WO2004029532A1 - ヒンジ機構、流路可動型伝熱装置および流路可動型ヒートパイプ - Google Patents

ヒンジ機構、流路可動型伝熱装置および流路可動型ヒートパイプ Download PDF

Info

Publication number
WO2004029532A1
WO2004029532A1 PCT/JP2003/012149 JP0312149W WO2004029532A1 WO 2004029532 A1 WO2004029532 A1 WO 2004029532A1 JP 0312149 W JP0312149 W JP 0312149W WO 2004029532 A1 WO2004029532 A1 WO 2004029532A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
hollow member
hollow
flow path
heat pipe
Prior art date
Application number
PCT/JP2003/012149
Other languages
English (en)
French (fr)
Inventor
Takahiro Shimura
Masaaki Yamamoto
Yuichi Kimura
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to JP2004539498A priority Critical patent/JP4297364B2/ja
Publication of WO2004029532A1 publication Critical patent/WO2004029532A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
    • F28F2280/10Movable elements, e.g. being pivotable
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/203Heat conductive hinge

Definitions

  • the present invention relates to a hinge mechanism with a small heat resistance, a flow path movable heat transfer device that transports heat from a high temperature portion to a low temperature section with a small heat resistance, and a flow path movable heat pipe.
  • FIG. 19 shows a conventional hinge mechanism.
  • the cooling means or the heating element rotates and moves along a predetermined rotation axis. That is, two heat pipes 1 3 5 and 1 5 5 are connected by a hinge mechanism 1 5 2, each heat pipe is held by the hinge mechanism, and one heat pipe is connected to the other through the hinge mechanism. Heat transferred to heat pipe. That is, heat is transported between the heat pipe and the hinge mechanism by thermal contact.
  • the hinge mechanism can rotate the heat pipe around a specified rotation axis while maintaining thermal contact with the heat pipe.
  • the hinge mechanism allows the LCD display to be opened and closed while the CPU generates heat. Are transported to the LCD display side.
  • Japanese Utility Model Application No. 6 2-1 6 0 1 7 9 discloses a method of forming a group on the inner wall of two pipes and bringing the two groups into contact with each other together with connector connection. It is not easy to stably contact the groups formed on the inner walls of the two pipes, and there may be no continuity between the grooves in the connector.
  • the heat generated by the CPU is transported by heat contact between the heat pipe and the hinge mechanism and heat conduction in the hinge mechanism.
  • Zero-type hydraulic fluid impedes the flow of hydraulic fluid vapor, causing heat pipe heat transfer performance to drop.
  • hydraulic fluid circulation may cease and the heat pipe function may cease.
  • An object of the present invention is to provide a hinge mechanism, a flow path movable heat transfer device, and a flow path movable heat pipe having a low thermal resistance. Disclosure of the invention
  • the inventor has intensively studied to solve the above-described conventional problems.
  • the heat pipe and the rotatable hollow connector are connected in an airtight manner, a part of the connector is fixed, and the other part is rotated with a predetermined sliding resistance.
  • a mechanism can be provided. That is, one set of connectors that can be connected in an airtight manner, each of which has a hollow communication portion corresponding to the inside, one of which is fixed at a predetermined position and the other of which can be rotated around an axis, and one set It has been found that the thermal resistance is remarkably reduced by using a hinge mechanism that is hermetically connected to each of the connectors and includes a hollow member that communicates with the communicating portion.
  • the present invention has been made on the basis of the above-described research results.
  • the first aspect of the hinge mechanism of the present invention includes hollow communication portions respectively corresponding to the inside thereof, and one of them is in a predetermined position. Airtight connection that is fixed and can be rotated around the other axis
  • the hinge mechanism includes a pair of connectors and a hollow member that is airtightly connected to each of the pair of connectors and communicates with the communication portion.
  • the hollow member is composed of a rod-like heat pipe, the one of the pair of connectors is fixed to a keyboard part or a display part, and the keyboard part and the display part are opened and closed. It is a hinge mechanism that controls
  • a third aspect of the hinge mechanism according to the present invention is a hinge mechanism in which the one set of connectors rotates around an axis with a predetermined sliding resistance.
  • a first hollow member that is sealed at one end and is thermally connected to a heat dissipation device
  • a second hollow member whose one end is sealed and thermally connected to the object to be cooled; and a hollow communicating portion which is hermetically connected to the other end of the first hollow member And a corresponding hollow communication portion that is hermetically connected to the other end of the second hollow member and is airtightly connectable to the first connector portion.
  • a second connector portion wherein the first connector or the second connector is fixed at a predetermined position, and the other is rotatable around an axis
  • a flow path movable heat transfer device comprising: the first hollow member; the first connector portion; the second hollow member; and a working fluid sealed in a sealed container formed by the second connector. is there.
  • the closed container formed by the first hollow member, the first connector portion, the second hollow member, and the second connector has a closed loop. This is a flow path movable heat transfer device.
  • each of the two sets of sealed containers is fixed in a predetermined position, and each of the first connectors has a predetermined axis around the axis of the corresponding second connector. It is a flow path movable heat transfer device that rotates with sliding resistance.
  • Each second connector force is fixed at a predetermined position, and each first connector has a predetermined sliding resistance around the axis of the corresponding second connector.
  • At least two sets formed by the first hollow member, the first connector portion, the second hollow member, and the second connector are provided.
  • the first hollow members of each of the at least two sets of closed containers are connected in a physically connected manner, and the second hollow members are connected in a physically connected manner.
  • Each of the second connectors is fixed at a predetermined position, and each of the first connectors has a predetermined sliding resistance around the axis of the corresponding second connector. This is a rotating flow path type heat transfer device.
  • a fluid circulation device is further connected to each of the second hollow members forming the closed loop. Device.
  • This is a flow path movable heat transfer device that is carbon dioxide at a temperature.
  • a ninth aspect of the flow path movable heat transfer apparatus of the present invention is the flow path movable heat transfer apparatus, wherein the working fluid is water.
  • a first aspect of the flow path movable heat pipe of the present invention includes a first hollow member thermally connected to the heat radiating means,
  • a second hollow member thermally connected to the object to be cooled
  • a hollow communicating portion connected to the other end of the first hollow member in an airtight manner And a corresponding hollow communication portion that is hermetically connected to the other end of the second hollow member and is airtightly connectable to the first connector portion.
  • a connector composed of a second connector portion and rotatable about an axis;
  • a flow path movable heat pipe provided with a single wick member that passes through the communication portion of the first connector portion and the second connector portion and connects the first hollow member and the second hollow member.
  • the end portion of the wick member positioned on the first hollow member side is positioned at least at the same height as the first connector portion.
  • a third aspect of the flow path movable heat pipe of the present invention is a flow path movable heat pipe in which the wick member is made of a band-shaped mesh.
  • a fourth aspect of the flow path movable heat pipe of the present invention is a flow path movable heat pipe in which the wick member is made of one or more wires.
  • a fifth aspect of the flow path movable heat pipe of the present invention is a flow path movable heat pipe in which the liquefied working fluid wets the wick member in a film shape.
  • FIG. 1 is a view showing one embodiment of the hinge mechanism of the present invention.
  • FIG. 1A is a view showing the assembled hinge mechanism
  • FIG. 1B is an exploded view of the hinge mechanism.
  • FIG. 2 is a diagram illustrating an airtight connection state of the hinge mechanism.
  • FIG. 3 is a diagram for explaining one embodiment of the flow path movable heat transfer device of the present invention.
  • FIG. 4 is a side view of the flow path movable heat transfer device of the present invention according to the embodiment shown in FIG.
  • FIG. 5 is a side view of the flow path movable heat transfer device according to the present invention in the embodiment shown in FIG.
  • FIG. 6 is a view for explaining another embodiment of the flow path movable heat transfer device of the present invention.
  • FIG. 7 is a view for explaining another embodiment of the flow path movable heat transfer device of the present invention.
  • FIG. 8 is a diagram for explaining another embodiment of the flow path movable heat transfer device of the present invention.
  • FIG. 9 is a view for explaining another embodiment of the flow path movable heat transfer device of the present invention.
  • FIG. 10 is a view showing one embodiment of the flow path movable heat pipe of the present invention.
  • FIG. 11 is a diagram for explaining a flow path movable heat pipe according to the present invention.
  • FIG. 12 is a diagram for explaining the flow path movable heat pipe of the present invention in which a wick material is partially used.
  • FIG. 13 is a diagram showing one embodiment of the flow path movable heat pipe of the present invention attached to a personal computer.
  • FIG. 14 is a diagram showing only the flow path movable heat pipe in FIG.
  • FIG. 15 is a diagram showing another embodiment of the flow path movable heat pipe of the present invention attached to a personal computer.
  • FIG. 16 is a diagram showing only the flow path movable heat pipe in FIG.
  • Fig. 17 is a diagram illustrating the flow path movable heat pipe used in the experiment.
  • FIG. 18 is a diagram showing an embodiment of the wick material.
  • FIG. 19 shows a conventional hinge mechanism. BEST MODE FOR CARRYING OUT THE INVENTION
  • One aspect of the hinge mechanism of the present invention includes a hollow communication portion corresponding to each inside, one of which is fixed at a predetermined position, and the other is rotatable around an axis, and can be connected in an airtight manner.
  • a hinge mechanism comprising a set of connectors and a hollow member that is airtightly connected to each of the one set of connectors and communicates with the communication portion.
  • the hollow member is formed of a rod-shaped heat pipe
  • the one of the pair of connectors is a first housing part (a keyboard part in a notebook computer as an example) or a second housing. It is fixed to the body part (part of the display when a notebook computer is taken as an example), and controls the opening and closing of the first housing part and the second housing part. Further, the one set of connectors rotates around an axis with a predetermined sliding resistance.
  • FIG. 1 is a view showing one embodiment of the hinge mechanism of the present invention.
  • Figure 1 A shows the assembly It is a figure which shows the standing hinge mechanism.
  • Figure 1B is an exploded view of the hinge mechanism.
  • the hinge mechanism includes a hollow member, for example, a first connector 3 having a hollow communication portion inside which is hermetically connected to one end of a round heat pipe 5, and a hollow A second member 4 having a hollow communicating portion connected hermetically to one end portion of the round heat pipe 6, for example, with the first connector 3 and the second connector 4. It is pivotally and airtightly connected.
  • the first connector 3 having a hollow communication portion inside which is hermetically connected to one end portion of the round heat pipe 5 and one end portion of the round heat pipe 6
  • a second connector 4 having a hollow communication portion inside which is airtightly connected to the inside is connected airtightly so as to be rotatable.
  • the hollow interior of the round heat pipe 5, the hollow communication section of the first connector 3, the hollow interior of the round heat pipe 6, and the hollow communication section of the second connector 4 are airtight. It is communicated to.
  • the first connector 3 and the second connector 4 are hermetically connected so as to be rotatable. Further, a pair of connectors including the first connector 3 and the second connector 4 described above has a predetermined sliding resistance and rotates around the axis. Accordingly, by fixing the first connector or the second connector, the other connector rotates around the axis line with a predetermined sliding resistance, and thus can be used in various ways as a hinge mechanism.
  • FIG. 2 is a diagram illustrating an airtight connection state of the hinge mechanism.
  • the method of hermetically connecting one end of the round heat pipe 5 and the first connector 3 having a hollow communication portion therein is that the working fluid sealed inside is Even if it becomes a low-viscosity gas, it may be connected so that it does not leak outside from the joint, and is not particularly limited.
  • a thread corresponding to the connection surface between one end of the round heat pipe 5 and the first connector 3 having a hollow communication portion inside is formed, and the end of the round heat pipe 5 May be screwed into the first connector 3 and fixed, or may be joined metallically by brazing.
  • the airtight connection between one end of the round heat pipe 6 and the second connector 4 having a hollow communication portion therein is performed by the same method as described above.
  • the first end provided with one end portion of the round heat pipe 5 and a hollow communication portion therein.
  • the connector 3 is fixed and integrally formed, and one end of the round heat pipe 6 and the second connector 4 having a hollow communication portion inside are fixed and integrally formed.
