WO2004029349A1 - Spun-bonded nonwoven fabric and sanitary supplies - Google Patents

Spun-bonded nonwoven fabric and sanitary supplies Download PDF

Info

Publication number
WO2004029349A1
WO2004029349A1 PCT/JP2003/012106 JP0312106W WO2004029349A1 WO 2004029349 A1 WO2004029349 A1 WO 2004029349A1 JP 0312106 W JP0312106 W JP 0312106W WO 2004029349 A1 WO2004029349 A1 WO 2004029349A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
fiber
pattern
nonwoven
convex
Prior art date
Application number
PCT/JP2003/012106
Other languages
French (fr)
Japanese (ja)
Inventor
Masaru Ogo
Masaru Shimamura
Original Assignee
Asahi Kasei Fibers Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002281444A external-priority patent/JP4716638B2/en
Priority claimed from JP2002296882A external-priority patent/JP4716639B2/en
Application filed by Asahi Kasei Fibers Corporation filed Critical Asahi Kasei Fibers Corporation
Priority to AU2003266572A priority Critical patent/AU2003266572A1/en
Priority to KR1020057005215A priority patent/KR100752979B1/en
Priority to CN03823047A priority patent/CN100575584C/en
Publication of WO2004029349A1 publication Critical patent/WO2004029349A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • A61F13/51104Topsheet, i.e. the permeable cover or layer facing the skin the top sheet having a three-dimensional cross-section, e.g. corrugations, embossments, recesses or projections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • A61F13/512Topsheet, i.e. the permeable cover or layer facing the skin characterised by its apertures, e.g. perforations
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding

Definitions

  • the present invention relates to a spunbonded nonwoven fabric, and in particular, a flexible and bulky nonwoven fabric structure fixed by a discontinuous pattern of partial hot-pressure fusion and a concave or convex emboss pattern in a high-density region of non-bonded fibers.
  • the present invention relates to a disposable hygiene material and an improved nonwoven fabric useful for a disposable hygiene material.
  • sanitary materials used for sanitary towels and sanitary napkins include topsheets that allow urine and effluent to pass through, absorbent and waterproof backsheets, and three-dimensional gathers that make use of waterproofness. It is composed of a cuff for preventing leakage that is called.
  • Nonwoven fabric is often used as a material for these sanitary materials because of its thinness, strength, soft touch for direct contact with the skin, and productivity and price. ing.
  • One of the sanitary materials is a material that comes into direct contact with the skin, so it has a soft touch and instantly transmits urine, etc., has little re-wetting, and repeatedly transmits urine several times
  • durable liquid permeation performance and the like have been required.
  • the non-woven fabric bonded by hot air has bulk and cushioning properties, but it is necessary to increase the basis weight of the non-woven fabric to obtain sufficient cushioning properties. It is composed of conjugate fibers and fixes the nonwoven fabric structure by fusing with hot air, resulting in a non-woven fabric with a rough and rugged touch.
  • the non-woven fabric of the point bond type in which short fibers are partially hot-press fused, has low strength and thinness, and there is also a problem that the fiber ends of the short fibers irritate the skin.
  • nonwoven fabrics made by the spunbond method are manufactured by partially hot-filament bonding a filament web and subjecting them to a hydrophilic treatment as necessary, resulting in high productivity, high strength, and a soft touch. I have. However, due to the shape and arrangement of the fibers, they were generally flat and did not have sufficient performance such as liquid permeability and re-wetting properties as compared with nonwoven short fibers.
  • a topsheet consisting of an upper sheet and a lower sheet is laminated in contact with the absorbent core, and the upper sheet is used to form a liquid passage tube with a concave part.
  • the invention described in Japanese Patent Publication No. 63-179394 which is related to the inventor's invention, is composed of a filament web having a fineness of 0.5 d to 5 d, and has a partially bonded portion and a non-bonded irregular deformation. And a nonwoven fabric having:
  • the present invention is a technique of bending the non-bonded portion of the fiber, shaping the unevenness, and kneading the fiber to make the fiber bulky and soft. No disclosure of characteristics.
  • For three-dimensional gathers which are another item of sanitary materials, especially for cuffs and backsheets for waterproofing, laminating a fiber web and a melt-blown fiber as a waterproof nonwoven fabric.
  • a laminated non-woven fabric is used, which utilizes both the strength of the former and the fine covering and waterproof properties of the latter.
  • This laminated nonwoven fabric has better covering properties than the conventional single filament web, and therefore has a lower basis weight and its function.
  • the paper form of the amenole and blow fiber webs is further strengthened, and furthermore, the adhesive properties of the melt and the mouth of the fiber are combined to provide a paper-like feel.
  • the nonwoven fabric is a tendency for the nonwoven fabric to become hard and thin, especially as the basis weight decreases.
  • a surface sheet composed of an upper surface sheet and a lower surface sheet is laminated in contact with the absorbent core portion, and the upper surface sheet is used to form a liquid passage pipe having a concave portion.
  • Forming method Japanese Unexamined Patent Publication No. Hei 6-304203 discloses a method in which a non-woven fabric made of a two-component fiber such as a core-sheath composite fiber or a side-by-side composite fiber is subjected to hot embossing to form irregularities.
  • the holding method Japanese Patent Application Laid-Open No.
  • 11-288663 discloses that a nonwoven fabric composed of a bicomponent fiber such as a core-sheath type composite fiber or a side-by-side type composite fiber is subjected to a heat-enbossing process to remove irregularities.
  • a method of forming a film and forming the vertices of the convex portion of the irregular shape into a film Japanese Patent Application Laid-Open No. 11-347602.
  • these methods involve forming holes or forming.
  • Nonwoven fabrics lack flexibility because they are fixed in shape.
  • a patent application publication (Japanese Patent Publication No. 63-179444) filed by the inventor of the present invention contains a filament web having a fineness of 0.5 d to 5 d, A nonwoven fabric having a bonded portion and a non-bonded uneven deformation is disclosed.
  • the patent publication does not disclose melt blown fibers. There is no description about the use of a fibrous web, nor is the effect of improving the adhesiveness of the melt-blown fiber web shown in the present invention disclosed.
  • FIG. 1 (I) is a diagram schematically showing the planar structure of the spunbonded nonwoven fabric of the present invention
  • FIG. 1 ( ⁇ ) is a nonwoven fabric in which the nonwoven fabric structure is fixed only by the partial hot-press fusion fiber area pattern.
  • FIG. 1 shows a cross-sectional view of a spunbonded nonwoven fabric in which the non-bonded fiber region of the surface is not subjected to unevenness processing.
  • FIG. 1 (m) is a diagram schematically showing a cross-sectional structure of the spunbonded nonwoven fabric of the present invention.
  • FIG. 2 shows a lattice concave pattern in the high-density region of continuously connected non-bonded fibers in the spun-bonded nonwoven fabric of the present invention, that is, a lattice concave pattern particularly continuous on the first surface of the nonwoven fabric structure.
  • FIG. 3 shows the provided embodiment without illustration of a partially hot-press fused fiber area pattern.
  • FIG. 3 shows a spunbonded nonwoven fabric of the present invention in which the high-density region concave pattern of the non-bonded fiber is discontinuous. As in the example of FIG. Show.
  • Fig. 4 shows the spunbonded nonwoven fabric of the present invention in which high-density area turtle concaves of non-bonded fibers are continuously connected and provided. Are omitted from the illustration.
  • FIG. 5 is a diagram showing the relationship between the thickness of the spunbonded nonwoven fabric according to Example 1 of the present invention and Comparative Examples 1, 5, and 6 under various loads.
  • FIG. 6 is a diagram comparing the thickness under various loads of spunbonded nonwoven fabrics of Example 8 of the present invention and Comparative Example 8.
  • FIG. 7 (I) shows the structure of a spunbonded nonwoven fabric as an example of the present invention
  • FIG. 7 (2) shows the spunbonded non-bonded fiber area shown in FIG. In an enlarged view of a micrograph showing the structure of is there.
  • FIG. 8 (I) shows the structure of the spunbonded nonwoven fabric of the present invention to which a melt-blown fiber web is added as another example, and Fig. 8 ( ⁇ ) shows the unevenness in the unbonded fiber area in Fig. 8 (I).
  • FIG. 3 is an enlarged photomicrograph showing the structure of a spunbond nonwoven fabric before processing is applied. Disclosure of the invention
  • An object of the present invention is to solve the above-mentioned problems and to provide an improved sanitary material having a bulky and soft touch feeling, high water permeability, low re-wetting, excellent strength, and useful for the production of disposable ommuts and the like.
  • Another object of the present invention is to provide an improved spunbond nonwoven fabric sanitary material by a spunbonding method which can be manufactured with high productivity.
  • the basic structure of the nonwoven fabric of the present invention is a nonwoven fabric mainly composed of a web of thermoplastic synthetic fiber continuous filament, and a partial nonwoven fabric penetrating between the front and back surfaces of the nonwoven fabric to be integrated.
  • the structure of the nonwoven fabric is fixed on both sides of the hot-press fusion fiber area pattern and the nonwoven fabric structure by embossed concave or convex patterns consisting of high density areas of non-bonded fibers.
  • a spunbonded nonwoven fabric characterized in that the bulkiness expressed by the ratio of the thickness of the nonwoven fabric occupied by the low-density non-bonded fiber region of the nonwoven fabric to the thickness is 100% or more. Adopting a nonwoven fabric structure in which a thermoplastic synthetic fiber filament layer is added to a melt fiber layer is also one of the preferred basic embodiments of the spunbonded nonwoven fabric of the present invention.
  • thermoplastic synthetic fiber web at least one layer of melt-pro fiber web are laminated.
  • a nonwoven fabric formed of a composite web consisting of: a partially hot-press-fused fiber area pattern penetrating between the front and back surfaces of the nonwoven fabric; and an embossed concave or convex pattern consisting of a high-density area of non-bonded fibers on one side of the nonwoven fabric structure.
  • the structure of the nonwoven fabric is fixed by, and the bulkiness ratio, expressed as the ratio of the thickness of the nonwoven fabric occupied by the low-density region of the non-bonded fibers of the nonwoven fabric to the thickness of the nonwoven fabric including the surface of the convex embossed pattern of the nonwoven fabric, is 1
  • the bulkiness ratio expressed as the ratio of the thickness of the nonwoven fabric occupied by the low-density region of the non-bonded fibers of the nonwoven fabric to the thickness of the nonwoven fabric including the surface of the convex embossed pattern of the nonwoven fabric
  • the basic structure of the spunbonded nonwoven fabric (1) of the present invention is schematically shown in FIG.
  • the non-woven fabric has (A) a partially hot-press-bonded fiber area embossed pattern (hereinafter sometimes simply referred to as a partially heat-bonded portion) and (B). ) It is fixed by embossed convex or concave pattern consisting of high density area of non-bonded fiber.
  • the patterns (A) and (B) shown in FIG. 1 are patterns schematically shown, and the actual patterns of both (A) and (B) can be changed in both shape and pitch.
  • Each of the patterns (A) and (B) is independently and discontinuously or continuously arranged on the front and back surfaces of the nonwoven fabric structure.
  • the nonwoven fabric structure includes the low-density region of the non-bonded fiber of (C) in contact with (A) and / or (B).
  • (A) the partial embossed fiber area embossed pattern is applied by hot embossing
  • (B) the embossed convex or concave pattern consisting of the high density area of non-bonded fibers is Alternatively, it is an embossed pattern applied at a temperature at which the fibers are not fused, and is a pattern in which the upper surface (first surface) and the lower surface (second surface) of the nonwoven fabric are molded in opposite directions (Fig. 1 ( Ii), see Figures 2 to 4).
  • FIG. 1 ( Ii) One specific example of the spunbonded nonwoven fabric of the present invention is shown in FIG. In FIG.
  • FIG. 7 (I) the nonwoven fabric structure in which the embossed patterns (A), (B) and (C) are formed can be seen.
  • Fig. 8 (I) Is an example of a spunbonded nonwoven fabric of the present invention including a laminate of a melt-blown fiber web, and a nonwoven fabric structure in which the patterns of (A), (B) and (C) are formed as in the example of FIG. You can watch.
  • the specific embodiments of the fixing structure of the nonwoven fabric structure of the present invention including the above (A), (B) and (C) will be clearly understood from FIGS. 7 and 8.
  • the bulk ratio is determined by the thickness (a) of the nonwoven fabric occupied by the low-density region of the non-bonded fibers of the nonwoven fabric with respect to the thickness (b) of the nonwoven fabric including the surface of the convex-boss pattern of the nonwoven fabric. It is expressed by the ratio, that is, the value calculated by the following formula (see Fig. 1 ( ⁇ )).
  • the thickness (a) of the non-bonded fiber in the low-density region is the thickness before low-temperature uneven boss processing, and therefore the bulk ratio can be calculated based on the difference in thickness before and after uneven processing. Good.
  • the bulk factor is important in determining the flexibility of the nonwoven fabric, which suggests that the unevenness processing at a low temperature has a kneading effect on the nonwoven fabric structure.
  • the spunbonded nonwoven fabric of the present invention further contains a hydrophilizing agent mainly in the high sitting area (B) of the non-bonded fiber, so that the desired performance, bulkiness, flexibility, and water permeability as a sanitary material are obtained.
  • a hydrophilizing agent mainly in the high sitting area (B) of the non-bonded fiber, so that the desired performance, bulkiness, flexibility, and water permeability as a sanitary material are obtained.
  • it can be modified into a nonwoven fabric that satisfies the four properties of rewetting simultaneously.
  • polyolefin-based fibers such as propylene, polyethylene, and copolymers thereof are preferred because of their low water-retention property and rewetting properties.
  • Polyester fibers such as terephthalate, polybutylene terephthalate, polytrimethylene terephthalate (PTT), or copolymers thereof are used to make nylon 6, 6, 6, 6 1
  • Polyamide fibers such as 0, 12 or copolymers thereof are preferred for obtaining a firm and flexible nonwoven fabric. If necessary, these composite fibers, blended fibers, and fibers having other special functions can be blended.
  • Nonwoven fabrics need to be strong enough to cope with the movement of the body when the surface is wet with urine and during use. From the viewpoint of productivity, continuous filaments (filaments) are used as webs. It is preferable to use a nonwoven fabric by a spunbond method formed by joining the nonwoven fabrics. Nonwoven fabrics made by the spunbond method have practical strength due to their long fiber length, have excellent air permeability, and, unlike the wet or dry methods, leave the fibers as they are without oil treatment. Because it is a sheet, the properties such as water repellency unique to the fiber can be utilized.
  • the bonding of the fibers and the fibers in the nonwoven fabric is preferably performed by a partial hot-pressure fusion method in order to impart the strength and flexibility of the nonwoven fabric and the feel of the fibers themselves.
  • the area ratio of the hot press fusion in the partial hot press fusion is preferably from 5 to 40%, more preferably from 5 to 25%, from the viewpoint of maintaining strength and flexibility.
  • Partial hot-pressure welding can be performed by using an ultrasonic welder, or by passing a web between hot embossing rolls that are heated to a temperature lower than the melting point of the constituent fibers, thereby integrating the front and back of the nonwoven fabric structure. For example, floating and sinking patterns such as pin points and rectangles are scattered all over the nonwoven fabric. Naturally, this hot-pressed fusion-bonded portion is pressed and is film-like, but the fibers around it have a unique feel to the fibers used.
  • the thickness of the nonwoven fabric formed only by the partial heat and pressure fusion varies depending on the fiber composition, the shape and the arrangement of the emboss, but it cannot be said that the thickness of the non-crimped fiber having a normal round cross section is large.
  • the arrangement of the fibers at the time of formation is flat and bulky.
  • the partial heat and pressure fusion is a method of partially bonding by heat and pressure, and is formed by applying a partial pressure in an emboss pattern at a temperature lower than the melting point of the constituent fibers.
  • the spunbonded nonwoven fabric of the present invention is a nonwoven fabric that is integrated front and back by a partial hot-press fusion part, and has a pattern different from the pattern of the hot-pressure fusion part on one side, in the high-density region of non-bonded fibers. Since the non-woven fabric structure has a concave portion and a convex portion in the high density region of the non-bonded fiber on the opposite surface, the non-woven fabric structure is integrated with the front and back by scattered partial hot-pressure fusion parts.
  • the other part consists of a convex or concave embossed pattern in the high-density region of the non-bonded fiber, and two regions with different fiber densities in the low-density region of the non-bonded fiber, each of which is subjected to the rubbing effect of the low-temperature embossing process.
  • the high-density area of the non-bonded fiber is the area indicated by B in Fig. 1 to Fig. 3 and is the area where the fibers are not fused or adhered. By this, it refers to a dense fiber region where the fibers are compressed and densely packed. For example, it is in the range of 15 to 35% in terms of fiber volume fraction. And, in the present invention, the area ratio of the high-density region of the non-bonded fiber is 5 to 50%, preferably 5 to 25%.
  • the calculation of the partial heat-pressure welded portion is calculated from the shape of the embossed pattern that has been heat-pressure welded.
