opening movable device of FIG. 5, it is necessary to reduce the pressure of the cavity portion 555 where the microfilter 551 is located to about 3 OmTorr.
  • the entire microfinoleta 551 is sealed with a sealing structure including the first silicon nitride film 552 and the second silicon nitride film 554. They are collectively covered to form a relatively large cavity 555. Therefore, in order to maintain the pressure in the relatively large hollow portion 555, the sealing structure is required to have relatively high strength. If the strength is insufficient, the sealing structure is deformed due to a pressure difference between the inside of the hollow portion 5.55 and the outside of the sealing structure, and the durability is reduced.
  • the conventional micro movable device has a problem that it is extremely difficult to ensure the durability of the sealing structure.
  • Reference 1 discloses a technique for sealing a micro movable portion by bonding glass substrates.
  • An apparatus for bonding glass substrates under a force vacuum is a general LSI (large-scale integrated circuit). It is not used for the manufacturing process of the circuit, and its introduction requires a large capital investment.
  • the vacuum sealing technology by bonding the glass substrates may cause a problem of impurity contamination.
  • the conventional microphone opening movable device has problems such as an increase in cost and a decrease in durability, particularly when considering the incorporation into an integrated circuit. Disclosure of the invention
  • the present invention has been made to solve the problems of the above-mentioned conventional micro movable device, and has a micro movable device having a microphone opening movable portion that can be threaded as a part of an integrated circuit on a substrate.
  • An object of the present invention is to provide a micro movable device which can be manufactured at low cost and has good durability.
  • a micro movable device comprises: a substrate; a single-layer or multi-layer micro-synthesis member that is provided on the substrate and defines a plurality of micro cells; and a non-minimum micro among the plurality of micro cells.
  • a microphone opening movable section disposed in the cell.
  • the sealing structure of the micro movable portion is formed by the one or more layers of the micro cell forming member. Since the microcell forming member has a structure that defines a plurality of microcells, the microcell forming member is formed using a member having a relatively small thickness, and can prevent uneven concentration of stress. Therefore, a sealing structure that is difficult to deform Therefore, a micro movable device having good durability can be obtained.
  • the microphone opening cell in which the microphone opening movable section is arranged is the largest microcell among the plurality of microcells. Therefore, the relatively large micro movable portion can be sealed.
  • the microphone cell in which the micro movable section is arranged is at least twice as large as the micro cell in which the micro movable section is not arranged.
  • the micro cell in which the micro movable portion is arranged can be formed by, for example, removing a portion of a micro cell forming member between two or more adjacent micro cells. Therefore, a microcell having an appropriate size can be easily formed according to the size of the micro movable portion to be sealed.
  • the microphone opening movable device of the embodiment is provided in the microphone opening cell forming member and has a communication hole for connecting the microcells to each other. By using this communication hole, it is possible to obtain a relatively short path and a plurality of paths for discharging the sacrificial film and the like used for manufacturing each of the microcells and the microphone opening movable section. Therefore, the removal efficiency of the sacrificial film and the like can be improved.
  • a discharge hole communicating with the microcell is opened on the upper surface of the microphone opening cell forming member in the uppermost layer. Therefore, an upward path for discharging the sacrificial film or the like to the outside can be obtained directly or through a plurality of microcells from the microcell where the micro movable portion is located. Further, by providing a plurality of the discharge holes, a plurality of paths for discharging the sacrificial film and the like from the microphone opening cell where the microphone opening movable portion is located can be formed. Therefore, the sacrificial film and the like can be discharged more efficiently than when one discharge port is provided at each end of the sealing structure as in the conventional microphone port movable device.
  • At least one of the plurality of microphone opening cells is filled with a filling member. Therefore, it is possible to form a sealing structure having greater strength than only the microcell forming member.
  • the sacrificial film used for forming the microcell is used as a filling member, it is not necessary to remove the sacrificial film. Therefore, when, for example, an eyebrow insulating film or the like is provided between the plurality of microsynthesized components, the interlayer insulating film is used as an etcher for removing the sacrificial film. No damage is caused by the device.
  • the sacrificial film is made of a material having high hygroscopicity, the sacrificial film is discharged to the outside of the microcell forming member because the sacrificial film remains filled in the microphone opening cell. At this time, no sacrificial film remains in the microcell that should be hollow. Therefore, when the microcell in which the micro movable portion is located is sealed, gas is not released due to the remaining sacrificial film. This can improve the reliability of the micro movable device.
  • the labor for removing the sacrificial film can be reduced, and the manufacturing process of the micro movable device can be simplified.
  • the microphone opening member has a wall portion and a ceiling portion, and the wall portion and the ceiling portion are electrically connected.
  • the wall can be set to O V. Therefore, when the micro movable part is a filter or the like and an AC (alternating current) signal is input, noise can be reduced.
  • a local wiring is formed between the part of the ceiling and the wall electrically connected to the part.
  • a through electrode can be formed.
  • the uppermost micro cell forming member is electrically insulated from the lower micro cell forming member. Therefore, the microcell forming member below the lowermost layer can be electrically disconnected from the outside.
  • the uppermost microcell forming member can be used as a wiring layer.
  • the micro cell forming member has a wall and a ceiling integrally formed. Therefore, the microcell forming member can be formed by a simple process. In addition, since the strength of the micro cell forming member is relatively large, the micro movable portion in the micro cell can be effectively sealed.
  • the microcell arranged around the microphone opening cell in which the microphone opening movable section is arranged is not filled with a filling member and is hollow. Thereby, it is possible to communicate between the micro cell on which the micro movable portion is arranged and a desired micro cell among the surrounding micro cells.
  • a desired sacrificial film or the like is formed from the microcell in which the micro movable portion is disposed. Since the liquid can be discharged in the direction, the sacrificial film and the like can be reliably discharged from the microcell.
  • the microcell above the microphone opening cell in which the microphone opening movable portion is arranged is not filled with a filling member and is hollow. Therefore, the micro cell in which the micro movable portion is arranged can communicate with the micro cell on the upper side of the micro cell. Therefore, the micro movable portion is relatively large having a dimension of, for example, 100 ⁇ or more, and has a complicated shape, and is relatively large for disposing the microphone opening movable portion. Even when a microcell having a complicated shape is formed, a sacrificial film or the like can be effectively discharged from the microcell.
  • a microcell arranged around the microphone opening cell in which the microphone opening movable section is arranged is filled with a filling member. Therefore, the strength around the microcell in which the microphone opening movable section is arranged can be increased. Therefore, the micro movable portion can be sealed with good reliability and durability.
  • the micro cell arranged around the hollow micro cell is filled with a filling member. Therefore, the strength of the portion around the hollow microcell of the microcell forming member defining the hollow microcell can be improved, and the reliability and durability of the sealing structure can be improved.
  • the filling member is made of a material having a smaller coefficient of thermal expansion than a material of the micro cell forming member. Therefore, even when the temperature of the micro movable device changes, the influence of the thermal expansion and thermal contraction of the filling member on the micro cell forming member is reduced, so that the microphone opening movable portion has good reliability and durability. Can be sealed.
  • the plurality of microcell forming members separated from each other are located at the same level. Therefore, it is possible to prevent the stress concentration to each microcell shaped forming member, it is possible to improve the reliability ⁇ durable I 1 production of the micro-cell member.
  • the movable part of the microphone is characterized in that the movable part of the microphone is nitrided of a high melting point metal. It is composed of materials containing objects. Therefore, the micro movable portion can be formed not only on a substrate made of Si (silicon) but also on a substrate made of a material having a melting point higher than that of Si.
  • the micro cell forming member is made of a material containing a nitride of a high melting point metal. Therefore, the microcell forming member can be formed not only on a substrate having Si force but also on a substrate made of a material having a melting point higher than Si.
  • the microphone opening movable portion is formed of two or more layers having different internal residual stresses. Therefore, by adjusting the working direction and the magnitude of the internal residual stress of each of the layers, the residual stress in the ⁇ portion when the entire micro movable portion is considered can be reduced.
  • the microcell forming member is formed of two or more layers having different internal residual stresses. Therefore, by adjusting the action direction and the magnitude of the internal residual stress of each of the layers, the internal residual stress when the entire microcell forming member is considered can be reduced.
  • the microphone opening movable section includes a layer made of a high melting point metal and a layer made of the nitride. Therefore, the electrical conductivity of the micro movable portion can be increased, the potential of the microphone opening movable portion can be accurately controlled, and the internal residual stress of the micro movable portion can be reduced.
  • the microceno component includes a layer made of a high melting point metal and a layer made of the nitride. Therefore, the electric conductivity of the microcell forming member can be increased, the potential of the microphone cell forming member can be accurately controlled, and the internal residual stress of the microcell forming member can be reduced. In addition, since a part of the microcell forming member can be used as a wiring or a penetrating electrode, a space for the wiring can be reduced, and the size can be reduced. Can be simplified and the cost can be reduced. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a plan sectional view showing a part of a microphone opening movable device according to a first embodiment of the present invention. You.
  • FIG. 2 is a longitudinal sectional view showing a part of the micro movable device according to the first embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view showing a part of the micro movable device according to the first embodiment of the present invention.
  • FIG. 4 is a longitudinal sectional view showing a part of the micro movable device according to the first embodiment of the present invention.
  • FIG. 5 is a longitudinal sectional view showing a conventional micro movable device.
  • FIG. 6 is a plan sectional view showing a micro movable device according to a second embodiment of the present invention.
  • FIG. 7A is a longitudinal sectional view taken along line AB in FIG. 6, and
  • FIG. 7B is a longitudinal sectional view taken along line AC in FIG.
  • FIG. 8A is a longitudinal sectional view showing a part of the uppermost layer microcell forming member provided in the micro movable device of the present invention
  • FIG. 8B is a longitudinal section showing a modification of the uppermost microphone opening cell forming member.
  • FIG. 9 is a perspective view showing a state where the micro cell forming member provided in the micro movable device of the present invention is cut along a plane parallel to the plane of the substrate.
  • FIG. 1 is a plan cross-sectional view showing a part of a microphone opening movable device according to a first embodiment of the present invention, and shows a state in which a portion where a microcell is formed is cut along a plane parallel to a plane of a substrate.
  • FIG. 2 is a vertical cross-sectional view showing a part of the micro movable device of the first embodiment, and shows a state where a part where a micro cell is formed is cut in a direction perpendicular to a plane of a substrate.
  • This micro movable device is provided with a single or multi-layered micro cell forming member 22, 23, 24 formed on the substrate 20.
  • Microcells 11, 12, 13 are defined.
  • the microcells 11, 12, and 13 are cut parallel to the plane of the substrate as shown in FIG.
  • the surface is partitioned by the wall 10 of the microcell forming member.
  • the microcell is formed to have dimensions such that the width and length are within predetermined ranges.
  • the substrate 20 is a silicon substrate, and the microphone opening cell forming members 22, 23, 24 are formed of polysilicon doped with impurities.
  • the thickness of the wall portion of the microcell forming member 22 of the first layer closest to the substrate 20 is formed to be 1.5 to 2 / im.
  • the second- and third-layer microcell forming members 23 and 24 formed on the first-layer microcell forming member 22 have a wall thickness of 2-3 ⁇ m. Is formed.
  • the height of each of the above-mentioned walls is preferably formed to be substantially the same as the thickness of the walls in consideration of strength. Therefore, the height of the wall, that is, the height from the bottom to the ceiling of the microcell is set to 2 ⁇ for the first layer and 3 ⁇ for the second and third layers.
  • the thickness of the sealing structure is small.
  • the inside and outside of the sealing structure when the microphone opening movable portion is vacuum-sealed is preferably used. It must be able to withstand the deflection caused by the pressure difference and the stress generated by this deflection.
  • a conventional sealing structure having a film as shown in FIG. An experiment was conducted to measure the bending and stress generated in each sealing structure in the case where the sealing structure including the light microcell forming member was used.
  • a microcellular member having four square microcells each having a side of about 100 m on a plane is used, Experiments were conducted on a case where a microcell forming member having nine square microcells each having a side of about 67 ⁇ m was used.
  • the maximum bending amount can be reduced to a value of about 6% according to the sealing structure using the microcell forming member having four microcells as compared with the sealing structure using the conventional membrane. It was also found that the maximum stress could be reduced to about 22%. Furthermore, according to the sealing structure using the micro-ceno forming member having nine microcells, the maximum radius can be reduced to 1% or less as compared with the sealing structure using the conventional membrane. However, it was found that the maximum stress can be reduced to a value of 10% or less.
  • a sealing structure is formed using the microcell forming member of the present invention.
  • the microcell defined by the microcell forming member of the above in a plane having a width and a length within a range of less than 10 ⁇ m, the maximum deflection amount of the sealing structure can be reduced to 0.01 ⁇ m.
  • the stress concentration can be reduced to ⁇ or less, and the vacuum sealing can be performed using a thin film of several microns.
  • the width in the plane of the microcell is preferably about 3 to 5 times or less the thickness of the wall, specifically, 10 ⁇ m or less.
  • the length in the plane of the microcell may be several 100 ⁇ if the width of the microcell is set within a predetermined range.
  • microcell forming member it is not necessary that all the microcells are hollow microcells in which a filling member or the like is not filled. Therefore, a sealing structure can be formed with one or more microcells being kept filled with the sacrificial film used when the microcells were formed. Therefore, the labor for removing the sacrificial film can be reduced.
  • the micro movable portion uses a film thicker than that used in a normal LSI process, non-uniform stress and stress concentration are likely to occur on the substrate on which the micro movable portion is formed.
  • a sealing structure fixed to the substrate over a relatively wide area can be formed. Therefore, it is possible to prevent the occurrence of uneven stress and the occurrence of localized stress in the substrate, thereby improving the reliability and durability of the sealing.
  • the microcell forming member is fixed to the substrate over a wider area than before, no warping or steps occur on the substrate. Therefore, the micro movable portion and the sealing structure can be formed while maintaining the flatness of the substrate.
  • the force using a rectangular microcell in the plane is not limited to this, but may be a polygon such as a regular hexagon.
  • communication holes 14, 27, and 28 are formed as necessary in the wall and ceiling of the microcell forming member that separates the hollow microcells.
  • adjacent hollow microcells communicate with each other through communication holes 14 formed in the wall 10 as shown by arrows 15.
  • a plurality of paths can be secured. Therefore, the shortest discharge path can be obtained for the sacrificial film of each microcell, and the sacrificial film can be dispersed and discharged in a plurality of paths. Therefore, the removal efficiency of the sacrificial film can be improved.
  • a plurality of discharge holes 30 communicating with the microcells to be hollowed are provided in the ceiling of the uppermost microcell forming member. Thus, when the hollow microcell is formed, the sacrificial film at the microcell portion can be quickly discharged upward.
  • the sacrificial film when the sacrificial film is discharged from the microcell in the microcell forming member below the uppermost layer, a plurality of discharge paths can be formed from the central portion of the microcell. Therefore, it is possible to discharge the sacrificial film more efficiently than discharging the sacrificial film only from the end of the sealing film as in the conventional sealing structure.
  • the micro movable portion used in the MEMS has a size of several 10 to several 1 O O / m in the plane of the substrate. Therefore, if the sacrificial film in the sealing structure that covers the micro movable portion is to be removed from the horizontal end of the substrate of the sealing structure as in the related art, the length of the removal path of the sacrificial film significantly increases.
  • the sealing structure of the present embodiment has a structure in which a plurality of communication ports are provided in the ceiling portion of each microcell forming member so that the microcells 25 above the lowermost layer as shown by arrows 31 in FIG.
  • the sacrificial film can be removed. Accordingly, a relatively short removal path having a length substantially equal to about 10 ⁇ , which is the dimension in the thickness direction of the sealing structure, can be obtained, so that the sacrificial film can be quickly discharged.
  • the filling member is completely covered with a surface of a ceiling, a wall, and a floor of the microcell forming member. It is not exposed outside this microcell.
  • the microcell 26 in FIG. 2 is filled with a sacrificial film, and the sacrificial film is completely covered with the microcell component 22 that defines the microcell 26. Therefore, the strength of the sealing structure can be increased by the sacrificial film, and the deterioration of the microcell forming member 22 due to the etchant for removing the sacrificial film can be reduced.
  • damage to the interlayer insulating film from the etchant can be reduced.
  • a silicon oxide film having relatively high hygroscopicity is used as the sacrificial film.