  • the first connector 3 fixed to the heat pipe and the second connector 4 fixed to the heat pipe are rotatably and airtightly connected. That is, the first connector 3 and the second connector 4 are provided with extending portions 7 and 10 having predetermined lengths different from each other in diameter, and the extending portion 10 is inserted into the extending portion 7.
  • the extending portion 10 is composed of a cylindrical portion 8 and a distal end portion 9, and the end portion of the distal end portion 9 is formed larger than the diameter of the cylindrical portion 8 so that the connector can be locked.
  • an O-ring is provided at a predetermined position inside the extending portion 7 to facilitate airtight connection.
  • a plurality of portions where the extending portions 7, 10 are in contact with each other may be provided, such as a plurality of O-rings.
  • a material having low gas permeability is preferable, and for example, butyl rubber, fluorine rubber, hydrin rubber, cuprous sulfonated polyethylene, or the like may be used.
  • the first connector 3 fixed to the heat pipe and the second connector 4 fixed to the heat pipe are rotatably and airtightly connected.
  • the pair of connectors including the first connector 3 and the second connector 4 of the hinge mechanism of the present invention described above to, for example, the keyboard portion or the display portion, the keyboard portion and the display portion Opening and closing can be performed with a predetermined sliding resistance.
  • FIG. 3 is a diagram for explaining one embodiment of the flow path movable heat transfer device of the present invention.
  • the flow path movable heat transfer device according to this aspect includes a first hollow member whose one end is sealed and thermally connected to the heat radiating means, and one end which is sealed to heat the object to be cooled.
  • a second hollow member that is connected to the other, a first connector portion that is hermetically connected to the other end of the first hollow member, and that has a hollow communication portion therein, and a second hollow member
  • the second connector part is airtightly connected to the other end of the first connector part and is airtightly connectable to the first connector part, and has a corresponding hollow communication part inside
  • the first connector or the second connector is Sealed in an airtight container formed by a connector fixed at a predetermined position and the other being rotatable around an axis, a first hollow member, a first connector portion, a second hollow member, and a second connector. It is a flow-path movable type heat transfer device provided with the working fluid put in.
  • the flow path movable heat transfer device includes a first hollow member whose one end 17 is sealed and thermally connected to the heat radiating means 19, for example, a round shape A heat pipe 16 and a second hollow member whose one end 18 is sealed and thermally connected to the object 20 to be cooled, for example, a round heat pipe 15 and a first hollow member.
  • the second connector portion 13 is airtightly connected to the other end of the first connector portion 14 and is airtightly connectable to the first connector portion 14 and has a corresponding hollow communication portion inside.
  • the first connector 14 or the second connector 13 is fixed at a predetermined position, and the other is rotatable around the axis, and the round heat pipes 16 and 16 are the first hollow members described above.
  • a working fluid is sealed in a sealed container formed by the connector portion 14, the round heat pipe 15 that is the second hollow member, and the second connector 13.
  • the heat pipe may be refracted in a predetermined direction at a predetermined position so as to match the relative positional relationship between the heat dissipating means 19 and the object 20 to be cooled.
  • FIG. 4 and 5 are side views of the flow path movable heat transfer device of the present invention according to the embodiment shown in FIG.
  • the second connector 13 is fixed, and the first connector 14 can be rotated about the axial direction.
  • FIG. 4 shows a state where the first connector 14 and the second connector 1 3 force heat pipe 1 6 and the heat pipe 15 are not rotated. That is, the object to be cooled 15 and the heat radiation means 19 are located on the same horizontal plane.
  • FIG. 5 shows a state in which the first connector 14 is rotating with respect to the second connector 13 in the direction of the arrow. That is, an angle ⁇ is formed between the heat dissipating means 19 and the heat pipe 16 force to be cooled 20 and the heat pipe 15.
  • the heat radiation means is arranged on the display side, and the second connector 13 is fixed on the display side,
  • the hinge mechanism shown in the technology it is possible to provide a hinge mechanism with low thermal resistance for personal computers.
  • the hydraulic fluid in the heat pipe 15 evaporates and the second connector 1 3, Through the hollow communicating portion of the first connector 1 4, moves to the heat pipe 1 6, and the heat dissipation by the heat release means, again returns to the liquid phase, the first connector 1 4, the second connector 1 3 Pass through the hollow communication part and return to the heat pipe 15.
  • the first connector 14 and the second connector 13 are formed of hollow communication portions, the movement of the gas-phase and liquid-phase working fluid is easy, and the thermal resistance is extremely small.
  • the temperature of the portion connected to the connector can be kept low by appropriately selecting the material of the first connector 14 and the second connector 13, for example, by using a material having low thermal conductivity. .
  • FIG. 6 is a view for explaining another embodiment of the flow path movable heat transfer device of the present invention.
  • the flow path movable heat transfer device of this aspect includes two sets of sealed containers formed by the first hollow member, the first connector portion, the second hollow member, and the second connector, respectively, described above.
  • the second connector force S of each of the two sealed containers is fixed in place, and each first connector rotates with a predetermined sliding resistance around the axis of the corresponding second connector, This is a flow path movable heat transfer device.
  • the first sealed container a round-shaped heat pipe 2 6 as a first hollow member having one end portion is thermally connected to the sealed heat dissipating means 2 9, round as the first hollow member
  • a first connector part 2 4 having a hollow communication part inside which is connected to the other end of the heat pipe 26 6 in an airtight manner, and a corresponding hollow which can be connected to the first connector part 24 in an airtight manner.
  • a second connector portion 23 having an internal communication portion therein, and a round heat pipe 25 as a second hollow member whose one end is sealed and thermally connected to an object to be cooled It has become.
  • the second sealed container has a round heat pipe 36 as a first hollow member sealed at one end and thermally connected to the heat dissipation means 29, and a round shape as a first hollow member.
  • a first connector part 3 4 having a hollow communication part inside which is hermetically connected to the other end of the heat pipe 36, and a first medium part 3 4 which can be connected to the first connector part 3 4 in an airtight manner.
  • Second connector part 3 3 having an empty communication part inside, and round heat pipe 35 as a second hollow member sealed at one end and thermally connected to the object to be cooled 3 5 It is made up of.
  • Two sets of connectors namely the first connector part 2 4, the second connector part 2 3, and The first connector part 3 4 and the second connector part 3 3 are rotatable around the same rotation axis.
  • the first connector part and the second connector part are hermetically connected and can be rotated with a predetermined sliding resistance.
  • the working fluid undergoes heat transfer while undergoing phase change in each of the first sealed container and the second sealed container including the rotatable connector. That is, the working fluid in the two heat pipes 25, 3 5 evaporates due to the heat of the object to be cooled, so that the second connector 2 3, 3 3, the first connector 2 4, 3 4 has a hollow communication.
  • the first connector 2 4, 3 4 and the second connector 2 3, 3 3 are formed of hollow communication parts, so that the movement of the gas-phase and liquid-phase working fluid is easy. The heat resistance is extremely small.
  • FIG. 7 is a view for explaining another embodiment of the flow path movable heat transfer device of the present invention.
  • the flow path movable heat transfer device of this aspect includes at least two sets of sealed containers formed by the first hollow member, the first connector portion, the second hollow member, and the second connector, respectively.
  • the first hollow members of at least two sets of sealed containers are integrally connected to each other, each second connector is fixed at a predetermined position, and each first connector corresponds to each other.
  • This is a flow path movable heat transfer device that rotates with a predetermined sliding resistance around the axis of the second connector.
  • two sets of sealed containers of the form shown in FIG. 6 are integrally connected and connected by a heat pipe which is a common first hollow member.
  • a heat pipe which is a common first hollow member.
  • one end of the round heat pipe 46 as the first hollow member thermally connected to the heat radiating means 59 is connected to the first connector 44.
  • the other end is hermetically connected to the first connector 54.
  • the round heat pipe as the first hollow member is an efficient heat dissipation means. In order to dissipate heat, it is refracted into a predetermined shape and thermally connected to the heat dissipating means.
  • the first connectors 44 4 and 5 4 each having a hollow communication portion, in which the round heat pipes described above are connected in an airtight manner, are airtight and rotatable, respectively, and corresponding hollow communication portions. Are connected to the second connectors 4 3 and 5 3 provided inside. Each end of the second connectors 4 3 and 5 3 has a circular heat pipe 4 5, 5 5 as a second hollow member sealed at one end and thermally connected to the object to be cooled. Connected airtight.
  • the two sets of connectors that is, the first connector 4 4, the second connector 4 3, the first connector 5 4, and the second connector 5 3 are rotatable about the same rotation axis.
  • Either one of the first connector 4 4 or 5 4 or the second connector 4 3 or 5 3, for example, the first connector 4 4 or 5 4 is fixed to the display side where the heat dissipation means is arranged, for example.
  • the keyboard side the display side can be opened and closed, and maintained in place.
  • the first connector and the second connector are hermetically connected and can be rotated with a predetermined sliding resistance.
  • the working fluid is thermally transferred while changing the phase inside the closed container including the rotatable connector. That is, the heat of the object to be cooled 60 evaporates the working fluid in the two heat pipes 45, 55, and the hollow shape of the second connectors 4 3, 5 3, the first connectors 4 4, 5 4 , Move to the heat pipe 4 6, dissipate heat by the heat dissipating means 5 9, return to the liquid phase again, the first connector 4 4, 5 4, the second connector 4 3, 5 3 hollow After passing through the communication section, it returns to the heat pipes 45 and 55.
  • the first connector 4 4, 5 4 and the second connector 4 3, 5 3 are formed of hollow communication parts, so that the movement of the working fluid in the gas phase and the liquid phase is easy, Thermal resistance is extremely small.
  • FIG. 8 is a diagram for explaining another embodiment of the flow path movable heat transfer device of the present invention.
  • the flow path movable heat transfer device includes two sets of sealed containers formed by the first hollow member, the first connector portion, the second hollow member, and the second connector, respectively.
  • 1Hollow members are connected in a physical manner, and each second hollow member is connected in a physical manner to form a closed loop, and each second connector is fixed in place.
  • Each of the first connectors is a flow path movable heat transfer device that rotates with a predetermined sliding resistance around the axis of the corresponding second connector. That is, as shown in FIG. 8, two sets of airtight containers of the form shown in FIG.
  • a heat pipe which is a common first hollow member, and a common second hollow space is connected.
  • a heat pipe as a member.
  • one end of the round heat pipe 66 as the first hollow member thermally connected to the heat radiating means 69 is connected to the first connector 64.
  • the other end is hermetically connected to the first connector 74.
  • the round heat pipe as the first hollow member is refracted into a predetermined shape and thermally connected to the heat dissipating means so that heat can be efficiently dissipated by the heat dissipating means. .
  • the first connectors 64 4 and 7 4 each having a hollow communication portion connected to the above-described round heat pipe in an air-tight manner are air-tight and rotatable, respectively, and corresponding hollow communication portions. Are connected to the second connectors 6 3 and 7 3 provided inside.
  • Second connectors 6 3 and 7 3 provided inside.
  • a round heat pipe 65 as a second hollow member 65 is airtightly connected to 63, and a round heat pipe 65 as a second hollow member is connected to the second connector 73. The other end of each is airtightly connected.
  • the bent portion of the round heat pipe as the second hollow member is thermally connected to the object to be cooled 70.
  • two sets of connectors that is, the first connector 6 4, the second connector 6 3, the first connector 7 4, and the second connector 7 3 rotate the same. It can be rotated around an axis.
  • the first connector and the second connector are hermetically connected and can be rotated with a predetermined sliding resistance.
  • the working fluid is thermally transferred while undergoing a phase change inside a sealed container including a rotatable connector. That is, the object to be cooled
  • the hydraulic fluid in the round heat pipe 65 is evaporated and passes through the hollow communication parts of the second connectors 6 3 and 7 3 and the first connectors 6 4 and 7 4.
  • 6 Moves to 6 and dissipates heat by the heat dissipating means 6 9, returns to the liquid phase again, passes through the hollow communication parts of the first connectors 6 4, 7 4 and the second connectors 6 3, 7 3, Reflux to 65.
  • the first connector 6 4, 7 4 and the second connector 6 3, 7 3 are formed of hollow communication parts, so that the movement of the gas phase and liquid phase working fluid is easy, Thermal resistance is extremely small.