  • the nonwoven fabric of the sample was magnified with a microscope, and the size and pitch were measured from the outline of the part that looks like a film when the two were fused together, the area was determined, and the area ratio to the area of the entire sample was calculated.
  • the low-density area of the unbonded fiber is the area indicated by C in Fig. 1 and corresponds to the part where the fiber is not fused or adhered and which is not subjected to compression at the embossed opening for unevenness processing. Fibers are not densely packed compared to the high-density region of non-bonded fibers, and have a fiber aggregation density before roughening.
  • the fibers in the low-density region are bulky, have a freedom of movement, and have the original soft feel of the fibers.
  • the fiber volume fraction in the low-density region of unbonded fibers is in the range of 5 to 15%.
  • the area of the high-density area of the non-bonded fiber is obtained by shaping the locus of the constituent fibers being crushed or partially deformed in the high-density area of the fiber formed by pressing the embossed pattern, and calculating the area. Calculate the area ratio to the area of the entire sample.
  • a fiber in which the constriction is simply visible or the deformation is poor was included.
  • the fibers are densely packed with a small thickness, and those treated with the hydrophilizing agent have good liquid permeability because the hydrophilizing agent is contained in the high-density region in a large amount. Is smooth and gives a smooth, soft feel.
  • the non-bonded low-density area is thicker than the high-density area, has a lower fiber aggregation density, is flexible and bulky, and has good liquid permeability, but is a barrier against liquid wetting back. It has good wet-back property (wet back).
  • FIGS. Fig. 1 Fig. 3 is a schematic diagram that makes it easy to understand the structural characteristics of the nonwoven fabric of the present invention.
  • the partial heat and pressure welded portion is a region that acts to maintain the strength of the entire nonwoven fabric and has an appropriate area ratio.
  • the non-bonding high-density area is the area of B and has a shape protruding from the surface of the nonwoven fabric, and therefore has the function of increasing the bulk of the nonwoven fabric. You. Further, since a large amount of the hydrophilizing agent is contained in the region B, the hydrophilicity of this portion is greatly improved, and the effect of improving the liquid permeability through the region B is obtained. .
  • the non-bonded low-density region is a region of C, which has a high degree of freedom of fibers, has flexibility, and has a function of giving a soft touch. Further, the region C acts as a barrier against the return of the liquid from the absorber due to the bulky effect, and has an effect of improving the wet-return property.
  • each of the regions (A), (B), and (C) has the above-described actions, and as a whole, has an action suitable for a sanitary material. It is.
  • the nonwoven fabric of the present invention uses the composite fiber shown in the prior art, and is completely different from a rough nonwoven fabric which is fused and hardened by bonding or hot air treatment.
  • a fiber layer having a degree of freedom can be formed into a partially deformed (elongated) fiber layer by imparting non-bonding and uneven deformation to the fiber layer. It has good properties, and therefore has the property of not being easily compressed when a load is applied. Therefore, it is bulky and porous even under a load, so that the liquid easily permeates (the liquid permeation speed is high), and it can be said that the liquid once permeated and absorbed does not easily return to the wet state.
  • the uneven deformation imparted to the nonwoven fabric of the present invention is a concave or convex deformation of an arbitrary shape that does not partially match the pattern of the partially bonded joint portion, and the shape, size, and depth of the concave or convex portion. Is important for the flexibility effect in relation to the bonding pattern.
  • the shape of the concave or convex portion may be, for example, a straight line, a curved line, a corner, a round, a satin-like shape, or other continuous continuous or non-continuous shape.
  • the depth of the concave or convex portion is
  • the size of the discontinuous convex portion pressing surface is preferably 0.1 to 5 mm, and the pitch of the concave or convex portion is preferably 0.5 to 5 mm.
  • FIG. 1 schematically shows the overall structure of the nonwoven fabric of the present invention in plan view.
  • 2 and 3 show examples in which a square non-woven fabric is embossed.
  • FIGS. 2 and 3 show two examples of non-bonding unevenness processing patterns. In the drawings, the pattern of the heat-sealed portion and its distribution are omitted.
  • the high-density region is continuously formed by pressing the embossed pattern having continuous projections, and the non-pressed portion is in a state in which the fiber layer is raised.
  • the pitch of the deformation by the continuous pattern depends on the pattern, but is preferably 1 to 5 mm, and the size of the recess is preferably a line with a width of 0.02 to 3 mm or a dotted line.
  • the thickness increases due to the bulkiness effect, the bulkiness of the nonwoven fabric is improved, and the change in the fabric thickness with respect to the load is small.
  • the present inventors have found that when a hydrophilic agent is added to the nonwoven fabric, the concentration of the hydrophilic agent increases in the high-density region of the non-bonded fibers.
  • Nonwoven fabrics become more flexible as the apparent thickness increases, but the finer the texture, the finer the pitch of the unevenness and the size of the recesses, if the thickness is not too large.
  • the bulk ratio of the nonwoven fabric of the present invention is 100% or more, preferably 105 to 400%, more preferably 110 to 300%, particularly preferably 120 to 100%. ⁇ 200%.
  • FIGS. 5 and 6 show the change in thickness of the spunbond nonwoven fabric according to the present invention with respect to the load. It can be said that the spunbonded nonwoven fabric of the present invention has a large thickness and a large bulk under each load, and has good compression characteristics against loads.
  • the spunbonded nonwoven fabric of the present invention when used, for example, as a top sheet of a disposable ommut, the decrease in thickness with the passage of time is small, and the flexibility during use of the ommut is reduced. This indicates that the effect of maintaining the bulkiness properties is great. In addition, even in the wet state, a good effect can be obtained because the thickness does not decrease much and the bulkiness of the liquid from returning from the absorber is large.
  • a method of providing a concave spunbonded nonwoven fabric or a non-bonded fiber convex embossed pattern is, for example, a method in which the surface has a concave, convex, or uneven pattern, between the rolls where both have just mated, or a concave on one surface. It is common to press between a roll with a convex pattern and a flexible roll, or to process between plates, but as a special method, a certain percentage of cloth is forced between rolls with a narrow gap. There is also a method of over-feeding and forming a small zigzag shape.
  • Fig. 4 shows an example in which unevenness is imparted by passing between two rolls each having a round-shaped uneven pattern on the surface and both of them just meshing with each other.
  • the temperature during the treatment may be room temperature, but if necessary, it is heated to a temperature within the range that does not cause fiber set-up for the purpose of plasticizing by heating and facilitating morphological stabilization, or for the purpose of imparting morphological stability. You may do it.
  • the temperature is preferably in the range of 30 to 110 ° C.
  • the embossing pressure varies depending on the temperature, but it is natural that the embossing pressure is set to a pressure at which the molding is sufficiently performed. In addition, this molding causes deformation of the fiber cross section of the compressed part.
  • the range is preferably 20 to 150 kgcm.
  • the high-density region concave portion of the non-bonded fiber formed on one side of the nonwoven fabric has a convex portion formed of the non-bonded high-density fiber on the opposite surface.
  • a convex shape protruding from other regions is formed so that the high-density region becomes a convex portion on the other surface. This is important not only in making the apparent thickness of the entire nonwoven fabric equal to or greater than the thickness of the web but also in imparting a hydrophilic agent to a specific site.
  • the hydrophilic treatment of the spunbonded nonwoven fabric of the present invention is carried out by a known method such as an immersion method, a spraying method, a coating method (roll coater, gravure coater, die, etc.) using a dilute hydrating agent solution. Can be adopted.
  • the nonwoven fabric is dried using a drying means such as hot air or a hot roll after the application of the hydrophilizing agent.
  • the adhesion distribution of the treatment agent is different between the high-density region previously applied and the other region.
  • the liquid is apparently contained in the low-density, so-called rough portion of the fiber, but as the nonwoven fabric dries, the liquid moves to a portion that is easy to dry.
  • the treatment agent adheres to the nonwoven fabric in spite of the small thickness of the nonwoven fabric, so that the liquid can pass easily.
  • the liquid once permeated is hard to be compressed in the low-density region and is bulky, so that the liquid is separated from the absorbing layer and hardly wets back.
  • the hydrophilizing agent is contained mainly in the high-density region of the non-bonded fiber, and the liquid permeability unique to the spunbonded nonwoven fabric of the present invention is improved. Effects such as improvement of the etch back property and improvement of the liquid flow can be obtained.
  • the processing such as the corona processing may be a general processing used for improving the wetting characteristics as the pre-processing of printing.
  • high-frequency power is supplied between the discharge electrode and the processing roll by a high-frequency generating oscillator or the like.
  • the nonwoven fabric is passed through and processed.
  • it is preferable to set the discharge conditions so that the surface tension of the treated surface is 37 to 4 OmN / m.
  • the wettability of the nonwoven fabric itself is different, so that it is natural to adjust the amount of the hydrophilic agent to obtain the required performance.
  • the surface tension of the nonwoven fabric is in the range of 37 to 4 OmN / m, the affinity between the hydrophilicizing agent and the surface fibers of the nonwoven fabric is remarkably improved, and the hydrophilicizing agent is uniformly applied at a low concentration. be able to.
  • the application of the hydrophilizing agent is preferably performed after the concavo-convex processing of the non-bonded fiber region, but there is no particular problem if applied before the concavo-convex processing.
  • the spunbonded nonwoven sanitary material of the present invention which has been treated with a hydrophilizing agent, it is natural to select the performance to be imparted and the method of use according to the target property level as the sanitary material.
  • the difference in the tactile sensation of the front and back of the nonwoven fabric is also relevant.
  • the high-density areas of the molded concave and convex patterns are not bonded to each other, but they are hardened compared to the others.Therefore, when used as a topsheet of Omut, the surface of the nonwoven fabric is used. In such cases, it is preferable to place the high-density region on the topsheet skin surface when placing it on the absorber side of the skin surface that does not directly touch the skin, or when emphasizing hydrophilicity.
  • the spunbonded nonwoven fabric of the present invention has at least one filament web and at least one melt blow web in the nonwoven structure.
  • the fiber material described above is effective as the fiber used for the nonwoven fabric. If necessary, blending with these composite fibers, blended fibers, and other fibers having special functions is also effective. It is effective to use different materials for the filament webs between layers, and the filament web and the melt-blown fiber web may be different materials. Materials that have an affinity for water, such as polyester fibers and polyamide fibers, are waterproof, water-repellent and, if necessary, silicone, fluorine, or wax-based waterproofing agents. However, it is necessary to improve by treatment with water repellent or addition.
  • Nonwoven fabrics need to be strong enough to cope with body movements during use.From the viewpoint of productivity, at least one filament web and at least more melt-blown fibers are required. It is preferable to use a nonwoven fabric formed by laminating two or more layers and laminating them continuously. This laminated structure may be simply a lamination of the filament web and the meltblown fiber web, but is usually between the filament web layers to compensate for the meltblown fiber webs with low surface strength. ⁇ A layer of blown web layers is used, and it is useful to make each layer a multilayer. Alternatively, the webs may be laminated after joining the webs.
  • the filament constituting the spunbonded nonwoven fabric is 0.5 to 5 dte X, has a practical strength due to a long fiber length, has excellent air permeability, and is obtained by a wet method or a dry method.
  • the fibers are made into a sheet without being treated with an oil agent or the like, so that the unique properties of the fibers, such as water repellency, are utilized.
  • Menolet blown fiber web is described in, for example, Japanese Patent Publication No. 56-3351, USP 3,978,185, USP 3,822,380, etc. As shown, it is formed of fine fibers of 1 to 6 ⁇ m and has excellent force-barring properties. For example, a polypropylene material further contributes to water repellency and waterproof effect. Melt-blown fiber webs are thinner fibers and have a lower crystallographic orientation and are easier to join than filament webs. However, on the other hand, when used alone, the strength is weak even when joined, and it becomes hard due to the feeling of vapor-like (paper-like). For this reason, laminating the filament web and the melt-blown fiber web compensates for the drawbacks of each, resulting in excellent practical strength, covering properties, water repellency and waterproofness. .
  • the area ratio of the hot press fusion in the partial heat press fusion is preferably from 5 to 40%, more preferably from 5 to 25%, from the viewpoint of strength retention and flexibility.
  • Partial heat pressure welding can be performed by an ultrasonic method or by passing a web between heated embossing rolls, whereby the front and back surfaces are integrated, for example, a pinpoint shape, an elliptical shape, and the like. Floating and sinking patterns such as shape, diamond shape, and rectangular shape are scattered all over the nonwoven fabric.
  • the heat-pressure-welded part is pressed and formed into a film, but the fibers around it, especially the filament web, have a unique feel to the fibers used.
  • the melt-blown fiber web layer is extremely fine, and due to its properties during fiber formation, etc., it becomes a paper-like (paper-like) touch due to heat.
  • the entire nonwoven fabric has a paper-like hardness.
  • the thickness of the non-woven fabric obtained by the partial heat and pressure fusion varies depending on the fiber structure, the shape and the arrangement of the emboss, but the adhesive effect peculiar to the melt-pro-fibrous web layer occurs, the thickness is reduced, and the bulk is reduced. Will not be.
  • a laminate of at least one layer of at least one filament web and at least one layer of melt-pro-filament is mixed with a non-continuous It is not intended to obtain the bulk or softness of the nonwoven fabric which has been integrated by the partial hot-pressure fusion part by the non-bonding unevenness deformation. It does not improve the effect.
  • the point of the present invention in the design of laminating the melt-blown fiber web on the nonwoven structure is to laminate at least one filament web and at least one layer of melt-blown fiber web.
  • the nonwoven fabric which has two or more layers laminated on the front and back by non-continuous partial heat and pressure fusion parts scattered on the surface, is subjected to a process of giving non-bonding concave and convex deformation by embossing etc.
  • the fibers of the scattered hot-pressure fusion parts are partially bonded and integrated into the front and back, but the fibers of the non-bonding irregularities in the other parts are soft touch feeling of the fibers themselves.
  • the point is to have.
  • the melt / pro-fiber web layer even though it has a slight adhesive effect, it is considered to be in a temporarily fixed state, unlike the heat-pressure bonded part, and the composite fiber is fused by heat treatment for bonding. It is totally different from what is hard and rough.
  • the degree of freedom by giving non-bonding and uneven deformation force to the fiber with the degree of freedom, it is possible to make the fiber layer partially deformed (elongated) to have sufficient bulkiness. Is obtained. This means that when a load is applied, unlike the original fibrous layer, it has characteristics that are difficult to compress. In other words, the line is easy to bend, resulting in softness and bulk (thickness).
  • FIG. 6 shows a change curve of the thickness of the nonwoven fabric with respect to the load in Example 8 and Comparative Example 8.
  • the material has a property that it is difficult to be compressed, and the bulkiness with respect to the load is reduced. It can be said that the nonwoven fabric has a small amount.
  • the concavo-convex embossed pattern in the high-density fiber region made of non-bonded fibers applied to the spunbonded nonwoven fabric of the present invention has a non-bonded concave or convex of an arbitrary shape that does not partially match the pattern of the bonded portion that is partially bonded. It is a deformation, and the shape, size, and depth of the concave or convex portions are important for the flexibility effect in relation to the bonding pattern.
  • the shape may be a straight line, a curve, a corner, a circle, a satin shape, or any other continuous or discontinuous shape.
  • the depth of the concave or convex portion is 0.
  • the thickness is preferably 2 to 5 mm, and the effect becomes larger as the unevenness becomes deeper.
  • the size of the pressure surface of the discontinuous pattern is preferably 0.1 to 5 mm, and the pitch of the concave or convex portions is preferably 0.5 to 5 mm.
  • the embossed pattern with projections is pressed to form depressions that are discontinuously scattered in the high-density region.
  • the fiber layer of the non-pressed portion rises while the concave portions in the high-density region continue.
  • the deformation pitch of the continuous embossed pattern is preferably 1 to 5 mm, and the size of the concave portion is preferably a line having a width of 0.02 to 3 mm or a dotted line.
  • the partially hot-pressed and fused portion is a pattern that does not partially correspond to the embossed concavo-convex pattern, and the high-density region of non-bonded fibers and non-bonding It is located in the low-density region of the fiber (see C in Figs. 1 to 4).
  • the area ratio of the pressed portion of the unevenness in the high density region of the non-bonded fiber is preferably 5 to 40%, more preferably 5 to 25%, in order to obtain good flexibility and fiber feel.
  • the larger the apparent thickness is, of course, the more flexible, but if the pitch of the deformation and the size of the recess are not too large, a dense effect can be obtained and non-bonding deformation is imparted.
  • With bulkiness before and after 1 It is preferably at least 100%, more preferably at least 105%, particularly preferably at least 130%.
  • a spunbonded nonwoven fabric provided with partial heat fusion by hot embossing has, for example, a concave, convex or irregular pattern on the surface, and both are just fitted together.
  • b Nore and Bae over Nono 0 with convex pattern - b Nore, rubber Russia Nore, or pressed between the flexible port Lumpur such as a resin inlet Lumpur, or treated with plates It is common.
  • the cloth is forcibly over-fed at a fixed ratio between the rolls with a narrow gap to form a small zigzag shape.
  • the points to pay particular attention to in the concave and convex conditions are the temperature during processing and the pressure applied to the cloth.