  • the silicon oxide film is not exposed to the hollow microcell in which the micro movable portion is disposed, gas release after sealing the movable portion of the microphone can be suppressed, and the reliability of the sealing is improved. it can.
  • the removal efficiency of the sacrificial films can be improved.
  • the wall and the ceiling of the microcell forming member are electrically connected to each other. For example, in FIG.
  • the wall portion 431 and the ceiling portion 432 of the lowermost microcell forming member 43 are electrically connected to each other.
  • the wall portion 48 1 of the second-layer microcell forming member 48 and the ceiling portion 48 2 are electrically connected.
  • the wall portion 43 1 of the lowermost micro cell forming member 43 is connected to the electrode 40.
  • the ceiling portion 43 of the lowermost microphone opening cell forming member 43 and the wall portion 481 of the second microphone opening cell forming member 48 are electrically connected.
  • each of the sealing structures shown in FIGS. 1, 2, 3 and 4 a predetermined wall portion and a ceiling portion of each microcell forming member 22, 23, 24, 43, 48, 49 are required. By electrically disconnecting and connecting to other parts, local wiring and through electrodes can be formed. More preferably, the uppermost layer of the microcell forming member is electrically insulated from the lower microcell forming member. In the present embodiment, the microphone opening cell is formed.
  • the uppermost layers 24, 49 of the members are made of a silicon nitride film, so that they are electrically insulated from the respective microcell forming members 23, 48 below. As a result, the sealing structure can be electrically shielded from the outside, and a wiring layer can be formed on the uppermost layers 24 and 49 of the microcell forming member.
  • the wall and ceiling are integrally formed. By integrally forming the wall and the ceiling, the manufacturing process of the microcell forming members 22, 23, 24, 43, 48 and 49 can be simplified. The sealing performance of the micro movable section 41 by the sealing structure using the members 22, 23, 24, 43, 48, 49 can be improved.
  • the micro movable portion shown in the cross-sectional views of FIGS. 3 and 4 is a Beam type micro filter 41.
  • the microfilter 41 is formed so as to vibrate by a signal from the input electrode 42 formed downward.
  • the microfilter 41 is formed by the same process as the microcell forming member of the first layer. Accordingly, the substrate 20 has a step, a warp, and the like between a portion where the microfilter 41 is formed and a portion where the microcell forming member 43 around the microfilter 41 is formed. The flatness is maintained without occurrence of cracks.
  • the microcell 44 on which the microfilter 41 is arranged is defined by a first-layer microcell forming member 43 and a second-layer microcell member 48. Therefore, the second-layer microcell forming member 48 can maintain the flatness without any step or warpage.
  • the sealing structure of the present invention is not limited to the beam type microfilter 41, but can be applied to a filter having a complicated shape such as a comb type or a tuning fork type. Due to the structure, the necessary minimum number of microcells according to the shape of the micro movable portion can be easily formed only around the micro movable portion.
  • At least one hollow microcell 46 is disposed above the microcell 44 in which the microfilter 41 is located. That is, a third-layer microcell defining a hollow microcell is placed on a second-layer microcell forming member 48 defining a microphone opening cell in which the microfilter 41 is located. At least one layer of the cell forming member 49 is formed. As a result, a communication hole 47 is provided in the ceiling of the second layer of the micro-senore forming member 48, and the communication hole 47 in the ceiling allows the sacrifice in the microcell 44 where the microfilter 41 is located.
  • the membrane can be quickly discharged to the upper hollow microcell 46, and the sacrificial membrane can be quickly discharged from the hollow microcell 46 to the outside of the sealing structure through the discharge hole.
  • the microfilter 41 By closing the discharge hole of the third-layer microcell forming member 49 with the cap film 491, the microfilter 41 can be easily and reliably sealed.
  • the third-layer microcell forming member 49 defining the hollow microcell is not provided, and the communication hole 47 of the second-layer microcell forming member 48 is formed as the discharge hole of the sacrificial film. If used, the inconvenience that the material of the cap film is deposited on the microfilter 41 when the cap film closing the discharge hole is deposited. Further, preferably, a hollow microcell 45 is arranged around the microcell 44 in which the microfilter 41 is located.
  • the communication hole 47 located at the center of the microcell 44 can be formed on the ceiling of the microcell forming member 48 defining the microcello 44 where the microfilter 41 is located, If the communication hole located at the end of the microcell 44 cannot be provided, an etchant for removing the sacrificial film remains at the end of the microcell 44 or the sacrificial film is not removed. May remain. Therefore, by arranging a hollow microcell 45 around the microcell 44 where the microfilter 41 is located, the microfilter 4 is passed through the hollow microcell 45.
  • the etching liquid and the sacrificial film can be reliably removed from the end of the microcell 44 where 1 is located.
  • microcells 53, 54 filled with a filling member are arranged around the hollow microcells 45, 46.
  • the first microcell forming member 43 defining the hollow microcells 45 and 46 and the microcellular forming member 49 of the uppermost layer around the hollow microcells 45 and 46 of the uppermost microcellular forming member 49 are formed.
  • the strength of the part can be improved. Therefore, the reliability and durability of the sealing structure using the microcell forming members 43 and 49 can be improved.
  • FIG. 6 is a diagram illustrating a micro movable device according to a second embodiment of the present invention.
  • a tuning fork resonator 101 as a micro movable portion having a size exceeding 10 in the plane of the substrate and having a complicated shape is sealed.
  • FIG. 6 is a cross-sectional plan view showing a state cut along a plane parallel to the substrate at a position corresponding to the wall of the microcell forming member of the second layer from the substrate side.
  • FIG. 7A is a longitudinal sectional view taken along line AB in FIG. 6, and
  • FIG. 7B is a longitudinal sectional view taken along line AC in FIG.
  • the sealing structure 100 of the microphone opening movable device includes three layers of micro-senor forming members 13 1, 13 2, and 13 3 formed on the substrate 130.
  • the three-layer microcell forming members 1311, 1332, and 1333 define a hollow microcell 112 and a microcell 113 filled with a filling member.
  • the hollow microcell 105 in which the resonator 101 as the micro movable portion is located is composed of a first-layer microcell forming member 131, and a second-layer microphone opening cell forming member 132 It is defined as Since the resonator 101 has a dimension exceeding 100 / m, the distance between the walls defining the microcell 105 is very long.
  • the microcells 105 in which the resonator 101 is arranged The size is minimized.
  • the anchor portion 104 which is a non-movable portion of the resonator 101, is a microcell defined by the first to third microcell forming members 13 1, 13 2, and 13 3 respectively. It is formed by filling a microcell with a filler at the same position on a plane.
  • the column 106 is provided at a position where the operation of the movable portion of the resonator 101 is not hindered and the potential of the movable portion is not substantially affected.
  • the column 106 Since the potential of the portion of the resonator adjacent to the column 106 is determined by the electrode 107 connected to the anchor portion 104, the column 106 is set to the same potential as the electrode 107. By doing so, it is possible to reduce the influence on the above-mentioned resonator portion.
  • a hollow microcell 135 is arranged on the microcell 105 where the resonator 101 is located.
  • This hollow microcell 1 3 According to 5, the sacrificial film in the microcell 105 where the resonator 101 is located can be quickly removed upward of the microcell 105 when the sealing structure is manufactured.
  • the ceiling of the second-layer microphone opening senor forming member 132 is reinforced by the uppermost microcell forming member 133 that defines the hollow microcell 135, and the ceiling is formed. And the local concentration of the stress can be prevented. Therefore, the maximum amount of radius can be set to 0.01 jum or less, even though the interval between the wall portions defining the microcell 105 exceeds 100 ⁇ .
  • the use of the microcell forming members 13 1, 13 2, and 13 3 allows the tuning fork resonator 101 to have a large and complicated shape.
  • FIG. 7 is a cut 120 formed in the ceiling of the microcell forming member 133 of the uppermost layer.
  • FIG. 8A is an enlarged schematic cross-sectional view showing the vicinity of the portion where the cut 120 is formed.
  • This notch 120 is formed in the ceiling other than the portion where the microcell 122 connected to the microcell 105 where the resonator 101 is located and the communication hole 124 is located. ing.
  • a wall portion 141 defining the microcell 122 which is in communication with the microphone opening cell 105, in which the resonator 101 is located, outside the micro movable device. Facing
  • the stress caused by the difference in the coefficient of thermal expansion between the substrate 550 and the sealing films 552, 554 is caused by the stress generated by the substrate 550 and the sealing films 552, 5 5 Concentrated near the connection with 4 and a large stress is generated in this part, which causes deterioration and destruction of the sealing structure It was. The same applies to a case where an impact is applied to the substrate 550 or a case where the substrate 550 is deformed such as a warp.
  • transmission of force from the sealing structure to the substrate 130 and transmission of force from the substrate 130 to the sealing structure are cut off by the cut 120. Therefore, the concentration of the force on the end of the sealing structure and the concentration of the force on the connecting portion between the first-layer micro-synthesized component 13 1 and the substrate 130 are alleviated. As a result, deterioration and destruction of the sealing structure due to stress concentration can be prevented, and the durability of the sealing structure can be improved.
  • the cut 120 may be formed as shown in FIG. 8B. That is, an extended portion 140 extending from the lower end of the wall of the uppermost microcell forming member 133 toward the inside of the cut 120 is provided, and this extended portion 140 is attached to the microcell forming member 1 of the second layer. Fix it to the top of 32 ceiling. As a result, the wall portion of the uppermost layer of the microporous member 133 can be firmly fixed to the upper surface of the ceiling portion of the second-layer microcell forming member 132 without any gap. Therefore, the microcell 122 communicating with the microcell 105 in which the resonator 101 is located can be reliably sealed to the outside, so that the reliability of the sealing structure can be improved.
  • the cuts 120 may be provided at the same level, for example, on the uppermost layer so that a plurality of microcell forming members 133a, 133b, and 133c are separated from each other. That is, as shown in FIG. 7A, a plurality of microcell forming members 133a, 133b, 133c are formed in the uppermost layer, and the plurality of microcell forming members 133a, 133 are formed. b, 133 c are separated by the notch 120. Thus, transmission of force from one of the plurality of microcell forming members to the other is reliably prevented.
  • the cut 120 may be partially provided on the ceiling of the same microphone opening cell forming member.
  • the cuts 120 are not limited to the uppermost layer, and may be formed in the microphone opening cell forming members 13 1 and 13 2 of the first layer or the second layer.
  • FIG. 9 is a perspective view showing a state where the uppermost microcell forming member 133 is cut at a position of a wall portion of the microseno forming member 133 by a plane parallel to the plane of the substrate 130. As shown in Fig. 9, the microcell at the second eyebrow and the top layer A large number of communication holes are provided on the ceiling of the second-layer microcell forming member.
  • a plurality of communication holes communicating between the adjacent hollow microcells in the uppermost layer are provided in the wall of the microcell forming member in the uppermost layer. Due to the plurality of communication holes 151, the wall has a shape like pillars.
  • a communication hole 153 communicating between the microcells filled with the filling members adjacent to each other in the uppermost layer is provided in the wall of the microseno component member in the uppermost layer.
  • a plurality of communication holes 153 may be provided.
  • the shapes of the communication holes 150, 151, 153 are not limited to those shown in FIG.
  • the efficiency of discharging the sacrificial film to the outside when forming a hollow microcell can be improved.
  • the efficiency of discharging the sacrificial film to the outside when forming a hollow microcell can be improved.
  • the efficiency of discharging the sacrificial film to the outside when forming a hollow microcell can be improved.
  • by providing the above-mentioned large number of communication holes 150, 151, and 153 stress generated by thermal expansion or thermal contraction, or impact force or warpage of the substrate 130 can be easily dispersed. it can.
  • a cutout 152 in the ceiling of the microseno-forming member so as to communicate between adjacent hollow microcells, stress concentration can be prevented.
  • a notch (not shown) in the ceiling of the microcell forming member so that the adjacent microcells communicate with the filled microcells, stress concentration can be prevented.
  • the microcell 105 in which the resonator 101 is located and the microcell adjacent to the microcell 105 are formed in a hollow shape.
  • the microcell is also hollow.
  • a plurality of hollow microcells 115 that are not connected to the microcell 105 where the resonator 101 is located are placed on the plane of the sealing structure 100. It is provided in the vicinity of the corner.
  • the plurality of hollow microcells 115 communicate with each other through communication holes.
  • the hollow microcell 115 that does not communicate with the microcell 105 in which the micro movable portion is arranged, it is possible to prevent the stress from being generated unevenly in the sealing structure 100, The stress can be evenly distributed throughout the sealing structure 100, and the reliability and durability of the sealing structure 100 can be improved.
  • the sealing structure 100 is used when forming a microcell.
  • the coefficient of thermal expansion of the silicon oxide is about 0.5 ppm / ⁇ C, and the coefficient of thermal expansion of silicon-silicon nitride forming the microcell forming members 131, 132, 133 (2.5 ppm / ° C). Degree).
  • the combined portion of the microcell 113 filled with the silicon oxide and the microcell forming member defining the microcell 113 is larger than the portion including only the microcell forming member defining the hollow microcell.
  • the stress generated when a temperature change occurs is reduced.
  • the microcell filled with silicon oxide as the filling member, the strength can be increased and the stress due to thermal expansion and thermal contraction can be reduced. Therefore, by dispersing the microcells filled with the silicon oxide in the sealing structure 100, it is possible to effectively concentrate the stress due to thermal expansion and thermal contraction at a predetermined position of the sealing structure 100. Can be prevented.
  • a microphone port cell filled with the above filling member is arranged. By doing so, the reliability and durability of the sealing function of the microphone opening Senole 105 can be improved.
  • the sealing structure 100 is formed by using the three-layer microphone opening cell forming members 131: 132, 133.
  • the number of the microcell forming members forming the sealing structure is not limited to three layers, Any number of layers above the layer may be used.
  • the microphone opening movable device according to the third embodiment of the present invention is the same as the micro movable device according to the first and second embodiments, except that the microcell forming members 22, 23, 24, 43, 48, 49, 131, 132, 133
  • tungsten nitride is used instead of silicon / silicon nitride.
  • Tungsten nitride can be formed by a reactive sputtering method. For example, sputtering pressure 2.3 Pa, RF (high frequency oscillation) power 300 W, Ar (anoregon) gas flow rate 33.6 sccm, N 2 (nitrogen ) Gas flow rate 8.4 sccm s Substrate temperature 25 ° C Nsten can be formed.
  • CMOS complementary metal oxide semiconductor
  • Compatible Metal-Oxide Semiconductor has low heat resistance, such as silicon substrate on which LSI is fabricated, glass substrate or resin substrate on which Cu (copper) wiring and low dielectric constant organic insulating film are formed.
  • a sealing structure using a microcell forming member can also be formed on a substrate on which elements are formed.
  • the micro movable portions 41 and 101 are combined with the micro cell forming members 22, 23, 24, 43, 48, 49, and
  • the production of the micro movable portions 41 and 101 and the production of the sealing structure using the micro cell forming members 22, 23, 24, 43, 48, 49, 131, 132 and 133 are relatively low. It can be performed in common steps under process temperature. Therefore, on a silicon substrate on which an LSI is fabricated by a CMOS process, or on a substrate on which low heat-resistant elements are formed, such as a glass substrate or a resin substrate on which Cu wiring or an organic insulating film with a low dielectric constant is formed. In addition, the micro movable portion and the sealing structure can be formed with little effort.
  • the internal residual stress can be obtained by annealing at about 1000 ° C for about 1 hour after silicon deposition. Can be alleviated.
  • the microseno component ⁇ microphone opening movable part is formed of a single metal such as tungsten, if the internal stress is reduced by recrystallization by high temperature treatment, coagulation ⁇ changes in shape such as faceting Problems often arise.
  • the internal stress is reduced.
  • the internal stress is reduced.
  • the shape forming the tungsten nitride by reactive sputtering under the low temperature of about room temperature, by changing the conditions such as N 2 partial pressure Ya sputtering pressure, it can be easily changed the composition and properties of the tungsten nitride.
  • the type of residual stress in the formed tungsten nitride film can be changed from tensile stress to compressive stress. it can. Therefore, in the process of forming tungsten nitride, it is possible to grow by continuously or intermittently changing the internal stress and composition, thereby almost eliminating the internal stress during deposition and the residual stress after deposition. be able to.
  • it is possible to form a tungsten nitride film having a different composition and grain state in the thickness direction it is possible to avoid rupture due to internal stress, for example, by forming adjacent compositions that generate stresses in opposite directions. can do.
  • Such a tungsten nitride film is formed, for example, under the following conditions. First, under the conditions of sputtering pressure 2. OP a, RF power 300 W, Ar gas flow rate 33.6 sccm, N 2 gas flow rate 8.4 sccm, and substrate temperature 25 ° C, tungsten nitride was 0.5 ⁇ . Deposit to thickness. Subsequently, the sputtering pressure was changed to 2.4 Pa, and 1.2 ⁇ deposition was performed. Finally, the sputtering pressure was returned to 2.0 Pa, and 0.3 ⁇ deposition was performed.
  • the lowermost microcell forming members 22, 43, 131 and the micro movable portion 4 are formed. It is preferred to form 1,101.
  • a film is formed as follows. First, sputtering pressure 2. 3-Way a, RF power 300 W, Ar gas flow rate 33. 6 sc cm, N 2 gas flow 8. 4 sccm, under the condition of a substrate temperature of 25 ° C, to 1. 2Myuiotaita deposited nitride data tungsten .
  • tungsten is reacted with nitrogen.
  • the same effect can be obtained by reacting tungsten with carbon or oxygen without being limited to nitrogen.
  • the same effect can be obtained by using other metals such as tantalum, molybdenum, titanium, nickel, and aluminum.
  • high melting point metals such as tungsten, tantalum, molybdenum, and titanium, which can provide a high Young's modulus, are preferable.
  • the Young's modulus of tungsten nitride was measured using an indentation type thin film tester, the Young's modulus was changed from 36 OGP a to 25 OGP by depositing while changing the nitrogen content from 0% to about 60%. It can be changed to a degree.
  • the nitride of the high melting point metal can obtain a higher Young's modulus than polysilicon ⁇ SiGe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)