  • FIG. 9 is a view for explaining another embodiment of the flow path movable heat transfer device of the present invention.
  • the flow path movable heat transfer device of this aspect includes the above-described first hollow member, first connector portion, second hollow member, and two sets of sealed containers formed by the second connector.
  • the first hollow members of the two sets of sealed containers are connected in a body-like manner, and a fluid circulation device is further connected to each second hollow member to form a closed loop.
  • the second connector is fixed at a predetermined position, and each first connector rotates with a predetermined sliding resistance around the axis of the corresponding second connector. is there.
  • two sets of sealed containers of the form shown in FIG. 6 are connected integrally and connected by a heat pipe which is a common first hollow member, and the second hollow member
  • a fluid circulation device is connected to one end of the heat pipe to form a closed loop as a whole.
  • one end of the round heat pipe 96 as the first hollow member thermally connected to the heat radiating means 99 is hermetically sealed to the first connector 84. And the other end is airtightly connected to the first connector 94.
  • the round heat pipe as the first hollow member is refracted into a predetermined shape and thermally connected to the heat radiating means so that the heat radiating means can efficiently radiate heat.
  • the first connectors 84 4 and 9 4 each having a hollow communication portion connected to the above-described round heat pipe in an air-tight manner are air-tight and turnable, and have corresponding hollow shapes. It is connected to the second connectors 8 3 and 9 3 having communication portions inside.
  • Each end of the second connector 83, 93 has a circular heat pie as a second hollow member whose one end is hermetically connected to the fluid circulation device and is thermally connected to the object to be cooled. 8 8 and 9 5 are connected in an airtight manner.
  • the two sets of connectors that is, the first connector 8 4, the second connector 8 3, the first connector 9 4, and the second connector 9 3 are rotatable about the same rotation axis. 1st connector 8 4, 9 4 or 2nd connector 8 3, 9 3
  • the first connector and the second connector are hermetically connected and can be rotated with a predetermined sliding resistance.
  • the fluid circulation device is composed of, for example, a fluid drive device.
  • the fluid circulation device is connected to an object to be cooled that circulates in the closed loop by discharging the working fluid entering from one side and the hollow member to which the heat radiation means is thermally connected. Then, a closed loop is formed, and the enclosed working fluid is driven to circulate in the closed loop.
  • the fluid drive device is composed of, for example, a Biston type pump having a working fluid suction port and a working fluid discharge port.
  • the fluid drive unit may include an internal fan and a fan unit that drives the working fluid by the internal fan.
  • the fluid drive device may include an internal fan of a type that drives the fan by a magnetic force from the outside. That is, a magnetic body is attached to the internal fan, and a predetermined interval is provided outside the plurality of electromagnets, and the internal fans are guided by energizing the electromagnets in a predetermined order.
  • a working fluid made of magnetic fluid may be used, and the external drive device may use a magnetic field.
  • the working fluid is a dielectric fluid and the external drive uses an electric field. That is, a plurality of electromagnets are arranged on the outer surface, and the magnetite is energized in a predetermined order, the energization is stopped, and the working fluid is forcibly circulated.
  • the working fluid is thermally transferred while phase-changing inside the closed container including the rotatable connector. That is, the heat of the object to be cooled 60 evaporates the working fluid in the fluid circulation device, and the gas-phase working fluid passes through the hollow communication portions of the second connector 8 3 and the first connector 84.
  • the first connector 8 4, 9 4 and the second connector 8 3, 9 3 are formed of a hollow communication portion, so that the movement of the gas-phase and liquid-phase working fluid is easy, Thermal resistance is extremely small.
  • Water may be circulated in the closed loop described above and circulated.
  • the material and working fluid of the pipe are not particularly limited. For example, copper-water, aluminum-cyclopentane, etc. A combination of these is conceivable.
  • Heat radiation means such as heat sinks and fins are thermally connected by appropriate means such as grease, heat receiving block, heat receiving plate, brazing material, solder material.
  • one aspect of the flow path movable heat pipe of the present invention includes a first hollow member thermally connected to the heat radiating means,
  • a second hollow member thermally connected to the object to be cooled
  • a first connector portion having a hollow communication portion connected to the other end portion of the first hollow member and hermetically connected to the other end portion of the second hollow member;
  • a connector that is airtightly connectable to the first connector part, and that has a corresponding hollow communication part inside, and a second connector part provided therein, and a connector that is rotatable about an axis,
  • the first hollow member, the first connector part, the second connector part, and a working fluid sealed in a sealed container formed by the second hollow member; and the first of the sealed container A flow path movable heat pipe provided with a single wick member that passes through the communication portion of the connector portion and the second connector portion and connects the first hollow member and the second hollow member.
  • an end portion of the above-described wick member positioned on the first hollow member side is positioned at least equal to or higher than the first connector portion.
  • the wick member described above is made of a belt-like mesh. Further, the wick member described above may be composed of one or more wires.
  • FIG. 10 is a view for explaining one embodiment of the flow path movable type heat pipe of the present invention.
  • the flow path movable heat pipe of the present invention is thermally connected to the first hollow member 16 that is thermally connected to the heat dissipating means 19 and the object to be cooled 20.
  • a second connector part 13 having a hollow communication part therein, a connector rotatable around an axis, a first hollow member 16, a first connector part 14, a second connector part 1 3 and the working fluid sealed in the sealed container formed by the second hollow member 15 and the communication part of the first connector part 14 and the second connector part 13 of the sealed container. And a single wick member 11 that connects the first hollow member 16 and the second hollow member 15.
  • a wick material capable of absorbing the working fluid is inserted in the entire internal flow path in the above-described sealed container.
  • copper pipes are used as the first and second hollow members, copper pipes are similarly used as the first connector portion 14 and the second connector portion 13, and water is used as the working fluid.
  • the wick material for example, an oxidized copper mesh is used.
  • Figure 18 shows the wick material.
  • a wick material is formed by overlapping a plurality of strip meshes.
  • the wick material may be formed by folding a single band mesh and laminating it upward.
  • a groove is formed on the inner wall of the hollow member, or the inner peripheral surface of the hollow member is oxidized to improve the wettability. Also good.
  • a single wick material independent of the first hollow member, the second hollow member, the first connector portion, and the second connector portion is used.
  • the single wick material may be one or more.
  • the first hollow member 16 and the second hollow member 15 are connected to each other through the communicating portion of the first connector portion 14 and the second connector portion 13 by an independent single wick material. .
  • the independent wick material in this way, when the groove is formed on the inner wall surface of the two pipes and rotated, the hydraulic fluid stagnates at the joint surface of the two pipes, In the worst case, it is possible to solve the conventional problem that the working fluid circulation is completely stopped and the heat pipe function is stopped (see Japanese Utility Model Application No. Sho 62-1-6 0 1 7 9).
  • the wettability inside the connector is not high, so it is more important to improve the wettability of the wick material than a normal heat pipe that is not movable.
  • the cooling means 1 9 is always above the connectors 1 4 and 1 3 If it is located, the working fluid can move without stagnation due to gravity.
  • the working fluid can move without stagnation due to gravity.
  • FIG. 13 is a diagram showing one embodiment of the flow path movable heat pipe of the present invention attached to a personal computer.
  • FIG. 14 is a view showing only the flow path movable heat pipe in FIG.
  • the connectors 14 and 13 are installed coaxially with the hinge portion 141 that connects the display 140 and the keyboard 130 of the notebook personal computer.
  • the second hollow member 1 15 is thermally connected to the CPU 120.
  • the second hollow member 1 1 5 may be flattened at the part that is thermally connected to the CPU.
  • the second hollow member 1 15 may be bent according to the difference in height between the hinge part 14 1 of the notebook computer and the CPU.
  • a heat sink 1 19 such as an aluminum plate is installed on the back of the display 140, and the first hollow member 1 16 is brought into contact with the aluminum heat sink so as to be arranged on the diagonal line of the ananolum heat sink.
  • the first hollow member 116 may be flattened to improve thermal contact with the heat sink.
  • the wick material is arranged in the entire area of the sealed container. As described above, the heat generated from the CPU can be efficiently dissipated to the display side.
  • FIG. 15 is a diagram showing another embodiment of the flow path movable heat pipe of the present invention attached to a personal computer.
  • FIG. 16 is a diagram showing only the flow path movable heat pipe in FIG.
  • the connectors 14 and 13 are installed on the same axis as the hinge portion 141 that connects the display 140 and the keyboard 130 of the notebook computer.
  • the second hollow member 1 1 5 is thermally connected to the CPU 1 20.
  • the second hollow member 1 1 5 may be flattened at the part that is thermally connected to the CPU.
  • the second hollow member 1 15 may be bent according to the difference in height between the hinge portion 14 1 of the notebook computer and the CPU.
  • Display 140 Install a heat sink 1 1 9 such as an aluminum plate on the back, and bend the first hollow member 1 1 6 to meander and bring it into contact with the aluminum heat sink.
  • a part of the first hollow member 1 16 may be flattened to improve the thermal contact with the heat sink.
  • the wick material is arranged in the entire area of the sealed container.
  • FIG. 17 7A A movable flow path heat pipe as shown in Fig. 17B, with the first hollow member 16 standing vertically as shown in Fig. 17B, and the connectors 14 and 13 and the second hollow member 15 are The experiment was conducted in a horizontal position.
  • hollow members 16 and 15 copper pipes with an outer diameter of ⁇ 6 mm and grooves formed inside were used, and water was used as the working fluid.
  • the wick material has a structure as shown in Fig. 18B, in which the mesh is folded and layered, and the oxide is removed to improve the wettability and reduce the oxide.
  • the heat pipe did not function when heated for 3 O mm for 8 W (ie, the temperature difference in the heat pipe became 40 ° C or more).
  • the connector for example, a force bra (trade name) known as a connector that connects air piping and hydraulic pump piping can be used.
  • the connector is not limited to this, and any connector that can rotate while maintaining hermeticity may be used.
  • the air is discharged from the heat pipe and the working fluid is injected from the end of the heat pipe, injected, and sealed after the injection.
  • a heat transfer device other than a heat pipe that requires a vacuum
  • the contact area may be increased by meandering the hollow member.
  • a plurality of flow paths may be arranged in parallel to increase the contact area.
  • the hollow member and the heat radiating means or the object to be cooled may be in contact with each other through a heat conductive member such as metal.
  • the hollow member is not limited to a pipe, and any hollow member may be used as long as it has a flow path through which a working fluid passes. For example, by using extruded multi-hole pipe and force, cutting and pressing, etc. At least one member including the forming member may be joined by welding or brazing.
  • heat dissipation means Although there is one object to be cooled and one heat dissipation means, multiple units may be installed if necessary.
  • a heat dissipation means a Peltier element, a heat dissipation fin, or the like can be used.
  • connection of the connector into the device may be performed using a fixed part or may be joined by an adhesive.
  • the connector portion is not limited to a member different from the heat pipe as shown in the figure, and may be an integrated type in which one end of the heat pipe is processed into a predetermined shape, for example. That is, one end of the heat pipe may be an integrated type having a connector function.
  • the heat pipe and the rotatable hollow connector are connected in an airtight manner, a part of the connector is fixed, and the other part is rotated with a predetermined sliding resistance.
  • a small hinge mechanism can be provided. Furthermore, by using the hinge mechanism described above, it is possible to provide a heat transfer device having a low thermal resistance and a flow path movable type. Further, by using a single wick member that passes through the communication portion of the first and second connector portions and connects the first hollow member and the second hollow member, the working fluid remains zero in the connector portion. It is possible to provide a flow path movable heat pipe that can prevent stagnation and has low thermal resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 放熱手段に熱的に接続される第1中空状部材と、被冷却物に熱的に接続される第2中空状部材と、第1中空状部材の他方の端部に気密に接続される、内部に中空状の連通部を備えた第1コネクタ部と、第2中空状部材の他方の端部に気密に接続され、第1コネクタ部と気密に接続可能な、対応する中空状の連通部を内部に備えた第2コネクタ部とからなる、軸線の回りに回動可能なコネクタと、第1中空状部材、第1コネクタ部、第2コネクタ部、および、第2中空状部材によって形成される密閉容器内に封入される作動流体とを備えた流路可動型ヒートパイプ。