  • the aspect of the nonwoven fabric including the melt-blown fiber layer of the present invention is more susceptible to deformation effects than a nonwoven fabric having only a filament web.
  • the temperature to 60 ° C or lower, more preferably to 50 ° C or lower, and to actively cool if necessary. Both are effective.
  • the temperature may be increased within a range that does not cause the set-up of the fibers to be plasticized to facilitate molding, or a treatment for imparting morphological stability may be performed.
  • the pressure at the time of processing varies depending on the temperature, but can be set to a pressure at which deformation is sufficiently performed. It should be noted that the deformation gives rise to a deformation of the fiber cross section of the compressed portion, but it is also effective to perform a higher pressure treatment in order to provide more flexibility. Of course, great care must be taken to prevent temporary fixing of the fibers and hot-pressure fusion in the compression section.
  • the high density of the convex portion pressed on one side is provided.
  • the opposite surface has a high-density concave portion. That is, for example, when a continuous concave portion (high-density region) is formed on one surface, it is preferable that the high-density region protrude from the other region so that the high-density region becomes a convex portion on the other surface. . It is important to make the apparent thickness of the entire nonwoven fabric equal to or greater than the thickness of Eb. Since the high-density to low-density region is formed without being joined in this way, the whole fabric is thick and easily bendable by bending force, so it is soft. It is thin, flat, and has a completely different feel to paper. In order to further enhance the processing effect, processing can be performed in multiple stages.
  • the nonwoven fabric of the present invention is provided with various treating agents such as an antistatic agent, a softening agent, a hydrophilizing agent, and a lubricant, if necessary.
  • the performance to be imparted and the method of use are selected depending on the target property level of the sanitary material. It is also necessary to consider the difference in the tactile sensation on the front and back of the nonwoven fabric.
  • the pressed high-density area is not bonded, it can be hardened compared to the other areas.For example, this surface is placed on the side that does not directly touch the skin, or placed in consideration of the use of convex parts. This is also a preferable mode.
  • the concave-convex processing at a low temperature is performed online in the process of manufacturing a spunbond nonwoven fabric. It can also be processed off-line.
  • the rate of change before and after the non-woven fabric of a thickness which imparts a high density area of the unbonded fibers of the present invention was bulky rate.
  • a tensile test was performed on a test piece 3 cm wide and 20 cm long using a Shimadzu Corporation Tensilon at a grip width of 100 mm and a test speed of 300 m / min. The transverse strength and the stress at 5% elongation were measured.
  • the measurement method is as follows: 1 cm of one end of the specimen in the measurement direction is left, and the scale is pressed across the entire width in the direction perpendicular to the specimen, and the other end of the specimen is not bent and the loop is formed. As it is formed, place it on the end pressed by the scale. While holding the end on the side held by the scale by hand, slide the scale over the specimen and move it into the loop.
  • the point at which the loop elongates due to the repulsive force of the sample is defined as the end point, and the length from this point to the end of the loop is defined as the critical length (mm). Shorter ones indicate more flexibility.
  • Non-woven fabric is used as a top sheet of disposable sanitary materials for water permeability
  • the side used for the skin surface was used as the surface for measuring water permeability.
  • the “upper surface” or “lower surface” shown in the “Permeability measurement surface” column in Table 1 indicates the characteristics of the side used for the skin surface, respectively.
  • a measuring instrument approximately 800 g, a 10 cm square hole with a diameter of 25 mm was provided at the center, and two electrodes were provided at the center, with 10 pieces of toy let paper as an absorber. Place the test cloth 10 cm square (or more) between the absorber and the measuring instrument, and drop one drop of physiological saline from the spot 15 mm above the cloth. (0. lcc Z drops) Drops. The time from dropping to the end of the cloth surface was measured with an electrode, and the instantaneous water permeation rate (seconds) was obtained.
  • the diameter of the fibers that make up the nonwoven fabric was measured with a microscope (Keyence Corporation high-power microscope VH-800) and the fineness (dtex: filament) calculated from the density of the fiber polymer as a fiber with a circular cross section (A weight of 1000 m). The fineness of the menoleto-blown fiber web was indicated by the fiber diameter.
  • the rate of change in the flexibility in the vertical direction before and after imparting the high-density region of the non-bonded fiber of the present invention was defined as the softening rate.
  • Water pressure is used as a measure of the denseness and waterproofness of the nonwoven fabric. Take a sample (20 cm square) and measure according to JIS-L-1092. Specified.
  • MFR 40 measured under the conditions in Table 1 of JIS-K7210
  • This web is passed between embossed flat rolls heated to 135 ° C, and a staggered pinpoint pattern with a diameter of 0.43mm and a diagonal pitch of 45 ° and a pitch of 1.5mm (area (Approximately 7%) to obtain a nonwoven fabric having a pinpoint dot pattern.
  • the constituent fibers of the obtained spunbonded nonwoven fabric were round cross-section yarns of 2.8 dte X (Example 1) and 2.0 dtex (Example 2), with a partial heat pressure fused area ratio of 7% and a basis weight of 2%. It was 0 gm 2 .
  • This nonwoven fabric is a continuous honeycomb pattern with a side of 0.9 mm and a line width of 0.1 mm (concave pattern: see Fig. 4) (Pressing area ratio 12.5%, pattern pitch 2.8) mm, horizontal 3.2 mm, depth 0.7 mm) and a rubber roll with a surface hardness of 50 degrees (JIS-A hardness).
  • the handle was pressed at a pressure of 100 kg / cm.
  • the periphery of the tortoise shell was pressed, and a high-density area was obtained.
  • a hydrophilizing agent consisting of an activator mainly composed of a block copolymer of polyethylene glycol propylene glycol and a polyether-modified silicone is applied to this nonwoven fabric by a gravure method. wt% to give a nonwoven fabric for sanitary materials.
  • Tables 1 and 2 show the performance evaluation results of the nonwoven fabric.
  • the low-density area of the non-bonded fiber (the embossed concave surface), which is the surface of the nonwoven fabric, is placed on the skin side of the topsheet. However, the fiber layer was raised between the high-density regions and was soft, and had a good touch with the feel of a softer nonwoven fabric with improved wettability.
  • Example 2 of fine decitex was smoother and more excellent in softness.
  • the non-bonding embossing pattern to be pressed is a non-continuous and scattered tortoiseshell pattern (0.45 mm per side, 25% pressing area ratio, 2.8 mm pattern pitch length, opposite to Example 1).
  • the procedure of Example 1 was repeated except that the thickness was 3.2 mm and the depth was 0.6 mm) to obtain a nonwoven fabric of the present invention having 2.8 dtex and a basis weight of 20 g Zm 2 .
  • Tables 1 and 2 show the performance evaluation results of the nonwoven fabric.
  • This nonwoven fabric was used as a topsheet.
  • the continuous convexity in the low-density region of the nonwoven fabric (the front surface of the nonwoven fabric) was used on the skin side of the topsheet, and in Example 4, the reverse nonwoven fabric was used.
  • a non-continuous convex pattern in the high-density area on the back side of the top was used on the skin side of the topsheet to produce a disposable ommut.
  • the softness was excellent and the re-wetting performance was good as compared with the conventional nonwoven fabric.
  • the top sheet of this non-woven fabric with the top and bottom reversed (Example 4) has a high-density area with a dot-like swelling, which adds to the smoothness of the surface.
  • the non-bonding embossing pattern to be pressed is assumed to be a non-continuously scattered lattice convex pattern (0.3 mm x 0.7 mm on one side, 22% pressing area ratio, 0.6 mm depth).
  • a nonwoven fabric of the present invention having 2. O dtex and a basis weight of 18 g Zm 2 was obtained in the same manner as in Example 1 except that the roll was passed while being combined with a roll having a lattice recessed pattern. Table 1 shows the performance evaluation results of the nonwoven fabric. See Figure 2.
  • a disposable ommut was manufactured by using the continuous convex surface of the low density region of this nonwoven fabric (the front surface of the nonwoven fabric) facing the skin of the top sheet. As in Example 1, the softness was superior to the conventional nonwoven fabric, and the wettability was also excellent.
  • a corona treatment is performed before applying the hydrophilizing agent.
  • the corona treatment is performed at a discharge rate of 30 W ⁇ min / m 2 (discharge rate of 2.2 W / cm 2 ) in an atmosphere at room temperature of 22 ° C.
  • the surface tension of the nonwoven fabric was 37 mNZm
  • Example 1 and Example 3 were performed except that the adhesion of the hydrophilizing agent was set to 0.3 wt% in consideration of the improvement in wettability by corona treatment.
  • a nonwoven fabric for sanitary materials of the present invention was produced, and Examples 6 and 7 were obtained.
  • the disposable sanitary material using the obtained nonwoven fabric as a topsheet is softer and less adherent with a hydrophilizing agent than the conventional nonwoven fabric, but is similar to Examples 1 and 3. Because of its excellent water permeability and few treatment agents, it had a good touch with a softer and more flexible nonwoven fabric.
  • Example 2 28.5 7.2 12.0 1.3 76 50 0.12 3.1 0.8 28 100 100 60
  • Example 3 28.3 6.8 11.6 1.1 79 49 0.11 3.2 0.8 30 100 100 60
  • Example 4 28.8 7.5 11.5 1.3 77 46 0.11 3.2 0.8 27 100 100 60
  • Example 5 27.1 6.5 11.0 1.1 78 50 0.11 3.2 0.9 28 100 100 60
  • Example 7 0.11 3.5 0.7 27 100 100 60 Comparative Example 1 32.6 7.6 13.3 1.5 87 57 0.13 3.2 1.0 34 100 100 40
  • Comparative Example 5 0.24 2.8 0.5 30 100 0 0 Short fiber hot water Comparative example 6 0.10 2.7 0.1 20 100 40 0 Short fiber hot air
  • the example is bulky, has less change in thickness under load, is flexible, has instantaneous water permeability, rewetting, It can be seen that it is excellent in water permeation performance such as liquid flowability and water permeation durability.
  • the nonwoven fabric for sanitary materials of the present invention shown in Tables 1 and 2 has good bulkiness, a bulkiness ratio of 110% or more, little change in thickness when a load is applied, and compressibility against a load. It is excellent in flexibility, and has good water permeability and durability.
  • Embossed roll of this nonwoven fabric with a honeycomb pattern (concave pattern) with a continuous line shape of 0.9 mm on each side and a line width of 0.1 mm (press area ratio 12.5%, depth 0.7 mm) (40 ° C) and a surface hardness of 50 degrees (JIS-A hardness), and the handle was pressed at a linear pressure of 100 kg Z cm.
  • a flexible non-woven fabric with a high density area pressed around the turtle pattern and a raised center was obtained.
  • Tables 1 and 2 show the performance evaluation results of the nonwoven fabric.
  • the nonwoven fabric whose filament web has a fineness of 1.2 dtex (Example 9) is a softer nonwoven fabric with a smooth feel of surface fibers.
  • disposable ommut manufactured by using these nonwoven fabrics as three-dimensional gathers was softer and thicker than the conventional nonwoven fabrics that had not been subjected to a softening treatment.
  • disposable materials that are made by laminating a microporous PE film on this nonwoven fabric and used as a backsheet are soft tactile materials that cannot be obtained with conventional nonwoven fabrics that have not been subjected to softening treatment. It had strength and surface strength to withstand heat.
  • the embossed pattern to be pressed was changed in a non-continuous and scattered turtle pattern (0.45 mm per side, pressing area 25%, depth 0. 6 mm), and nonwoven fabrics of the present invention having a basis weight of 15 g Zm 2 (Example 10) and 17 g m 2 (Example 11) were obtained in the same manner as in Example 8.
  • Tables 3 and 4 show the performance evaluation results of the nonwoven fabric.
  • Example 8 A disposable ommut using this nonwoven fabric as a three-dimensional gather was produced. As in Example 8, it was made of a conventional non-woven fabric that had not been softened. It was more excellent in softness and thickness.
  • the backsheet made by laminating a microporous PE film with the front and back of this nonwoven cloth turned over has a high-density area of non-bonded fibers that rises in a dot-like manner. It had a good tactile sensation with smoothness added.
  • the embossed pattern to be pressed is non-continuously scattered with lattice convex patterns (0.3 mm X 0.7 mm on a side, pressing area ratio 22%, depth 0.6 mm). Then, the nonwoven fabric of the present invention having a basis weight of 15 gm 2 was obtained in the same manner as in Example 8, except that the pattern was passed while being combined with a hole having a lattice concave pattern fitted with the pattern. Tables 3 and 4 show the performance evaluation results of the nonwoven fabric.
  • the nonwoven fabric was laminated with a microporous PE film to produce a disposable backpack. As in Example 8, the softness was excellent and the feeling of thickness was good as compared with the conventional nonwoven fabric.
  • the embossed pattern to be pressed should be a continuous diagonal convex pattern (line width 0.2 mm, interval 0.5 mm, pressing area ratio 29%, depth 0.6 mm).
  • Tables 3 and 4 show the performance evaluation results of the nonwoven fabric.
  • This nonwoven fabric had a diagonal bending habit, was superior in softness to the nonwoven fabric before softening treatment, and had a good thickness.
  • the nonwoven fabric of the present invention was obtained. Tables 3 and 4 show the performance evaluation results of the nonwoven fabric.
  • This nonwoven fabric had a polyethylene-like slimy feel on the surface, was more excellent in softness than the nonwoven fabric before softening treatment, and had a good thickness.
  • Example 8 was repeated except that the filament layer on one side was 1.2 dtex (3.3 g / m 2 ) on the outside and 2.8 dtex (3.3 g / m 2 ) on the inside.
  • a nonwoven fabric of the present invention having a basis weight of 15 g Zm 2 was obtained.
  • the obtained nonwoven fabric was a thick nonwoven fabric having a smooth surface layer.
  • nonwoven fabrics were unprecedented soft nonwoven fabrics that can be used not only for sanitary materials but also for packaging materials, printing materials, simple clothing, and the like.
  • Nonwoven fabrics before non-bonding unevenness softening treatment corresponding to Examples 8, 9, 11, 14, 15, 16 and 17 were subjected to Comparative Examples 8, 9, 10, 0, 11 and 1 respectively.
  • the characteristics are shown in Tables 3 and 4.
  • Non-woven fabric Thickness of non-woven fabric under each load Non-woven fabric Non-woven fabric tensile strength 5% elongation of non-woven fabric
  • Example 8 15 268 189 149 138 119 119 12.2 7. 4 5.6 6.11 15 58 42 84
  • Example 9 15 266 178 140 131 112 115 18.2 7.7 6.1 2.1 15 57 41 76
  • Example 10 15 266 174 135 129 105 109 13.1 7.5 5 3.1.4 13 58 42 84
  • the spunbond nonwoven fabric of the present invention has excellent bulkiness, flexibility and strength, and is useful as a nonwoven fabric for sanitary materials.
  • the spunbonded nonwoven fabric of the present invention further contains a hydrophilizing agent mainly in the region (B), so that the desired performance as a sanitary material such as a disposable omput topsheet or the like can be obtained. It satisfies the four characteristics of bulk, flexibility, water permeability and rewetting at the same time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

A spun-bonded nonwoven fabric constituted of a web of continuous filaments of thermoplastic synthetic fibers, the structure of which fabric is set by a pattern composed of areas which are produced by partially fusing the fibers by hot pressing and pierce through the fabric and concavely and convexly embossed patterns on the surfaces of the fabric which patterns are composed of high-density concave and convex areas of unbonded fibers respectively and the bulkiness of which fabric is 100 to 400 % in terms of the ratio of the thickness of the fabric inclusive of the convexly embossed pattern surface to the thickness of the low-density areas of the fabric. The application of a hydrophilic agent to the nonwoven fabric gives sanitary supplies such as disposable diaper.

Description

明 細 書 スパンボン ド系不織布及び衛生材料  Description Spunbond nonwoven fabric and sanitary materials
技術分野 Technical field
本発明は、 スパンボン ド系不織布に係り、 特に不織布構造が部分 的熱圧融着の非連続パターンと非結合繊維の高密度域でなる凹又は 凸エンボスパターンとで固定された柔軟で、 嵩高なスパンポン ド系 不織布であって、 使い捨て衛生材料及び使い捨て衛生材料に有用な 改良された不織布に関する。 従来の技術  The present invention relates to a spunbonded nonwoven fabric, and in particular, a flexible and bulky nonwoven fabric structure fixed by a discontinuous pattern of partial hot-pressure fusion and a concave or convex emboss pattern in a high-density region of non-bonded fibers. The present invention relates to a disposable hygiene material and an improved nonwoven fabric useful for a disposable hygiene material. Conventional technology
ォムッや生理ナプキン等に用いられる衛生材料は、 一般的に尿、 排出物を透液する ト ップシ一ト、 吸収体および防水性を有するバッ クシー ト、 さ らに防水性を活かした立体ギャザーと呼ばれているモ レ止め用カフ等で構成されている。 これらの衛生材料に使用する素 材と しては、 薄く、 強力を持ち、 かつ肌に直接接するためのソ フ ト な触感を有する点及び生産性、 価格等の面から不織布が多く用いら れている。  Generally, sanitary materials used for sanitary towels and sanitary napkins include topsheets that allow urine and effluent to pass through, absorbent and waterproof backsheets, and three-dimensional gathers that make use of waterproofness. It is composed of a cuff for preventing leakage that is called. Nonwoven fabric is often used as a material for these sanitary materials because of its thinness, strength, soft touch for direct contact with the skin, and productivity and price. ing.