Abstract

Formed on a substrate (20) are one or more layers of microcell forming members (43, 48, 49) defining a plurality of microcells (44, 45, 46, 53, 54). The hollow microcell (44) having the greatest dimension in the plurality of microcells (44, 45, 46, 53, 54) has a micro movable section (41) disposed therein. Predetermined microcells (53, 54) in the plurality of microcells (44, 45, 46, 53, 54) are left filled with sacrifice films used when the microcells are formed, whereby the strength in the portions in the vicinity of the microcells (53, 54) can be increased and the trouble of discharging the sacrifice films can be saved.

Description

明 細 書 マイクロ可動装置 技術分野  Description Micro movable device Technical field
本発明は、 基板上に集積回路の一部として組み込み可能なマイクロ可動装置に 関し、 特にマイクロ 'エレクト口 'メカ-力ノレ 'システムを形成するマイクロ可 動装置に関する。 背景技術  The present invention relates to a micro movable device that can be incorporated as a part of an integrated circuit on a substrate, and more particularly to a micro movable device that forms a micro 'elect port' mechanism. Background art
従来、 マイクロ ,エレクト口 'メカニカル,システム (MEM S ) を形成する マイクロ可動装置としては、 例えば米国特許 5 5 8 9 0 8 2号公報に記載されて いるものがある。 図 5は、 従来のマイクロ可動装置を示す断面図である。 このマ イク口可動装置は、 以下のように、 マイクロ可動部を封止する封止構造を作製し ている。 すなわち、 シリコン基板 5 5 0上に、 マイクロ可動部としてのマイクロ フィルタ 5 5 1およびこのマイクロフィルタ 5 5 1の作製のために用いた犠牲膜 を覆うように、 第 1の窒化シリコン膜 5 5 2を堆積する。 この窒化シリコン膜 5 5 2に設けた開口 5 5 3力 ら、 上記犠牲膜である酸化シリコン膜を希フッ酸液で ェツチング除去して空洞部 5 5 5を形成する。 そして、 上記第 1の窒化シリコン 膜 5 5 2上に第 2の窒化シリコン膜 5 5 4を C VD法で堆積して、 上記開口部 5 5 3を閉じて、 封止構造が完成する。  2. Description of the Related Art Conventionally, as a micro movable device that forms a micro, electoral port, mechanical system (MEMS), for example, there is one described in US Pat. No. 5,589,082. FIG. 5 is a cross-sectional view showing a conventional micro movable device. This microphone opening movable device produces a sealing structure for sealing the micro movable portion as described below. That is, the first silicon nitride film 55 2 is formed on the silicon substrate 55 so as to cover the micro filter 55 1 as a micro movable portion and the sacrificial film used for manufacturing the micro filter 55 1. Is deposited. From the opening 553 provided in the silicon nitride film 552, the silicon oxide film serving as the sacrificial film is etched and removed with a diluted hydrofluoric acid solution to form a cavity portion 555. Then, a second silicon nitride film 554 is deposited on the first silicon nitride film 552 by a CVD method, and the opening 553 is closed to complete a sealing structure.
ここで、 マイクロ可動部の共振周波数は、 マイクロ可動部が配置されている封 止構造内の空洞部の圧力に、 強く依存する (例えば、 文献 1 :ワイ ·ティー 'チ ェンら (Y. T. Cheng et al. ) 著, プロシーディングス ·ォブ .メムス ·カンファ レンス (Proceedings of MEMS Conf . ) 2 0 0 1年, p i 8参照) 。 したがって 図 5のマイク口可動装置では、 上記マイクロフィルタ 5 5 1が位置している空洞 部 5 5 5の圧力を、 3 O m T o r r程度まで減圧する必要がある。  Here, the resonance frequency of the micro movable part strongly depends on the pressure of the cavity in the sealing structure in which the micro movable part is arranged (for example, Ref. 1: YT Cheng et al. et al.), Proceedings of MEMS Conf., 2001, pi 8). Therefore, in the microphone opening movable device of FIG. 5, it is necessary to reduce the pressure of the cavity portion 555 where the microfilter 551 is located to about 3 OmTorr.
このマイク口可動装置では、 上記マイクロフイノレタ 5 5 1の全体を、 上記第 1 の窒化シリコン膜 5 5 2および第 2の窒ィヒシリコン膜 5 5 4からなる封止構造で 一括して覆って、 比較的大きい空洞部 5 5 5を形成している。 したがって、 この 比較的大きい空洞部 5 5 5内の圧力を維持するため、 上記封止構造は比較的大き い強度が要求される。 この強度が不足すると、 上記空洞部 5 5 5内と、 上記封止 構造の外側との圧力差によって、 この封止構造に変形が発生して耐久性が低下す る。 しかしながら、 上記封止構造の強度を増大するために、 上記第 1, 第 2の窒 化シリコン膜 5 5 2 , 5 5 4の膜厚を厚くすると、 これらの膜の内部応力が大き くなり、 上記封止構造に変形が発生して耐久性が低下する場合がある。 このよう に、 従来のマイクロ可動装置は、 封止構造の耐久性の確保が非常に困難であると いう課題がある。 In this microphone opening movable device, the entire microfinoleta 551 is sealed with a sealing structure including the first silicon nitride film 552 and the second silicon nitride film 554. They are collectively covered to form a relatively large cavity 555. Therefore, in order to maintain the pressure in the relatively large hollow portion 555, the sealing structure is required to have relatively high strength. If the strength is insufficient, the sealing structure is deformed due to a pressure difference between the inside of the hollow portion 5.55 and the outside of the sealing structure, and the durability is reduced. However, when the thickness of the first and second silicon nitride films 55 2 and 55 4 is increased in order to increase the strength of the sealing structure, the internal stress of these films increases, In some cases, the sealing structure is deformed and durability is reduced. As described above, the conventional micro movable device has a problem that it is extremely difficult to ensure the durability of the sealing structure.
また、 上記文献 1には、 ガラス基板の貼り合わせによりマイクロ可動部を封止 する技術が開示されている力 真空の下でガラス基板の貼り合わせを行う装置は、 一般的な L S I (大規模集積回路) の製造工程に使用されるものではなく、 その 導入には多額の設備投資が必要となる。 また、 ガラス基板の貼り合わせによる真 空封止技術は、 不純物汚染の問題も懸念される。  Reference 1 discloses a technique for sealing a micro movable portion by bonding glass substrates. An apparatus for bonding glass substrates under a force vacuum is a general LSI (large-scale integrated circuit). It is not used for the manufacturing process of the circuit, and its introduction requires a large capital investment. In addition, the vacuum sealing technology by bonding the glass substrates may cause a problem of impurity contamination.
このように、 従来のマイク口可動装置は、 特に集積回路に組み込むことを考慮 すると、 コストの増大や耐久性の低下等の課題がある。 発明の開示  As described above, the conventional microphone opening movable device has problems such as an increase in cost and a decrease in durability, particularly when considering the incorporation into an integrated circuit. Disclosure of the invention
そこで、 本発明は、 上記従来のマイクロ可動装置が有する課題を解決するため に成されたものであり、 基板上に集積回路の一部として糸且み込み可能なマイク口 可動部を有するマイクロ可動装置であって、 低コストで作製でき、 かつ、 耐久性 の良好なマイクロ可動装置を提供することにある。  Accordingly, the present invention has been made to solve the problems of the above-mentioned conventional micro movable device, and has a micro movable device having a microphone opening movable portion that can be threaded as a part of an integrated circuit on a substrate. An object of the present invention is to provide a micro movable device which can be manufactured at low cost and has good durability.
本発明に係るマイクロ可動装置は、 基板と、 上記基板上に設けられると共に、 複数のマイクロセルを定義する一層または複数層のマイクロセノ ^成部材と、 上 記複数のマイクロセルの内の最小でないマイクロセルの中に配置されたマイク口 可動部とを備える。 上記一層または複数層のマイクロセル形成部材により、 マイ クロ可動部の封止構造が形成される。 このマイクロセル形成部材は、 複数のマイ クロセルを定義する構造を有するので、 厚みが比較的薄い部材を用いて形成され、 また、 不均一な応力の集中を防止できる。 したがって、 変形し難い封止構造を形 成できるので、 耐久性の良好なマイクロ可動装置が得られる。 A micro movable device according to the present invention comprises: a substrate; a single-layer or multi-layer micro-synthesis member that is provided on the substrate and defines a plurality of micro cells; and a non-minimum micro among the plurality of micro cells. A microphone opening movable section disposed in the cell. The sealing structure of the micro movable portion is formed by the one or more layers of the micro cell forming member. Since the microcell forming member has a structure that defines a plurality of microcells, the microcell forming member is formed using a member having a relatively small thickness, and can prevent uneven concentration of stress. Therefore, a sealing structure that is difficult to deform Therefore, a micro movable device having good durability can be obtained.
一実施形態のマイク口可動装置は、 上記マイク口可動部が配置されたマイク口 セルは、 上記複数のマイクロセルの内で最大のマイクロセルである。 したがって、 比較的大きいマイクロ可動部の封止を行うことができる。  In one embodiment, the microphone opening cell in which the microphone opening movable section is arranged is the largest microcell among the plurality of microcells. Therefore, the relatively large micro movable portion can be sealed.
一実施形態のマイクロ可動装置は、 上記マイクロ可動部が配置されたマイク口 セルは、 上記マイクロ可動部が配置されていないマイクロセルの大きさの 2倍以 上である。 上記マイクロ可動部を配置するマイクロセルは、 例えば、 隣接する 2 つ以上のマイクロセルの間にあるマイクロセル形成部材の部分を除去することに より、 形成することができる。 したがって、 封止すべきマイクロ可動部の大きさ に応じて、 適切な大きさのマイクロセルを容易に形成できる。  In one embodiment of the present invention, the microphone cell in which the micro movable section is arranged is at least twice as large as the micro cell in which the micro movable section is not arranged. The micro cell in which the micro movable portion is arranged can be formed by, for example, removing a portion of a micro cell forming member between two or more adjacent micro cells. Therefore, a microcell having an appropriate size can be easily formed according to the size of the micro movable portion to be sealed.
—実施形態のマイク口可動装置は、 上記マイク口セル形成部材に設けられると 共に、 上記マイクロセルを互いに連通させる連通孔を備える。 この連通孔を用い ることにより、 上記各マイクロセルやマイク口可動部を作製する際に用いた犠牲 膜等を外部に排出するための経路を、 比較的短く、 また、 複数得ることができる。 したがって、 上記犠牲膜などの除去効率を向上できる。  -The microphone opening movable device of the embodiment is provided in the microphone opening cell forming member and has a communication hole for connecting the microcells to each other. By using this communication hole, it is possible to obtain a relatively short path and a plurality of paths for discharging the sacrificial film and the like used for manufacturing each of the microcells and the microphone opening movable section. Therefore, the removal efficiency of the sacrificial film and the like can be improved.
—実施形態のマイク口可動装置は、 最上層の上記マイク口セル形成部材の上面 に、 上記マイクロセルに連通する排出孔が開口している。 したがって、 上記マイ クロ可動部が位置するマイクロセルから、 直接、 または、 複数のマイクロセルを 介して、 犠牲膜等を外部に排出するための上方に向かう経路が得られる。 また、 上記排出孔を複数個設けることにより、 上記マイク口可動部が位置するマイク口 セルから犠牲膜等を排出するための経路を複数個形成できる。 したがって、 従来 のマイク口可動装置のように、 封止構造の両端に排出口を 1個ずつ設けるよりも、 犠牲膜等を効率良く排出できる。  In the microphone opening movable device of the embodiment, a discharge hole communicating with the microcell is opened on the upper surface of the microphone opening cell forming member in the uppermost layer. Therefore, an upward path for discharging the sacrificial film or the like to the outside can be obtained directly or through a plurality of microcells from the microcell where the micro movable portion is located. Further, by providing a plurality of the discharge holes, a plurality of paths for discharging the sacrificial film and the like from the microphone opening cell where the microphone opening movable portion is located can be formed. Therefore, the sacrificial film and the like can be discharged more efficiently than when one discharge port is provided at each end of the sealing structure as in the conventional microphone port movable device.
一実施形態のマイク口可動装置は、 上記複数のマイク口セルの内の少なくとも 1つは、 充填部材で充填されている。 したがって、 上記マイクロセル形成部材の みによるよりも強度が大きい封止構造を形成できる。 また、 上記マイクロセルを 形成する際に用いた犠牲膜を充填部材として用いる場合、 上記犠牲膜を除去する 必要が無い。 したがって、 上記複数のマイクロセノ 成部材の間に例えば眉間絶 縁膜等を設けた場合、 この層間絶縁膜は、 上記犠牲膜を除去するためのエツチヤ ント等によってダメージを受けることがない。 さらに、 上記犠牲膜が、 吸湿性の 高レ、材料からなる場合であつても、 この犠牲膜はマイク口セルに充填されたまま であるので、 犠牲膜をマイクロセル形成部材の外部に排出する際に、 中空にすべ きマイクロセルに犠牲膜が残留することがない。 したがって、 マイクロ可動部が 位置するマイクロセルを密閉した場合に、 残留した犠牲膜によるガスの放出等が 生じない。 これにより、 マイクロ可動装置の信頼性を向上できる。 また、 複数の マイクロセルのうち、 除去が不要な犠牲膜を充填部材として充填したままにする ことにより、 犠牲膜の除去の手間を削減でき、 マイクロ可動装置の製造工程を簡 易にできる。 In one embodiment, at least one of the plurality of microphone opening cells is filled with a filling member. Therefore, it is possible to form a sealing structure having greater strength than only the microcell forming member. When the sacrificial film used for forming the microcell is used as a filling member, it is not necessary to remove the sacrificial film. Therefore, when, for example, an eyebrow insulating film or the like is provided between the plurality of microsynthesized components, the interlayer insulating film is used as an etcher for removing the sacrificial film. No damage is caused by the device. Furthermore, even when the sacrificial film is made of a material having high hygroscopicity, the sacrificial film is discharged to the outside of the microcell forming member because the sacrificial film remains filled in the microphone opening cell. At this time, no sacrificial film remains in the microcell that should be hollow. Therefore, when the microcell in which the micro movable portion is located is sealed, gas is not released due to the remaining sacrificial film. This can improve the reliability of the micro movable device. In addition, by leaving the sacrificial film, which does not need to be removed, of the plurality of microcells filled as a filling member, the labor for removing the sacrificial film can be reduced, and the manufacturing process of the micro movable device can be simplified.
一実施形態のマイク口可動装置は、 上記マイク口セノ i^成部材は壁部と天井部 を有し、 上記壁部と天井部は電気的に接続されている。 上記天井部の電位を O V にすることにより、 上記壁部を O Vにすることができる。 したがって、 マイクロ 可動部がフィルタ等であって A C (交流) 信号が入力される場合に、 ノイズの低 減を行うことができる。 また、 上記マイクロセル形成部材の天井部の一部を、 他 の部分と電気的に分離することにより、 上記天井部の一部とこの部分に電気的に 接続された壁部とで、 局所配線や貫通電極を構成することができる。  In one embodiment of the present invention, the microphone opening member has a wall portion and a ceiling portion, and the wall portion and the ceiling portion are electrically connected. By setting the potential of the ceiling to O V, the wall can be set to O V. Therefore, when the micro movable part is a filter or the like and an AC (alternating current) signal is input, noise can be reduced. In addition, by electrically separating a part of the ceiling of the microcell forming member from other parts, a local wiring is formed between the part of the ceiling and the wall electrically connected to the part. Alternatively, a through electrode can be formed.
一実施形態のマイクロ可動装置は、 最上層の上記マイクロセ 成部材は、 下 層の上記マイクロセル形成部材と電気的に絶縁されている。 したがって、 上記最 下層よりも下層のマイクロセル形成部材を、 外部から電気的に遮断できる。 また、 上記最上層のマイクロセル形成部材を、 配線層として用いることができる。  In one embodiment of the present invention, the uppermost micro cell forming member is electrically insulated from the lower micro cell forming member. Therefore, the microcell forming member below the lowermost layer can be electrically disconnected from the outside. The uppermost microcell forming member can be used as a wiring layer.
一実施形態のマイクロ可動装置は、 上記マイクロセル形成部材は、 一体に形成 された壁部と天井部を有する。 したがって、 上記マイクロセル形成部材を簡易な プロセスで形成できる。 また、 上記マイクロセル形成部材の強度が比較的大きく なるので、 マイクロセル内のマイクロ可動部を、 効果的に封止することができる。 一実施形態のマイク口可動装置は、 上記マイク口可動部が配置されたマイク口 セルの周囲に配置されたマイクロセルは、 充填部材が充填されていなくて中空で ある。 これにより、 上記マイクロ可動部が配置されたマイクロセルと、 この周囲 のマイクロセルの内の所望のマイクロセルとの間を連通することができる。 した がって、 上記マイクロ可動部が配置されたマイクロセルから、 犠牲膜等を所望の 方向に向かって排出することができるので、 上記マイクロセルから犠牲膜等を確 実に排出することができる。 In one embodiment of the micro movable device, the micro cell forming member has a wall and a ceiling integrally formed. Therefore, the microcell forming member can be formed by a simple process. In addition, since the strength of the micro cell forming member is relatively large, the micro movable portion in the micro cell can be effectively sealed. In the microphone opening movable device according to one embodiment, the microcell arranged around the microphone opening cell in which the microphone opening movable section is arranged is not filled with a filling member and is hollow. Thereby, it is possible to communicate between the micro cell on which the micro movable portion is arranged and a desired micro cell among the surrounding micro cells. Accordingly, a desired sacrificial film or the like is formed from the microcell in which the micro movable portion is disposed. Since the liquid can be discharged in the direction, the sacrificial film and the like can be reliably discharged from the microcell.