Description

明 細 書 ヒンジ機構、 流路可動型伝熱装置および流路可動型ヒートパイプ 技術分野
本発明は、 小さい熱抵抗のヒンジ機構、 小さい熱抵抗で高温部から低温部へ熱 を輸送する流路可動型伝熱装置、 および、 流路可動型ヒートパイプに関する。 背景技術
従来、 ノートパソコンにおけるキーボード側に配置された C P Uの発熱を液晶 ディスプレイ側に輸送するために、 ヒートパイプを利用するヒンジ機構が用いら れている。 例えば、 特開平 1 0— 1 8 7 2 8 4号公報に上述したヒートパイプを 利用するヒンジ構造が開示されている。 図 1 9は、 従来のヒンジ機構を示す図で ある。 図 1 9に示すように、 冷却手段または発熱体が所定の回転軸に沿って回転 移動する。 即ち、 2本のヒートパイプ 1 3 5、 1 5 5がヒンジ機構 1 5 2によつ て接続され、 ヒンジ機構によって各ヒートパイプが保持され、 一方のヒートパイ プがヒンジ機構を介して、 他方のヒートパイプに熱移動される。 即ち、 ヒートパ イブとヒンジ機構との間を熱接触によって熱を輸送している。
ヒンジ機構はヒートパイプとの熱接触を維持したまま、 ヒートパイプを所定の 回転軸の回りに回動させることが可能であり、 ヒンジ機構によって、 液晶ディス プレイの開閉を可能にしつつ、 C P Uの発熱を液晶ディスプレイ側に輸送してい る。
更に、実願昭 6 2— 1 6 0 1 7 9は、 2つのパイプの内壁にグループを形成し、 コネクタの接続とともに、 2つのグループを接触させる方法が開示されている。 2つのパイプの内壁に形成されたグループを安定して接触させることは容易では なく、 コネクタ内でグルーブ間に連続性がなくなることがある。
シール構造を設けつつ、 コネクタ内壁面に作動液の濡れ性を高める細工を施こ すこと (例えば、 溝を形成する、 酸化処理をする) は困難であり、 コネクタ内壁 面と作動液の濡れ性は高くないのが通常である。 上述した従来のヒンジ機構によって、液晶ディスプレイの開閉を可能にしつつ、
C P Uの発熱を液晶デイスプレイ側に熱を輸送することは可能になつたけれども、 C P Uの発熱は、 ヒートパイプとヒンジ機構の熱接触およびヒンジ機構内におけ る熱伝導によって輸送される、 更に、 作動流体のヒートパイプ内面における熱交 換箇所が 4箇所と多く、 熱抵抗が大きく、 熱性能の改善が必要とされている。
更に、 上述したように、 コネクタ内でグループ間に連続性がなくなり、 且つ、 作動液とコネクタ内壁の濡れ性が悪レ、と、 コネクタ内部で作動液が零状のまま停 滞することがある。 零状の作動液は作動液蒸気の流れを阻害し、 ヒートパイプ伝 熱性能低下を引き起こす。 更に、 作動液の循環が完全に止まり、'ヒートパイプ機 能が停止することがある。
この発明の目的は、 熱抵抗の小さいヒンジ機構、 流路可動型伝熱装置および流 路可動型ヒートパイプを提供することにある。 発明の開示
発明者は、 上述した従来の問題点を解決するために鋭意研究を重ねた。 その結 果、 ヒートパイプと回動可能な中空のコネクタを気密に接続し、 コネクタの一部 を固定し、 他の部分を所定の摺動抵抗を備えて回転させることによって、 熱抵抗 の小さいヒンジ機構を提供することができることが判明した。 即ち、 内部にそれ ぞれ対応する中空状の連通部を備え、 一方が所定の位置に固定され、 他方が軸線 の回りに回動可能の、 気密に接続可能な 1組のコネクタと、 1組のコネクタのそ れぞれに気密に接続され、 連通部と連通する中空状部材とからなるヒンジ機構を 使用することによって、 熱抵抗が著しく小さくなることが判明した。
更に、 第 1コネクタ部および第 2コネクタ部の連通部を貫通して、 第 1中空部 材と第 2中空部材を連絡する単体のウィック部材を使用することによって、 コネ クタ部に作動液が零状のまま滞留することを防止することができることが判明し た。
この発明は、 上述した研究結果に基づいてなされたものであって、 この発明の ヒンジ機構の第 1の態様は、 内部にそれぞれ対応する中空状の連通部を備え、 一 方が所定の位置に固定され、 他方が軸線の回りに回動可能の、 気密に接続可能な 1組のコネクタと、 前記 1組のコネクタのそれぞれに気密に接続され、 前記連通 部と連通する中空状部材とからなるヒンジ機構である。
この発明のヒンジ機構の第 2の態様は、 前記中空状部材が棒状ヒートパイプか らなり、 前記 1組のコネクタの前記一方がキーボード部またはディスプレー部に 固定され、 前記キーボード部およびディスプレー部の開閉を制御するヒンジ機構 である。
この発明のヒンジ機構の第 3の態様は、 前記 1組のコネクタが所定の摺動抵抗 を備えて軸線の回りに回転する、 ヒンジ機構である。
この発明の流路可動型伝熱装置の第 1の態様は、 一方の端部が封止され放熱手 段に熱的に接続される第 1中空状部材と、
一方の端部が封止され被冷却物に熱的に接続される第 2中空状部材と、 前記第 1中空状部材の他方の端部に気密に接続される、 内部に中空状の連通部 を備えた第 1コネクタ部と、 前記第 2中空状部材の他方の端部に気密に接続され、 前記第 1コネクタ部と気密に接続可能な、 対応する中空状の連通部を内部に備え た第 2コネクタ部とからなり、 前記第 1コネクタまたは前記第 2コネクタが所定 の位置に固定され、 他方が軸線の回りに回動可能なコネクタと、
前記第 1中空状部材、 前記第 1コネクタ部、 前記第 2中空状部材、 前記第 2コ ネクタによって形成される密閉容器内に封入される作動流体とを備えた流路可動 型伝熱装置である。
この発明の流路可動型伝熱装置の第 2の態様は、 前記第 1中空状部材、 前記第 1コネクタ部、 前記第 2中空状部材、 前記第 2コネクタによって形成される密閉 容器が閉ループを形成している、 流路可動型伝熱装置である。
この発明の流路可動型伝熱装置の第 3の態様は、 それぞれ前記第 1中空状部材、 前記第 1コネクタ部、 前記第 2中空状部材、 前記第 2コネクタによって形成され る 2組の密閉容器を備えており、 前記 2組の密閉容器のそれぞれの前記第 2コネ クタが、 所定の位置に固定され、 それぞれの前記第 1コネクタが、 対応する前記 第 2コネクタの軸線の回りに所定の摺動抵抗を備えて回転する、 流路可動型伝熱 装置である。
この発明の流路可動型伝熱装置の第 4の態様は、 前記第 1中空状部材、 前記第 1コネクタ部、 前記第 2中空状部材、 前記第 2コネクタによって形成される少な くとも 2組の密閉容器を備えており、 前記少なくとも 2組の密閉容器のそれぞれ の第 1中空状部材がー体的に連通して接続され、 それぞれの前記第 2コネクタ力 所定の位置に固定され、 それぞれの前記第 1コネクタが、 対応する前記第 2コネ クタの軸線の回りに所定の摺動抵抗を備えて回転する、 流路可動型伝熱装置であ る。
この発明の流路可動型伝熱装置の第 5の態様は、 前記第 1中空状部材、 前記第 1コネクタ部、 前記第 2中空状部材、 前記第 2コネクタによって形成される少な くとも 2組の密閉容器を備えており、 前記少なくとも 2組の密閉容器のそれぞれ の第 1中空状部材がー体的に連通して接続され、 それぞれの第 2中空状部材がー 体的に連通して接続されて閉ループを形成し、 それぞれの前記第 2コネクタが、 所定の位置に固定され、 それぞれの前記第 1コネクタが、 対応する前記第 2コネ クタの軸線の回りに所定の摺動抵抗を備えて回転する、 流路可動型伝熱装置であ る。
この発明の流路可動型伝熱装置の第 6の態様は、 前記閉ループを形成するそれ ぞれの前記第 2中空状部材に、 更に流体循環装置が接続されている、 流路可動型 伝熱装置である。
この発明の流路可動型伝熱装置の第 7の態様は、 前記作動流体が臨界密度以上 の充填密度 (=充填重量 密閉容器内容積) の二酸化炭素である、 流路可動型伝 熱装置である。
この発明の流路可動型伝熱装置の第 8の態様は、 前記作動流体が臨界密度以上 の充填密度 (=充填重量 密閉容器内容積) で、 且つ、 伝熱装置作動時に臨界温 度以上の温度になっているの二酸化炭素である、 流路可動型伝熱装置である。 この発明の流路可動型伝熱装置の第 9の態様は、 前記作動流体が水である、 流 路可動型伝熱装置である。
この発明の流路可動型ヒートパイプの第 1の態様は、 放熱手段に熱的に接続さ れる第 1中空状部材と、
被冷却物に熱的に接続される第 2中空状部材と、
前記第 1中空状部材の他方の端部に気密に接続される、 内部に中空状の連通部 を備えた第 1コネクタ部と、 前記第 2中空状部材の他方の端部に気密に接続され、 前記第 1コネクタ部と気密に接続可能な、 対応する中空状の連通部を内部に備え た第 2コネクタ部とからなる、 軸線の回りに回動可能なコネクタと、
前記第 1中空状部材、 前記第 1コネクタ部、 前記第 2コネクタ部、 および、 前 記第 2中空状部材によつて形成される密閉容器内に封入される作動流体と、 前記密閉容器の前記第 1コネクタ部および前記第 2コネクタ部の前記連通部を 貫通して、 前記第 1中空部材と前記第 2中空部材を連絡する単体のウイック部材 を備えた流路可動型ヒートパイプである。
この発明の流路可動型ヒートパイプの第 2の態様は、 前記ウイック部材の前記 第 1中空状部材側に位置する端部が、 少なくとも前記第 1コネクタ部と同じ高さ 以上に位置している、 流路可動型ヒートパイプである。
この発明の流路可動型ヒートパイプの第 3の態様は、 前記ウイック部材が帯状 のメッシュからなつている、 流路可動型ヒートパイプである。
この発明の流路可動型ヒートパイプの第 4の態様は、 前記ウィック部材が 1本 以上のワイヤからなっている、 流路可動型ヒートパイプである。
この発明の流路可動型ヒートパイプの第 5の態様は、 液化した作動流体が前記 ウィック部材を膜状に濡らす、 流路可動型ヒートパイプである。 図面の簡単な説明
図 1は、 この発明のヒンジ機構の 1つの態様を示す図である。 図 1 Aは、 組み 立てられたヒンジ機構を示す図であり、 図 1 Bは、 ヒンジ機構の分解図である。 図 2は、 ヒンジ機構の気密な接続状態を説明する図である。
図 3は、 この発明の流路可動型伝熱装置の 1つの態様を説明する図である。 図 4は、 図 3に示す態様のこの発明の流路可動型伝熱装置の側面図である。 図 5は、 図 3に示す態様のこの発明の流路可動型伝熱装置の側面図である。 図 6は、 この発明の流路可動型伝熱装置の他の 1つの態様を説明する図である。 図 7は、 この発明の流路可動型伝熱装置の他の 1つの態様を説明する図である。 図 8は、 この発明の流路可動型伝熱装置の他の 1つの態様を説明する図である。 図 9は、 この発明の流路可動型伝熱装置の他の 1つの態様を説明する図である。 図 1 0は、 この発明の流路可動型ヒートパイプの 1つの態様を示す図である。 図 1 1は、 この発明の流路可動型ヒートパイプを説明する図である。
図 1 2は、 ウイック材を部分的に使用したこの発明の流路可動型ヒートパイプ を説明する図である。
図 1 3は、 パソコンに取り付けられたこの発明の流路可動型ヒートパイプの 1 つの態様を示す図である。
図 1 4は、 図 1 3における流路可動型ヒートパイプのみを取り出して示す図で ある。
図 1 5は、 図 1 5は、 パソコンに取り付けられたこの発明の流路可動型ヒート パイプの他の態様を示す図である。
図 1 6は、 図 1 5における流路可動型ヒートパイプのみを取り出して示す図で ある。
図 1 7は、 実験に使用した流路可動型ヒートパイプを説明する図である。
図 1 8は、 ウィック材の態様を示す図である。
図 1 9は、 従来のヒンジ機構を示す図である。 発明を実施するための最良の形態
この発明のヒンジ機構および流路可動型伝熱装置を図面を参照しながら説明す る。