衛生材料の 1 つ、 使い捨てォムッの ト ップシー トは、 肌に直接接 する材料であるので、 ソフ トな触感と共に、 尿等を瞬時に透過する 、 濡れ戻りが少ない、 数回尿を繰り返し透過するための耐久性透液 性能等が要求されてきた。  One of the sanitary materials, disposable ommop topsheet, is a material that comes into direct contact with the skin, so it has a soft touch and instantly transmits urine, etc., has little re-wetting, and repeatedly transmits urine several times For this purpose, durable liquid permeation performance and the like have been required.
現在は複合系短繊維等を用いた嵩高な繊維を、 熱風あるいは部分 熱圧融着して接合したものが使用されている。 しかし、 この熱風で 接合した不織布は嵩とク ッシ ョ ン性をもつが、 充分なク ッシ ョ ン性 を得るには不織布を高目付にする必要があり 、 更には、 その表面が 複合繊維で構成され、 熱風での融着によ り、 不織布構造を固定する ので、 粗硬なゴヮゴヮした触感の不織布になる。 At present, bulky fibers using composite short fibers or the like are joined by hot air or partial hot-pressure fusion. However, the non-woven fabric bonded by hot air has bulk and cushioning properties, but it is necessary to increase the basis weight of the non-woven fabric to obtain sufficient cushioning properties. It is composed of conjugate fibers and fixes the nonwoven fabric structure by fusing with hot air, resulting in a non-woven fabric with a rough and rugged touch.
また、 短繊維を部分的熱圧融着したボイントボンドタイプの不織 布は、 強力が低く、 厚みも薄いし、 短繊維の繊維端が肌を刺激する 問題もある。  In addition, the non-woven fabric of the point bond type, in which short fibers are partially hot-press fused, has low strength and thinness, and there is also a problem that the fiber ends of the short fibers irritate the skin.
一方、 スパンボンド法による不織布は、 フィラメ ントのウェブを 部分的熱圧融着し、 必要に応じて親水化処理して製造されるので、 高生産性であり、 強力も高く ソフ トな触感をもっている。 しかし、 繊維の形状、 配列から、 一般的には平面的で短繊維不織布に比べて 、 透液性、 濡れ戻り性等の性能も充分ではなかった。 スパンボンド 不織布の嵩の改良方法としては、 吸液性コア部に接して、 上面シー 卜 と下面シー トとからなる表面シートを積層し、 この上面シートに よって凹部の開孔導液管を形成する方法 (特開平 6— 3 0 4 2 0 3 号公報) 、 芯鞘型複合繊維又はサイ ドバイサイ ド型複合繊維等の 2 成分繊維からなるウェブを熱エンボス加工して凹凸を賦形保持する 方法 (特開平 1 1 一 2 8 6 8 6 3号公報) 、 芯鞘型複合繊維又はサ ィ ドバイサイ ド型複合繊維等の 2成分繊維からなるウェブに熱ェン ボス加工を施して凹凸を賦形し、 凹凸賦形の凸部頂点をフィルム状 化する方法 (特開平 1 1 — 3 4 7 0 6 2号公報) 等が知られている 。 しかしながら、 これらの方法は、 孔をあけたり、 賦形固定するも ので、 不織布は柔軟性を欠く ものであった。  On the other hand, nonwoven fabrics made by the spunbond method are manufactured by partially hot-filament bonding a filament web and subjecting them to a hydrophilic treatment as necessary, resulting in high productivity, high strength, and a soft touch. I have. However, due to the shape and arrangement of the fibers, they were generally flat and did not have sufficient performance such as liquid permeability and re-wetting properties as compared with nonwoven short fibers. As a method for improving the bulk of the spunbond nonwoven fabric, a topsheet consisting of an upper sheet and a lower sheet is laminated in contact with the absorbent core, and the upper sheet is used to form a liquid passage tube with a concave part. (Japanese Unexamined Patent Publication (Kokai) No. 6-304203), a method of forming and maintaining irregularities by hot embossing a web composed of a bicomponent fiber such as a core-sheath composite fiber or a side-by-side composite fiber. (Japanese Unexamined Patent Publication (Kokai) No. 11-1986-633), a web made of a bicomponent fiber such as a core-sheath type composite fiber or a side-by-side type composite fiber is subjected to hot-enbossing to form irregularities. In addition, there is known a method of forming a convex portion apex of the concavo-convex shape into a film (Japanese Patent Application Laid-Open No. 11-34762). However, these methods are perforated or shaped and fixed, so that the nonwoven fabric lacks flexibility.
本発明者の発明に係る特公昭 6 3— 1 7 9 4 4号公報記載の発明 は、 繊度 0 . 5 d〜 5 dのフィ ラメ ン トウェブから構成され、 部分 結合部と非結合性凹凸変形とを有する不織布である。 しかしながら 、 この発明は、 非結合性部分の繊維を折り曲げして、 凹凸の型付け し、 繊維を揉み解して嵩高、 柔軟化する技術であるが、 衛生材料と して必要な透液性等の特性に関する開示がない。 衛生材料の他のアイテムである立体ギャザーについては、 特にモ レ止め用カフ、 バックシー ト等には防水性をもった不織布と してフ イ ラメ ン ト ウエブとメル ト ' ブロー繊維を積層し、 前者のもつ強力 と後者の微細なカバーリ ング性、 防水性の両特性を活かした積層不 織布が用いられている。 The invention described in Japanese Patent Publication No. 63-179394, which is related to the inventor's invention, is composed of a filament web having a fineness of 0.5 d to 5 d, and has a partially bonded portion and a non-bonded irregular deformation. And a nonwoven fabric having: However, the present invention is a technique of bending the non-bonded portion of the fiber, shaping the unevenness, and kneading the fiber to make the fiber bulky and soft. No disclosure of characteristics. For three-dimensional gathers, which are another item of sanitary materials, especially for cuffs and backsheets for waterproofing, laminating a fiber web and a melt-blown fiber as a waterproof nonwoven fabric. A laminated non-woven fabric is used, which utilizes both the strength of the former and the fine covering and waterproof properties of the latter.
この積層不織布は、 従来の単体のフィ ラメ ン ト ウェブと比べて、 カバーリ ング性に優れるこ とから、 一段と低目付でその機能をもつ こ とになる。 しかし、 フィ ラメ ン ト ウェブがあるもののメノレ ト , ブ ロー繊維ウェブの紙的な形態が一段と強く なり 、 更にメル ト ' ブ口 一繊維のゥエブの接着性も合わさつて、 ペーパーライ クな触感で硬 く 、 特に低目付になるに従ってペラペラした薄い不織布になる傾向 がある。  This laminated nonwoven fabric has better covering properties than the conventional single filament web, and therefore has a lower basis weight and its function. However, although there is a filament web, the paper form of the amenole and blow fiber webs is further strengthened, and furthermore, the adhesive properties of the melt and the mouth of the fiber are combined to provide a paper-like feel. There is a tendency for the nonwoven fabric to become hard and thin, especially as the basis weight decreases.
嵩の改良方法と しては、 吸液性コア部に接して、 上面シー ト と下 面シ一 ト とからなる表面シー トを積層し、 この上面シー トによって 凹部の開孔導液管を形成する方法 (特開平 6— 3 0 4 2 0 3号公報 ) 、 芯鞘型複合繊維又はサイ ドバイサイ ド型複合繊維等の 2成分繊 維からなる不織布に熱エンボス加工を施して凹凸を賦形保持する方 法 (特開平 1 1 — 2 8 6 8 6 3号公報) 、 芯鞘型複合繊維又はサイ ドバイサイ ド型複合繊維等の 2成分繊維からなる不織布に熱ェンボ ス加工を施して凹凸を賦形し、 凹凸賦形の凸部頂点をフィルム状化 する方法 (特開平 1 1 一 3 4 7 0 6 2号公報) 等が既知ではあるが 、 これらの方法は、 孔をあけたり、 賦形固定するものであるので、 不織布は柔軟性に欠ける。  As a method of improving the bulk, a surface sheet composed of an upper surface sheet and a lower surface sheet is laminated in contact with the absorbent core portion, and the upper surface sheet is used to form a liquid passage pipe having a concave portion. Forming method (Japanese Unexamined Patent Publication No. Hei 6-304203) discloses a method in which a non-woven fabric made of a two-component fiber such as a core-sheath composite fiber or a side-by-side composite fiber is subjected to hot embossing to form irregularities. The holding method (Japanese Patent Application Laid-Open No. 11-288663) discloses that a nonwoven fabric composed of a bicomponent fiber such as a core-sheath type composite fiber or a side-by-side type composite fiber is subjected to a heat-enbossing process to remove irregularities. There is known a method of forming a film and forming the vertices of the convex portion of the irregular shape into a film (Japanese Patent Application Laid-Open No. 11-347602). However, these methods involve forming holes or forming. Nonwoven fabrics lack flexibility because they are fixed in shape.
本発明者の出願に係る特許出願公告公報 (特公昭 6 3 - 1 7 9 4 4号公報) には、 繊度 0 . 5 d〜 5 d のフ ィ ラ メ ン ト ウェブから構 成され、 部分結合部と非結合性凹凸変形とを有する不織布が開示さ れている。 しかしながら、 前記特許公告公報にはメル ト · ブロー繊 維ウェブを用いることについての記載はなく 、 本発明で示したメル ト · ブロー繊維ゥェブの接着性改善効果についても開示されていな レヽ o 図面の簡単な説明 A patent application publication (Japanese Patent Publication No. 63-179444) filed by the inventor of the present invention contains a filament web having a fineness of 0.5 d to 5 d, A nonwoven fabric having a bonded portion and a non-bonded uneven deformation is disclosed. However, the patent publication does not disclose melt blown fibers. There is no description about the use of a fibrous web, nor is the effect of improving the adhesiveness of the melt-blown fiber web shown in the present invention disclosed.
図 1 ( I ) は、 本発明のスパンボンド系不織布の平面の構造を模 式的に示す図、 図 1 ( Π ) は、 部分的熱圧融着繊維域パターンのみ で不織布構造が固定され不織布面の非結合繊維域に凹凸加工を施し てはいないスパンボンド系不織布の断面図を示し、 図 1 ( m ) は本 発明のスパンボンド系不織布の断面構造を模式的に示す図である。  FIG. 1 (I) is a diagram schematically showing the planar structure of the spunbonded nonwoven fabric of the present invention, and FIG. 1 (Π) is a nonwoven fabric in which the nonwoven fabric structure is fixed only by the partial hot-press fusion fiber area pattern. FIG. 1 shows a cross-sectional view of a spunbonded nonwoven fabric in which the non-bonded fiber region of the surface is not subjected to unevenness processing. FIG. 1 (m) is a diagram schematically showing a cross-sectional structure of the spunbonded nonwoven fabric of the present invention.
図 2は、 本発明のスパンポン ド系不織布における連続的に連なつ た非結合繊維の高密度域の格子凹柄、 すなわち不織布構造の第 1の 面に特に連続的に連なった格子凹柄パターンが設けられた実施態様 を、 部分的熱圧融着繊維域パターンの図示を省いて示す図である。 図 3は、 非結合繊維の高密度域凹柄が非連続の本発明のスパンボ ンド系不織布であり 、 図 2 の例と同様に部分的熱圧融着繊維域パタ ーンの図示を省いて示す。  FIG. 2 shows a lattice concave pattern in the high-density region of continuously connected non-bonded fibers in the spun-bonded nonwoven fabric of the present invention, that is, a lattice concave pattern particularly continuous on the first surface of the nonwoven fabric structure. FIG. 3 shows the provided embodiment without illustration of a partially hot-press fused fiber area pattern. FIG. 3 shows a spunbonded nonwoven fabric of the present invention in which the high-density region concave pattern of the non-bonded fiber is discontinuous. As in the example of FIG. Show.
図 4は、 非結合繊維の高密度域亀甲凹柄が連続的に連ねられ設け られた本発明のスパンボンド系不織布であり、 図 2の例と同様に部 分的熱圧融着繊維域パターンの図示を省いて示している。  Fig. 4 shows the spunbonded nonwoven fabric of the present invention in which high-density area turtle concaves of non-bonded fibers are continuously connected and provided. Are omitted from the illustration.
図 5は、 本発明の実施例 1 と比較例 1 、 5及び 6によるスパンボ ン ド系不織布の諸荷重下の厚みとの関係を示す図である。  FIG. 5 is a diagram showing the relationship between the thickness of the spunbonded nonwoven fabric according to Example 1 of the present invention and Comparative Examples 1, 5, and 6 under various loads.
図 6は、 本発明の実施例 8 と比較例 8のスパンボン ド系不織布の 諸荷重下の厚みを比較する図である。  FIG. 6 is a diagram comparing the thickness under various loads of spunbonded nonwoven fabrics of Example 8 of the present invention and Comparative Example 8.
図 7 ( I ) は、 本発明の 1例と してのスパンボン ド不織布の構造 を示し、 図 7 ( 2 ) は、 図 7 ( 1 ) の非結合繊維の区域に凹凸加工 を施す前のスパンボン ド不織布の構造を示す顕微鏡写真の拡大図で ある。 FIG. 7 (I) shows the structure of a spunbonded nonwoven fabric as an example of the present invention, and FIG. 7 (2) shows the spunbonded non-bonded fiber area shown in FIG. In an enlarged view of a micrograph showing the structure of is there.
図 8 ( I ) は、 他の例と してのメル トブロー繊維ウェブを付加し た本発明のスパンボン ド系不織布の構造、 図 8 ( Π ) は図 8 ( I ) の非結合繊維区域に凹凸加工が適用される前のスパンボン ド系不織 布の構造を示す顕微鏡写真拡大図である。 発明の開示  Fig. 8 (I) shows the structure of the spunbonded nonwoven fabric of the present invention to which a melt-blown fiber web is added as another example, and Fig. 8 (Π) shows the unevenness in the unbonded fiber area in Fig. 8 (I). FIG. 3 is an enlarged photomicrograph showing the structure of a spunbond nonwoven fabric before processing is applied. Disclosure of the invention
本発明の目的は、 前記課題を解決し、 嵩高でソフ トな触感、 高透 水性をもち、 濡れ戻りが少なく 、 強力に優れる、 使い捨てォムッ等 の製造に有用な衛生材料と しての改良されたスパンボン ド系不織布 の提供にある。  An object of the present invention is to solve the above-mentioned problems and to provide an improved sanitary material having a bulky and soft touch feeling, high water permeability, low re-wetting, excellent strength, and useful for the production of disposable ommuts and the like. To provide spunbond nonwoven fabric.
本発明は、 高い生産性の下で製造できるスパンボン ド法によ り 、 改良されたスパンボン ド系不織布の衛生材料の提供をも 目的と して いる。  Another object of the present invention is to provide an improved spunbond nonwoven fabric sanitary material by a spunbonding method which can be manufactured with high productivity.
本発明の不織布の基本的な構成は、 熱可塑性合成繊維連続フィ ラ メ ン トのウェブを主体に用いて構成された不織布であり、 不織布の 表裏面間を貫通して一体化している部分的熱圧融着繊維域パターン 及び不織布構造の両面に非結合繊維の高密度域からなるエンボス凹 又は凸パターンによ り不織布の構造が固定されており、 不織布の凸 エンボスパターンの面を含む不織布の厚みに対する不織布構造の非 結合繊維低密度域が占める不織布の厚みの比で表される嵩高率が 1 0 0 %以上であるこ とを特徴とするスパンボン ド系不織布である。 熱可塑性合成繊維フイ ラメ ン ト層にメル ト * ブ口一繊維層を附加 した不織布構造を採用するこ とも本発明のスパンボン ド系不織布の 好ま しい基本態様の一つである。  The basic structure of the nonwoven fabric of the present invention is a nonwoven fabric mainly composed of a web of thermoplastic synthetic fiber continuous filament, and a partial nonwoven fabric penetrating between the front and back surfaces of the nonwoven fabric to be integrated. The structure of the nonwoven fabric is fixed on both sides of the hot-press fusion fiber area pattern and the nonwoven fabric structure by embossed concave or convex patterns consisting of high density areas of non-bonded fibers. A spunbonded nonwoven fabric characterized in that the bulkiness expressed by the ratio of the thickness of the nonwoven fabric occupied by the low-density non-bonded fiber region of the nonwoven fabric to the thickness is 100% or more. Adopting a nonwoven fabric structure in which a thermoplastic synthetic fiber filament layer is added to a melt fiber layer is also one of the preferred basic embodiments of the spunbonded nonwoven fabric of the present invention.