一実施形態のマイク口可動装置は、 上記マイク口可動部が配置されたマイク口 セルの上側のマイクロセルは、 充填部材が充填されていなくて中空である。 した がって、 上記マイクロ可動部が配置されたマイクロセルと、 このマイクロセノレの 上側のマイクロセルとを連通することができる。 したがって、 上記マイクロ可動 部が例えば 1 0 0 μ πι以上の寸法を有する比較的大きいものであり、 また、 複雑 な形状を有する場合であって、 このマイク口可動部を配置するために比較的大き くて複雑な形状のマイクロセルを形成した場合においても、 このマイクロセルか ら効果的に犠牲膜等を排出できる。  In the microphone opening movable device of one embodiment, the microcell above the microphone opening cell in which the microphone opening movable portion is arranged is not filled with a filling member and is hollow. Therefore, the micro cell in which the micro movable portion is arranged can communicate with the micro cell on the upper side of the micro cell. Therefore, the micro movable portion is relatively large having a dimension of, for example, 100 μππ or more, and has a complicated shape, and is relatively large for disposing the microphone opening movable portion. Even when a microcell having a complicated shape is formed, a sacrificial film or the like can be effectively discharged from the microcell.
1実施形態のマイク口可動装置は、 上記マイク口可動部が配置されたマイク口 セルの周囲に配置されたマイクロセルは、 充填部材で充填されている。 したがつ て、 上記マイク口可動部が配置されたマイクロセルの周囲の強度を増大すること ができる。 したがって、 上記マイクロ可動部を、 良好な信頼性および耐久性で封 止できる。  In the microphone opening movable device of one embodiment, a microcell arranged around the microphone opening cell in which the microphone opening movable section is arranged is filled with a filling member. Therefore, the strength around the microcell in which the microphone opening movable section is arranged can be increased. Therefore, the micro movable portion can be sealed with good reliability and durability.
一実施形態のマイクロ可動装置は、 上記中空のマイクロセルの周囲に配置され たマイクロセルは、 充填部材で充填されている。 したがって、 上記中空のマイク ロセルを定義するマイクロセル形成部材の上記中空のマイクロセルの周囲の部分 の強度を向上でき、 封止構造の信頼性や耐久性を向上できる。  In one embodiment, the micro cell arranged around the hollow micro cell is filled with a filling member. Therefore, the strength of the portion around the hollow microcell of the microcell forming member defining the hollow microcell can be improved, and the reliability and durability of the sealing structure can be improved.
—実施形態のマイクロ可動装置は、 上記充填部材は、 上記マイクロセル形成部 材を構成する材料よりも熱膨張率が小さい材料からなる。 したがって、 このマイ クロ可動装置の温度が変化した場合においても、 上記充填部材の熱膨張や熱収縮 によるマイクロセル形成部材への影響が少なくなるので、 上記マイク口可動部を 良好な信頼性および耐久性で封止できる。  -In the micro movable device of the embodiment, the filling member is made of a material having a smaller coefficient of thermal expansion than a material of the micro cell forming member. Therefore, even when the temperature of the micro movable device changes, the influence of the thermal expansion and thermal contraction of the filling member on the micro cell forming member is reduced, so that the microphone opening movable portion has good reliability and durability. Can be sealed.
一実施形態のマイク口可動装置は、 互いに分離された複数の上記マイクロセル 形成部材が、 同一のレベルに位置している。 したがって、 上記各マイクロセル形 成部材への応力の集中を防止することができ、 上記マイクロセル形成部材の信頼 性■耐久 I1生を向上させることができる。 In the microphone opening movable device of one embodiment, the plurality of microcell forming members separated from each other are located at the same level. Therefore, it is possible to prevent the stress concentration to each microcell shaped forming member, it is possible to improve the reliability ■ durable I 1 production of the micro-cell member.
一実施形態のマイク口可動装置は、 上記マイク口可動部は、 高融点金属の窒化 物を含む材料からなる。 したがって、 上記マイクロ可動部を、 S i (シリコン) からなる基板のみでなく、 融点が S iよりも高い材料からなる基板上に形成する ことができる。 In one embodiment of the present invention, the movable part of the microphone is characterized in that the movable part of the microphone is nitrided of a high melting point metal. It is composed of materials containing objects. Therefore, the micro movable portion can be formed not only on a substrate made of Si (silicon) but also on a substrate made of a material having a melting point higher than that of Si.
一実施形態のマイクロ可動装置は、 上記マイクロセル形成部材は、 高融点金属 の窒化物を含む材料からなる。 したがって、 上記マイクロセル形成部材を、 S i 力 なる基板のみでなく、 融点が S iよりも高い材料からなる基板上に形成する ことができる。  In one embodiment, the micro cell forming member is made of a material containing a nitride of a high melting point metal. Therefore, the microcell forming member can be formed not only on a substrate having Si force but also on a substrate made of a material having a melting point higher than Si.
一実施形態のマイク口可動装置は、 上記マイク口可動部は、 内部残留応力が異 なる 2つ以上の層で形成されている。 したがって、 上記各層の内部残留応力の作 用方向や大きさ等を調節することにより、 上記マイクロ可動部全体として考慮し た場合の內部残留応力を減少できる。  In the microphone opening movable device of one embodiment, the microphone opening movable portion is formed of two or more layers having different internal residual stresses. Therefore, by adjusting the working direction and the magnitude of the internal residual stress of each of the layers, the residual stress in the 內 portion when the entire micro movable portion is considered can be reduced.
一実施形態のマイクロ可動装置は、 上記マイクロセル形成部材は、 内部残留応 力が異なる 2つ以上の層で形成されている。 したがって、 上記各層の内部残留応 力の作用方向や大きさ等を調節することにより、 上記マイクロセル形成部材全体 として考慮した場合の内部残留応力を減少できる。  In one embodiment, the microcell forming member is formed of two or more layers having different internal residual stresses. Therefore, by adjusting the action direction and the magnitude of the internal residual stress of each of the layers, the internal residual stress when the entire microcell forming member is considered can be reduced.
一実施形態のマイク口可動装置は、 上記マイク口可動部は、 高融点金属からな る層と、 上記窒化物からなる層とを含む。 したがって、 上記マイクロ可動部の電 気伝導度を高くできて、 このマイク口可動部の電位を正確に制御できると共に、 このマイクロ可動部の内部残留応力を減少できる。  In one embodiment, the microphone opening movable section includes a layer made of a high melting point metal and a layer made of the nitride. Therefore, the electrical conductivity of the micro movable portion can be increased, the potential of the microphone opening movable portion can be accurately controlled, and the internal residual stress of the micro movable portion can be reduced.
—実施形態のマイクロ可動装置は、 上記マイクロセノ 成部材は、 高融点金属 からなる層と、 上記窒化物からなる層とを含む。 したがって、 上記マイクロセル 形成部材の電気伝導度を高くできて、 このマイク口セル形成部材の電位を正確に 制御できると共に、 このマイクロセル形成部材の内部残留応力を減少できる。 ま た、 上記マイクロセル形成部材の一部を、 配線や貫通電極として用いることがで きるので、 配線のスペースを削減することができて小型化を行うことができ、 ま た、 配線の作製工程を簡略にできてコストの低減を行うことができる。 図面の簡単な説明  —In the micro movable device according to the embodiment, the microceno component includes a layer made of a high melting point metal and a layer made of the nitride. Therefore, the electric conductivity of the microcell forming member can be increased, the potential of the microphone cell forming member can be accurately controlled, and the internal residual stress of the microcell forming member can be reduced. In addition, since a part of the microcell forming member can be used as a wiring or a penetrating electrode, a space for the wiring can be reduced, and the size can be reduced. Can be simplified and the cost can be reduced. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1実施形態のマイク口可動装置の一部を示す平断面図であ る。 FIG. 1 is a plan sectional view showing a part of a microphone opening movable device according to a first embodiment of the present invention. You.
図 2は、 本発明の第 1実施形態のマイクロ可動装置の一部を示す縦断面図であ る。  FIG. 2 is a longitudinal sectional view showing a part of the micro movable device according to the first embodiment of the present invention.
図 3は、 本宪明の第 1実施形態のマイクロ可動装置の一部を示す縦断面図であ る。  FIG. 3 is a longitudinal sectional view showing a part of the micro movable device according to the first embodiment of the present invention.
図 4は、 本発明の第 1実施形態のマイクロ可動装置の一部を示す縦断面図であ る。  FIG. 4 is a longitudinal sectional view showing a part of the micro movable device according to the first embodiment of the present invention.
図 5は、 従来のマイクロ可動装置を示す縦断面図である。  FIG. 5 is a longitudinal sectional view showing a conventional micro movable device.
図 6は、 本発明の第 2実施形態のマイクロ可動装置を示す平断面図である。 図 7 Aは、 図 6の A—B線における縦断面図であり、 図 7 Bは、 図 6の A— C 線における縦断面図である。  FIG. 6 is a plan sectional view showing a micro movable device according to a second embodiment of the present invention. FIG. 7A is a longitudinal sectional view taken along line AB in FIG. 6, and FIG. 7B is a longitudinal sectional view taken along line AC in FIG.
図 8 Aは、 本発明のマイクロ可動装置が備える最上層のマイクロセル形成部材 の一部を示す縦断面図であり、 図 8 Bは、 最上層のマイク口セル形成部材の変形 例を示す縦断面図である。  FIG. 8A is a longitudinal sectional view showing a part of the uppermost layer microcell forming member provided in the micro movable device of the present invention, and FIG. 8B is a longitudinal section showing a modification of the uppermost microphone opening cell forming member. FIG.
図 9は、 本宪明のマイクロ可動装置が備えるマイクロセル形成部材を、 基板の 平面に平行な面で切断した様子を示す斜視図である。 発明を実施するための最良の形態  FIG. 9 is a perspective view showing a state where the micro cell forming member provided in the micro movable device of the present invention is cut along a plane parallel to the plane of the substrate. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を図示の実施の形態により詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
(第 1実施形態)  (First Embodiment)
図 1は、 本発明の第 1実施形態のマイク口可動装置の一部を示す平断面図であ り、 マイクロセルが形成された部分を、 基板の平面に平行な面で切断した様子を 示している。 図 2は、 第 1実施形態のマイクロ可動装置の一部を示す縦断面図で あり、 マイクロセルが形成された部分を、 基板の平面の直角方向に切断した様子 を示している。  FIG. 1 is a plan cross-sectional view showing a part of a microphone opening movable device according to a first embodiment of the present invention, and shows a state in which a portion where a microcell is formed is cut along a plane parallel to a plane of a substrate. ing. FIG. 2 is a vertical cross-sectional view showing a part of the micro movable device of the first embodiment, and shows a state where a part where a micro cell is formed is cut in a direction perpendicular to a plane of a substrate.
このマイクロ可動装置は、 基板 2 0上に形成された一層または多層のマイクロ セル形成部材 2 2 , 2 3 , 2 4を備え、 このマイク口セル形成部材 2 2 , 2 3, 2 4により、 複数個のマイクロセル 1 1, 1 2 , 1 3が定義されている。 上記マ イクロセル 1 1 , 1 2 , 1 3は、 図 1に示すように、 基板の平面と平行をなす断 面において、 マイクロセル形成部材の壁部 1 0で仕切られている。 このマイクロ セルは、 幅と長さが所定の範囲内となる寸法に形成されている。 This micro movable device is provided with a single or multi-layered micro cell forming member 22, 23, 24 formed on the substrate 20. Microcells 11, 12, 13 are defined. The microcells 11, 12, and 13 are cut parallel to the plane of the substrate as shown in FIG. The surface is partitioned by the wall 10 of the microcell forming member. The microcell is formed to have dimensions such that the width and length are within predetermined ranges.
上記基板 2 0はシリコン基板であり、 上記マイク口セル形成部材 2 2, 2 3, 2 4は、 不純物がドープされたポリシリコンで形成されている。  The substrate 20 is a silicon substrate, and the microphone opening cell forming members 22, 23, 24 are formed of polysilicon doped with impurities.
本実施形態のマイクロ可動装置は、 基板 2 0に最も近い第 1層目のマイクロセ ル形成部材 2 2の壁部の厚みが、 1 . 5〜2 /i mに形成されている。 この第 1層 目のマイクロセル形成部材 2 2の上に形成された第 2層目および第 3層目のマイ クロセル形成部材 2 3, 2 4は、 壁部の厚みが 2〜 3 μ mに形成されている。 上 記各壁部の高さは、 強度を考慮して、 壁部の厚さと略同じに形成するのが好まし い。 従って、 壁部の高さ、 すなわち、 マイクロセルの底から天井までの高さを、 第 1層目を 2 μ ιηとすると共に、 第 2層目および第 3層目を 3 μ ιηとしている。 基板上のマイクロ可動部を、 低コストかつコンパクトに封止するためには、 封 止構造の厚みが薄いことが好ましいが、 上記マイク口可動部を真空封止したとき の封止構造の内外の圧力差による撓みや、 この撓みによって発生する応力に耐え るものでなくてはならない。 ここで、 基板上の 1辺が 2 0 0 /X mの正方形の領域 を真空封止するために、 図 5に示すような膜を備える従来の封止構造を用いた場 合と、 本楽明のマイクロセル形成部材を備える封止構造を用いた場合とについて、 各封止構造に生じる撓みと応力とを測定する実験を行った。 本発明のマイクロセ ル形成部材を用いた封止構造については、 平面において 1辺が約 1 0 0 mの正 方形のマイクロセルを 4個有するマイクロセ ^成部材を用いた場合と、 平面に おいて 1辺が約 6 7 μ mの正方形のマイクロセルを 9個有するマイクロセル开成 部材を用いた場合とについて、 実験を行った。  In the micro movable device of the present embodiment, the thickness of the wall portion of the microcell forming member 22 of the first layer closest to the substrate 20 is formed to be 1.5 to 2 / im. The second- and third-layer microcell forming members 23 and 24 formed on the first-layer microcell forming member 22 have a wall thickness of 2-3 μm. Is formed. The height of each of the above-mentioned walls is preferably formed to be substantially the same as the thickness of the walls in consideration of strength. Therefore, the height of the wall, that is, the height from the bottom to the ceiling of the microcell is set to 2 μιη for the first layer and 3 μιη for the second and third layers. In order to seal the micro movable portion on the substrate at low cost and compactly, it is preferable that the thickness of the sealing structure is small. However, the inside and outside of the sealing structure when the microphone opening movable portion is vacuum-sealed is preferably used. It must be able to withstand the deflection caused by the pressure difference and the stress generated by this deflection. Here, in order to vacuum seal a square region having a side of 200 / Xm on the substrate, a conventional sealing structure having a film as shown in FIG. An experiment was conducted to measure the bending and stress generated in each sealing structure in the case where the sealing structure including the light microcell forming member was used. Regarding the sealing structure using the microcell forming member of the present invention, a microcellular member having four square microcells each having a side of about 100 m on a plane is used, Experiments were conducted on a case where a microcell forming member having nine square microcells each having a side of about 67 μm was used.
この実験結果から、 上記マイクロセルを 4個有するマイクロセル形成部材を用 いた封止構造によれば、 従来の膜による封止構造と比べて、 最大の撓み量を 6 % 程度の値に低減でき、 また、 最大の応力を 2 2 %程度の値に軽減できることが分 かった。 さらに、 上記マイクロセルを 9個有するマイクロセノレ形成部材を用いた 封止構造によれば、 従来の膜による封止構造と比べて、 最大の橈み量を 1 %以下 の値に低減でき、 また、 最大の応力を 1 0 %以下の値に軽減できることが分かつ た。 したがって、 本発明のマイクロセル形成部材を用いて封止構造を形成し、 こ のマイクロセル形成部材が定義するマイクロセルを、 平面において、 幅と長さが 1 0 Ο μ m未満の範囲の寸法に形成することにより、 封止構造の最大の撓み量を 0 . 0 1 μ πι以下に抑えると共に、 応力の集中を低減できて、 数ミクロン程度の 薄膜を用いて真空封止を行うことができる。 From this experimental result, the maximum bending amount can be reduced to a value of about 6% according to the sealing structure using the microcell forming member having four microcells as compared with the sealing structure using the conventional membrane. It was also found that the maximum stress could be reduced to about 22%. Furthermore, according to the sealing structure using the micro-ceno forming member having nine microcells, the maximum radius can be reduced to 1% or less as compared with the sealing structure using the conventional membrane. However, it was found that the maximum stress can be reduced to a value of 10% or less. Therefore, a sealing structure is formed using the microcell forming member of the present invention, By forming the microcell defined by the microcell forming member of the above in a plane having a width and a length within a range of less than 10 μm, the maximum deflection amount of the sealing structure can be reduced to 0.01 μm. The stress concentration can be reduced to πι or less, and the vacuum sealing can be performed using a thin film of several microns.
ここでは、 マイクロセルの平面における幅は、 壁の厚みの 3〜 5倍程度以下、 具体的には、 1 0 μ m以下に形成するのが好ましい。 このマイクロセルの幅を小 さくするほど、 封止構造の撓みを抑えて、 応力を軽減することができる。 一方、 マイクロセルの平面における長さは、 上記マイクロセルの幅を所定の範囲内に設 定しておけば、 数 1 0 0 μ πιであってもよい。 このように、 所定の寸法を有する マイクロセルを定義するマイクロセル形成部材を用いることにより、 基板上のマ イク口可動部を真空封止する場合においても、 撓みと応力の集中を低減し、 長期 に亘つて圧力差に耐えうる封止構造を形成できる。  Here, the width in the plane of the microcell is preferably about 3 to 5 times or less the thickness of the wall, specifically, 10 μm or less. The smaller the width of the microcell is, the more the bending of the sealing structure can be suppressed and the stress can be reduced. On the other hand, the length in the plane of the microcell may be several 100 μπι if the width of the microcell is set within a predetermined range. As described above, by using the microcell forming member that defines the microcell having a predetermined dimension, even when the movable portion of the microphone opening on the substrate is vacuum-sealed, the bending and the concentration of stress are reduced, and the A sealing structure capable of withstanding a pressure difference can be formed.
また、 上記マイクロセル形成部材は、 全てのマイクロセルを、 充填部材などが 充填されない中空のマイクロセルにする必要が無い。 したがって、 1つ以上マイ クロセルを、 そのマイクロセルが形成されたときに用いられた犠牲膜が充填され たままの状態にして、 封止構造を形成することができる。 したがって、 上記犠牲 膜を除去する手間を減らすことができる。  Further, in the microcell forming member, it is not necessary that all the microcells are hollow microcells in which a filling member or the like is not filled. Therefore, a sealing structure can be formed with one or more microcells being kept filled with the sacrificial film used when the microcells were formed. Therefore, the labor for removing the sacrificial film can be reduced.