この発明のヒンジ機構の 1つの態様は、 内部にそれぞれ対応する中空状の連通 部を備え、 一方が所定の位置に固定され、 他方が軸線の回りに回動可能の、 気密 に接続可能な 1組のコネクタと、 前記 1組のコネクタのそれぞれに気密に接続さ れ、 前記連通部と連通する中空状部材とからなるヒンジ機構である。
この発明のヒンジ機構においては、 前記中空状部材が棒状ヒートパイプからな り、 前記 1組のコネクタの前記一方が第 1筐体部 (ノート型パソコンを例にする とキーボード部) または第 2筐体部 (ノート型パソコンを例にするとディスプレ 一部) に固定され、 前記第 1筐体部および第 2筐体部の開閉を制御する。 更に、 前記 1組のコネクタが所定の摺動抵抗を備えて軸線の回りに回転する。
図 1は、 この発明のヒンジ機構の 1つの態様を示す図である。 図 1 Aは、 組み 立てられたヒンジ機構を示す図である。 図 1 Bは、 ヒンジ機構の分解図である。 図 1 Aに示すように、 ヒンジ機構は、 中空状部材、 例えば、 丸型ヒートパイプ 5 の 1つの端部に気密に接続された内部に中空状の連通部を備える第 1コネクタ 3 と、 中空状部材、 例えば、 丸型ヒートパイプ 6の 1つの端部に気密に接続された 内部に中空状の連通部を備える第 2コネクタ 4からなつており、 第 1コネクタ 3 と第 2コネクタ 4と力 回動可能に気密に接続される。
図 1 Bに示すように、 丸型ヒートパイプ 5の 1つの端部に気密に接続された内 部に中空状の連通部を備える第 1コネクタ 3と、 丸型ヒートパイプ 6の 1つの端 部に気密に接続された内部に中空状の連通部を備える第 2コネクタ 4とが、 回動 可能に気密に接続されている。 丸型ヒートパイプ 5の中空状の内部、 第 1コネク タ 3の中空状の連通部、 丸型ヒートパイプ 6の中空状の内部、 および、 第 2コネ クタ 4の中空状の連通部が、 気密に連通されている。
更に、 上述したように、 第 1コネクタ 3と第 2コネクタ 4とが、 回動可能に気 密に接続されている。 更に、 上述した第 1コネクタ 3と第 2コネクタ 4からなる 1組のコネクタが所定の摺動抵抗を備えて軸線の回りに回転する。 従って、 第 1 コネクタまたは第 2コネクタを固定することによって、 他方のコネクタは、 所定 の摺動抵抗を備えて軸線の回りに回転するので、 ヒンジ機構として、 様々な利用 が可能である。
図 2は、 ヒンジ機構の気密な接続状態を説明する図である。図 2に示すように、 丸型ヒートパイプ 5の 1つの端部と、 内部に中空状の連通部を備える第 1コネク タ 3とを気密に接続する方法は、 内部に封入される作動流体が粘性の小さいガス 状になった場合でも、 接合部から外部に漏れないように接続すればよく、 特に限 定されるものではない。 例えば、 丸型ヒートパイプ 5の 1つの端部と、 内部に中 空状の連通部を備える第 1コネクタ 3との接続面に対応するネジ山を形成して、 丸型ヒートパイプ 5の端部を、 第 1コネクタ 3にねじ込んで固定してもよいし、 ろう付けにより金属的に接合させてもよい。
丸型ヒートパイプ 6の 1つの端部と、 内部に中空状の連通部を備える第 2コネ クタ 4との気密な接続は、 上述したと同一の方法によって行われる。 このように して、 丸型ヒートパイプ 5の 1つの端部と、 内部に中空状の連通部を備える第 1 コネクタ 3とが固定されて、 一体的に形成され、 丸型ヒートパイプ 6の 1つの端 部と、 内部に中空状の連通部を備える第 2コネクタ 4とが固定されて、 一体的に 形成される。
このようにヒートパイプと固定された第 1コネクタ 3と、 ヒートパイプと固定 された第 2コネクタ 4とが、 回動可能にかつ気密に接続される。 即ち、 第 1コネ クタ 3と第 2コネクタ 4には、 それぞれ径の異なる所定の長さの延伸部 7、 1 0 が備えられており、 延伸部 1 0が延伸部 7に挿入される。 延伸部 1 0は、 円筒部 8と先端部 9からなつており、 先端部 9の端部は、 円筒部 8の径よりも大きく形 成されて、コネクタの係止を可能としている。延伸部 7の内部の所定の位置には、 例えば、 Oリングが設けられて、 更に、 気密な接続を容易にしている。 場合によ つては気密性を高めるために、 Oリングを複数設置するなど、 延伸部 7、 1 0同 士が互いに接触する箇所を複数設けてもよい。 リングの材質としては、 ガス透過 性の低い材質が好ましく、 例えば、 ブチルゴム、 フッ素ゴム、 ヒ ドリンゴム、 ク 口ルスルホン化ポリエチレンなどを用いると良い。
上述したように、 ヒートパイプと固定された第 1コネクタ 3と、 ヒートパイプ と固定された第 2コネクタ 4とが、 回動可能にかつ気密に接続される。 上述した この発明のヒンジ機構の、 第 1コネクタ 3と第 2コネクタ 4からなる 1組のコネ クタの一方を、 例えばキーボード部またはディスプレー部に固定することによつ て、 キーボード部およびディスプレー部の開閉を所定の摺動抵抗を備えて行うこ とができる。
図 3は、 この発明の流路可動型伝熱装置の 1つの態様を説明する図である。 こ の態様の流路可動型伝熱装置は、 一方の端部が封止され放熱手段に熱的に接続さ れる第 1中空状部材と、 一方の端部が封止され被冷却物に熱的に接続される第 2 中空状部材と、 第 1中空状部材の他方の端部に気密に接続される、 内部に中空状 の連通部を備えた第 1コネクタ部と、 第 2中空状部材の他方の端部に気密に接続 され、 第 1コネクタ部と気密に接続可能な、 対応する中空状の連通部を内部に備 えた第 2コネクタ部とからなり、 第 1コネクタまたは第 2コネクタが所定の位置 に固定され、 他方が軸線の回りに回動可能なコネクタと、 第 1中空状部材、 第 1 コネクタ部、 第 2中空状部材、 第 2コネクタによって形成される密閉容器内に封 入される作動流体とを備えた流路可動型伝熱装置である。
図 3に示すように、 この態様の流路可動型伝熱装置は、 一方の端部 1 7が封止 され放熱手段 1 9に熱的に接続される第 1中空状部材、 例えば、 丸型ヒートパイ プ 1 6と、 一方の端部 1 8が封止され被冷却物 2 0に熱的に接続される第 2中空 状部材、 例えば、 丸型ヒートパイプ 1 5と、 第 1中空状部材である丸型ヒートパ イブ 1 6の他方の端部に気密に接続される、 内部に中空状の連通部を備えた第 1 コネクタ部 1 4と、 第 2中空状部材である丸型ヒートパイプ 1 5の他方の端部に 気密に接続され、 第 1コネクタ部 1 4と気密に接続可能な、 対応する中空状の連 通部を内部に備えた第 2コネクタ部 1 3とからなっている。
第 1コネクタ 1 4または第 2コネクタ 1 3が所定の位置に固定され、 他方が軸 線の回りに回動可能であり、 上述した第 1中空状部材である丸型ヒートパイプ 1 6、 第 1コネクタ部 1 4、 第 2中空状部材である丸型ヒートパイプ 1 5、 第 2コ ネクタ 1 3によって形成される密閉容器内には、 作動流体が封入されている。
更に、 図 3に示すように、 放熱手段 1 9、 被冷却物 2 0との相対的な位置関係 に適合するように、 ヒートパイプは所定の位置において所定の方向に屈折しても よい。
図 4および図 5は、 図 3に示す態様のこの発明の流路可動型伝熱装置の側面図 である。 この態様においては、 第 2コネクタ 1 3が固定され、 第 1コネクタ 1 4 が軸線方向を中心として回動可能である。 図 4は、 第 1コネクタ 1 4および第 2 コネクタ 1 3力 ヒートパイプ 1 6およびヒートパイプ 1 5に関して、 回転して いない状態を示している。 即ち、 被冷却物 1 5と放熱手段 1 9とが同一水平面に 位置している。 図 5は、 第 1コネクタ 1 4が第 2コネクタ 1 3に関して、 矢印の 方向に回転している状態を示している。 即ち、 放熱手段 1 9およびヒートパイプ 1 6力 被冷却物 2 0およびヒートパイプ 1 5と、 角度 Θを形成している。 この 態様の流路可動型伝熱装置において、 例えば、 キーボード側に被冷却物 2 0を配 置し、 ディスプレイ側に放熱手段を配置し、 第 2コネクタ 1 3をディスプレイ側 に固定すれば、 従来技術に示したヒンジ機構に代わる、 パソコン用の熱抵抗の小 さいヒンジ機構を提供することができる。
被冷却物の熱によってヒートパイプ 1 5内の作動液が蒸発し第 2コネクタ 1 3、 第 1コネクタ 1 4の中空状の連通部を通過して、 ヒートパイプ 1 6に移動し、 放 熱手段によって放熱して、 再び液相に戻り、 第 1コネクタ 1 4、 第 2コネクタ 1 3の中空状の連通部を通過して、 ヒートパイプ 1 5に還流する。上述したように、 第 1コネクタ 1 4、 第 2コネクタ 1 3は、 中空状の連通部からなっているので、 気相、 液相の作動流体の移動は容易であり、 熱抵抗が極めて小さい。 更に、 第 1 コネクタ 1 4、 第 2コネクタ 1 3の材料を適切に選択する、 例えば、 熱伝導性の 低い材料を使用することによって、 コネクタに接続される部分の温度を低く維持 することができる。
図 6は、 この発明の流路可動型伝熱装置の他の 1つの態様を説明する図である。 この態様の流路可動型伝熱装置は、 それぞれ上述した第 1中空状部材、 第 1コネ クタ部、 第 2中空状部材、 第 2コネクタによって形成される 2組の密閉容器を備 えており、 2組の密閉容器のそれぞれの第 2コネクタ力 S、所定の位置に固定され、 それぞれの第 1コネクタが、 対応する第 2コネクタの軸線の回りに所定の摺動抵 抗を備えて回転する、 流路可動型伝熱装置である。
即ち、 図 6に示すように、 2組の密閉容器を備えている。 第 1の密閉容器は、 一方の端部が封止され放熱手段 2 9に熱的に接続される第 1中空状部材としての 丸型ヒートパイプ 2 6と、 第 1中空状部材としての丸型ヒートパイプ 2 6の他方 の端部に気密に接続される、 内部に中空状の連通部を備えた第 1コネクタ部 2 4 と、 第 1コネクタ部 2 4と気密に接続可能な、 対応する中空状の連通部を内部に 備えた第 2コネクタ部 2 3と、 一方の端部が封止され被冷却物に熱的に接続され る第 2中空状部材としての丸型ヒートパイプ 2 5とからなっている。
第 2の密閉容器は、 一方の端部が封止され放熱手段 2 9に熱的に接続される第 1中空状部材としての丸型ヒートパイプ 3 6と、 第 1中空状部材としての丸型ヒ ートパイプ 3 6の他方の端部に気密に接続される、 内部に中空状の連通部を備え た第 1コネクタ部 3 4と、 第 1コネクタ部 3 4と気密に接続可能な、 対応する中 空状の連通部を内部に備えた第 2コネクタ部 3 3と、 一方の端部が封止され被冷 却物に熱的に接続される第 2中空状部材としての丸型ヒートパイプ 3 5とからな つている。
2組のコネクタ、 即ち、 第 1コネクタ部 2 4、 第 2コネクタ部 2 3、 および、 第 1コネクタ部 3 4、 第 2コネクタ部 3 3は、 同一回転軸の回りに回動可能であ る。 第 1コネクタ 2 4、 3 4または第 2コネクタ 2 3、 3 3のうちのいずれか一 方、 例えば、 第 1コネクタ 2 4、 3 4を例えば放熱手段が配置されるディスプレ ィ側に固定することによって、 図 5に示したように、 キーボード側、 ディスプレ ィ側の開閉、 および、 所定の位置での維持が可能になる。 第 1コネクタ部と第 2 コネクタ部の間は、 気密に接続され、 所定の摺動抵抗で回動可能である。