すなわち少なく と も一層の熱可塑性合成繊維連続フィ ラメ ン ト ウ エブと少なく とも一層のメル ト · プロ一繊維のウェブとを積層して なる複合ウェブで形成された不織布であり、 不織布の表裏面間を貫 通する部分的熱圧融着繊維域パターン及び不織布構造の两面に非結 合繊維の高密度域からなるエンボス凹又は凸柄によ り不織布の構造 が固定されており、 不織布の凸エンボスパターンの面を含む不織布 の厚みに対する不織布構造の非結合繊維の低密度域が占める不織布 の厚みの比で表される嵩高率が 1 0 0 %以上であるスパンボン ド系 不織布とするこ とによって、 衛生材料と して望まれる嵩高性、 柔軟 性といった基本的性能を一層高める と ことができる。 That is, at least one layer of continuous thermoplastic synthetic fiber web and at least one layer of melt-pro fiber web are laminated. A nonwoven fabric formed of a composite web consisting of: a partially hot-press-fused fiber area pattern penetrating between the front and back surfaces of the nonwoven fabric; and an embossed concave or convex pattern consisting of a high-density area of non-bonded fibers on one side of the nonwoven fabric structure. The structure of the nonwoven fabric is fixed by, and the bulkiness ratio, expressed as the ratio of the thickness of the nonwoven fabric occupied by the low-density region of the non-bonded fibers of the nonwoven fabric to the thickness of the nonwoven fabric including the surface of the convex embossed pattern of the nonwoven fabric, is 1 By using a spunbonded nonwoven fabric having a content of not less than 100%, basic performances such as bulkiness and flexibility desired as a sanitary material can be further enhanced.
本発明のスパンボン ド系不織布 ( 1 ) の基本構造を図 1に模式図 で示す。 図 1 ( I ) 、 図 1 (Π) で示されるよ うに、 不織布構造が ( A) 部分的熱圧融着繊維域エンボスパターン (以下単に部分的熱 融着部という こ ともある) 及び (B) 非結合繊維の高密度域からな るエンボス凸又は凹パターンによ り 固定されている。 図 1で示され る (A) 及び (B) のパターンは、 模式的に示されるパターンであ り 、 実際のパターンは ( A ) と ( B ) 共に形状と ピッチ共に変える こ とができる。 そして、 (A) 及び (B) の各パターンは不織布構 造の表裏面にそれぞれ独立して非連続に又は連続的に配置されてい る。 そして、 不織布構造は、 前記 (A) 及び/又は (B) に接して 、 更に (C) の非結合繊維の低密度域を含んでいる。 こ こに、 (A ) 部分的熱圧融着繊維域エンボスパターンは、 熱エンボスによ り付 与され、 (B) 非結合繊維の高密度域からなるエンボス凸又は凹パ ターンは、 低温下又は繊維を融着するこ とのない温度下で付与され たエンボスパターンであり、 不織布の上面 (第 1面) と下面 (第 2 面) で逆方向に型付けされるパターンである (図 1 (ΙΠ) 、 図 2〜 図 4参照) 。 本発明のスパンボン ド系不織布の 1つの具体例を図 7 に示す。 図 7 ( I ) に (A) 、 ( B ) 及び (C) のエンボスパター ンが形成されている不織布構造を観るこ とができる。 図 8 ( I ) に は、 メルト ' ブロー繊維ウェブの積層を含む本発明のスパンボンド 系不織布の例であり、 図 7の例と同様に (A) 、 (B) 及び (C) のパターンが形成されている不織布構造を観るこ とができる。 以上 、 図 7及び図 8から、 前記した前記 (A) 、 (B) 及び (C )を含 む本発明の不織布構造の固定構造の具体的態様は、 明瞭に理解され るであろう。 The basic structure of the spunbonded nonwoven fabric (1) of the present invention is schematically shown in FIG. As shown in Fig. 1 (I) and Fig. 1 (Π), the non-woven fabric has (A) a partially hot-press-bonded fiber area embossed pattern (hereinafter sometimes simply referred to as a partially heat-bonded portion) and (B). ) It is fixed by embossed convex or concave pattern consisting of high density area of non-bonded fiber. The patterns (A) and (B) shown in FIG. 1 are patterns schematically shown, and the actual patterns of both (A) and (B) can be changed in both shape and pitch. Each of the patterns (A) and (B) is independently and discontinuously or continuously arranged on the front and back surfaces of the nonwoven fabric structure. Then, the nonwoven fabric structure includes the low-density region of the non-bonded fiber of (C) in contact with (A) and / or (B). Here, (A) the partial embossed fiber area embossed pattern is applied by hot embossing, and (B) the embossed convex or concave pattern consisting of the high density area of non-bonded fibers is Alternatively, it is an embossed pattern applied at a temperature at which the fibers are not fused, and is a pattern in which the upper surface (first surface) and the lower surface (second surface) of the nonwoven fabric are molded in opposite directions (Fig. 1 ( Ii), see Figures 2 to 4). One specific example of the spunbonded nonwoven fabric of the present invention is shown in FIG. In FIG. 7 (I), the nonwoven fabric structure in which the embossed patterns (A), (B) and (C) are formed can be seen. Fig. 8 (I) Is an example of a spunbonded nonwoven fabric of the present invention including a laminate of a melt-blown fiber web, and a nonwoven fabric structure in which the patterns of (A), (B) and (C) are formed as in the example of FIG. You can watch. As described above, the specific embodiments of the fixing structure of the nonwoven fabric structure of the present invention including the above (A), (B) and (C) will be clearly understood from FIGS. 7 and 8.
本発明のスパンボン ド系不織布おいて、 嵩高率は不織布の凸ェン ボスパターンの面を含む不織布の厚み ( b ) に対する不織布構造の 非結合繊維の低密度域が占める不織布の厚み ( a ) の比、 すなわち 次式によって算出される値で表される (図 1 (ΠΙ) 参照) 。  In the spunbonded nonwoven fabric of the present invention, the bulk ratio is determined by the thickness (a) of the nonwoven fabric occupied by the low-density region of the non-bonded fibers of the nonwoven fabric with respect to the thickness (b) of the nonwoven fabric including the surface of the convex-boss pattern of the nonwoven fabric. It is expressed by the ratio, that is, the value calculated by the following formula (see Fig. 1 (ΠΙ)).
嵩高率 (%) = ( b / a ) x 1 0 0  Bulk factor (%) = (b / a) x 100
こ こで、 非結合繊維の低密度域の厚み ( a ) は、 低温下の凹凸ェン ボス加工前の厚みであり、 したがって嵩高率は凹凸加工前後の厚み の差に基づいて算出してもよい。 嵩高率は、 不織布の柔軟性を決定 する上で重要であり、 このことは、 低温下の凹凸加工が不織布構造 に揉み作用を与えることを示唆している。 Here, the thickness (a) of the non-bonded fiber in the low-density region is the thickness before low-temperature uneven boss processing, and therefore the bulk ratio can be calculated based on the difference in thickness before and after uneven processing. Good. The bulk factor is important in determining the flexibility of the nonwoven fabric, which suggests that the unevenness processing at a low temperature has a kneading effect on the nonwoven fabric structure.
本発明のスパンボン ド系不織布に、 更に、 親水化剤を非結合繊維 の高座度域 (B) に主と して含有させることで、 衛生材料と して所 望の性能、 嵩高、 柔軟、 透水、 ぬれ戻りの 4つの特性を同時に満足 する不織布に改質することができる。  The spunbonded nonwoven fabric of the present invention further contains a hydrophilizing agent mainly in the high sitting area (B) of the non-bonded fiber, so that the desired performance, bulkiness, flexibility, and water permeability as a sanitary material are obtained. However, it can be modified into a nonwoven fabric that satisfies the four properties of rewetting simultaneously.
以下、 本発明につき詳述する。  Hereinafter, the present invention will be described in detail.
本発明のスパンボン ド系不織布を構成する繊維と しては、 ポロプ ロ ピレン、 ポリエチレン、 あるいはその共重合等のポリオレフイ ン 系繊維が繊維自体の保水性の低い点、 濡れ戻り性に好ましい、 ポリ エチレンテレフタレー ト、 ポリ ブチレンテレフタ レ一 ト、 ポリ ト リ メチレンテレフタレー ト (P T T) 、 あるいはその共重合等のポリ エステル系繊維が腰、 サラサラ感の点で、 ナイ ロ ン 6、 6 6、 6 1 0、 1 2、 あるいはその共重合等のポリ アミ ド系繊維がしっ と り し た柔軟性のある不織布をえる上で好ま しい。 必要に応じて、 これら の複合繊維、 混合繊維、 さ らにはその他特殊機能をもつ繊維との混 合もできる。 As the fibers constituting the spunbonded nonwoven fabric of the present invention, polyolefin-based fibers such as propylene, polyethylene, and copolymers thereof are preferred because of their low water-retention property and rewetting properties. Polyester fibers such as terephthalate, polybutylene terephthalate, polytrimethylene terephthalate (PTT), or copolymers thereof are used to make nylon 6, 6, 6, 6 1 Polyamide fibers such as 0, 12 or copolymers thereof are preferred for obtaining a firm and flexible nonwoven fabric. If necessary, these composite fibers, blended fibers, and fibers having other special functions can be blended.
不織布は、 表面が尿で濡れた時、 また使用時の体の動き等に対応 できる強力が必要であり 、 また生産性の点からも、 連続長繊維 (フ イ ラメ ン ト) をウェブと し、 これを接合するこ とによ り形成される スパンボン ド法による不織布が好ま しい。 スパンボン ド法による不 織布は、 繊維長が長いために実用上の強度を有し、 通気性に優れ、 かつ湿式法または乾式法による場合と異なり、 油剤処理等を行う こ となく繊維がそのままシー ト化されているので繊維特有の撥水性等 の性質が活かすこ とができる。  Nonwoven fabrics need to be strong enough to cope with the movement of the body when the surface is wet with urine and during use. From the viewpoint of productivity, continuous filaments (filaments) are used as webs. It is preferable to use a nonwoven fabric by a spunbond method formed by joining the nonwoven fabrics. Nonwoven fabrics made by the spunbond method have practical strength due to their long fiber length, have excellent air permeability, and, unlike the wet or dry methods, leave the fibers as they are without oil treatment. Because it is a sheet, the properties such as water repellency unique to the fiber can be utilized.
不織布構造内の繊維ゥエブの接合は、 不織布の強度および柔軟性 、 繊維自体の触感を持たせるには部分的熱圧融着法によ り接合する のが好ましい。 部分的熱圧融着における熱圧融着面積率は、 強度保 持、 柔軟性の点から、 5〜 4 0 %が好ま しく 、 さ らに好しく は 5〜 2 5 %である。 部分的熱圧融着は超音波ウェルダー等のほか、 構成 繊維の融点以下に加熱された熱ェンボスロール間にウェブを通す等 で行う こ とができ、 これによ り、 不織布構造の表裏一体化され、 例 えばピンポイ ン ト状、 矩形状等の浮沈模様が不織布全面に散点する 。 当然、 この熱圧融着部は圧着され、 フィルム的であるが、 その周 辺の繊維は使用される繊維特有の触感をもっている。  The bonding of the fibers and the fibers in the nonwoven fabric is preferably performed by a partial hot-pressure fusion method in order to impart the strength and flexibility of the nonwoven fabric and the feel of the fibers themselves. The area ratio of the hot press fusion in the partial hot press fusion is preferably from 5 to 40%, more preferably from 5 to 25%, from the viewpoint of maintaining strength and flexibility. Partial hot-pressure welding can be performed by using an ultrasonic welder, or by passing a web between hot embossing rolls that are heated to a temperature lower than the melting point of the constituent fibers, thereby integrating the front and back of the nonwoven fabric structure. For example, floating and sinking patterns such as pin points and rectangles are scattered all over the nonwoven fabric. Naturally, this hot-pressed fusion-bonded portion is pressed and is film-like, but the fibers around it have a unique feel to the fibers used.
この部分熱圧融着のみによる不織布は、 繊維の構成、 エンボスの 形状、 配置によって、 その厚みは変わるが、 通常の丸断面繊維の無 捲縮繊維では厚みは大きいとはいえない。 特にスパンボン ド法によ る通常のゥェブではその形成時の繊維の配列も平面的であり 、 嵩の ないものである。 なお、 部分熱圧融着とは、 熱と圧力によって部分的に接着したも ので構成繊維の融点以下の温度でエンボスパターン状に部分的に圧 力を加えることで形成させる。 融点温度以上で融着しフィルムと し たものと異なり繊維形状を残しながら接着した 「フィルム的」 な部 分であり、 非結合性凹凸加工で形成される高密度部分と区別する意 味で部分熱圧融着と した。 The thickness of the nonwoven fabric formed only by the partial heat and pressure fusion varies depending on the fiber composition, the shape and the arrangement of the emboss, but it cannot be said that the thickness of the non-crimped fiber having a normal round cross section is large. In particular, in an ordinary web formed by the spunbond method, the arrangement of the fibers at the time of formation is flat and bulky. It should be noted that the partial heat and pressure fusion is a method of partially bonding by heat and pressure, and is formed by applying a partial pressure in an emboss pattern at a temperature lower than the melting point of the constituent fibers. This is a `` film-like '' part that adheres while retaining the fiber shape unlike a film that has been fused at a temperature equal to or higher than the melting point, and is distinguished from a high-density part formed by non-bonding unevenness processing Hot pressure welding was used.
前述の通り、 本発明のスパンボン ド系不織布は、 部分的熱圧融着 部によって表裏一体化した不織布において、 片面には熱圧融着部の パターンとは異なる、 非結合繊維の高密度域の凹部を有し、 反対面 では非結合繊維の高密度域の凸部を有する不織布構造を形成してい るので、 不織布構造は点在する部分的熱圧融着部によって表裏一体 化されているが、 その他の部分は非結合繊維の高密度域の凸又は凹 エンボスパターンと非結合繊維の低密度域と繊維密度の異なる 2つ の領域からなり、 それぞれが低温エンボス型付け加工の揉布作用を 受けて繊維自体が動き易い構造が形成されているので、 ソフ 卜な触 感でしかも嵩高な不織布構造が形成されている。  As described above, the spunbonded nonwoven fabric of the present invention is a nonwoven fabric that is integrated front and back by a partial hot-press fusion part, and has a pattern different from the pattern of the hot-pressure fusion part on one side, in the high-density region of non-bonded fibers. Since the non-woven fabric structure has a concave portion and a convex portion in the high density region of the non-bonded fiber on the opposite surface, the non-woven fabric structure is integrated with the front and back by scattered partial hot-pressure fusion parts. The other part consists of a convex or concave embossed pattern in the high-density region of the non-bonded fiber, and two regions with different fiber densities in the low-density region of the non-bonded fiber, each of which is subjected to the rubbing effect of the low-temperature embossing process. As a result, a structure in which the fibers themselves are easy to move is formed, so that a soft and tactile yet bulky nonwoven structure is formed.
非結合繊維の高密度域とは、 図 1〜図 3の Bで示される区域であ つて、 繊維間の融着又接着されていない区域であり凹凸加工用ェン ボスロールの凹凸部の圧縮されることによ り、 繊維が圧縮され密集 された、 密度高い繊維領域をいい、 例えば繊維体積分率で表わすと 1 5〜 3 5 %の範囲である。 そして、 本発明において、 非結合繊維 の高密度域の面積率は 5〜 5 0 %、 好ましく は 5〜 2 5 %である。 こ こで、 部分熱圧融着部の算出は、 熱圧融着されたエンボスパター ンの形状から算出される。 試料の不織布を顕微鏡で拡大し、 同志が 融着してフィルム的に見える部分の輪郭から、 その大きさ、 ピッチ を測定し、 その面積を求め、 試料全体の面積に対する面積率を算出 した。 非結合繊維の低密度域とは、 図 1の Cで示される領域であり繊維 の融着又は接着のない、 凹凸加工用エンボス口ールでの圧縮を受け ることの無い部分に相当し、 非結合繊維の高密度域に比べて繊維が 密集されておらず、 概ね凹凸加工前の繊維集合密度を有する領域で ある。 従って、 この低密度領域の繊維は、 嵩高で、 動きの自由度が あり、 繊維本来のソフ トな感触を有する。 例えば、 非結合繊維の低 密度域の繊維体積分率は、 5〜 1 5 %の範囲である。 非結合繊維の 高密度域の面積は、 エンボス柄を押し付けられ形成された繊維の高 密度域で構成繊維が押し潰されたり、 部分的に変形されている軌跡 を形取り、 その面積を求め、 試料全体の面積に対する面積率を算出 する。 非結合繊維の高密度域の繊維形状と しては、 単に構成繊維に くびれが見える、 あるいは変形が乏しい繊維も含めた。 The high-density area of the non-bonded fiber is the area indicated by B in Fig. 1 to Fig. 3 and is the area where the fibers are not fused or adhered. By this, it refers to a dense fiber region where the fibers are compressed and densely packed. For example, it is in the range of 15 to 35% in terms of fiber volume fraction. And, in the present invention, the area ratio of the high-density region of the non-bonded fiber is 5 to 50%, preferably 5 to 25%. Here, the calculation of the partial heat-pressure welded portion is calculated from the shape of the embossed pattern that has been heat-pressure welded. The nonwoven fabric of the sample was magnified with a microscope, and the size and pitch were measured from the outline of the part that looks like a film when the two were fused together, the area was determined, and the area ratio to the area of the entire sample was calculated. The low-density area of the unbonded fiber is the area indicated by C in Fig. 1 and corresponds to the part where the fiber is not fused or adhered and which is not subjected to compression at the embossed opening for unevenness processing. Fibers are not densely packed compared to the high-density region of non-bonded fibers, and have a fiber aggregation density before roughening. Therefore, the fibers in the low-density region are bulky, have a freedom of movement, and have the original soft feel of the fibers. For example, the fiber volume fraction in the low-density region of unbonded fibers is in the range of 5 to 15%. The area of the high-density area of the non-bonded fiber is obtained by shaping the locus of the constituent fibers being crushed or partially deformed in the high-density area of the fiber formed by pressing the embossed pattern, and calculating the area. Calculate the area ratio to the area of the entire sample. As the fiber shape in the high-density region of the non-bonded fiber, a fiber in which the constriction is simply visible or the deformation is poor was included.