また、 上記マイクロ可動部は、 通常の L S Iプロセスで用いられるよりも厚い 膜を使用するので、 上記マイクロ可動部が形成された基板に、 不均一な応力の発 生や応力の集中が生じやすい。 しかしながら、 上記基板上のマイクロ可動部の周 りに上記マイク口セル形成部材を配置することによって、 比較的広レ、範囲にわた つて基板に固定された封止構造を形成できる。 したがって、 上記基板に不均一な 応力の発生や応力の局戸 中が生じることを防止して、 封止の信頼性および耐久 性を高めることができる。 また、 上記マイクロセル形成部材は、 従来よりも広い 領域にわたって基板に固定されるので、 上記基板にそりや段差を生じない。 した がって、 上記基板の平坦性を維持しながら、 マイクロ可動部と封止構造を形成で きる。 なお、 上記実施形態では、 平面において長方形のマイクロセルを用いてい る力 マイクロセルの平面形状はこれに限るものでなく、 正六角形のような多角 形であっても良い。 さらに、 好ましくは、 中空のマイクロセル同士を隔てるマイクロセル形成部材 の壁部およぴ天井部には、 必要に応じて連通孔 1 4, 2 7, 2 8を形成する。 例 えば、 図 1に示すように、 壁部 1 0に形成された連通穴 1 4を介して、 矢印 1 5 で示すように、 隣り合う中空のマイクロセル同士が連通される。 また、 図 2に示 すように、 最上層のマイクロセル形成部材 2 4の壁部に形成された連通穴 2 8を 介して、 矢印 2 9で示すように、 同じレベルに隣り合う中空のマイクロセル同士 が連通される。 In addition, since the micro movable portion uses a film thicker than that used in a normal LSI process, non-uniform stress and stress concentration are likely to occur on the substrate on which the micro movable portion is formed. However, by disposing the microphone opening cell forming member around the micro movable portion on the substrate, a sealing structure fixed to the substrate over a relatively wide area can be formed. Therefore, it is possible to prevent the occurrence of uneven stress and the occurrence of localized stress in the substrate, thereby improving the reliability and durability of the sealing. Further, since the microcell forming member is fixed to the substrate over a wider area than before, no warping or steps occur on the substrate. Therefore, the micro movable portion and the sealing structure can be formed while maintaining the flatness of the substrate. In the above embodiment, the force using a rectangular microcell in the plane is not limited to this, but may be a polygon such as a regular hexagon. Further, preferably, communication holes 14, 27, and 28 are formed as necessary in the wall and ceiling of the microcell forming member that separates the hollow microcells. For example, as shown in FIG. 1, adjacent hollow microcells communicate with each other through communication holes 14 formed in the wall 10 as shown by arrows 15. Also, as shown in FIG. 2, through a communication hole 28 formed in the wall of the microcell forming member 24 in the uppermost layer, as shown by an arrow 29, a hollow microcell adjacent to the same level is formed. Cells are communicated with each other.
これにより、 各マイクロセル内の犠牲膜をマイクロセル形成部材の外に排出す る際、 複数の経路を確保することができる。 したがって、 各マイクロセルの犠牲 膜に対して最短の排出経路を得ることができ、 また、 犠牲膜を複数の経路に分散 させて排出することができる。 したがって、 上記犠牲膜の除去効率を向上できる。 さらに、 好ましくは、 最上層のマイクロセル形成部材の天井部には、 中空にす べきマイクロセルに連通する排出孔 3 0を複数個設ける。 これにより、 上記中空 のマイクロセルを形成する際、 マイクロセル內部の犠牲膜を、 上方に迅速に排出 することができる。 また、 上記最上層よりも下方のマイクロセル形成部材内のマ イクロセルから犠牲膜を排出する際に、 このマイクロセルの中央部分から、 複数 個の排出経路を形成できる。 したがって、 従来の封止構造のように封止膜の端部 のみから犠牲膜を排出するよりも、 効率良く犠牲膜を排出できる。 通常、 MEM Sに用いられるマイクロ可動部は、 基板の平面において数 1 0から数 1 O O / m の寸法を有する。 したがって、 このマイクロ可動部を覆う封止構造内の犠牲膜を、 従来技術のように封止構造の基板の水平方向の端から除去しようとすると、 上記 犠牲膜の除去経路の長さが大幅に長くなって、 犠牲膜の除去効率が非常に悪い。 —方、 本実施形態の封止構造は、 各マイクロセル形成部材の天井部に複数の連通 口を設けることにより、 図 2の矢印 3 1で示すように、 最下層のマイクロセル 2 5から上方に犠牲膜を除去できる。 したがって、 上記封止構造の厚み方向の寸法 である 1 0 μ ΐη程度と略同じ長さを有する比較的短い除去経路が得られるので、 犠牲膜を迅速に排出できる。  Thereby, when discharging the sacrificial film in each microcell to the outside of the microcell forming member, a plurality of paths can be secured. Therefore, the shortest discharge path can be obtained for the sacrificial film of each microcell, and the sacrificial film can be dispersed and discharged in a plurality of paths. Therefore, the removal efficiency of the sacrificial film can be improved. Further, preferably, a plurality of discharge holes 30 communicating with the microcells to be hollowed are provided in the ceiling of the uppermost microcell forming member. Thus, when the hollow microcell is formed, the sacrificial film at the microcell portion can be quickly discharged upward. Further, when the sacrificial film is discharged from the microcell in the microcell forming member below the uppermost layer, a plurality of discharge paths can be formed from the central portion of the microcell. Therefore, it is possible to discharge the sacrificial film more efficiently than discharging the sacrificial film only from the end of the sealing film as in the conventional sealing structure. Usually, the micro movable portion used in the MEMS has a size of several 10 to several 1 O O / m in the plane of the substrate. Therefore, if the sacrificial film in the sealing structure that covers the micro movable portion is to be removed from the horizontal end of the substrate of the sealing structure as in the related art, the length of the removal path of the sacrificial film significantly increases. The efficiency of removing the sacrificial film is very low. On the other hand, the sealing structure of the present embodiment has a structure in which a plurality of communication ports are provided in the ceiling portion of each microcell forming member so that the microcells 25 above the lowermost layer as shown by arrows 31 in FIG. The sacrificial film can be removed. Accordingly, a relatively short removal path having a length substantially equal to about 10 μΐη, which is the dimension in the thickness direction of the sealing structure, can be obtained, so that the sacrificial film can be quickly discharged.
さらに好ましくは、 内部に充填部材が充填されたマイクロセルでは、 上記充填 部材は、 上記マイクロセル形成部材の天井、 壁および床の面で完全に覆われてお り、 このマイクロセルの外に露出していない。 例えば、 本実施形態では、 図 2の マイクロセル 2 6には犠牲膜が充填されており、 この犠牲膜は、 上記マイクロセ ル 2 6を定義するマイクロセノ 成部材 2 2で完全に覆われている。 したがって、 上記犠牲膜によって封止構造の強度を高めることができると共に、 上記犠牲膜を 除去するためのエツチャントによるマイクロセル形成部材 2 2の劣化を少なくで きる。 また、 上記各マイク口セル形成部材 2 2 , 2 3 , 2 4の間に層間絶縁膜を 形成した場合、 この層間絶縁膜が上記エツチャントから受けるダメージを少なく できる。 More preferably, in a microcell in which a filling member is filled, the filling member is completely covered with a surface of a ceiling, a wall, and a floor of the microcell forming member. It is not exposed outside this microcell. For example, in the present embodiment, the microcell 26 in FIG. 2 is filled with a sacrificial film, and the sacrificial film is completely covered with the microcell component 22 that defines the microcell 26. Therefore, the strength of the sealing structure can be increased by the sacrificial film, and the deterioration of the microcell forming member 22 due to the etchant for removing the sacrificial film can be reduced. When an interlayer insulating film is formed between the microphone opening cell forming members 22, 23, 24, damage to the interlayer insulating film from the etchant can be reduced.
さらに、 本実施形態では、 上記犠牲膜として、 吸湿性が比較的高い酸化シリコ ン膜を使用している。 しかしながら、 上記酸化シリコン膜は、 マイクロ可動部が 配置される中空のマイクロセルに露出していないので、 上記マイク口可動部の封 止後のガス放出を抑制できて、 封止の信頼性を向上できる。 また、 上記封止構造 内の全ての犠牲膜を除去する必要が無いので、 犠牲膜の除去効率を向上できる。 さらに好ましくは、 マイクロセル形成部材の壁部と天井部は、 互いに電気的に 接続されている。 例えば、 マイクロ可動部 4 1が配置されたマイクロセル 4 4の 近傍を示す図 3において、 最下層のマイクロセル形成部材 4 3の壁部 4 3 1と天 井部 4 3 2とを互いに電気的に接続し、 第 2層目のマイクロセル形成部材 4 8の 壁部 4 8 1と天井部 4 8 2とを電気的に接続する。 そして、 上記最下層のマイク ロセル形成部材 4 3の壁部 4 3 1を電極 4 0に接続する。 また、 上記最下層のマ イク口セル形成部材 4 3の天井部 4 3 2と、 第 2層目のマイク口セル形成部材 4 8の壁部 4 8 1とを電気的に接続する。 これにより、 上記マイクロ可動部 4 1が 配置されるマイクロセル 4 4の内面の電位を、 O Vに保つことができる。 これに より、 上記マイクロ可動部 4 1がフィルタである場合、 このフィルタには A C信 号が入力される場合が多いので、 ノイズの低減を行うことができる。 また、 図 1, 2 , 3および 4のいずれの封止構造において、 各マイクロセル形成部材 2 2 , 2 3, 2 4 , 4 3, 4 8 , 4 9の所定の壁部おょぴ天井部を、 他の部分と電気的に 切り離して接続することにより、 局所配線や貫通電極を形成することができる。 さらに好ましくは、 上記マイクロセル形成部材の最上層は、 下方のマイクロセ ル形成部材と電気的に絶縁されてレヽる。 本実施形態では、 上記マイク口セル形成 部材の最上層 2 4, 4 9を窒化シリコン膜で構成することにより、 この下の各マ ィクロセル形成部材 2 3 , 4 8と電気的に絶縁している。 これにより、 封止構造 を外部から電気的に遮断することができ、 また、 上記マイクロセル形成部材の最 上層 2 4 , 4 9に配線層を形成することができる。 Further, in this embodiment, a silicon oxide film having relatively high hygroscopicity is used as the sacrificial film. However, since the silicon oxide film is not exposed to the hollow microcell in which the micro movable portion is disposed, gas release after sealing the movable portion of the microphone can be suppressed, and the reliability of the sealing is improved. it can. Further, since it is not necessary to remove all the sacrificial films in the sealing structure, the removal efficiency of the sacrificial films can be improved. More preferably, the wall and the ceiling of the microcell forming member are electrically connected to each other. For example, in FIG. 3, which shows the vicinity of the microcell 44 in which the micro movable portion 41 is arranged, the wall portion 431 and the ceiling portion 432 of the lowermost microcell forming member 43 are electrically connected to each other. And the wall portion 48 1 of the second-layer microcell forming member 48 and the ceiling portion 48 2 are electrically connected. Then, the wall portion 43 1 of the lowermost micro cell forming member 43 is connected to the electrode 40. In addition, the ceiling portion 43 of the lowermost microphone opening cell forming member 43 and the wall portion 481 of the second microphone opening cell forming member 48 are electrically connected. Thereby, the potential of the inner surface of the micro cell 44 on which the micro movable portion 41 is arranged can be kept at OV. Accordingly, when the micro movable section 41 is a filter, an AC signal is often input to the filter, so that noise can be reduced. In each of the sealing structures shown in FIGS. 1, 2, 3 and 4, a predetermined wall portion and a ceiling portion of each microcell forming member 22, 23, 24, 43, 48, 49 are required. By electrically disconnecting and connecting to other parts, local wiring and through electrodes can be formed. More preferably, the uppermost layer of the microcell forming member is electrically insulated from the lower microcell forming member. In the present embodiment, the microphone opening cell is formed. The uppermost layers 24, 49 of the members are made of a silicon nitride film, so that they are electrically insulated from the respective microcell forming members 23, 48 below. As a result, the sealing structure can be electrically shielded from the outside, and a wiring layer can be formed on the uppermost layers 24 and 49 of the microcell forming member.
さらに好ましくは、 上記マイクロセル形成部材 2 2, 2 3 , 2 4 , 4 3, 4 8 , More preferably, the microcell forming members 22, 23, 24, 43, 48,
4 9の壁部と天井部とが、 一体に形成されている。 上記壁部と天井部を一体で形 成することにより、 このマイクロセル形成部材 2 2, 2 3 , 2 4 , 4 3, 4 8 , 4 9の作製工程を簡略化でき、 また、 このマイクロセノ 成部材 2 2 , 2 3 , 2 4 , 4 3 , 4 8, 4 9を用いた封止構造によるマイクロ可動部 4 1の封止性能を 高めることができる。 49 The wall and ceiling are integrally formed. By integrally forming the wall and the ceiling, the manufacturing process of the microcell forming members 22, 23, 24, 43, 48 and 49 can be simplified. The sealing performance of the micro movable section 41 by the sealing structure using the members 22, 23, 24, 43, 48, 49 can be improved.
図 3および図 4の断面図に示されるマイクロ可動部は、 B e a m型のマイクロ フィルタ 4 1である。 このマイクロフィルタ 4 1は、 下方に开$成された入力電極 4 2からの信号によって振動するように形成されている。 上記マイクロフィルタ 4 1は、 第 1層目のマイクロセル形成部材と同一の工程により形成されている。 したがつて、 上記基板 2 0は、 上記マイクロフィルタ 4 1が形成された部分と、 このマイクロフィルタ 4 1の周りのマイクロセル形成部材 4 3が形成された部分 との間で、 段差やそり等が生じることなく、 平坦性が保持される。  The micro movable portion shown in the cross-sectional views of FIGS. 3 and 4 is a Beam type micro filter 41. The microfilter 41 is formed so as to vibrate by a signal from the input electrode 42 formed downward. The microfilter 41 is formed by the same process as the microcell forming member of the first layer. Accordingly, the substrate 20 has a step, a warp, and the like between a portion where the microfilter 41 is formed and a portion where the microcell forming member 43 around the microfilter 41 is formed. The flatness is maintained without occurrence of cracks.
また、 上記マイクロフィルタ 4 1が配置されたマイクロセル 4 4は、 第 1層目 のマイクロセル形成部材 4 3と、 第 2層目のマイクロセノ1^成部材 4 8とで定義 されている。 したがって、 上記第 2層目のマイクロセル形成部材 4 8についても、 段差やそり等が生じることなく、 平坦性を保持できる。  The microcell 44 on which the microfilter 41 is arranged is defined by a first-layer microcell forming member 43 and a second-layer microcell member 48. Therefore, the second-layer microcell forming member 48 can maintain the flatness without any step or warpage.
なお、 本発明の封止構造は、 B e a m型のマイクロフィルタ 4 1に限られず、 くし型や音叉型等のような複雑な形状を有するフィルタについても適用が可能で あり、 本発明の封止構造により、 マイクロ可動部の周辺のみに、 このマイクロ可 動部の形状に応じた必要最低限のマイクロセルを容易に形成できる。  The sealing structure of the present invention is not limited to the beam type microfilter 41, but can be applied to a filter having a complicated shape such as a comb type or a tuning fork type. Due to the structure, the necessary minimum number of microcells according to the shape of the micro movable portion can be easily formed only around the micro movable portion.
さらに、 好ましくは、 内部にマイクロフィルタ 4 1が位置するマイクロセル 4 4の上方に、 中空のマイクロセル 4 6を少なくとも一層配置する。 すなわち、 内 部にマイクロフィルタ 4 1が位置するマイク口セルを定義する第 2層目のマイク ロセル形成部材 4 8の上に、 中空のマイクロセルを定義する第 3層目のマイクロ セル形成部材 4 9を、 少なくとも 1層形成する。 これにより、 上記第 2層目のマ ィクロセノレ形成部材 4 8の天井部に連通孔 4 7を設け、 この天井部の連通孔 4 7 から、 マイクロフィルタ 4 1が位置するマイクロセル 4 4内の犠牲膜を、 上方の 中空のマイクロセル 4 6に迅速に排出し、 この中空のマイクロセル 4 6から排出 孔を介して封止構造の外部に上記犠牲膜を迅速に排出できる。 そして、 上記第 3 層目のマイクロセル形成部材 4 9の排出孔をキヤップ膜 4 9 1で塞ぐことにより、 上記マイクロフィルタ 4 1を簡易かつ確実に封止することができる。 ここにおい て、 中空のマイクロセルを定義する第 3層目のマイクロセル形成部材 4 9を設け ないで、 第 2層目のマイクロセル形成部材 4 8の連通孔 4 7を犠牲膜の排出孔と して用いると、 この排出孔を塞ぐキャップ膜を堆積したときに、 このキャップ膜 の材料がマイクロフィルタ 4 1上に堆積してしまうという不都合が生じてしまう。 さらに、 好ましくは、 内部にマイクロフィルタ 4 1が位置するマイクロセル 4 4の周辺に、 中空のマイクロセル 4 5を配置する。 例えば、 マイクロフィルタ 4 1が位置するマイクロセノレ 4 4を定義するマイクロセル形成部材 4 8の天井部に、 このマイクロセル 4 4の中央部に位置する連通穴 4 7のみが形成可能であって、 上記マイクロセル 4 4の端部に位置する連通孔を設けることができない場合、 こ のマイクロセル 4 4の端部に、 犠牲膜を除去するためのエッチング液が滞留した り、 犠牲膜が除去されないで残留する場合がある。 そこで、 上記マイクロフィル タ 4 1が位置するマイクロセル 4 4の周囲に、 中空のマイクロセル 4 5を配置す ることにより、 この中空のマイクロセル 4 5を介して、 上記マイクロフィルタ 4Further, preferably, at least one hollow microcell 46 is disposed above the microcell 44 in which the microfilter 41 is located. That is, a third-layer microcell defining a hollow microcell is placed on a second-layer microcell forming member 48 defining a microphone opening cell in which the microfilter 41 is located. At least one layer of the cell forming member 49 is formed. As a result, a communication hole 47 is provided in the ceiling of the second layer of the micro-senore forming member 48, and the communication hole 47 in the ceiling allows the sacrifice in the microcell 44 where the microfilter 41 is located. The membrane can be quickly discharged to the upper hollow microcell 46, and the sacrificial membrane can be quickly discharged from the hollow microcell 46 to the outside of the sealing structure through the discharge hole. By closing the discharge hole of the third-layer microcell forming member 49 with the cap film 491, the microfilter 41 can be easily and reliably sealed. In this case, the third-layer microcell forming member 49 defining the hollow microcell is not provided, and the communication hole 47 of the second-layer microcell forming member 48 is formed as the discharge hole of the sacrificial film. If used, the inconvenience that the material of the cap film is deposited on the microfilter 41 when the cap film closing the discharge hole is deposited. Further, preferably, a hollow microcell 45 is arranged around the microcell 44 in which the microfilter 41 is located. For example, only the communication hole 47 located at the center of the microcell 44 can be formed on the ceiling of the microcell forming member 48 defining the microcello 44 where the microfilter 41 is located, If the communication hole located at the end of the microcell 44 cannot be provided, an etchant for removing the sacrificial film remains at the end of the microcell 44 or the sacrificial film is not removed. May remain. Therefore, by arranging a hollow microcell 45 around the microcell 44 where the microfilter 41 is located, the microfilter 4 is passed through the hollow microcell 45.