図 6に示す態様の流路可動型伝熱装置においては、 回動可能なコネクタを含む 第 1の密閉容器、 第 2の密閉容器のそれぞれの内部において作動流体が相変化し ながら熱移動する。 即ち、 被冷却物の熱によって、 2本のヒートパイプ 2 5、 3 5内の作動液が蒸発し、 第 2コネクタ 2 3、 3 3、 第 1コネクタ 2 4、 3 4の中 空状の連通部を通過して、 ヒートパイプ 2 6、 3 6に移動し、 放熱手段 2 9によ つて放熱して、 再び液相に戻り、 第 1コネクタ 2 4、 3 4、 第 2コネクタ 2 3、 3 3の中空状の連通部を通過して、 ヒートパイプ 2 5、 3 5に還流する。 上述し たように、 第 1コネクタ 2 4、 3 4、 第 2コネクタ 2 3、 3 3は、 中空状の連通 部からなっているので、 気相、 液相の作動流体の移動は容易であり、 熱抵抗が極 めて小さい。
図 7は、 この発明の流路可動型伝熱装置の他の 1つの態様を説明する図である。 この態様の流路可動型伝熱装置は、 それぞれ上述した第 1中空状部材、 第 1コネ クタ部、 第 2中空状部材、 前記第 2コネクタによって形成される少なくとも 2組 の密閉容器を備えており、 少なくとも 2組の密閉容器のそれぞれの第 1中空状部 材が一体的に連通して接続され、 それぞれの第 2コネクタが、 所定の位置に固定 され、 それぞれの第 1コネクタが、 対応する第 2コネクタの軸線の回りに所定の 摺動抵抗を備えて回転する、 流路可動型伝熱装置である。
即ち、 図 7に示すように、 図 6に示した態様の 2組の密閉容器が共通の第 1中 空状部材であるヒートパイプによって一体的に連通して接続されている。 この態 様の流路可動型伝熱装置においては、 放熱手段 5 9に熱的に接続される第 1中空 状部材としての丸型ヒートパイプ 4 6の一方の端部が第 1コネクタ 4 4に気密に 接続され、 他方の端部が第 1コネクタ 5 4に気密に接続されている。 第 1中空状 部材としての丸型ヒートパイプは、 図 7に示すように、 放熱手段による効率的な 放熱が可能なように、 所定の形状に屈折されて、 放熱手段に熱的に接続される。 上述した丸型ヒートパイプが気密に接続された、 内部に中空状の連通部を備え た第 1コネクタ 4 4、 5 4は、 それぞれ、 気密に且つ回動可能に、 対応する中空 状の連通部を内部に備えた第 2コネクタ 4 3、 5 3に接続される。 第 2コネクタ 4 3、 5 3のそれぞれの端部が、 一方の端部が封止され被冷却物に熱的に接続さ れる第 2中空状部材としての丸型ヒートパイプ 4 5、 5 5と気密に接続される。
2組のコネクタ、 即ち、 第 1コネクタ 4 4、 第 2コネクタ 4 3、 および、 第 1 コネクタ 5 4、 第 2コネクタ 5 3は、 同一回転軸の回りに回動可能である。 第 1 コネクタ 4 4、 5 4または第 2コネクタ 4 3、 5 3のうちのいずれか一方、 例え ば、 第 1コネクタ 4 4、 5 4を例えば放熱手段が配置されるディスプレイ側に固 定することによって、 図 5に示したと同様に、 キーボード側、 ディスプレイ側の 開閉、 および、 所定の位置での維持が可能になる。 第 1コネクタと第 2コネクタ の間は、 気密に接続され、 所定の摺動抵抗で回動可能である。
図 7に示す態様の流路可動型伝熱装置においては、 回動可能なコネクタを含む 密閉容器の内部において作動流体が相変化しながら熱移動する。 即ち、 被冷却物 6 0の熱によって、 2本のヒートパイプ 4 5、 5 5内の作動液が蒸発し、 第 2コ ネクタ 4 3、 5 3、 第 1コネクタ 4 4、 5 4の中空状の連通部を通過して、 ヒー トパイプ 4 6に移動し、 放熱手段 5 9によって放熱して、 再び液相に戻り、 第 1 コネクタ 4 4、 5 4、 第 2コネクタ 4 3、 5 3の中空状の連通部を通過して、 ヒ ートパイプ 4 5、 5 5に還流する。 上述したように、 第 1コネクタ 4 4、 5 4、 第 2コネクタ 4 3、 5 3は、 中空状の連通部からなっているので、 気相、 液相の 作動流体の移動は容易であり、 熱抵抗が極めて小さい。
図 8は、 この発明の流路可動型伝熱装置の他の 1つの態様を説明する図である。 この態様の流路可動型伝熱装置は、 それぞれ上述した第 1中空状部材、 第 1コ ネクタ部、第 2中空状部材、第 2コネクタによって形成される 2組の密閉容器が、 それぞれの第 1中空状部材がー体的に連通して接続され、 それぞれの第 2中空状 部材がー体的に連通して接続されて閉ループを形成し、 それぞれの第 2コネクタ が、 所定の位置に固定され、 それぞれの第 1コネクタが、 対応する第 2コネクタ の軸線の回りに所定の摺動抵抗を備えて回転する、 流路可動型伝熱装置である。 即ち、 図 8に示すように、 図 6に示した態様の 2組の密閉容器が共通の第 1中 空状部材であるヒートパイプによって一体的に連通して接続され、 共通の第 2中 空状部材であるヒートパイプによって一体的に連通して接続されている。 この態 様の流路可動型伝熱装置においては、 放熱手段 6 9に熱的に接続される第 1中空 状部材としての丸型ヒートパイプ 6 6の一方の端部が第 1コネクタ 6 4に気密に 接続され、 他方の端部が第 1コネクタ 7 4に気密に接続されている。 第 1中空状 部材としての丸型ヒートパイプは、 図 8に示すように、 放熱手段による効率的な 放熱が可能なように、 所定の形状に屈折されて、 放熱手段に熱的に接続される。 上述した丸型ヒートパイプが気密に接続された、 内部に中空状の連通部を備え た第 1コネクタ 6 4、 7 4は、 それぞれ、 気密に且つ回動可能に、 対応する中空 状の連通部を内部に備えた第 2コネクタ 6 3、 7 3に接続される。 第 2コネクタ
6 3には、 第 2中空状部材としての丸型ヒートパイプ 6 5の一方の端部が気密に 接続され、 第 2コネクタ 7 3には、 第 2中空状部材としての丸型ヒートパイプ 6 5の他方の端部が気密に接続されている。 第 2中空状部材としての丸型ヒートパ イブの彎曲部は、 被冷却物 7 0に熱的に接続されている。
この態様の流路可動型伝熱装置においても、 2組のコネクタ、 即ち、 第 1コネ クタ 6 4、第 2コネクタ 6 3、 および、 第 1コネクタ 7 4、第 2コネクタ 7 3は、 同一回転軸の回りに回動可能である。 第 1コネクタ 6 4、 7 4または第 2コネク タ 6 3、 7 3のうちのいずれか一方、 例えば、 第 1コネクタ 6 4、 7 4を例えば 放熱手段が配置されるディスプレイ側に固定することによって、 図 5に示したと 同様に、 キーボード側、 ディスプレイ側の開閉、 および、 所定の位置での維持が 可能になる。 第 1コネクタと第 2コネクタの間は、 気密に接続され、 所定の摺動 抵抗で回動可能である。
図 8に示す態様の流路可動型伝熱装置においては、 回動可能なコネクタを含む 密閉容器の内部において作動流体が相変化しながら熱移動する。 即ち、 被冷却物
7 0の熱によって、 丸型ヒートパイプ 6 5内の作動液が蒸発し、 第 2コネクタ 6 3、 7 3、 第 1コネクタ 6 4、 7 4の中空状の連通部を通過して、 ヒートパイプ 6 6に移動し、 放熱手段 6 9によって放熱して、 再び液相に戻り、 第 1コネクタ 6 4、 7 4、 第 2コネクタ 6 3、 7 3の中空状の連通部を通過して、 ヒートパイ プ 6 5に還流する。 上述したように、 第 1コネクタ 6 4、 7 4、 第 2コネクタ 6 3、 7 3は、 中空状の連通部からなっているので、 気相、 液相の作動流体の移動 は容易であり、 熱抵抗が極めて小さい。
図 9は、 この発明の流路可動型伝熱装置の他の 1つの態様を説明する図である。 この態様の流路可動型伝熱装置は、 それぞれ上述した第 1中空状部材、 第 1コネ クタ部、 第 2中空状部材、 前記第 2コネクタによって形成される 2組の密閉容器 を備えており、 2組の密閉容器のそれぞれの第 1中空状部材がー体的に連通して 接続され、 それぞれの第 2中空状部材に、 更に流体循環装置が接続されて閉ルー プを形成し、 それぞれの第 2コネクタが、 所定の位置に固定され、 それぞれの第 1コネクタが、 対応する第 2コネクタの軸線の回りに所定の摺動抵抗を備えて回 転する、 流路可動型伝熱装置である。
即ち、 図 9に示すように、 図 6に示した態様の 2組の密閉容器が共通の第 1中 空状部材であるヒートパイプによつて一体的に連通して接続され、 第 2中空部材 であるヒートパイプの一方の端部に流体循環装置が接続されて、 全体として閉ル ープを形成している。 この態様の流路可動型伝熱装置においては、 放熱手段 9 9 に熱的に接続される第 1中空状部材としての丸型ヒートパイプ 9 6の一方の端部 が第 1コネクタ 8 4に気密に接続され、 他方の端部が第 1コネクタ 9 4に気密に 接続されている。
第 1中空状部材としての丸型ヒートパイプは、 図 9に示すように、 放熱手段に よる効率的な放熱が可能なように、 所定の形状に屈折されて、 放熱手段に熱的に 接続される。 上述した丸型ヒートパイプが気密に接続された、 内部に中空状の連 通部を備えた第 1コネクタ 8 4、 9 4は、 それぞれ、 気密に且つ回動可能に、 対 応する中空状の連通部を内部に備えた第 2コネクタ 8 3、 9 3に接続される。 第 2コネクタ 8 3、 9 3のそれぞれの端部が、 一方の端部が流体循環装置に気密に 璋続され、 被冷却物に熱的に接続される第 2中空状部材としての丸型ヒートパイ プ 8 5、 9 5と気密に接続される。
2組のコネクタ、 即ち、 第 1コネクタ 8 4、 第 2コネクタ 8 3、 および、 第 1 コネクタ 9 4、 第 2コネクタ 9 3は、 同一回転軸の回りに回動可能である。 第 1 コネクタ 8 4、 9 4または第 2コネクタ 8 3、 9 3のうちのいずれか一方、 例え ば、 第 lコネクタ 8 4、 9 4を例えば放熱手段が配置されるディスプレイ側に固 定することによって、 図 5に示したと同様に、 キーボード側、 ディスプレイ側の 開閉、 および、 所定の位置での維持が可能になる。 第 1コネクタと第 2コネクタ の間は、 気密に接続され、 所定の摺動抵抗で回動可能である。
流体循環装置は、 例えば、 流体駆動装置からなっており、 一方から入った作動 流体を他方から排出して閉ループ内を循環させる被冷却物および放熱手段が熱的 に接続された中空状部材に連絡されて閉ループを形成し、 封入された作動流体を 閉ループ内に循環させるように駆動する。 流体駆動装置は、 例えば、 作動流体吸 引口および作動流体排出口を備えたビストン型ポンプからなっている。 流体駆動 装置は、 内部ファンを備え、 内部ファンによって作動流体を駆動するファンュニ ットからなつていてもよレ、。
更に、 流体駆動装置は、 外部から磁力によってファンを駆動させるタイプの内 部ファンを備えていてもよい。 即ち、 内部ファンに磁性体を取り付け、 そして、 複数の電磁石外側に所定の間隔を置いて設け、 所定の順に、 電磁石に通電して内 部ファンを誘導する。 磁性流体からなる作動流体を使用し、 外部駆動装置が磁場 を用いてもよい。 または、 作動流体が誘電性流体からなっており、 外部駆動装置 が電場を用いている。 即ち、 外表面に複数の電磁石を配置して、 所定の順に電磁 石に通電し、 通電を止めて、 作動流体を強制的に循環させる。
図 9に示す態様の流路可動型伝熱装置においては、 回動可能なコネクタを含む 密閉容器の内部において作動流体が相変化しながら熱移動する。 即ち、 被冷却物 6 0の熱によって、 流体循環装置内の作動液が蒸発し、 気相の作動流体が、 第 2 コネクタ 8 3、 第 1コネクタ 8 4の中空状の連通部を通過して、 ヒートパイプ 9 6に移動し、 放熱手段 9 9によって放熱して、 再び液相に戻り、 第 1コネクタ 9 4、第 2コネクタ 9 3の中空状の連通部を通過して、流体循環装置内に還流する。 上述したように、 第 1コネクタ 8 4、 9 4、 第 2コネクタ 8 3、 9 3は、 中空状 の連通部からなっているので、 気相、 液相の作動流体の移動は容易であり、 熱抵 抗が極めて小さい。