非結合繊維の高密度域は薄い厚みで繊維が密集し、 親水化剤で処 理したものは親水化剤が高密度域に多く含有するために、 液の透過 性が良好であり、 外表面が平滑であり、 ツルツルしたソフ トな感触 を与える。  In the high-density region of the non-bonded fibers, the fibers are densely packed with a small thickness, and those treated with the hydrophilizing agent have good liquid permeability because the hydrophilizing agent is contained in the high-density region in a large amount. Is smooth and gives a smooth, soft feel.
非結合性の低密度域は、 高密度域に比べて厚く、 繊維の集合密度 が低く、 柔軟で嵩高であり、 液の透過性は良好であるが、 液の濡れ 戻りに対してバリ アー的に働き、 液の濡れ戻り性 (ウエッ トバック ) が良好である。  The non-bonded low-density area is thicker than the high-density area, has a lower fiber aggregation density, is flexible and bulky, and has good liquid permeability, but is a barrier against liquid wetting back. It has good wet-back property (wet back).
上記の作用について図 1 一図 3の断面図を用いて説明する。 図 1 一図 3は、 本発明の不織布の構造的な特徴を判かりやすく模式図と したものである。  The above operation will be described with reference to the cross-sectional views of FIGS. Fig. 1 Fig. 3 is a schematic diagram that makes it easy to understand the structural characteristics of the nonwoven fabric of the present invention.
( A ) 部分熱圧融着部は、 不織布全体の強力を保持する為に作用 する領域であり、 適正な面積率を有するものである。  (A) The partial heat and pressure welded portion is a region that acts to maintain the strength of the entire nonwoven fabric and has an appropriate area ratio.
( B ) 非結合性高密度域は、 Bの領域であり、 不織布の表面から 突き出た形状を有しその為に、 不織布全体を嵩高くする作用を有す る。 さ らに、 この Bの領域に親水化剤が多く含有されることによ り 、 この部分の親水性が大幅に向上に、 この Bの領域を通しての液の 透過性を向上させる という作用を有する。 (B) The non-bonding high-density area is the area of B and has a shape protruding from the surface of the nonwoven fabric, and therefore has the function of increasing the bulk of the nonwoven fabric. You. Further, since a large amount of the hydrophilizing agent is contained in the region B, the hydrophilicity of this portion is greatly improved, and the effect of improving the liquid permeability through the region B is obtained. .
( C ) 非結合性低密度域は、 Cの領域であ り、 繊維の自由度が高 く、 柔軟性にとみ、 ソフ トな触感を与える作用を有する。 更に、 C の領域は、 嵩高効果によ り吸収体からの液の戻り に対してバリ アー 的に作用し、 濡れもど り性が向上する という作用を有する。  (C) The non-bonded low-density region is a region of C, which has a high degree of freedom of fibers, has flexibility, and has a function of giving a soft touch. Further, the region C acts as a barrier against the return of the liquid from the absorber due to the bulky effect, and has an effect of improving the wet-return property.
また、 B との境界では曲がり易さを与える作用をもっている。 こ の様に、 本発明の特徴と して、 (A ) 、 ( B ) 及び ( C ) の各領域 がそれぞれ上記の作用を有し、 全体と して、 衛生材料に好適な作用 を有するものである。  Also, at the boundary with B, it has the effect of making it easy to bend. As described above, the feature of the present invention is that each of the regions (A), (B), and (C) has the above-described actions, and as a whole, has an action suitable for a sanitary material. It is.
本発明の不織布は、 従来技術で示した複合繊維を用い、 接合や熱 風処理等で融着し合って硬く 、 ザラついた不織布とは全く異なるも のである。  The nonwoven fabric of the present invention uses the composite fiber shown in the prior art, and is completely different from a rough nonwoven fabric which is fused and hardened by bonding or hot air treatment.
本発明は、 自由度を持った繊維層に、 非結合性でかつ凹凸変形を 与えるこ とによって、 部分的な変形 (伸び) を加えられた繊維層と するこ とができ、 そのためク ッショ ン性が良好であり、 したがって 荷重を加えた際、 圧縮されにくい特性を有する。 そのため、 荷重下 でも嵩高であり、 ポーラス となるため、 液が浸透し易く (透液速度 が速く) 、 また一旦透過し、 吸収された液の濡れ戻り がし難く なる ものと言える。  According to the present invention, a fiber layer having a degree of freedom can be formed into a partially deformed (elongated) fiber layer by imparting non-bonding and uneven deformation to the fiber layer. It has good properties, and therefore has the property of not being easily compressed when a load is applied. Therefore, it is bulky and porous even under a load, so that the liquid easily permeates (the liquid permeation speed is high), and it can be said that the liquid once permeated and absorbed does not easily return to the wet state.
本発明の不織布に付与される凹凸変形は、 部分結合されている結 合部のパターンと部分的に一致しない任意形状の凹又は凸変形であ り、 凹あるいは凸部の形状、 大きさ、 深さは結合パターンとの関連 で柔軟性効果に重要である。  The uneven deformation imparted to the nonwoven fabric of the present invention is a concave or convex deformation of an arbitrary shape that does not partially match the pattern of the partially bonded joint portion, and the shape, size, and depth of the concave or convex portion. Is important for the flexibility effect in relation to the bonding pattern.
凹あるいは凸部の形状と しては、 例えば、 直線、 曲線、 角、 丸、 梨地状、 その他の連続的に連なって配置されたり、 又は非連続のも のが考えられるが、 柔軟性効果の点から、 凹あるいは凸部の深さはThe shape of the concave or convex portion may be, for example, a straight line, a curved line, a corner, a round, a satin-like shape, or other continuous continuous or non-continuous shape. However, from the viewpoint of the flexibility effect, the depth of the concave or convex portion is
0 . 2〜 5 m mで深いものほど効果が大となる。 また、 非連続の凸 部加圧面の大きさは 0 . l 〜 5 m mで、 また凹あるいは凸部のピッ チは 0 . 5〜 5 m mが好ましい。 The effect increases as the depth increases from 0.2 to 5 mm. Further, the size of the discontinuous convex portion pressing surface is preferably 0.1 to 5 mm, and the pitch of the concave or convex portion is preferably 0.5 to 5 mm.
図 1 に、 本発明の不織布の全体の平面視構造を模式的に示す。 図 2及び図 3に、 不織布に角状のエンボスを施した例を示す。 図 2及 び図 3は、 非結合凹凸加工のパターンの 2例を示し、 図中、 熱融着 部のパターン及びその分布は省略し示されている。  FIG. 1 schematically shows the overall structure of the nonwoven fabric of the present invention in plan view. 2 and 3 show examples in which a square non-woven fabric is embossed. FIGS. 2 and 3 show two examples of non-bonding unevenness processing patterns. In the drawings, the pattern of the heat-sealed portion and its distribution are omitted.
例えば、 図 3のよ うに凸部が点在するエンボス柄を押し付けるこ とによ り高密度域で非連続に散在する凹部が形成されることになる 。 また、 図 2のように凸部の連続するエンボス柄の押し付けによつ て、 高密度域が連続した状態で、 非押付部は繊維層が盛り上がった 状態になる。 連続柄による変形のピッチはその柄によるが、 1 〜 5 m mが好ましく、 凹部の大きさは幅が 0 . 0 2〜 3 m mの線あるい は点線状であるのが好ましい。  For example, by pressing an embossed pattern in which projections are scattered as shown in FIG. 3, depressions that are discontinuously scattered in a high-density region are formed. In addition, as shown in FIG. 2, the high-density region is continuously formed by pressing the embossed pattern having continuous projections, and the non-pressed portion is in a state in which the fiber layer is raised. The pitch of the deformation by the continuous pattern depends on the pattern, but is preferably 1 to 5 mm, and the size of the recess is preferably a line with a width of 0.02 to 3 mm or a dotted line.
高密度域を設けるこ とでの嵩高効果で厚みは増して、 不織布構造 の嵩高性が向上しており、 荷重に対する布厚み変化も少ない。 本発 明者らは、 不織布に親水化剤を付与すると非結合繊維の高密度域に おいて親水化剤の濃度が高まることを見出している。  By providing a high-density region, the thickness increases due to the bulkiness effect, the bulkiness of the nonwoven fabric is improved, and the change in the fabric thickness with respect to the load is small. The present inventors have found that when a hydrophilic agent is added to the nonwoven fabric, the concentration of the hydrophilic agent increases in the high-density region of the non-bonded fibers.
不織布は、 見かけ厚みが大きいほうが柔軟になるが、 凹凸変形の ピッチおよび凹部の大きさは、 あま り厚みを大きく しない方が、 き め細やかな繊維感触が得られる。  Nonwoven fabrics become more flexible as the apparent thickness increases, but the finer the texture, the finer the pitch of the unevenness and the size of the recesses, if the thickness is not too large.
本発明の不織布の嵩高率は 1 0 0 %以上であり、 好ましく は 1 0 5〜 4 0 0 %であり、 1 1 0〜 3 0 0 %がよ り好ましく、 特に好ま しく は、 1 2 0〜 2 0 0 %である。 嵩高率が大きくなる と、 荷重に 対する厚みの低下も少なくなり、 不織布のク ッショ ン性が向上する 本発明のスパンボンド系不織布の荷重に対する厚み変化を、 図 5 、 図 6に例示する。 本発明のスパンボンド系不織布は各荷重に対し て厚みが大きく、 嵩高であり、 荷重に対する圧縮特性が良好である といえる。 このことから、 本発明のスパンボン ド系不織布が、 例え ば使い捨てのォムッのトップシー ト と して用いられた場合、 使用時 間の経過に伴う厚みの低下も少なく、 ォムッの使用中の柔軟、 嵩高 特性の持続する効果が大きいことを示している。 又、 ウエッ トの状 態でも厚みの低下が少なく、 液の吸収体からの戻りに対して嵩高性 が大きいこ とによ り、 良好な効果を得ることができる。 The bulk ratio of the nonwoven fabric of the present invention is 100% or more, preferably 105 to 400%, more preferably 110 to 300%, particularly preferably 120 to 100%. ~ 200%. As the bulkiness increases, the decrease in thickness with respect to the load decreases, and the cushioning of the nonwoven fabric improves. FIGS. 5 and 6 show the change in thickness of the spunbond nonwoven fabric according to the present invention with respect to the load. It can be said that the spunbonded nonwoven fabric of the present invention has a large thickness and a large bulk under each load, and has good compression characteristics against loads. For this reason, when the spunbonded nonwoven fabric of the present invention is used, for example, as a top sheet of a disposable ommut, the decrease in thickness with the passage of time is small, and the flexibility during use of the ommut is reduced. This indicates that the effect of maintaining the bulkiness properties is great. In addition, even in the wet state, a good effect can be obtained because the thickness does not decrease much and the bulkiness of the liquid from returning from the absorber is large.
スパンボン不織布の凹あるいは、 非結合繊維の凸ェンボスパター ンを付与する方法は、 例えば表面に凹、 凸あるいは凹凸模様を有し 、 両方が丁度かん合するよ うになったロール間、 一方の表面に凹、 凸模様をもつロールと可撓性ロール間で押し付けたり、 あるいは板 間で処理するのが一般的であるが、 特殊な方法と して狭小な隙間の ロール間で布を一定割合で強制的にオーバーフィー ドさせ、 小ジヮ 状の型付けをする方法もある。  A method of providing a concave spunbonded nonwoven fabric or a non-bonded fiber convex embossed pattern is, for example, a method in which the surface has a concave, convex, or uneven pattern, between the rolls where both have just mated, or a concave on one surface. It is common to press between a roll with a convex pattern and a flexible roll, or to process between plates, but as a special method, a certain percentage of cloth is forced between rolls with a narrow gap. There is also a method of over-feeding and forming a small zigzag shape.
図 4は、 それぞれが表面に丸型の凹凸模様を有して両方が丁度か ん合するよ うになっている二つのロール間を通すことによって凹凸 変形を付与した例を示している。  Fig. 4 shows an example in which unevenness is imparted by passing between two rolls each having a round-shaped uneven pattern on the surface and both of them just meshing with each other.
凹、 凸型付の条件で特に注意すべきは、 処理時の温度と不織布に かかる圧力である。 処理時の温度は常温でも良いが、 必要に応じて 加温して可塑化し型付けし易く したり、 形態の安定性をつける 目的 で繊維の結合ゃセッ 卜が生じない範囲で温度を上げて処理しても良 い。 例えば、 ポリ プロ ピレン不織布の場合は、 3 0〜 1 1 0 °Cの範 囲が好ましい。 エンボス処理圧力は温度によっても異なるが、 型付 けが充分行われる圧力に設定することは当然である。 なお、 この型 付けを行う ことで圧縮された部分の繊維断面の変形が起こるが、 こ の部分的変形効果によ り、 よ り柔軟さを出すため、 さ らに高圧の処 理をするこ と も有効である。 もちろん、 圧縮部での繊維間の仮固定 や熱圧融着が起こ らない条件を採用しなければならない。 例えば、 ポリ プロ ピレン不織布の場合は、 2 0〜 1 5 0 k gノ c mの範囲が 好ましい。 Of particular note in the concave and convex conditions are the processing temperature and the pressure applied to the nonwoven fabric. The temperature during the treatment may be room temperature, but if necessary, it is heated to a temperature within the range that does not cause fiber set-up for the purpose of plasticizing by heating and facilitating morphological stabilization, or for the purpose of imparting morphological stability. You may do it. For example, in the case of a polypropylene nonwoven fabric, the temperature is preferably in the range of 30 to 110 ° C. The embossing pressure varies depending on the temperature, but it is natural that the embossing pressure is set to a pressure at which the molding is sufficiently performed. In addition, this molding causes deformation of the fiber cross section of the compressed part. It is also effective to perform high-pressure treatment in order to obtain more flexibility due to the partial deformation effect. Of course, it is necessary to adopt conditions that do not cause temporary fixing between fibers in the compression section or heat and pressure fusion. For example, in the case of a polypropylene nonwoven fabric, the range is preferably 20 to 150 kgcm.
本発明のスパンボン ド系不織布では、 不織布の片面に型付け形成 された非結合繊維の高密度域凹部が、 反対面でも非結合性の高密度 繊維で凸部を形成しているこ とが好ま しい。 例えば、 片面に凹部が 連続した高密度域を形成する場合、 他面では高密度域が凸部となる よ う、 他の区域よ り も突き出た凸形状が形成されるこ とが好ましい 。 このこ とは不織布全体の見かけ厚みをゥエブの厚み以上にする と 共に、 親水化剤を特定の部位に付与させる上で重要である。  In the spunbond nonwoven fabric of the present invention, it is preferable that the high-density region concave portion of the non-bonded fiber formed on one side of the nonwoven fabric has a convex portion formed of the non-bonded high-density fiber on the opposite surface. . For example, when forming a high-density region in which concave portions are continuous on one surface, it is preferable that a convex shape protruding from other regions is formed so that the high-density region becomes a convex portion on the other surface. This is important not only in making the apparent thickness of the entire nonwoven fabric equal to or greater than the thickness of the web but also in imparting a hydrophilic agent to a specific site.
本発明のスパンボン ド系不織布の親水化処理は、 通常希釈した親 水化剤溶液を用いて、 浸漬法、 噴霧法、 コーティ ング法 (ロールコ —タ、 グラビアコータ、 ダイ等) 等の既知の方法が採用できる。 不 織布は、 親水化剤の付与後、 熱風、 熱ロールなどの乾燥手段を用い て乾燥する。  The hydrophilic treatment of the spunbonded nonwoven fabric of the present invention is carried out by a known method such as an immersion method, a spraying method, a coating method (roll coater, gravure coater, die, etc.) using a dilute hydrating agent solution. Can be adopted. The nonwoven fabric is dried using a drying means such as hot air or a hot roll after the application of the hydrophilizing agent.