1が位置するマイクロセル 4 4の端部から、 ェツチング液や犠牲膜を確実に除去 することができる。 The etching liquid and the sacrificial film can be reliably removed from the end of the microcell 44 where 1 is located.
また、 好ましくは、 上記中空のマイクロセル 4 5, 4 6の周囲には、 充填部材 が充填されたマイクロセル 5 3, 5 4を配置する。 これにより、 上記中空のマイ クロセル 4 5 , 4 6を定義する第 1層目のマイクロセル形成部材 4 3および最上 層のマイクロセノレ形成部材 4 9の上記中空マイクロセル 4 5 , 4 6の周囲の部分 の強度を向上できる。 したがって、 上記マイクロセル形成部材 4 3 , 4 9を用い た封止構造の信頼性や耐久性を向上できる。  Preferably, microcells 53, 54 filled with a filling member are arranged around the hollow microcells 45, 46. Thus, the first microcell forming member 43 defining the hollow microcells 45 and 46 and the microcellular forming member 49 of the uppermost layer around the hollow microcells 45 and 46 of the uppermost microcellular forming member 49 are formed. The strength of the part can be improved. Therefore, the reliability and durability of the sealing structure using the microcell forming members 43 and 49 can be improved.
(第 2実施形態) 図 6は、 本発明の第 2実施形態のマイクロ可動装置を示す図である。 このマイ クロ可動装置は、 基板の平面において 1 0 を超える寸法を有し、 かつ、 複 雑な形状を有するマイクロ可動部としての音叉型共振器 1 0 1を封止したもので ある。 (Second embodiment) FIG. 6 is a diagram illustrating a micro movable device according to a second embodiment of the present invention. In this micro movable device, a tuning fork resonator 101 as a micro movable portion having a size exceeding 10 in the plane of the substrate and having a complicated shape is sealed.
図 6は、 基板側から第 2層目のマイクロセル形成部材の壁部に相当する位置に おいて、 上記基板と平行な面で切断した様子を示す平断面図である。 図 7 Aは、 図 6の A—B線における縦断面図であり、 図 7 Bは、 図 6の A— C線における縦 断面図である。  FIG. 6 is a cross-sectional plan view showing a state cut along a plane parallel to the substrate at a position corresponding to the wall of the microcell forming member of the second layer from the substrate side. FIG. 7A is a longitudinal sectional view taken along line AB in FIG. 6, and FIG. 7B is a longitudinal sectional view taken along line AC in FIG.
このマイク口可動装置の封止構造 1 0 0は、 基板 1 3 0上に形成された 3層の マイクロセノレ形成部材 1 3 1, 1 3 2, 1 3 3を備える。 この 3層のマイクロセ ル形成部材 1 3 1 , 1 3 2 , 1 3 3により、 中空のマイクロセル 1 1 2と、 充填 部材が充填されたマイクロセル 1 1 3とが定義されている。 マイクロ可動部とし ての共振器 1 0 1が位置する中空のマイクロセル 1 0 5は、 第 1層目のマイクロ セル形成部材 1 3 1と、 第 2層目のマイク口セル形成部材 1 3 2とで定義されて いる。 上記共振器 1 0 1は、 1 0 0 / mを超える寸法を有するので、 上記マイク ロセル 1 0 5を定義する壁部が互いに隔たる距離が、 非常に長い。 しかしながら、 本実施形態では、 上記マイクロセル 1 1 2 , 1 1 3を、 上記共振器 1 0 1の形状 に応じて配置することにより、 上記共振器 1 0 1を配置するマイクロセル 1 0 5 の大きさを必要最小限にしている。 また、 上記共振器 1 0 1の非可動部分である アンカー部 1 0 4は、 上記第 1〜第 3マイクロセル形成部材 1 3 1 , 1 3 2 , 1 3 3が各々定義するマイクロセルの内、 平面において同一の位置にマイクロセル に充填材を充填することによって形成している。 また、 上記共振器 1 0 1の可動 部分の動作を妨げなくて、 上記可動部分の電位に実質的に影響を与えない位置に、 柱 1 0 6を設けている。  The sealing structure 100 of the microphone opening movable device includes three layers of micro-senor forming members 13 1, 13 2, and 13 3 formed on the substrate 130. The three-layer microcell forming members 1311, 1332, and 1333 define a hollow microcell 112 and a microcell 113 filled with a filling member. The hollow microcell 105 in which the resonator 101 as the micro movable portion is located is composed of a first-layer microcell forming member 131, and a second-layer microphone opening cell forming member 132 It is defined as Since the resonator 101 has a dimension exceeding 100 / m, the distance between the walls defining the microcell 105 is very long. However, in the present embodiment, by arranging the microcells 112 and 113 according to the shape of the resonator 101, the microcells 105 in which the resonator 101 is arranged The size is minimized. Further, the anchor portion 104, which is a non-movable portion of the resonator 101, is a microcell defined by the first to third microcell forming members 13 1, 13 2, and 13 3 respectively. It is formed by filling a microcell with a filler at the same position on a plane. Further, the column 106 is provided at a position where the operation of the movable portion of the resonator 101 is not hindered and the potential of the movable portion is not substantially affected.
なお、 上記柱 1 0 6に近接する共振器の部分は、 アンカー部 1 0 4に接続され た電極 1 0 7で電位が定められるので、 上記柱 1 0 6を電極 1 0 7と同電位にす ることによって、 上記共振器の部分への影響を低減することができる。  Since the potential of the portion of the resonator adjacent to the column 106 is determined by the electrode 107 connected to the anchor portion 104, the column 106 is set to the same potential as the electrode 107. By doing so, it is possible to reduce the influence on the above-mentioned resonator portion.
さらに、 図 7 Aに示すように、 共振器 1 0 1が位置するマイクロセル 1 0 5の 上に、 中空のマイクロセル 1 3 5を配置している。 この中空のマイクロセル 1 3 5により、 封止構造の作製時には、 上記共振器 1 0 1が位置するマイクロセル 1 0 5内の犠牲膜を、 このマイクロセル 1 0 5の上方に向かって迅速に除去するこ とができる。 また、 上記中空のマイクロセル 1 3 5を定義する最上層のマイクロ セル形成部材 1 3 3により、 上記第 2層目のマイク口セノレ形成部材 1 3 2の天井 部を補強すると共に、 この天井部の応力を低減して応力の局所集中を防止するこ とができる。 したがって、 上記マイクロセル 1 0 5を定義する壁部の間隔が 1 0 0 μ πιを超えるにもかかわらず、 最大の橈み量を 0 . 0 1 ju m以下にすることが できる。 Further, as shown in FIG. 7A, a hollow microcell 135 is arranged on the microcell 105 where the resonator 101 is located. This hollow microcell 1 3 According to 5, the sacrificial film in the microcell 105 where the resonator 101 is located can be quickly removed upward of the microcell 105 when the sealing structure is manufactured. The ceiling of the second-layer microphone opening senor forming member 132 is reinforced by the uppermost microcell forming member 133 that defines the hollow microcell 135, and the ceiling is formed. And the local concentration of the stress can be prevented. Therefore, the maximum amount of radius can be set to 0.01 jum or less, even though the interval between the wall portions defining the microcell 105 exceeds 100 μπι.
このように、 本実施形態によれば、 マイクロセル形成部材 1 3 1, 1 3 2, 1 3 3を用いることにより、 音叉型共振器 1 0 1が大型で複雑な形状を有するにも かかわらず、 この共振器 1 0 1の形状に応じた形状を有し、 強度が比較的高くて、 耐久性が良好な封止構造を形成することができる。  As described above, according to the present embodiment, the use of the microcell forming members 13 1, 13 2, and 13 3 allows the tuning fork resonator 101 to have a large and complicated shape. However, it is possible to form a sealing structure having a shape corresponding to the shape of the resonator 101, having relatively high strength and excellent durability.
さらに、 本実施形態では、 温度変化などによる封止構造の膨張や収縮を緩和す る手段を有する。 この手段は、 図 7に示すように、 最上層のマイクロセル形成部 材 1 3 3の天井部に形成された切り込み 1 2 0である。 図 8 Aは、 この切り込み 1 2 0が形成された部分の近傍を拡大して示した模式断面図である。 この切り込 み 1 2 0は、 上記共振器 1 0 1が位置するマイクロセル 1 0 5と連通孔 1 2 4で 連通されているマイクロセル 1 2 2が位置する部分以外の天井部に形成している。 上記切り込み 1 2 0を介して、 上記共振器 1 0 1が位置するマイク口セル 1 0 5 と連通されているマイクロセル 1 2 2を定義する壁部 1 4 1力 マイクロ可動装 置の外部に面している。  Further, in the present embodiment, there is provided means for alleviating expansion and contraction of the sealing structure due to a temperature change or the like. As shown in FIG. 7, this means is a cut 120 formed in the ceiling of the microcell forming member 133 of the uppermost layer. FIG. 8A is an enlarged schematic cross-sectional view showing the vicinity of the portion where the cut 120 is formed. This notch 120 is formed in the ceiling other than the portion where the microcell 122 connected to the microcell 105 where the resonator 101 is located and the communication hole 124 is located. ing. Through the notch 120, a wall portion 141 defining the microcell 122, which is in communication with the microphone opening cell 105, in which the resonator 101 is located, outside the micro movable device. Facing
例えば、 最上層のマイクロセル形成部材 1 3 3の一部分の温度が変化した場合、 熱膨張や熱収縮によって発生した力がマイクロセル形成部材 1 3 3の他の部分に 伝達することが、 上記切り込み 1 2 0によって防止される。 したがって、 上記最 上層のマイクロセル構造部材 1 3 3を含む封止構造と、 基板 1 3 0との接続部分 に応力が集中することを緩和でき、 封止の耐久性および信頼性を向上できる。 図 5の従来の封止構造では、 基板 5 5 0と封止膜 5 5 2, 5 5 4との熱膨張率 の差によって生じる応力が、 基板 5 5 0と封止膜 5 5 2, 5 5 4との接続部分の 近傍に集中して、 この部分に大きな応力が生じて、 封止構造の劣化や破壊の原因 となっていた。 このことは、 基板 550に衝撃が加わったときや、 基板 5 50に そりなどの変形が生じた場合も同様である。 For example, when the temperature of a part of the uppermost microcell forming member 133 changes, the force generated by thermal expansion or thermal contraction is transmitted to the other part of the microcell forming member 133. Prevented by 120. Therefore, concentration of stress on the connection portion between the sealing structure including the uppermost microcell structure member 133 and the substrate 130 can be reduced, and the durability and reliability of the sealing can be improved. In the conventional sealing structure of FIG. 5, the stress caused by the difference in the coefficient of thermal expansion between the substrate 550 and the sealing films 552, 554 is caused by the stress generated by the substrate 550 and the sealing films 552, 5 5 Concentrated near the connection with 4 and a large stress is generated in this part, which causes deterioration and destruction of the sealing structure It was. The same applies to a case where an impact is applied to the substrate 550 or a case where the substrate 550 is deformed such as a warp.
しかしながら、 本実施形態では、 上記切り込み 1 20によって、 封止構造から 基板 1 30への力の伝達や、 上記基板 1 30から封止構造への力の伝達が遮断さ れる。 したがって、 上記封止構造の端部への力の集中や、 第 1層目のマイクロセ ノ 成部材 1 3 1と基板 1 30との接続部分への力の集中が、 緩和される。 その 結果、 応力集中による封止構造の劣化や破壊を防止できて、 封止構造の耐久性を 向上できる。  However, in the present embodiment, transmission of force from the sealing structure to the substrate 130 and transmission of force from the substrate 130 to the sealing structure are cut off by the cut 120. Therefore, the concentration of the force on the end of the sealing structure and the concentration of the force on the connecting portion between the first-layer micro-synthesized component 13 1 and the substrate 130 are alleviated. As a result, deterioration and destruction of the sealing structure due to stress concentration can be prevented, and the durability of the sealing structure can be improved.
上記切り込み 1 20は、 図 8 Bに示すように形成してもよい。 すなわち、 最上 層のマイクロセル形成部材 1 33の壁部の下端から切り込み 1 20の内側に向か つて延在する延長部分 140を設け、 この延長部分 140を第 2層目のマイクロ セル形成部材 1 32の天井部の上面に固定する。 これにより、 上記最上層のマイ ク口セノ 成部材 1 33の壁部を、 第 2層目のマイクロセル形成部材 1 32の天 井部の上面に、 強固かつ隙間無く固定できる。 したがって、 上記共振器 101が 位置するマイクロセル 105に連通するマイクロセル 1 22を、 外部に対して確 実に密閉できるので、 封止構造の信頼性を向上できる。  The cut 120 may be formed as shown in FIG. 8B. That is, an extended portion 140 extending from the lower end of the wall of the uppermost microcell forming member 133 toward the inside of the cut 120 is provided, and this extended portion 140 is attached to the microcell forming member 1 of the second layer. Fix it to the top of 32 ceiling. As a result, the wall portion of the uppermost layer of the microporous member 133 can be firmly fixed to the upper surface of the ceiling portion of the second-layer microcell forming member 132 without any gap. Therefore, the microcell 122 communicating with the microcell 105 in which the resonator 101 is located can be reliably sealed to the outside, so that the reliability of the sealing structure can be improved.
なお、 上記切り込み 1 20は、 同一のレベルである例えば最上層に、 複数個の マイクロセル形成部材 1 3 3 a, 1 3 3 b, 1 3 3 cが分離されるように設けて もよい。 すなわち、 図 7 Aに示されるように、 最上層に、 複数のマイクロセル形 成部材 1 33 a, 1 33 b, 1 33 cが形成され、 この複数のマイクロセル形成 部材 1 33 a, 1 33 b, 1 33 cは、 上記切り込み 1 20によって分離されて いる。 これにより、 上記複数のマイクロセル形成部材のうちの一方から他方に力 が伝わることが、 確実に防止される。  The cuts 120 may be provided at the same level, for example, on the uppermost layer so that a plurality of microcell forming members 133a, 133b, and 133c are separated from each other. That is, as shown in FIG. 7A, a plurality of microcell forming members 133a, 133b, 133c are formed in the uppermost layer, and the plurality of microcell forming members 133a, 133 are formed. b, 133 c are separated by the notch 120. Thus, transmission of force from one of the plurality of microcell forming members to the other is reliably prevented.
なお、 上記切り込み 1 20は、 同一のマイク口セル形成部材の天井部に、 部分 的に設けてもよい。 また、 上記切り込み 1 20は、 最上層のみに限られず、 第 1 層目または第 2層目のマイク口セル形成部材 1 3 1, 1 32に形成してもよい。 図 9は、 最上層のマイクロセル形成部材 1 33を、 基板 1 30の平面と平行な 面によって、 上記マイクロセノ 成部材 1 33の壁部の位置において切断した様 子を示す斜視図である。 図 9に示すように、 第 2眉目のマイクロセルと、 最上層 のマイクロセルとを連通する連通孔 1 5 0力 第 2層目のマイクロセル形成部材 の天井部に多数設けられている。 また、 最上層の互いに隣接する中空のマイクロ セルの間を連通する連通孔 1 5 1力 最上層のマイクロセル形成部材の壁部に複 数個設けられている。 この複数個の連通孔 1 5 1により、 上記壁部は柱を並べた ような形状をなしている。 また、 最上層の互いに隣接する充填部材が充填された マイクロセルの間を連通する連通孔 1 5 3が、 最上層のマイクロセノ 成部材の 壁部に設けられている。 この連通孔 1 5 3は、 複数個設けてもよい。 上記連通孔 1 5 0 , 1 5 1 , 1 5 3の形状は、 図 9に示すものに限られない。 The cut 120 may be partially provided on the ceiling of the same microphone opening cell forming member. The cuts 120 are not limited to the uppermost layer, and may be formed in the microphone opening cell forming members 13 1 and 13 2 of the first layer or the second layer. FIG. 9 is a perspective view showing a state where the uppermost microcell forming member 133 is cut at a position of a wall portion of the microseno forming member 133 by a plane parallel to the plane of the substrate 130. As shown in Fig. 9, the microcell at the second eyebrow and the top layer A large number of communication holes are provided on the ceiling of the second-layer microcell forming member. Also, a plurality of communication holes communicating between the adjacent hollow microcells in the uppermost layer are provided in the wall of the microcell forming member in the uppermost layer. Due to the plurality of communication holes 151, the wall has a shape like pillars. In addition, a communication hole 153 communicating between the microcells filled with the filling members adjacent to each other in the uppermost layer is provided in the wall of the microseno component member in the uppermost layer. A plurality of communication holes 153 may be provided. The shapes of the communication holes 150, 151, 153 are not limited to those shown in FIG.
上記多数の連通孔 1 5 0 , 1 5 1によって、 中空のマイクロセルを形成する際 に、 犠牲膜を外部に排出する効率を向上することができる。 また、 上記多数の連 通孔 1 5 0, 1 5 1 , 1 5 3を設けることにより、 熱膨張や熱収縮、 あるいは、 衝撃力や基板 1 3 0のそりなどによって生じる応力を、 分散し易くできる。 また、 隣接する中空のマイクロセルの間を連通するように、 マイクロセノ 成部材の天 井部に切り込み 1 5 2を設けることによって、 応力集中を防止することができる。 また、 隣接する充填部材が充填されたマイクロセルの間を連通するように、 マイ クロセル形成部材の天井部に図示しない切り込みを設けることによって、 応力集 中を防止することができる。 このようにして、 上記マイクロセル形成部材 1 3 1, 1 3 2 , 1 3 3を用いて形成した封止構造の耐久性を向上することができる。 さらに、 本実施形態では、 上記共振器 1 0 1が位置するマイクロセル 1 0 5や、 このマイクロセル 1 0 5に隣接するマイクロセルを中空に形成しているが、 これ らのマイクロセル以外のマイクロセルについても、 中空に形成している。 例えば は、 図 6に示すように、 上記共振器 1 0 1が位置するマイクロセル 1 0 5には連 通していない複数の中空のマイクロセル 1 1 5を、 封止構造 1 0 0の平面におけ る隅部の近傍に設けている。 上記複数の中空のマイクロセル 1 1 5は、 連通孔で 互いに連通している。 このように、 マイクロ可動部が配置されるマイクロセル 1 0 5と連通しない中空のマイクロセル 1 1 5を設けることによって、 封止構造 1 0 0内に応力が不均一に生じることを防止し、 応力を封止構造 1 0 0の全体に均 一に分散させて、 封止構造 1 0 0の信頼性と耐久性を高めることができる。  Due to the large number of communication holes 150 and 151, the efficiency of discharging the sacrificial film to the outside when forming a hollow microcell can be improved. In addition, by providing the above-mentioned large number of communication holes 150, 151, and 153, stress generated by thermal expansion or thermal contraction, or impact force or warpage of the substrate 130 can be easily dispersed. it can. In addition, by providing a cutout 152 in the ceiling of the microseno-forming member so as to communicate between adjacent hollow microcells, stress concentration can be prevented. In addition, by providing a notch (not shown) in the ceiling of the microcell forming member so that the adjacent microcells communicate with the filled microcells, stress concentration can be prevented. In this way, the durability of the sealing structure formed using the microcell forming members 13 1, 13 2, and 13 3 can be improved. Further, in the present embodiment, the microcell 105 in which the resonator 101 is located and the microcell adjacent to the microcell 105 are formed in a hollow shape. The microcell is also hollow. For example, as shown in FIG. 6, a plurality of hollow microcells 115 that are not connected to the microcell 105 where the resonator 101 is located are placed on the plane of the sealing structure 100. It is provided in the vicinity of the corner. The plurality of hollow microcells 115 communicate with each other through communication holes. As described above, by providing the hollow microcell 115 that does not communicate with the microcell 105 in which the micro movable portion is arranged, it is possible to prevent the stress from being generated unevenly in the sealing structure 100, The stress can be evenly distributed throughout the sealing structure 100, and the reliability and durability of the sealing structure 100 can be improved.