上述した閉ループ内に水を流し、 循環させてもよい。 パイプの材質および作動 流体は特に限定されないが、 例えば、 銅—水、 アルミニウム—シクロペンタン等 の組合わせが考えられる。 作動流体が臨界密度以上の充填密度 (=充填重量 Z密 閉容器内容積) の二酸化炭素であってもよい。 更に、 作動流体が臨界密度以上の 充填密度 (=充填重量/密閉容器内容積) で、 且つ、 伝熱装置作動時に臨界温度 以上の温度になっている二酸化炭素であってもよい。
被冷却物としての電子部品および放熱板、放熱フィン等の放熱手段が、グリース、 受熱ブロック、 受熱板、 ろう材、 はんだ材等の適切な手段によって熱的に接続さ れている。
更に、 この発明の流路可動型ヒートパイプの 1つの態様は、 放熱手段に熱的に 接続される第 1中空状部材と、
被冷却物に熱的に接続される第 2中空状部材と、
前記第 1中空状部材の他方の端部に気密に接続される、 内部に中空状の連通部 を備えた第 1コネクタ部と、 前記第 2中空状部材の他方の端部に気密に接続され、 前記第 1コネクタ部と気密に接続可能な、 対応する中空状の連通部を内部に備え た第 2コネクタ部とからなる、 軸線の回りに回動可能なコネクタと、
前記第 1中空状部材、 前記第 1コネクタ部、 前記第 2コネクタ部、 および、 前 記第 2中空状部材によって形成される密閉容器内に封入される作動流体と、 前記密閉容器の前記第 1コネクタ部および前記第 2コネクタ部の前記連通部を 貫通して、 前記第 1中空部材と前記第 2中空部材を連絡する単体のウイック部材 を備えた流路可動型ヒートパイプである。
上述したウィック部材の前記第 1中空状部材側に位置する端部が、 少なくとも 前記第 1コネクタ部と同じ高さ以上に位置していることが好ましレ、。 更に、 上述 したウィック部材が帯状のメッシュからなっている。 更に、 上述したウィック部 材が 1本以上のワイヤからなっていてもよい。
図 1 0は、 この発明の流路可動型ヒー卜パイプの 1つの態様を説明する図であ る。 図 1 0に示すように、 この発明の流路可動型ヒートパイプは、 放熱手段 1 9 に熱的に接続される第 1中空状部材 1 6と、 被冷却物 2 0に熱的に接続される第 2中空状部材 1 5と、 第 1中空状部材 1 6の他方の端部に気密に接続される、 内 部に中空状の連通部を備えた第 1コネクタ部 1 4と、 第 2中空状部材 1 5の他方 の端部に気密に接続され、 第 1コネクタ部 1 4と気密に接続可能な、 対応する中 空状の連通部を内部に備えた第 2コネクタ部 1 3とからなる、 軸線の回りに回動 可能なコネクタと、 第 1中空状部材 1 6、 第 1コネクタ部 1 4、 第 2コネクタ部 1 3、 および、 第 2中空状部材 1 5によって形成される密閉容器内に封入される 作動流体と、 密閉容器の第 1コネクタ部 1 4および第 2コネクタ部 1 3の連通部 を貫通して、 第 1中空部材 1 6と第 2中空部材 1 5を連絡する単体のウィック部 材 1 1を備えている。
上述した密閉容器内の内部流路全域に、 作動流体を内部に吸収可能なウイック 材が挿入されている。 第 1および第 2中空部材として例えば銅製のパイプを使用 し、 第 1コネクタ部 1 4および第 2コネクタ部 1 3として同様に銅製のパイプを 使用し、 作動流体として水を使用する。 ウィック材として、 例えば、 酸化処理を された銅製メッシュを用いる。
図 1 8にウィック材の態様を示す。 図 1 8 Aに示すように、 ウィック材を複数 の帯状メッシュを重ねて形成する。 または、 図 1 8 Bに示すように、 ウィック材 を、 1枚の帯状メッシュを折り畳んで、 上方に積層して形成してもよい。
更に、 このようなウィック材を使用して、 よりウィック効果を高めるために、 中空状部材の内壁に溝を形成したり、 中空状部材の内周面を酸化処理して、 濡れ 性を高めてもよい。
上述したように、 この発明においては、 第 1中空部材、 第 2中空部材、 第 1コ ネクタ部、 第 2コネクタ部と独立した単体のウィック材を使用している。 単体の ウィック材は、 一本でもよく複数本でもよい。 いずれにしても、 独立した単体の ウイック材によって、 第 1コネクタ部 1 4および第 2コネクタ部 1 3の連通部を 貫通して、 第 1中空部材 1 6と第 2中空部材 1 5を連絡する。 このように独立し たウィック材を使用することによって、 2本のパイプの内壁面にグルーブを形成 して、回転させる場合に、 2本のパイプの接合面において作動液が零状に停滞し、 最悪の場合は作動流体の循環が完全にとまりヒートパイプ機能が停止するという 従来の問題点 (実願昭 6 2— 1 6 0 1 7 9参照) を解決することができる。
コネクタ内の濡れ性は高くないことが多いので、 ウイック材の濡れ性を高めて おくことは、 流路可動型ではない通常のヒートパイプ以上に重要である。
図 1 1に示すように、 冷却手段 1 9がコネクタ部 1 4、 1 3よりも常に上側に 位置する場合は、 途中までは作動流体は重力により停滞することなく移動するこ とができる。 好ましくは、 図 1 0に示すように、 全域にウィック材を挿入したほ うがよいが、 図 1 1のような状況では、 図 1 2に示すように、 重力による作動流 体の移動が期待できないところ、 即ち、 少なくとも第 1コネクタ部と同じ高さに なる部分にはウィック材を挿入することが必要である。
図 13は、 パソコンに取り付けられたこの発明の流路可動型ヒートパイプの 1 つの態様を示す図である。 図 14は、 図 1 3における流路可動型ヒートパイプの みを取り出して示す図である。 図 1 3に示すように、 コネクタ 14、 1 3は、 ノ 一トパソコンのディスプレイ 140とキーボード 1 30を繋ぐヒンジ部 141と 同軸に設置されている。 第 2中空部材 1 15が CPU1 20と熱的に接続される。 CPUと熱的に接続される部分では第 2中空部材 1 1 5を扁平化させてもよレ、。 更に、 第 2中空部材 1 1 5は、 図に示すように、 ノートパソコンのヒンジ部 14 1と CPUの高さの違いに応じて曲げ加工を施してもよレ、。 ディスプレイ 140 背面にアルミニウム板などの放熱板 1 19を設置し、 第 1中空部材 1 16をァノレ ミニゥム放熱板の対角線上に配置するように、 アルミニウム放熱板に接触させる。 上述したように配置することによって、 比較的直接手で触れる可能性の高いデ イスプレイ端部の温度を上げずに、 ディスプレイ中央部のみで放熱が可能になる。 なお、 第 1中空部材 1 16の一部を扁平化して放熱板との熱接触性を高めてもよ い。 ウィック材は、 図 14に示すように、 密閉容器内の全域に配置されている。 上述したように、 CPUからの発熱をディスプレイ側に効率的に放熱すること ができる。
図 15は、 パソコンに取り付けられたこの発明の流路可動型ヒートパイプの他 の態様を示す図である。 図 1 6は、 図 15における流路可動型ヒートパイプのみ を取り出して示す図である。 図 1 5に示すように、 コネクタ 14、 1 3は、 ノー トパソコンのディスプレイ 140とキーボード 130を繋ぐヒンジ部 141と同 軸に設置されている。 第 2中空部材 1 1 5が CPU 1 20と熱的に接続される。 CPUと熱的に接続される部分では第 2中空部材 1 1 5を扁平化させてもよレ、。 更に、 第 2中空部材 1 1 5は、 図に示すように、 ノートパソコンのヒンジ部 14 1と C PUの高さの違いに応じて曲げ加工を施してもよレ、。 ディスプレイ 140 背面にアルミニウム板などの放熱板 1 1 9を設置し、 第 1中空部材 1 1 6を蛇行 するように曲げて、 アルミニウム放熱板に接触させる。
上述したように配置することによって、 ディスプレイの端部も放熱部分として 使用できる環境では、 より効率的な放熱が可能になる。 なお、 第 1中空部材 1 1 6の一部を扁平化して放熱板との熱接触性を高めてもよい。 ウィック材は、 図 1 6に示すように、 密閉容器内の全域に配置されている。
図 1 7 Aに示すような、 流路可動型ヒートパイプを、 図 1 7 Bに示すように第 1中空部材 1 6を垂直に立て、 コネクタ 1 4、 1 3および第 2中空部材 1 5を水 平に配置して、 実験を行った。 中空部材 1 6、 1 5として、 外径 φ 6 mmで内部 に溝が形成された銅製パイプを使用し、 作動流体として水を使用した。 ウィック 材は、 折り畳んで層状にメッシュが重なった図 1 8 Bに示すような構造で、 酸化 処理を施して濡れ性を高めたあと還元処理を施して酸化物を除去したものを使用 した。 第 1中空部材を自然空冷 (=放熱手段) した。 その結果、 ウィックを用い ない場合は、 8 Wの熱量で 3 O mm分を加熱したところヒートパイプとして機能 しなくなつた (即ち、 ヒートパイプ内の温度差が 4 0 °C以上になった)。 これに対 して、 ウィック材を揷入した場合は、 2 O Wの熱量で 3 O mm分を加熱したけれ ども、 ヒートパイプ内の温度差 1 °Cで正常に熱を輸送できることが確認できた。 コネクタとして、 例えば、 エアー配管、 油圧ポンプの配管をつなぐコネクタと して知られている力ブラ (商標名) を使用することができる。 しカゝし、 それに限 定されることはなく、 密閉性を維持しつつ、 回動可能なコネクタであればよい。 ヒートパイプ内からの空気の排出、 作動流体の注入は、 ヒートパイプ端部から 行なわれ、 注入され、 注入後、 封止される。 ただし、 真空状態を必要とするヒー トパイプ以外の伝熱装置を用レ、る場合は必ずしも空気を排出しなくてもよい。 放熱手段または被冷却物に中空状部材を熱接触させる際には、 中空状部材を蛇 行させて接触面積を増大しても良い。 更に、 複数流路を並列に配置して、 接触面 積を増大しても良い。 接触抵抗を低減させるために、 金属などの熱伝導性の部材 を介して中空状部材と放熱手段、 または、 被冷却物が接触していても良い。
中空状部材はパイプに限定されず、 内部に作動流体が通る流路があるものであ れば良い。 例えば、 押しだし多穴管と力、、 切削加工やプレス加工等により流路形 成部材を含む少なくとも一つ以上の部材を溶接またはろう付けにより接合したも のであっても良い。
被冷却物および放熱手段はそれぞれ一つづつであるけれども、 必要に応じて複 数個設置しても良い。 放熱手段として、 ペルチェ素子、 放熱フィン等を利用する ことができる。
なお、 コネクタの装置内への接続は、 固定部品を用いてもよく、 接着材によつ て接合してもよい。
コネクタ部は、 図示したようなヒートパイプと別部材に限定されることはなく、 例えば、 ヒートパイプの一方の端部を所定の形状に加工した一体型であってもよ い。 即ち、 ヒートパイプの一方の端部がコネクタ機能を備える一体型の態様であ つてもよレヽ。 産業上の利用可能性
この発明によると、 ヒートパイプと回動可能な中空のコネクタを気密に接続し、 コネクタの一部を固定し、 他の部分を所定の摺動抵抗を備えて回転させることに よって、 熱抵抗の小さいヒンジ機構を提供することができる。 更に、 上述したヒ ンジ機構を用レ、ることによって、 熱抵抗の小さレ、流路可動型伝熱装置を提供する ことができる。 更に、 第 1および第 2コネクタ部の連通部を貫通して、 第 1中空 部材と第 2中空部材を連絡する単体のウイック部材を使用することによって、 コ ネクタ部に作動液が零状のまま滞留することが防止でき、 熱抵抗の小さい流路可 動型ヒートパイプを提供することができる。