親水化処理において、 先に付与されている高密度域とそれ以外の 部分では処理剤の付着分布が異なる と考えられる。 処理剤液を付与 した際、 液は繊維の低密度、 いわゆる粗な部分に見かけ上多く含ま れるこ とになるが、 不織布が乾燥するにしたがい、 乾き易い部分に 液が移動する。 このため、 非結合繊維の高密度域は不織布の厚みが 薄い割に、 処理剤の付着が多く なり 、 液が通り易く なる と考えてい る。 また、 一旦透過した液は低密度域が圧縮されにく く 嵩高である ため、 吸収層から離されるこ とにな り 、 濡れ戻り難い。 このよ う に 、 親水化剤は主に非結合繊維の高密度域に多く含有される結果とな り、 本発明のスパンボン ド系不織布に特有の液の透過性の向上、 ゥ エツ トバック性の向上、 液流れの改善などの効果が得られる。 In the hydrophilization treatment, it is considered that the adhesion distribution of the treatment agent is different between the high-density region previously applied and the other region. When the treatment liquid is applied, the liquid is apparently contained in the low-density, so-called rough portion of the fiber, but as the nonwoven fabric dries, the liquid moves to a portion that is easy to dry. For this reason, in the high-density region of the non-bonded fibers, it is considered that the treatment agent adheres to the nonwoven fabric in spite of the small thickness of the nonwoven fabric, so that the liquid can pass easily. Further, the liquid once permeated is hard to be compressed in the low-density region and is bulky, so that the liquid is separated from the absorbing layer and hardly wets back. As described above, a large amount of the hydrophilizing agent is contained mainly in the high-density region of the non-bonded fiber, and the liquid permeability unique to the spunbonded nonwoven fabric of the present invention is improved. Effects such as improvement of the etch back property and improvement of the liquid flow can be obtained.
親水化処理に先立って、 コ ロナ処理、 プラズマ処理等を施してお く こ とも親水化程度を向上する上で好ましい。 コ ロナ処理等の処理 は印刷の前処理等と して、 濡れ特性の改良等に用いられる一般的な 処理でよく 、 例えば高周波発生発振器等によって、 放電電極と処理 ロール間に高周波電力を供給して放電させ、 不織布をこの間に通し て処理する。 必要な濡れ性および処理条件によって異なるが、 処理 面の表面張力が 3 7〜 4 O m N / mになるよ う放電条件を設定する のが好ま しい。 なお、 コ ロナ放電処理を施した場合は不織布自体の 濡れ性は異なるため、 必要性能を得るために親水化剤の付与量を調 整するこ とは当然である。 不織布の表面張力が 3 7〜 4 O m N / m の範囲である と、 親水化剤と不織布の表面繊維との親和性が顕著に 向上し、 親水化剤が低濃度でしかも均一に付与するこ とができる。 本発明において、 親水化剤の付与は、 非結合繊維域の凹凸加工の後 に行なう こ とが好しいが、 凹凸加工の以前に適用しても特に問題は ない。  It is also preferable to perform a corona treatment, a plasma treatment or the like prior to the hydrophilic treatment in order to improve the degree of hydrophilicity. The processing such as the corona processing may be a general processing used for improving the wetting characteristics as the pre-processing of printing. For example, high-frequency power is supplied between the discharge electrode and the processing roll by a high-frequency generating oscillator or the like. To discharge, and the nonwoven fabric is passed through and processed. Although it depends on the required wettability and treatment conditions, it is preferable to set the discharge conditions so that the surface tension of the treated surface is 37 to 4 OmN / m. When the corona discharge treatment is performed, the wettability of the nonwoven fabric itself is different, so that it is natural to adjust the amount of the hydrophilic agent to obtain the required performance. When the surface tension of the nonwoven fabric is in the range of 37 to 4 OmN / m, the affinity between the hydrophilicizing agent and the surface fibers of the nonwoven fabric is remarkably improved, and the hydrophilicizing agent is uniformly applied at a low concentration. be able to. In the present invention, the application of the hydrophilizing agent is preferably performed after the concavo-convex processing of the non-bonded fiber region, but there is no particular problem if applied before the concavo-convex processing.
親水化剤処理を経た本発明のスパンボン ド系不織布衛生材料に用 いるに際しては、 衛生材料と して狙いとする特性レベルによって、 付与しておく性能、 また用い方を選択するこ とは当然であるが、 不 織布の表裏の触感の違いも関連してく る。 型付けされた凹、 凸パタ 一における繊維高密度域は相互に接合されていないものの、 他に比 ベ固められることから、 ォムッの ト ップシ一 ト と して用いられるに あっては、 不織布の面では直接肌に触れない反肌面面の吸収体側に 配置したり、 親水性を重視する際は、 高密度域を ト ップシー トの肌 面にするこ と も好ま しい態様である。  When using the spunbonded nonwoven sanitary material of the present invention which has been treated with a hydrophilizing agent, it is natural to select the performance to be imparted and the method of use according to the target property level as the sanitary material. However, the difference in the tactile sensation of the front and back of the nonwoven fabric is also relevant. The high-density areas of the molded concave and convex patterns are not bonded to each other, but they are hardened compared to the others.Therefore, when used as a topsheet of Omut, the surface of the nonwoven fabric is used. In such cases, it is preferable to place the high-density region on the topsheet skin surface when placing it on the absorber side of the skin surface that does not directly touch the skin, or when emphasizing hydrophilicity.
本発明のスパンボン ド系不織布は、 不織布構造に少なく と も一層 のフィ ラメ ン ト ウェブと、 少なく とも一層のメル ト ' ブローウェブ を積層してなる二層以上の積層体用いる態様がある。 The spunbonded nonwoven fabric of the present invention has at least one filament web and at least one melt blow web in the nonwoven structure. There is an embodiment in which a laminate of two or more layers is used.
この場合、 不織布に使用する繊維と しては、 前記に記載した繊維 素材が有効である。 必要に応じて、 これらの複合繊維、 混合繊維、 さ らにはその他特殊機能を持つ繊維との混合も有効である。 フイ ラ メ ン トウエブ同士が層間で異なる素材でも有効であり、 また、 フィ ラメ ント ウェブとメル ト · ブロー繊維ウェブとが異なる素材であつ てもよい。 ポリ エステル系繊維、 ポリ アミ ド系繊維等の水との親和 性を有する素材は防水、 撥水性の点から、 必要に応じてシリ コン系 、 フ ッ素系、 あるいはワ ックス系等の防水剤、 撥水剤による処理あ るいは添加による改良を行う こ とが必要である。  In this case, the fiber material described above is effective as the fiber used for the nonwoven fabric. If necessary, blending with these composite fibers, blended fibers, and other fibers having special functions is also effective. It is effective to use different materials for the filament webs between layers, and the filament web and the melt-blown fiber web may be different materials. Materials that have an affinity for water, such as polyester fibers and polyamide fibers, are waterproof, water-repellent and, if necessary, silicone, fluorine, or wax-based waterproofing agents. However, it is necessary to improve by treatment with water repellent or addition.
不織布は、 使用時の体の動き等に対応できる強力が必要であり、 生産性の点からも、 少なく と も一層のフィ ラメ ン ト ウェブと、 少な く と も一層のメルト · ブロー繊維ゥエブとを積層してなる二層以上 の積層体と し、 これを連続的に接合するこ とによ り形成される不織 布が好ましい。 この積層構造は、 単にフィ ラメ ン ト ウェブとメルト • ブロー繊維ウェブとの積層でもよいが、 表面強度の弱いメルト · ブロー繊維のゥヱブを補うため、 通常、 フィ ラメ ン ト ウェブ層の間 にメノレト · ブロ一繊維ゥェブ層を積層したものが用いられ、 さ らに 各層を複層にするこ とが有用である。 また、 それぞれのウェブー亘 接合した後に積層したものでもよい。  Nonwoven fabrics need to be strong enough to cope with body movements during use.From the viewpoint of productivity, at least one filament web and at least more melt-blown fibers are required. It is preferable to use a nonwoven fabric formed by laminating two or more layers and laminating them continuously. This laminated structure may be simply a lamination of the filament web and the meltblown fiber web, but is usually between the filament web layers to compensate for the meltblown fiber webs with low surface strength. · A layer of blown web layers is used, and it is useful to make each layer a multilayer. Alternatively, the webs may be laminated after joining the webs.
スパンボン ド系不織布を構成するフィ ラメ ン トは、 0 . 5〜5 d t e Xで、 繊維長が長いために実用上の強度を有し、 通気性に優れ 、 かつ湿式法または乾式法による場合と異なり、 油剤処理等を行う こ となく繊維がそのままシー ト化されているので繊維特有の撥水性 等の性質が活かされる。  The filament constituting the spunbonded nonwoven fabric is 0.5 to 5 dte X, has a practical strength due to a long fiber length, has excellent air permeability, and is obtained by a wet method or a dry method. In contrast, the fibers are made into a sheet without being treated with an oil agent or the like, so that the unique properties of the fibers, such as water repellency, are utilized.
メノレ ト · ブロー繊維ウェブは、 例えば特公昭 5 6 - 3 3 5 1 号公 報、 U S P 3 , 9 7 8 , 1 8 5 , U S P 3 , 8 2 5, 3 8 0等に記 載されているよ うに、 1〜 6 μ mの細い繊維で形成されており、 力 バーリ ング性に優れ、 例えば、 ポリ プロ ピレン素材では、 更に撥水 、 防水効果に寄与する。 メル ト ' ブロー繊維ウェブは細い繊維のた め、 結晶配向性が低いのでフィ ラメ ン ト ウェブよ り も接合し易い。 しかし、 反面、 単体で用いた場合には接合しても強力は弱く 、 ベー パーライ ク (紙様) の感触で硬いものになる。 このため、 フィ ラメ ン ト ウェブとメル ト · ブロー繊維ウェブとを積層するこ とで、 それ それの欠点を補い、 実用上の強力、 カバーリ ング性、 撥水性、 防水 性の優れたものとなる。 Menolet blown fiber web is described in, for example, Japanese Patent Publication No. 56-3351, USP 3,978,185, USP 3,822,380, etc. As shown, it is formed of fine fibers of 1 to 6 μm and has excellent force-barring properties. For example, a polypropylene material further contributes to water repellency and waterproof effect. Melt-blown fiber webs are thinner fibers and have a lower crystallographic orientation and are easier to join than filament webs. However, on the other hand, when used alone, the strength is weak even when joined, and it becomes hard due to the feeling of vapor-like (paper-like). For this reason, laminating the filament web and the melt-blown fiber web compensates for the drawbacks of each, resulting in excellent practical strength, covering properties, water repellency and waterproofness. .
ウェブの接合、 固定は、 不織布の強度および柔軟性、 繊維自体の 触感を持たせるには、 熱エンボス ロールを用いる部分熱圧融着によ り接合するのが好ま しい。 部分熱圧融着における熱圧融着面積率は 、 強度保持、 柔軟性の点から、 5〜 4 0 %が好ましく 、 よ り好しく は 5〜 2 5 %である。 部分熱圧融着は超音波法によ り、 または加熱 エンボスロール間にウェブを通すこ とによ り行う こ とができ、 これ によ り 、 表裏一体化され、 例えばピンポイ ン ト状、 楕円形状、 ダイ ャ形状、 矩形状等の浮沈模様が不織布全面に散点する。 当然、 熱圧 融着部は圧着され、 フィルム的であるが、 その周辺の繊維、 特にフ イ ラメ ン トウエブは使用される繊維特有の触感を残すこ とになる。 フィ ラメ ン ト ウェブ層を接合する条件では、 メル ト · ブロー繊維 ゥェブ層は極細で、 その繊維形成時等の特性から、 熱によ りぺーパ 一ライ ク (紙様) の触感になって、 不織布全体と しては紙様の硬さ を持つものになる。 また、 この部分熱圧融着による不織布は繊維の 構成、 エンボスの形状、 配置によって、 その厚みは変わるが、 メル ト · プロ一繊維ウェブ層特有の接着効果が生じ、 厚みは薄く なり 、 嵩のないものとなる。 嵩の改良方法と しては、 従来の技術の項で示 したよ うな、 孔をあけたり、 賦形固定する方法があるが、 これらは 、 本発明のよ うに、 少なく とも一層のフィ ラ メ ン ト ウェブと少なく とも一層のメル ト · プロ一繊維ゥエブとを積層してなる二層以上の 積層体を、 表面に散在する非連続の部分的熱圧融着部によって表裏 一体化した不織布を、 非結合性の凹凸変形によって嵩あるいはソフ ト性を得よ う とするものではなく 、 また、 メノレ ト ' ブロー繊維ゥェ ブ層の接着効果を改善するものではない。 In order to impart the strength and flexibility of the nonwoven fabric and the feel of the fiber itself, it is preferable to join and fix the webs by partial heat and pressure welding using a hot embossing roll. The area ratio of the hot press fusion in the partial heat press fusion is preferably from 5 to 40%, more preferably from 5 to 25%, from the viewpoint of strength retention and flexibility. Partial heat pressure welding can be performed by an ultrasonic method or by passing a web between heated embossing rolls, whereby the front and back surfaces are integrated, for example, a pinpoint shape, an elliptical shape, and the like. Floating and sinking patterns such as shape, diamond shape, and rectangular shape are scattered all over the nonwoven fabric. Naturally, the heat-pressure-welded part is pressed and formed into a film, but the fibers around it, especially the filament web, have a unique feel to the fibers used. Under the conditions for joining the filament web layer, the melt-blown fiber web layer is extremely fine, and due to its properties during fiber formation, etc., it becomes a paper-like (paper-like) touch due to heat. However, the entire nonwoven fabric has a paper-like hardness. In addition, the thickness of the non-woven fabric obtained by the partial heat and pressure fusion varies depending on the fiber structure, the shape and the arrangement of the emboss, but the adhesive effect peculiar to the melt-pro-fibrous web layer occurs, the thickness is reduced, and the bulk is reduced. Will not be. As a method for improving the bulk, there are methods such as making holes or shaping and fixing as described in the section of the prior art. However, as in the present invention, a laminate of at least one layer of at least one filament web and at least one layer of melt-pro-filament is mixed with a non-continuous It is not intended to obtain the bulk or softness of the nonwoven fabric which has been integrated by the partial hot-pressure fusion part by the non-bonding unevenness deformation. It does not improve the effect.
不織布構造にメル ト · ブロー繊維ウェブを積層する設計における 本発明のポイ ン トは、 少なく とも一層のフィ ラメ ン ト ウェブと少な く と も一層のメル ト · ブロー繊維ゥエブとを積層してなる二層以上 の積層体を、 表面に散在する非連続の部分的熱圧融着部によって表 裏一体化した不織布に対して、 更にエンボス加工等によ り非結合凹 凸変形を与える処理を施すこ とによって、 点在する熱圧融着部の繊 維は部分的に結合して表裏一体化されているが、 その他の部分の非 結合性凹凸部の繊維は、 繊維自体のソフ トな触感を有するよ う にし た点にある。  The point of the present invention in the design of laminating the melt-blown fiber web on the nonwoven structure is to laminate at least one filament web and at least one layer of melt-blown fiber web. The nonwoven fabric, which has two or more layers laminated on the front and back by non-continuous partial heat and pressure fusion parts scattered on the surface, is subjected to a process of giving non-bonding concave and convex deformation by embossing etc. As a result, the fibers of the scattered hot-pressure fusion parts are partially bonded and integrated into the front and back, but the fibers of the non-bonding irregularities in the other parts are soft touch feeling of the fibers themselves. The point is to have.
メル ト · プロ一繊維ゥヱブ層においては、 多少の接着効果があつ ても、 熱圧融着部とは異なり、 仮止めされた状態と考えられ、 複合 繊維が接合のための熱処理で融着し合って硬く 、 ザラつく ものとは 全く異なる。 さ らに、 自由度を持った繊維に非結合性でかつ凹凸変 形力を与えるこ とによって、 部分的な変形 (伸び) を加えられた繊 維層にするこ とで、 充分な嵩高性が得られる。 このこ とは荷重をか けた際、 元の繊維層とは異なり、 圧縮されにく い特性をもつこ とに なる。 すなわち、 折れ曲がり易い線くせが付き、 ソ フ トさ、 嵩 (厚 み) が出るこ とになる。  In the melt / pro-fiber web layer, even though it has a slight adhesive effect, it is considered to be in a temporarily fixed state, unlike the heat-pressure bonded part, and the composite fiber is fused by heat treatment for bonding. It is totally different from what is hard and rough. In addition, by giving non-bonding and uneven deformation force to the fiber with the degree of freedom, it is possible to make the fiber layer partially deformed (elongated) to have sufficient bulkiness. Is obtained. This means that when a load is applied, unlike the original fibrous layer, it has characteristics that are difficult to compress. In other words, the line is easy to bend, resulting in softness and bulk (thickness).
図 6 に、 実施例 8 と比較例 8について、 荷重に対する不織布の厚 み変化曲線を示してある。 本発明においては、 荷重を加えていって も、 圧縮されにく い特性を有しており、 荷重に対する嵩高性の低下 が少ない不織布といえる。 FIG. 6 shows a change curve of the thickness of the nonwoven fabric with respect to the load in Example 8 and Comparative Example 8. In the present invention, even if a load is applied, the material has a property that it is difficult to be compressed, and the bulkiness with respect to the load is reduced. It can be said that the nonwoven fabric has a small amount.