また、 本実施形態では、 封止構造 1 0 0に、 マイクロセルを形成する際に用い た犠牲膜としての酸ィ匕シリコンを排出しないで、 充填部材として充填したマイク ロセル 113を有する。 このマイクロセル 113は、 充填部材が充填されている ので、 マイクロセル形成部材のみによるよりも封止構造 100の強度を増大する ことができる。 また、 上記酸化シリコンの熱膨張係数は 0. 5 p p m/^C程度で あり、 マイクロセル形成部材 131, 132, 133を形成するシリコンゃ窒化 シリコンの熱膨張係数 (2. 5 p pm/°C程度) よりも小さい。 したがって、 上 記酸化シリコンが充填されたマイクロセル 113と、 このマイクロセル 113を 定義するマイクロセル形成部材とを合わせた部分は、 中空のマイクロセルを定義 するマイクロセル形成部材のみの部分よりも、 温度変化が生じた際に発生する応 力が小さくなる。 このように、 上記充填部材としての酸化シリコンが充填された マイクロセルを設けることにより、 強度の増大と、 熱膨張おょぴ熱収縮による応 力の減少とを図ることができる。 したがって、 上記酸化シリコンが充填されたマ イクロセルを、 封止構造 100内に分散して配置することによって、 熱膨張や熱 収縮による応力が封止構造 100の所定位置に集中することを、 効果的に防止で きる。 また、 図 6に示すように、 共振器 101が位置するマイクロセル 105の 周囲や、 このマイクロセル 105に連通する中空のマイクロセル 109の周囲に. 上記充填部材が充填されたマイク口セルを配置することによって、 上記マイク口 セノレ 105の封止機能の信頼性と耐久性を高めることができる。 In the present embodiment, the sealing structure 100 is used when forming a microcell. A microcell 113 filled as a filling member without discharging the silicon oxide as a sacrificial film. Since the microcell 113 is filled with the filling member, the strength of the sealing structure 100 can be increased as compared with the case where only the microcell forming member is used. The coefficient of thermal expansion of the silicon oxide is about 0.5 ppm / ^ C, and the coefficient of thermal expansion of silicon-silicon nitride forming the microcell forming members 131, 132, 133 (2.5 ppm / ° C). Degree). Therefore, the combined portion of the microcell 113 filled with the silicon oxide and the microcell forming member defining the microcell 113 is larger than the portion including only the microcell forming member defining the hollow microcell. The stress generated when a temperature change occurs is reduced. Thus, by providing the microcell filled with silicon oxide as the filling member, the strength can be increased and the stress due to thermal expansion and thermal contraction can be reduced. Therefore, by dispersing the microcells filled with the silicon oxide in the sealing structure 100, it is possible to effectively concentrate the stress due to thermal expansion and thermal contraction at a predetermined position of the sealing structure 100. Can be prevented. In addition, as shown in Fig. 6, around the microcell 105 where the resonator 101 is located, and around the hollow microcell 109 communicating with the microcell 105. A microphone port cell filled with the above filling member is arranged. By doing so, the reliability and durability of the sealing function of the microphone opening Senole 105 can be improved.
上記実施形態において、 封止構造 100を 3層のマイク口セル形成部材 131: 132, 133を用いて形成したが、 封止構造を形成するマイクロセル形成部材 の数は 3層に限られず、 1層以上の何層でもよい。  In the above embodiment, the sealing structure 100 is formed by using the three-layer microphone opening cell forming members 131: 132, 133. However, the number of the microcell forming members forming the sealing structure is not limited to three layers, Any number of layers above the layer may be used.
(第 3実施形態)  (Third embodiment)
本発明の第 3実施形態のマイク口可動装置は、 第 1および第 2実施形態のマイ クロ可動装置において、 マイクロセル形成部材 22, 23, 24, 43, 48, 49, 131, 132, 133の材料として、 シリコンゃ窒化シリコンに換えて 窒化タングステンを用いる。 窒化タングステンは反応性スパッタ法で形成するこ とができ、 例えば、 スパッタ圧力 2. 3 P a、 RF (高周波発振) パワー 300 W、 Ar (ァノレゴン) ガス流量 33. 6 s c cm、 N2 (窒素) ガス流量 8. 4 s c cms 基板温度 25°Cの条件で、 マイクロセル形成部材として好適な窒化タ ングステンを形成できる。 つまり、 プロセス温度が比較的高い LP CVD法を用 いて形成するシリコンゃ窒化シリコンをマイク口セノ 成部材の材料として用い るよりも、 大幅に低温の条件でマイクロセノ 成部材を形成できる。 したがって、 本実施形態によれば、 例えば CMOS (相補型金属酸ィ匕膜半導体: The microphone opening movable device according to the third embodiment of the present invention is the same as the micro movable device according to the first and second embodiments, except that the microcell forming members 22, 23, 24, 43, 48, 49, 131, 132, 133 As a material, tungsten nitride is used instead of silicon / silicon nitride. Tungsten nitride can be formed by a reactive sputtering method. For example, sputtering pressure 2.3 Pa, RF (high frequency oscillation) power 300 W, Ar (anoregon) gas flow rate 33.6 sccm, N 2 (nitrogen ) Gas flow rate 8.4 sccm s Substrate temperature 25 ° C Nsten can be formed. In other words, it is possible to form a microceno-composed member at a significantly lower temperature than when silicon / silicon nitride formed using an LPCVD method having a relatively high process temperature is used as a material for a microphone-opened cenocomposed member. Therefore, according to the present embodiment, for example, CMOS (complementary metal oxide semiconductor:
Complementary Metal-Oxide Semiconductor) プロセスにより L S Iが作製され たシリコン基板や、 Cu (銅) 配線や低誘電率の有機絶縁膜などが形成されたガ ラス基板や樹脂基板等のように、 耐熱性の低い要素が形成された基板上にも、 マ ィクロセル形成部材を用いた封止構造を形成することができる。 Compatible Metal-Oxide Semiconductor) process has low heat resistance, such as silicon substrate on which LSI is fabricated, glass substrate or resin substrate on which Cu (copper) wiring and low dielectric constant organic insulating film are formed. A sealing structure using a microcell forming member can also be formed on a substrate on which elements are formed.
さらに、 第 1および第 2実施形態のマイクロ可動装置において、 マイクロ可動 部 41, 101を、 マイクロセル形成部材 22, 23, 24, 43, 48, 49, Further, in the micro movable device according to the first and second embodiments, the micro movable portions 41 and 101 are combined with the micro cell forming members 22, 23, 24, 43, 48, 49, and
131, 132, 133の材料と同様に窒化タングステンを用いるのが好ましい。 これにより、 上記マイクロ可動部 41, 101の作製と、 マイクロセル形成部材 22, 23, 24, 43, 48, 49, 131, 132, 133を用いた封止構 造の作製とを、 比較的低いプロセス温度の下、 共通の工程で行うことができる。 したがって、 CMOSプロセスにより LS Iが作製されたシリコン基板や、 Cu 配線や低誘電率の有機絶縁膜などが形成されたガラス基板や樹脂基板等のような 耐熱性の低い要素が形成された基板上に、 マイクロ可動部と封止構造とを、 少な い手間で形成することができる。 It is preferable to use tungsten nitride as in the case of the materials 131, 132, and 133. Thus, the production of the micro movable portions 41 and 101 and the production of the sealing structure using the micro cell forming members 22, 23, 24, 43, 48, 49, 131, 132 and 133 are relatively low. It can be performed in common steps under process temperature. Therefore, on a silicon substrate on which an LSI is fabricated by a CMOS process, or on a substrate on which low heat-resistant elements are formed, such as a glass substrate or a resin substrate on which Cu wiring or an organic insulating film with a low dielectric constant is formed. In addition, the micro movable portion and the sealing structure can be formed with little effort.
ここで、 例えば、 上記マイクロセル形成部材ゃマイクロ可動部を、 タンダステ ンのような単体の金属材料を用いて形成した場合、 以下のような不都合がある。 すなわち、 材料の成長方向に配向する結晶構造の影響や、 膜厚の増加に伴う粒成 長の制御の困難化により、 タングステンの堆積中に内部応力が蓄積したり、 タン ダステンの堆積中あるいは堆積後に膜はがれ等の破壊が起きたりする。 また、 タ ングステンを堆積して形成した部材に応力等の負荷が作用した際、 クラッキング などの欠陥が発生して、 変形や石皮壌が起きたりする。 したがって、 上記タングス テンのような単体の金属材料を用いて形成したマイクロセル形成部材ゃマイク口 可動部は、 信頼性および耐久性を確保することが困難である。  Here, for example, when the above-mentioned micro cell forming member 可 動 micro movable portion is formed using a single metal material such as tungsten, there are the following disadvantages. In other words, due to the influence of the crystal structure oriented in the growth direction of the material and the difficulty in controlling the grain growth as the film thickness increases, internal stress accumulates during the deposition of tungsten, or during deposition or deposition of tungsten. Later, destruction such as film peeling may occur. In addition, when a load such as stress acts on a member formed by depositing tungsten, defects such as cracking are generated, and deformation and calculus are generated. Therefore, it is difficult to ensure the reliability and durability of the microcell forming member / microphone opening movable portion formed using a single metal material such as the above-mentioned tungsten.
上記マイク口セノレ形成部材ゃマイク口可動部をシリコンで形成した場合、 シリ コンの堆積後に 1000°C前後の高温で 1時間程度ァニールすれば内部残留応力 を緩和することができる。 しかしながら、 上記タングステン等の単体金属でマイ クロセノ 成部材ゃマイク口可動部を形成した場合、 高温処理による再結晶化で 内部応力を緩和しょうとすると、 凝集ゃファセッティング等のような形状の変化 の問題が生じる場合が多 、。 When the movable part of the microphone opening is formed of silicon, the internal residual stress can be obtained by annealing at about 1000 ° C for about 1 hour after silicon deposition. Can be alleviated. However, if the microseno component ゃ microphone opening movable part is formed of a single metal such as tungsten, if the internal stress is reduced by recrystallization by high temperature treatment, coagulation 形状 changes in shape such as faceting Problems often arise.
ここにおいて、 上記マイクロセル形成部材 22, 23, 24, 43, 48, 4 9, 131, 132, 133や、 上記マイクロ可動部 41, 101の材料に、 窒 化タングステンを用いることにより、 上記内部応力の蓄積や欠陥の発生の問題を 解決することができる。 すなわち、 反応性スパッタによる窒化タングステンの形 成時に、 室温程度の低温の下、 N2分圧ゃスパッタ圧力等の条件を変更すること によって、 窒化タングステンの組成や性質を容易に変えることができる。 例えば、 スパッタ圧力を 1. 5 P aから 3 P a程度までの範囲内で変えることにより、 形 成される窒化タングステン膜中の残留応力の種類を、 引張応力から圧縮応力に変 化させることができる。 したがって、 窒化タングステンの形成過程において、 内 部応力や組成を連続的または断続的に変化させて成長することが可能であり、 こ れにより、 堆積中の内部応力や堆積後の残留応力を殆ど無くすことができる。 また、 厚み方向に組成や粒状態が異なる窒化タングステン膜を形成することが 可能であるため、 例えば、 互いに逆向きの応力を生じる組成を隣り合わせて形成 すること等により、 内部応力による破壌を回避することができる。 また、 窒化タ ングステン膜の厚み方向に組成を異ならせることにより、 膜の形成後に外部から 応力等が加えられて欠陥が一部に発生しても、 この欠陥が膜の全体を貫き難くす ることができる。 したがつて、 クラッキングなどによる変形や破壌に対する耐性 を高めることができる。 このような窒化タングステン膜は、 例えば、 以下のよう に条件を変えて形成する。 まず、 スパッタ圧力 2. O P a、 RFパワー 300W、 A rガス流量 33. 6 s c cm、 N2ガス流量 8. 4 s c c m、 基板温度 25°C の条件の下、 窒化タングステンを 0. 5 μπαの厚みに堆積する。 引き続いて、 ス パッタ圧力を 2. 4P aに変えて 1. 2μπι堆積し、 最後に、 スパッタ圧力を 2. 0 P aに戻して 0. 3μΐη堆積する。 Here, by using tungsten nitride as the material of the microcell forming members 22, 23, 24, 43, 48, 49, 131, 132, 133 and the micro movable parts 41, 101, the internal stress is reduced. Can solve the problem of accumulation of defects and the occurrence of defects. That is, when the shape forming the tungsten nitride by reactive sputtering, under the low temperature of about room temperature, by changing the conditions such as N 2 partial pressure Ya sputtering pressure, it can be easily changed the composition and properties of the tungsten nitride. For example, by changing the sputtering pressure in the range of about 1.5 Pa to 3 Pa, the type of residual stress in the formed tungsten nitride film can be changed from tensile stress to compressive stress. it can. Therefore, in the process of forming tungsten nitride, it is possible to grow by continuously or intermittently changing the internal stress and composition, thereby almost eliminating the internal stress during deposition and the residual stress after deposition. be able to. In addition, since it is possible to form a tungsten nitride film having a different composition and grain state in the thickness direction, it is possible to avoid rupture due to internal stress, for example, by forming adjacent compositions that generate stresses in opposite directions. can do. Also, by making the composition different in the thickness direction of the tungsten nitride film, even if a stress or the like is applied from the outside after the film is formed and a defect is partially generated, the defect hardly penetrates the entire film. be able to. Therefore, the resistance to deformation and breakage due to cracking can be increased. Such a tungsten nitride film is formed, for example, under the following conditions. First, under the conditions of sputtering pressure 2. OP a, RF power 300 W, Ar gas flow rate 33.6 sccm, N 2 gas flow rate 8.4 sccm, and substrate temperature 25 ° C, tungsten nitride was 0.5 μπα. Deposit to thickness. Subsequently, the sputtering pressure was changed to 2.4 Pa, and 1.2 μπι deposition was performed. Finally, the sputtering pressure was returned to 2.0 Pa, and 0.3 μΐη deposition was performed.
また、 窒化タングステン層の厚み方向の中央にタングステン層を有する膜を用 いて、 最下層のマイクロセル形成部材 22, 43, 131や、 マイクロ可動部 4 1 , 101を形成するのが好ましい。 このような膜は、 以下のようにして形成す る。 まず、 スパッタ圧力 2. 3P a、 RFパワー 300W、 Arガス流量 33. 6 s c cm、 N2ガス流量 8. 4 s c c m、 基板温度 25 °Cの条件の下、 窒化タ ングステンを 1. 2μιη堆積する。 続いて、 Ν2ガス流量を 0 s c c mにすると 共に Arガス流量を 42 s c cmに変えて、 窒素を殆ど含有しないタングステン 膜を 0. 5μιη堆積する。 最後に、 A rガス流量を 33. 6 s c cmに戻すと共 に、 N2ガス流量を 8. 4 s c cmに戻し、 スパッタ圧力を 2. 0 P aにして、 窒化タングステン膜を 0. 3/xm堆積する。 こうして形成した膜は、 残留応力を 小さくすると共に、 実効的な電気抵抗を低くすることができる。 したがって、 こ の膜を用いることにより、 マイクロセル形成部材およびマイク口可動部の電位の 制御性を向上できる。 また、 上記マイクロセル形成部材の一部を、 配線や貫通電 極として用いることができるので、 配線スペースの削減ができ、 また、 マイクロ 可動装置の作製工程の簡略化および低コスト化を実現できる。 Further, by using a film having a tungsten layer at the center in the thickness direction of the tungsten nitride layer, the lowermost microcell forming members 22, 43, 131 and the micro movable portion 4 are formed. It is preferred to form 1,101. Such a film is formed as follows. First, sputtering pressure 2. 3-Way a, RF power 300 W, Ar gas flow rate 33. 6 sc cm, N 2 gas flow 8. 4 sccm, under the condition of a substrate temperature of 25 ° C, to 1. 2Myuiotaita deposited nitride data tungsten . Then, instead of the New 2 gas flow rate of 0 on the sccm both Ar gas flow rate of 42 sc cm, to 0. 5Myuiotaita deposit tungsten film nitrogen hardly contain. Finally, the Ar gas flow rate was returned to 33.6 sccm, the N 2 gas flow rate was returned to 8.4 sccm, the sputtering pressure was 2.0 Pa, and the tungsten nitride film was 0.3 / xm is deposited. The film thus formed can reduce the residual stress and the effective electrical resistance. Therefore, by using this film, the controllability of the potential of the microcell forming member and the movable portion of the microphone opening can be improved. In addition, since a part of the microcell forming member can be used as a wiring or a through electrode, a wiring space can be reduced, and a manufacturing process of a micro movable device can be simplified and cost can be reduced.
本実施形態において、 タングステンを窒素と反応させたが、 窒素に限られず、 タンダステンを炭素や酸素と反応させることによつても同様の効果を得ることが できる。 また、 タングステンのみに限定されず、 タンタルやモリブデン、 チタン、 ニッケルおよびアルミニウム等の他の金属を用いても、 同様の効果が得られる。 特に、 高ヤング率が得られるタングステン、 タンタル、 モリブデンおよびチタン 等の高融点金属が好ましい。 例えば、 窒化タングステンについて、 押し込み式の 薄膜試験装置によってヤング率を計測したところ、 窒素の含有率を 0 %から 6 0%程度まで変化させて堆積することにより、 ヤング率を 36 OGP aから 25 OGP a程度まで変ィ匕させることができる。 このように、 高融点金属の窒化物は、 ポリシリコンゃ S i Geよりも高いヤング率が得られる。  In the present embodiment, tungsten is reacted with nitrogen. However, the same effect can be obtained by reacting tungsten with carbon or oxygen without being limited to nitrogen. The same effect can be obtained by using other metals such as tantalum, molybdenum, titanium, nickel, and aluminum. In particular, high melting point metals such as tungsten, tantalum, molybdenum, and titanium, which can provide a high Young's modulus, are preferable. For example, when the Young's modulus of tungsten nitride was measured using an indentation type thin film tester, the Young's modulus was changed from 36 OGP a to 25 OGP by depositing while changing the nitrogen content from 0% to about 60%. It can be changed to a degree. As described above, the nitride of the high melting point metal can obtain a higher Young's modulus than polysilicon ゃ SiGe.
本発明は上述した各実施形態に限定されるものではなく、 特許請求の範囲に示 した範囲で種々の変更および追加が可能であることは、 言うまでもない。  The present invention is not limited to the embodiments described above, and it goes without saying that various changes and additions are possible within the scope shown in the claims.