Claims

請 求 の 範 囲
1 . 内部にそれぞれ対応する中空状の連通部を備え、 一方が所定の位置に固定さ れ、 他方が軸線の回りに回動可能の、 気密に接続可能なコネクタ部と、 前記コネ クタ部のそれぞれに気密に接続され、 前記連通部と連通する中空状部材とからな るヒンジ機構。
2 . 前記中空状部材がヒートパイプからなり、 前記コネクタ部の前記一方が第 1 筐体部または第 2筐体部に固定され、 前記第 1筐体部および第 2筐体部の開閉を 制御する、 請求の範囲第 1項に記載のヒンジ機構。
3 . 前記コネクタ部が所定の摺動抵抗を備えて軸線の回りに回動する、 請求の範 囲第 2項に記載のヒンジ機構。
4 . 放熱手段に熱的に接続される第 1中空状部材と、
被冷却物に熱的に接続される第 2中空状部材と、
前記第 1中空状部材の他方の端部に気密に接続される、 内部に中空状の連通部 を備えた第 1コネクタ部と、 前記第 2中空状部材の他方の端部に気密に接続され、 前記第 1コネクタ部と気密に接続可能な、 対応する中空状の連通部を内部に備え た第 2コネクタ部とからなり、 軸線の回りに回動可能なコネクタ部と、
前記第 1中空状部材、 前記第 1コネクタ部、 前記第 2中空状部材、 前記第 2コ ネクタ部によって形成される密閉容器内に封入される作動流体とを備えた流路可 動型伝熱装置。
5 . 前記第 1中空状部材、 前記第 1コネクタ部、 前記第 2中空状部材、 前記第 2 コネクタによって形成される密閉容器が閉ループを形成している、 請求の範囲第 4項に記載の流路可動型伝熱装置。
6 . それぞれ前記第 1中空状部材、 前記第 1コネクタ部、 前記第 2中空状部材、 前記第 2コネクタ部によって形成される密閉容器を備えており、 前記密閉容器の それぞれの前記第 2コネクタ部が、 所定の位置に固定され、 それぞれの前記第 1 コネクタ部が、 対応する前記第 2コネクタ部の軸線の回りに所定の摺動抵抗を備 えて回動する、 請求の範囲第 4項に記載の流路可動型伝熱装置。
7 . 前記第 1中空状部材、 前記第 1コネクタ部、 前記第 2中空状部材、 前記第 2 コネクタ部によって形成される少なくとも 2組の密閉容器を備えており、 前記少 なくとも 2組の密閉容器のそれぞれの第 1中空状部材が一体的に連通して接続さ れ、 それぞれの前記第 1コネクタ部が、 対応する前記第 2コネクタ部の軸線の回 りに所定の摺動抵抗を備えて回動する、 請求の範囲第 4項に記載の流路可動型伝 熱装置。
8 . 前記第 1中空状部材、 前記第 1コネクタ部、 前記第 2中空状部材、 前記第 2 コネクタによって形成される少なくとも 2組の密閉容器を備えており、 前記少な くとも 2組の密閉容器のそれぞれの第 1中空状部材がー体的に連通して接続され、 それぞれの第 2中空状部材がー体的に連通して接続されて閉ループを形成し、 そ れぞれの前記第 2コネクタ部が、 所定の位置に固定され、 それぞれの前記第 1コ ネクタ部が、 対応する前記第 2コネクタ部の軸線の回りに所定の摺動抵抗を備え て回動する、 請求の範囲第 4項に記載の流路可動型伝熱装置。
9 . 前記閉ループを形成するそれぞれの前記第 2中空状部材に、 更に流体循環装 置が接続されている、 請求の範囲第 8項に記載の流路可動型伝熱装置。
1 0 . 前記作動流体が臨界密度以上の充填密度 (=充填重量/密閉容器内容積) の二酸化炭素である、 請求の範囲第 4項から第 9項の何れか 1項に記載の流路可 動型伝熱装置。
1 1 . 前記作動流体が臨界密度以上の充填密度 (=充填重量 Z密閉容器内容積) で、 且つ、 伝熱装置作動時に臨界温度以上の温度になっているの二酸化炭素であ る、 請求の範囲第 5、 8、 9項の何れか 1項に記載の流路可動型伝熱装置。
1 2 . 前記作動流体が水である、 請求の範囲第 4項から第 9項の何れか 1項に記 載の流路可動型伝熱装置。
1 3 . 放熱手段に熱的に接続される第 1中空状部材と、
被冷却物に熱的に接続される第 2中空状部材と、
前記第 1中空状部材の他方の端部に気密に接続される、 内部に中空状の連通部 を備えた第 1コネクタ部と、 前記第 2中空状部材の他方の端部に気密に接続され、 前記第 1コネクタ部と気密に接続可能な、 対応する中空状の連通部を内部に備え た第 2コネクタ部とからなる、 軸線の回りに回動可能なコネクタと、
前記第 1中空状部材、 前記第 1コネクタ部、 前記第 2コネクタ部、 および、 前 記第 2中空状部材によって形成される密閉容器内に封入される作動流体とを備え た流路可動型ヒートパイプ。
14. 前記密閉容器の前記第 1コネクタ部および前記第 2コネクタ部の前記連通 部を貫通して、 前記第 1中空部材と前記第 2中空部材を連絡する単体のウイック 部材を更に備えた、 請求の範囲第 13項に記載の流路可動型ヒートパイプ。
1 5. 前記ウィック部材の前記第 1中空状部材側に位置する端部が、 少なくとも 前記第 1コネクタ部と同じ高さ以上に位置している、 請求の範囲第 13項に記載 の流路可動型ヒートパイプ。
16. 前記ウィック部材が帯状のメッシュからなっている、 請求の範囲第 14項 に記載の流路可動型ヒートパイプ。
1 7. 前記ウィック部材が 1本以上のワイヤからなっている、 請求の範囲第 14 項に記載の流路可動型ヒートパイプ。
1 8. 液化した作動流体が前記ウィック部材を膜状に濡らす、 請求の範囲第 14 項から第 1 7項の何れか 1項に記載の流路可動型ヒートパイプ。
1 9. 請求の範囲第 1項から第 1 8項の何れか 1つの流路可動型ヒートパイプを 備えた電子装置。
20. 請求の範囲第 1項から第 18項の何れか 1つの流路可動型ヒートパイプを 備えたノートパソコン。
2 1. 請求の範囲第 1項から第 1 8項の何れか 1つの流路可動型ヒートパイプを 備えた携帯電話。
PCT/JP2003/012149 2002-09-26 2003-09-24 ヒンジ機構、流路可動型伝熱装置および流路可動型ヒートパイプ WO2004029532A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004539498A JP4297364B2 (ja) 2002-09-26 2003-09-24 ヒンジ機構、流路可動型伝熱装置および流路可動型ヒートパイプ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-281232 2002-09-26
JP2002281232 2002-09-26
JP2003-109834 2003-04-15
JP2003109834 2003-04-15

Publications (1)

Publication Number Publication Date
WO2004029532A1 true WO2004029532A1 (ja) 2004-04-08

Family

ID=32044627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012149 WO2004029532A1 (ja) 2002-09-26 2003-09-24 ヒンジ機構、流路可動型伝熱装置および流路可動型ヒートパイプ

Country Status (2)

Country Link
JP (1) JP4297364B2 (ja)
WO (1) WO2004029532A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160490A (ja) * 2011-01-28 2012-08-23 Nec Network Products Ltd 冷却装置
JP2017035953A (ja) * 2015-08-07 2017-02-16 株式会社フジクラ 車両用空調装置
CN113826455A (zh) * 2019-05-15 2021-12-21 阿维德热管公司 均热板热带组件和方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160179U (ja) * 1986-03-28 1987-10-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160179U (ja) * 1986-03-28 1987-10-12

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160490A (ja) * 2011-01-28 2012-08-23 Nec Network Products Ltd 冷却装置
JP2017035953A (ja) * 2015-08-07 2017-02-16 株式会社フジクラ 車両用空調装置
CN113826455A (zh) * 2019-05-15 2021-12-21 阿维德热管公司 均热板热带组件和方法
US20220205731A1 (en) * 2019-05-15 2022-06-30 Aavid Thermal Corp. Vapor chamber thermal strap assembly and method
US11662154B2 (en) * 2019-05-15 2023-05-30 Aavid Thermal Corp. Vapor chamber thermal strap assembly and method

Also Published As

Publication number Publication date
JPWO2004029532A1 (ja) 2006-01-26
JP4297364B2 (ja) 2009-07-15

Similar Documents

Publication Publication Date Title
US20080239672A1 (en) Cooling of High Power Density Devices Using Electrically Conducting Fluids
US6003319A (en) Thermoelectric refrigerator with evaporating/condensing heat exchanger
US7701716B2 (en) Heat-transfer mechanism including a liquid-metal thermal coupling
US6771498B2 (en) Cooling system for hinged portable computing device
US7131286B2 (en) Cooling of electronics by electrically conducting fluids
EP1577739A2 (en) Cooling system for electronic apparatus, and electronic apparatus using the same
JP5999665B2 (ja) 熱移動ユニットおよび温度調節装置
TWI272892B (en) A liquid cooling system and an electronic apparatus having the same therein
JP2005327273A (ja) 柔軟なベローズを用いた取扱容易な液体ループ冷却装置
KR20010041932A (ko) 컴퓨터의 냉각 시스템
WO2004029532A1 (ja) ヒンジ機構、流路可動型伝熱装置および流路可動型ヒートパイプ
JP2000002493A (ja) 冷却ユニットとそれを用いた冷却構造
JP2006046868A (ja) 放熱器およびヒートパイプ
US5878579A (en) Heat transfer probe
JPH11176910A (ja) 基板搬送装置およびそれを備えた基板処理装置
JP2009216343A (ja) 伝熱ヒンジ装置および冷却装置
US7353862B2 (en) Liquid cooling device
JP2003336949A (ja) 冷媒移動器および冷却装置
US20230180438A1 (en) Server and heat exchanger
JP4834460B2 (ja) 電子機器用冷却装置
JP2004102949A (ja) 電子装置
JP2002016204A (ja) 受放熱構造体
JP2003232596A (ja) 伝熱装置
JPH1068569A (ja) 冷温蔵庫
JP2004005397A (ja) 折りたたみ可能な表示装置を具えたコンピュータ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2004539498

Country of ref document: JP