Claims

請 求 の 範 囲 The scope of the claims
1. 基板 (20, 130) と、 1. Substrate (20, 130)
上記基板 (20, 130) 上に設けられると共に、 複数のマイクロセノレ (11, 12, 13, 25, 44, 45, 46, 26, 104, 105, 112, 113, It is provided on the substrate (20, 130) and has a plurality of microcells (11, 12, 13, 25, 44, 45, 46, 26, 104, 105, 112, 113,
115, 122, 135) を定義する一層または複数層のマイクロセル形成部材 (22, 23, 24, 43, 48, 49, 131, 132, 133) と、 上記複数のマイクロセルの内の最小でないマイクロセル (44, 105) の中 に配置されたマイクロ可動部 (41, 101) と 115, 122, 135) and one or more layers of microcell forming members (22, 23, 24, 43, 48, 49, 131, 132, 133) and a non-minimum microcell of the plurality of microcells. Micro movable parts (41, 101) placed in cells (44, 105)
を備えたことを特徴とするマイクロ可動装置。 A micro movable device comprising:
2. 請求項 1に記載のマイクロ可動装置において、 2. The micro movable device according to claim 1,
上記マイク口可動部が配置されたマイクロセル (105) は、 上記複数のマイ クロセノレ (104, 105, 1 12, 113, 1 15, 122, 135) の内で 最大のマイクロセルであることを特徴とするマイク口可動装置。  The microcell (105) in which the microphone opening movable part is arranged is the largest microcell among the plurality of microsores (104, 105, 112, 113, 115, 122, 135). Mic mouth movable device.
3. 請求項 1に記載のマイクロ可動装置において、 3. The micro movable device according to claim 1,
上記マイク口可動部が配置されたマイクロセル (105) は、 上記マイクロ可 動部が配置されていないマイクロセル (104, 112, 1 13, 1 15, 12 2, 135) の大きさの 2倍以上であることを特徴とするマイクロ可動装置。  The microcell (105) with the movable part of the microphone opening is twice the size of the microcell (104, 112, 113, 115, 122, 135) without the movable part. A micro movable device characterized by the above.
4. 請求項 1に記載のマイクロ可動装置において、 4. The micro movable device according to claim 1,
上記マイクロセル形成部材 (22, 23, 24, 43, 48, 49, 131, 132, 133) に設けられると共に、 上記マイクロセルを互いに連通させる連 通孔 (14, 27, 28, 47, 150, 151, 153) を備えることを特徴 とするマイクロ可動装置。  The microcell forming member (22, 23, 24, 43, 48, 49, 131, 132, 133) and the communication hole (14, 27, 28, 47, 150, 151, 153).
5. 請求項 1に記載のマイク口可動装置において、 5. The microphone opening movable device according to claim 1,
最上層の上記マイクロセル形成部材 (24) の上面に、 上記マイクロセルに連 通する排出孔 (30) が開口していることを特徴とするマイクロ可動装置, The upper surface of the microcell forming member (24) is connected to the microcell. A micro movable device characterized in that the discharge hole (30) through which it passes is open,
6. 請求項 1に記載のマイクロ可動装置において、 6. The micro movable device according to claim 1,
上記複数のマイクロセノレの内の少なくとも 1つ (13, 26, 113, 10 4) は、 充填部材で充填されていることを特徴とするマイクロ可動装置。  A micro movable device characterized in that at least one (13, 26, 113, 104) of the plurality of micro-sensors is filled with a filling member.
7. 請求項 1に記載のマイク口可動装置において、 7. The microphone opening movable device according to claim 1,
上記マイクロセル形成部材 (43, 48) は壁部 (431, 481) と天井部 (432, 482) を有し、 上記壁部 (431, 481) と天井部 (432, 4 82) は電気的に接続されていることを特徴とするマイクロ可動装置。  The microcell forming member (43, 48) has a wall (431, 481) and a ceiling (432, 482), and the wall (431, 481) and the ceiling (432, 482) are electrically connected. A micro movable device, wherein the micro movable device is connected to the micro movable device.
8. 請求項 1に記載のマイク口可動装置において、 8. The microphone opening movable device according to claim 1,
最上層の上記マイクロセル形成部材 (24, 49) は、 下層の上記マイクロセ ル形成部材 (23, 48) と電気的に絶縁されていることを特徴とするマイクロ 可動装置。  The micro movable device, wherein the micro cell forming member (24, 49) in the uppermost layer is electrically insulated from the micro cell forming member (23, 48) in the lower layer.
9. 請求項 1に記載のマイクロ可動装置において、 9. The micro movable device according to claim 1,
上記マイク口セル形成部材 (22, 23, 24, 43 , 48, 49) は、 一体 に形成された壁部 (431, 481) と天井部 (432 , 482) を有すること を特徴とするマイクロ可動装置。  The micro movable cell forming member (22, 23, 24, 43, 48, 49) has a wall part (431, 481) and a ceiling part (432, 482) formed integrally. apparatus.
10. 請求項 1に記載のマイクロ可動装置において、 10. The micro movable device according to claim 1,
上記マイクロ可動部が配置されたマイクロセル (44, 105) の周囲に配置 されたマイクロセル (45, 46, 122, 135) は、 充填部材が充填されて いなくて中空であることを特徴とするマイクロ可動装置。  The microcells (45, 46, 122, 135) arranged around the microcells (44, 105) in which the micro movable parts are arranged are characterized in that they are hollow without being filled with a filling member. Micro movable device.
11. 請求項 1に記載のマイクロ可動装置において、 11. The micro movable device according to claim 1,
上記マイク口可動部が配置されたマイク口セル (44, 105) の上側のマイ クロセル (46, 122, 135, ) は、 充填部材が充填されていなくて中空で あることを特徴とするマイクロ可動装置。 The microcells (46, 122, 135,) above the microphone port cells (44, 105) in which the above-mentioned microphone port movable parts are arranged are not filled with a filling member and are hollow. A micro movable device, comprising:
1 2. 請求項 1に記載のマイク口可動装置において、 1 2. The microphone opening movable device according to claim 1,
上記マイクロ可動部が配置されたマイクロセル (44, 1 05) の周囲に配置 されたマイクロセノレ (1 1 3) は、 充填部材で充填されていることを特徴とする マイクロ可動装置。  A micro movable device characterized in that the micro cell (1 13) arranged around the micro cell (44, 105) in which the micro movable portion is arranged is filled with a filling member.
1 3. 請求項 1 0に記載のマイクロ可動装置において、 1 3. The micro movable device according to claim 10, wherein
上記中空のマイクロセル (45, 46) の周囲に配置されたマイクロセル (5 3, 54) は、 充填部材で充填されていることを特徴とするマイクロ可動装置。  A micro movable device characterized in that the micro cells (53, 54) arranged around the hollow micro cells (45, 46) are filled with a filling member.
14. 請求項 1 2に記載のマイクロ可動装置において、 14. The micro movable device according to claim 12,
上記充填部材は、 上記マイクロセル形成部材 (43, 49, 1 32) を構成す る材料よりも熱膨張率が小さい材料からなることを特徴とするマイクロ可動装置。  The micro movable device, wherein the filling member is made of a material having a smaller coefficient of thermal expansion than a material constituting the micro cell forming member (43, 49, 132).
1 5. 請求項 1 3に記載のマイクロ可動装置において、 1 5. The micro movable device according to claim 13,
上記充填部材は、 上記マイクロセル形成部材 (43, 49, 1 32) を構成す る材料よりも熱膨張率が小さい材料からなることを特徴とするマイクロ可動装置。  The micro movable device, wherein the filling member is made of a material having a smaller coefficient of thermal expansion than a material of the micro cell forming member (43, 49, 132).
1 6. 請求項 1に記載のマイク口可動装置において、 1 6. The microphone opening movable device according to claim 1,
互いに分離された複数の上記マイクロセル形成部材 (1 3 3 a, 1 3 3 b, 1 33 c) 力 同一のレベルに位置していることを特徴とするマイクロ可動装置。  A plurality of the micro cell forming members (133a, 133b, 133c) separated from each other. Force A micro movable device characterized by being located at the same level.
1 7. 請求項 1に記載のマイクロ可動装置において、 1 7. The micro movable device according to claim 1,
上記マイクロ可動部 (4 1, 10 1) は、 高融点金属の窒化物を含む材料から なることを特徴とするマイクロ可動装置。  The micro movable device (41, 101) is made of a material containing a nitride of a high melting point metal.
1 8. 請求項 1に記載のマイク口可動装置において、 1 8. The microphone opening movable device according to claim 1,
上記マイクロセル开成部材 (22, 23, 24, 43, 48, 49, 1 3 1, 132, 133) は、 高融点金属の窒化物を含む材料からなることを特徴とする マイクロ可動装置。 The above microcell forming members (22, 23, 24, 43, 48, 49, 131, 132, 133) are micro movable devices made of a material containing a nitride of a high melting point metal.
19. 請求項 17に記載のマイクロ可動装置において、 19. The micro movable device according to claim 17,
上記マイクロ可動部 (41, 101) は、 内部残留応力が異なる 2つ以上の層 で形成されていることを特徴とするマイクロ可動装置。  The micro movable device, wherein the micro movable portion (41, 101) is formed of two or more layers having different internal residual stresses.
20. 請求項 18に記載のマイク口可動装置において、 20. The microphone opening movable device according to claim 18,
上記マイクロセノ 成部材 (22, 23, 24, 43, 48, 49, 131, 132, 133) は、 内部残留応力が異なる 2つ以上の層で形成されていること を特徴とするマイクロ可動装置。  A micro movable device characterized in that the microseno component (22, 23, 24, 43, 48, 49, 131, 132, 133) is formed of two or more layers having different internal residual stresses.
21. 請求項 17に記載のマイク口可動装置において、 21. The microphone opening movable device according to claim 17,
上記マイクロ可動部 (41, 101) は、 高融点金属からなる層と、 上記窒化 物からなる層とを含むことを特徴とするマイクロ可動装置。  The micro movable device (41, 101), comprising: a layer made of a high melting point metal; and a layer made of the nitride.
22. 請求項 18に記載のマイクロ可動装置において、 22. The micro movable device according to claim 18, wherein
上記マイクロセル形成部材 (22, 23, 24, 43, 48, 49, 131, 132, 133) は、 高融点金属からなる層と、 上記窒化物からなる層とを含む ことを特徴とするマイクロ可動装置。  The micro cell forming member (22, 23, 24, 43, 48, 49, 131, 132, 133) includes a layer composed of a high melting point metal and a layer composed of the nitride. apparatus.
PCT/JP2003/012664 2002-10-03 2003-10-02 Micro movable device WO2004031070A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003271081A AU2003271081A1 (en) 2002-10-03 2003-10-02 Micro movable device
JP2004541276A JP4312717B2 (en) 2002-10-03 2003-10-02 Micro movable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-290780 2002-10-03
JP2002290780 2002-10-03

Publications (1)

Publication Number Publication Date
WO2004031070A1 true WO2004031070A1 (en) 2004-04-15

Family

ID=32063822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012664 WO2004031070A1 (en) 2002-10-03 2003-10-02 Micro movable device

Country Status (3)

Country Link
JP (1) JP4312717B2 (en)
AU (1) AU2003271081A1 (en)
WO (1) WO2004031070A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066178A (en) * 2004-08-26 2006-03-09 Nippon Telegr & Teleph Corp <Ntt> Electrostatic driving switch and manufacturing method of same
JP2006263902A (en) * 2005-02-25 2006-10-05 Hitachi Ltd Integrated micro electromechanical system, and manufacturing method thereof
JP2007210083A (en) * 2006-02-13 2007-08-23 Hitachi Ltd Mems element and its manufacturing method
JP2007222956A (en) * 2006-02-21 2007-09-06 Seiko Epson Corp Mems device and manufacturing method of mems device
JP2008118264A (en) * 2006-11-01 2008-05-22 Seiko Epson Corp Tuning-fork vibrator and its manufacturing method
JP4838149B2 (en) * 2005-01-13 2011-12-14 パナソニック株式会社 Torsional resonator and filter using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529279A (en) * 1994-08-24 1996-06-25 Hewlett-Packard Company Thermal isolation structures for microactuators
US6354697B1 (en) * 1998-06-30 2002-03-12 Ricoh Company, Ltd. Electrostatic typeinkjet head having a vent passage and a manufacturing method thereof
EP1199696A1 (en) * 2000-03-27 2002-04-24 Ngk Insulators, Ltd. Display device and method of manufacture thereof
EP1228998A2 (en) * 2001-02-03 2002-08-07 Robert Bosch Gmbh Micromechanical device and process for the manufacture of a micromechanical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529279A (en) * 1994-08-24 1996-06-25 Hewlett-Packard Company Thermal isolation structures for microactuators
US6354697B1 (en) * 1998-06-30 2002-03-12 Ricoh Company, Ltd. Electrostatic typeinkjet head having a vent passage and a manufacturing method thereof
EP1199696A1 (en) * 2000-03-27 2002-04-24 Ngk Insulators, Ltd. Display device and method of manufacture thereof
EP1228998A2 (en) * 2001-02-03 2002-08-07 Robert Bosch Gmbh Micromechanical device and process for the manufacture of a micromechanical device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066178A (en) * 2004-08-26 2006-03-09 Nippon Telegr & Teleph Corp <Ntt> Electrostatic driving switch and manufacturing method of same
JP4494130B2 (en) * 2004-08-26 2010-06-30 日本電信電話株式会社 Manufacturing method of electrostatic drive switch
JP4838149B2 (en) * 2005-01-13 2011-12-14 パナソニック株式会社 Torsional resonator and filter using the same
JP2006263902A (en) * 2005-02-25 2006-10-05 Hitachi Ltd Integrated micro electromechanical system, and manufacturing method thereof
JP4724488B2 (en) * 2005-02-25 2011-07-13 日立オートモティブシステムズ株式会社 Integrated microelectromechanical system
JP2007210083A (en) * 2006-02-13 2007-08-23 Hitachi Ltd Mems element and its manufacturing method
JP2007222956A (en) * 2006-02-21 2007-09-06 Seiko Epson Corp Mems device and manufacturing method of mems device
JP2008118264A (en) * 2006-11-01 2008-05-22 Seiko Epson Corp Tuning-fork vibrator and its manufacturing method

Also Published As

Publication number Publication date
JPWO2004031070A1 (en) 2006-02-02
JP4312717B2 (en) 2009-08-12
AU2003271081A1 (en) 2004-04-23

Similar Documents

Publication Publication Date Title
CN100546178C (en) Make the method and the piezoelectric thin film device of piezoelectric thin film device
KR100477851B1 (en) Piezoelectric resonator, piezoelectric filter, duplexer, communication apparatus, and method for manufacturing piezoelectric resonator
CN108173525A (en) Rf-resonator and wave filter
US6635519B2 (en) Structurally supported thin film resonator and method of fabrication
JP4688070B2 (en) Piezoelectric thin film resonator, piezoelectric thin film device, and manufacturing method thereof
JP4492821B2 (en) Piezoelectric element
CN108259020A (en) The method for manufacturing rf-resonator and wave filter
JP2004312657A (en) Thin film bulk acoustics resonator element and its manufacturing method
JP2005198233A (en) Fbar device and manufacturing method thereof
CN104242862B (en) Acoustic wave device
CN101635562A (en) Acoustic wave device, method of manufacturing acoustic wave device and transmission apparatus
JP2008188711A (en) Semiconductor device manufacturing method
KR20190139395A (en) Acoustic resonator pakage and method for fabricating the same
US20180351534A1 (en) Acoustic resonator and method for manufacturing the same
JP2009072845A (en) Method for manufacturing semiconductor device
KR101942734B1 (en) Bulk-acoustic wave resonator
WO2004088840A1 (en) Piezoelectric thin film device and method of producing the same
KR102449355B1 (en) Acoustic resonator and method for fabricating the same
WO2004031070A1 (en) Micro movable device
US7658858B2 (en) Band filter using film bulk acoustic resonator and method of fabricating the same
CN110620563A (en) Method for improving preparation yield of FBAR (film bulk acoustic resonator) filter and FBAR filter
TW202119757A (en) Bulk acoustic wave resonator
WO2023274343A1 (en) Filter and fabrication method therefor
JP2006201158A (en) Sensor
JP2007123494A (en) Variable capacitance capacitor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004541276

Country of ref document: JP

122 Ep: pct application non-entry in european phase