本発明のスパンボン ド系不織布に付与される非結合繊維でなる高 密度繊維域の凹凸エンボスパターンは部分結合されている結合部の パターンと部分的に一致しない任意形状の非結合性の凹又は凸変形 であり、 凹あるいは凸部の形状、 大きさ、 深さは結合パターンとの 関連で柔軟性効果に重要である。 例えば、 形状と しては直線、 曲線 、 角、 丸、 梨地状、 その他の連続的あるいは非連続のものが考えら れるが、 柔軟性効果の点から、 凹あるいは凸部の深さは 0 . 2 〜 5 m mが好ましく 、 さ らに凹凸の深いものほど効果が大となる。  The concavo-convex embossed pattern in the high-density fiber region made of non-bonded fibers applied to the spunbonded nonwoven fabric of the present invention has a non-bonded concave or convex of an arbitrary shape that does not partially match the pattern of the bonded portion that is partially bonded. It is a deformation, and the shape, size, and depth of the concave or convex portions are important for the flexibility effect in relation to the bonding pattern. For example, the shape may be a straight line, a curve, a corner, a circle, a satin shape, or any other continuous or discontinuous shape.However, from the viewpoint of the flexibility effect, the depth of the concave or convex portion is 0. The thickness is preferably 2 to 5 mm, and the effect becomes larger as the unevenness becomes deeper.
非連続のパターンの加圧面の大き さは 0 . l 〜 5 m m、 また凹あ るいは凸部のピッチは 0 . 5〜 5 m mが好ま しい。 図 1 ( I ) 、 図 3 のパターンでは凸部が点在するエンボス柄を押し付けて高密度域 で非連続に散在する凹部を形成するこ とになる。 また、 図 2, 図 4 の凸柄の連続するエンボス柄の押し付けによって、 高密度域の凹部 が連続した状態で、 非押付部の繊維層が盛り上がった状態になる。 連続するエンボス柄による変形ピッチは、 1 〜 5 m mが好ま しく 、 凹部の大きさは幅が 0 . 0 2〜 3 m mの線あるいは点線状とするの が好ま しい。  The size of the pressure surface of the discontinuous pattern is preferably 0.1 to 5 mm, and the pitch of the concave or convex portions is preferably 0.5 to 5 mm. In the patterns of Fig. 1 (I) and Fig. 3, the embossed pattern with projections is pressed to form depressions that are discontinuously scattered in the high-density region. In addition, due to the pressing of the continuous embossed pattern of the convex pattern in Figs. 2 and 4, the fiber layer of the non-pressed portion rises while the concave portions in the high-density region continue. The deformation pitch of the continuous embossed pattern is preferably 1 to 5 mm, and the size of the concave portion is preferably a line having a width of 0.02 to 3 mm or a dotted line.
これらの型押し凹凸パターンを設けたスパンボン ド系不織布にお いて、 部分熱圧融着部は型押し凹凸パターンとは部分的に一致しな いパターンで、 非結合繊維の高密度域、 非結合繊維の低密度域 (図 1〜図 4の C参照) に配置されるこ とになる。  In the spunbonded nonwoven fabric provided with these embossed concavo-convex patterns, the partially hot-pressed and fused portion is a pattern that does not partially correspond to the embossed concavo-convex pattern, and the high-density region of non-bonded fibers and non-bonding It is located in the low-density region of the fiber (see C in Figs. 1 to 4).
非結合繊維高密度域の凹凸の押付部の面積率は、 良好な柔軟性、 繊維触感を得る上で、 5 〜 4 0 %が好ま しく 、 5 〜 2 5 %がよ り好 ましい。 実用面を考慮する と、 見かけ厚みは当然、 大きいほうが柔 軟になるが、 変形のピッチ、 凹部の大きさはあま り大き く しない方 が緻密な効果が得られ、 非結合性変形を付与する前後の嵩高率で 1 0 0 %以上が好ま しく 、 1 0 5 %以上であればよ り好ま しく 、 特に 好ま しく は 1 3 0 %以上である。 The area ratio of the pressed portion of the unevenness in the high density region of the non-bonded fiber is preferably 5 to 40%, more preferably 5 to 25%, in order to obtain good flexibility and fiber feel. Considering practical aspects, the larger the apparent thickness is, of course, the more flexible, but if the pitch of the deformation and the size of the recess are not too large, a dense effect can be obtained and non-bonding deformation is imparted. With bulkiness before and after 1 It is preferably at least 100%, more preferably at least 105%, particularly preferably at least 130%.
凹又は凸パターンを付与する方法は、 部分熱融着を熱エンボス加 ェで付与したスパンボン ド系不織布を例えば表面に凹、 凸あるいは 凹凸模様を有し、 両方が丁度嵌合するよ うになったロール間、 一方 の表面に凹、 凸模様をもつ ロ ーノレ と ぺーノヽ0— ロ ーノレ、 ゴム ロ ーノレ、 樹脂口ール等の可撓性口ール間で押付けたり 、 あるいは板間で処理 するのが一般的である。 特殊な方法と して狭小な隙間のロール間で 布を一定割合で強制的にオーバーフィー ドさせ、 小ジヮ状の型付け をする方法もある。 In the method of providing a concave or convex pattern, a spunbonded nonwoven fabric provided with partial heat fusion by hot embossing has, for example, a concave, convex or irregular pattern on the surface, and both are just fitted together. between rolls, concave on one surface, b Nore and Bae over Nono 0 with convex pattern - b Nore, rubber Russia Nore, or pressed between the flexible port Lumpur such as a resin inlet Lumpur, or treated with plates It is common. As a special method, there is a method in which the cloth is forcibly over-fed at a fixed ratio between the rolls with a narrow gap to form a small zigzag shape.
凹、 凸型付の条件で特に注意する点は処理時の温度と布にかかる 圧力である。 特に、 本発明のメル ト · ブロー繊維層を含む不織布の 態様では、 単なるフィ ラメ ン ト ウェブだけの不織布に比べ、 変形効 果を受け易い。 このため、 ソフ ト性にはメノレ ト ' ブロー繊維層の接 着効果を抑えるため、 加工温度は、 フィ ラメ ン ト ウェブの単体に比 ベ、 低目に設定するこ とが好ましく 、 繊維素材に応じて適宜に設定 できる。 例えば、 ポリ プロ ピレンを素材とする場合においては、 6 0 °C以下の温度に設定するのが好ま しく 、 5 0 °C以下がよ り好ま し く、 必要に応じて積極的に冷却するこ とも有効である。  The points to pay particular attention to in the concave and convex conditions are the temperature during processing and the pressure applied to the cloth. In particular, the aspect of the nonwoven fabric including the melt-blown fiber layer of the present invention is more susceptible to deformation effects than a nonwoven fabric having only a filament web. For this reason, it is preferable to set the processing temperature to be lower than that of the filament web alone in order to suppress the bonding effect of the menoret's blown fiber layer for softness. It can be set as appropriate. For example, in the case of using polypropylene as a material, it is preferable to set the temperature to 60 ° C or lower, more preferably to 50 ° C or lower, and to actively cool if necessary. Both are effective.
一方、 繊維の結合ゃセッ 卜が生じない範囲で温度を上げて可塑化 し型付けし易く したり、 形態の安定性をつける処理をしても良い。 処理時の圧力は温度によっても異なるが、 変形が充分行われる圧力 に設定するこ と もできる。 なお、 この変形付与を行う こ とで圧縮さ れた部分の繊維断面の変形が起こるが、 よ り柔軟さを出すため、 さ らに高圧の処理をするこ と も有効である。 もちろん、 圧縮部での繊 維の仮固定や熱圧融着が起こ らないよ う充分注意する必要がある。 本発明の好ましい態様と して、 片面が押し付けられた凸部の高密 度域であり、 反対面が高密度で凹部を形成しているこ とが好ましい 。 すなわち、 例えば、 片面には連続した凹部 (高密度域) を形成す る場合、 他面ではこの高密度域が凸部となるよ う、 他域よ り突き出 た状態にするこ とが好ま しい。 不織布全体の見かけ厚みをゥエブの 厚み以上にする重要な意味を持つ。 このよ う に高密度〜低密度域が 接合されずに形成されるこ とから、 布全体と して、 厚く 、 また曲げ 力で容易に曲がり易く なるこ とから、 ソフ トなものとな り、 薄く 、 平面的で紙様のものとは全く異なる触感を持つものとなる。 この処 理効果をよ り強くするために、 多段で処理するこ と もできる。 On the other hand, the temperature may be increased within a range that does not cause the set-up of the fibers to be plasticized to facilitate molding, or a treatment for imparting morphological stability may be performed. The pressure at the time of processing varies depending on the temperature, but can be set to a pressure at which deformation is sufficiently performed. It should be noted that the deformation gives rise to a deformation of the fiber cross section of the compressed portion, but it is also effective to perform a higher pressure treatment in order to provide more flexibility. Of course, great care must be taken to prevent temporary fixing of the fibers and hot-pressure fusion in the compression section. In a preferred embodiment of the present invention, the high density of the convex portion pressed on one side is provided. It is preferable that the opposite surface has a high-density concave portion. That is, for example, when a continuous concave portion (high-density region) is formed on one surface, it is preferable that the high-density region protrude from the other region so that the high-density region becomes a convex portion on the other surface. . It is important to make the apparent thickness of the entire nonwoven fabric equal to or greater than the thickness of Eb. Since the high-density to low-density region is formed without being joined in this way, the whole fabric is thick and easily bendable by bending force, so it is soft. It is thin, flat, and has a completely different feel to paper. In order to further enhance the processing effect, processing can be performed in multiple stages.
本発明の不織布は必要に応じて、 制電剤、 柔軟剤、 親水化剤、 滑 剤等の各種の処理剤を付与して用いるこ とも有効である。  It is also effective that the nonwoven fabric of the present invention is provided with various treating agents such as an antistatic agent, a softening agent, a hydrophilizing agent, and a lubricant, if necessary.
本発明のスパンボン ド系不織布を衛生材料に用いるに際しては、 衛生材料と して狙いとする特性レベルによって、 付与しておく性能 、 また用い方を選択する。 不織布の表裏の触感の違いも考慮する必 要がある。 すなわち、 押し付けられた高密度域は接合されていない ものの、 他に比べ固められるこ とから、 例えば、 この面を直接肌に 触れない側に配置したり 、 凸部の活用などを考慮して配置するこ と も好ま しい態様である。  When the spunbonded nonwoven fabric of the present invention is used as a sanitary material, the performance to be imparted and the method of use are selected depending on the target property level of the sanitary material. It is also necessary to consider the difference in the tactile sensation on the front and back of the nonwoven fabric. In other words, although the pressed high-density area is not bonded, it can be hardened compared to the other areas.For example, this surface is placed on the side that does not directly touch the skin, or placed in consideration of the use of convex parts. This is also a preferable mode.
本発明における低温下の凹凸加工は、 スパンボン ド系不織布の製 造工程内でオンライ ンで行なわれるこ とが経済的に好しいが、 例え ばォムッの生産、 加工ライ ンの一部に導入してオフ · ライ ンで加工 するこ ともできる。 実施例  In the present invention, it is economically preferable that the concave-convex processing at a low temperature is performed online in the process of manufacturing a spunbond nonwoven fabric. It can also be processed off-line. Example
以下、 実施例及び比較例によって本発明をさ らに説明する。  Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples.
先ず、 測定法、 評価方法について説明する。  First, the measurement method and the evaluation method will be described.
( 1 ) 不織布の目付 1 0 c m角の不織布を数枚採取し、 その重量を 1 m2当たりの重 量で示す。 (1) Weight of non-woven fabric Several nonwoven fabrics measuring 10 cm square are collected, and the weight is indicated by the weight per 1 m 2 .
( 2 ) 不織布の厚み  (2) Thickness of non-woven fabric
中山電気産業 (株) 製、 圧縮弾性試験機 E— 2型を用い、 測定面 積 4 c m2にて 1 . 3、 1 0、 3 7. 5、 5 0、 1 0 0 g / c m2の 各荷重下で測定した。 Using a compression elasticity tester Model E-2 manufactured by Nakayama Electric Industry Co., Ltd., measuring 1.3, 10, 3, 7.5, 50, 100 g / cm 2 at a measurement area of 4 cm 2 Measured under each load.
( 3 ) 不織布の嵩高率  (3) Non-woven fabric bulkiness
本発明の非結合繊維の高密度域を付与する前後の不織布の厚み ( l O g Z c m2荷重下) の変化率を嵩高率と した。 The rate of change before and after the non-woven fabric of a thickness which imparts a high density area of the unbonded fibers of the present invention (l O g Z cm 2 under a load) was bulky rate.
( 4 ) 不織布の強力および 5 %伸長時応力  (4) Strength of nonwoven fabric and stress at 5% elongation
幅 3 c m、 長さ 2 0 c mの試験片を、 島津製作所 (株) 製テンシ ロ ンを用いて、 つかみ幅 1 0 O mm、 試験速度 3 0 0 m/分で引張 試験を行い、 縦方向、 横方向の強力および 5 %伸長時応力を測定し た。  A tensile test was performed on a test piece 3 cm wide and 20 cm long using a Shimadzu Corporation Tensilon at a grip width of 100 mm and a test speed of 300 m / min. The transverse strength and the stress at 5% elongation were measured.
( 5 ) 不織布の曲げ柔軟度  (5) Flexibility of nonwoven fabric
柔軟性を示す指標と して、 次の方法で測定した曲げ柔軟度をもつ て表す。  As an index indicating flexibility, the flexural flexibility measured by the following method is expressed.
測定方法は、 試料片の測定方向の一方の端部 1 c mを残して、 試 料片に直角方向で全幅に渡りスケールで押え、 試料片の他端部を折 り 目をつけず、 ループを形成させた状態で、 スケールで押えた端部 上にのせる。 スケールで押えた側の端部を手で押えたまま、 試料片 の上をスケールを滑らせながらループ内に移動させる。  The measurement method is as follows: 1 cm of one end of the specimen in the measurement direction is left, and the scale is pressed across the entire width in the direction perpendicular to the specimen, and the other end of the specimen is not bent and the loop is formed. As it is formed, place it on the end pressed by the scale. While holding the end on the side held by the scale by hand, slide the scale over the specimen and move it into the loop.
試料の反発力でループが伸びた点を終点と し、 この点からループ 側端部までの長さを臨界長 (mm) と し、 表裏の平均値で表す。 短 いものほど柔軟であることを示す。  The point at which the loop elongates due to the repulsive force of the sample is defined as the end point, and the length from this point to the end of the loop is defined as the critical length (mm). Shorter ones indicate more flexibility.
( 6 ) 透水性能の測定面  (6) Permeability measurement surface
透水性能は、 不織布を使い捨て衛生材料の トップシー トと して用 い、 肌面に用いる側を透水性能の測定面と した。 表 1の 「透水性能 測定面」 の欄に示した 「上面」 又は 「下面」 は、 それぞれ肌面に用 いる側の特性を示している。 Non-woven fabric is used as a top sheet of disposable sanitary materials for water permeability The side used for the skin surface was used as the surface for measuring water permeability. The “upper surface” or “lower surface” shown in the “Permeability measurement surface” column in Table 1 indicates the characteristics of the side used for the skin surface, respectively.
( 7 ) 瞬間透水速度  (7) Instantaneous water permeability
吸収体として トイ レツ トペーパー 1 0枚を重ねた上に測定器 (約 8 0 0 g、 1 0 c m角で中央に直径 2 5 mmの穴を設け、 その中央 に向け 2本の電極を設けてタイマ一に接続したもの) を置き、 測定 は試験布 1 0 c m角 (以上) を吸収体と測定器の間に置き、 布の上 方 1 5 mmのスポィ トから生理食塩水を 1滴 ( 0. l c c Z滴) 滴 下する。 滴下から布表面通過終了までの時間を電極で計測し、 瞬間 透水速度 (秒) と した。  A measuring instrument (approximately 800 g, a 10 cm square hole with a diameter of 25 mm was provided at the center, and two electrodes were provided at the center, with 10 pieces of toy let paper as an absorber. Place the test cloth 10 cm square (or more) between the absorber and the measuring instrument, and drop one drop of physiological saline from the spot 15 mm above the cloth. (0. lcc Z drops) Drops. The time from dropping to the end of the cloth surface was measured with an electrode, and the instantaneous water permeation rate (seconds) was obtained.
( 8 ) 5 c c透水速度 (秒 5 c c ) 、 濡れ戻り量 ( g ) 吸収体と して、 吸収体の特性を一定化するため、 特定ろ紙 (Eato n Dikeman社製 「 9 3 9」 1 0 じ:11角 3枚重ね) を測定器 (( 6 ) 瞬間透水速度測定器と同じ) の下に置く。 この吸収体の上に試験布 ( 1 0 c m角) を置く。 まず、 この上部 2 5 mmから 5 c c の人口 尿を滴下する。 人口尿は生理食塩水に非ィオン活性剤を添加して 4 5 ± 3ダインノ c m (mN/m) に調整したもので、 滴下速度は 3 . 3秒 2 5 c c とした。 滴下から布表面通過終了までに時間を電 極で計測し、 5 c c透水速度 (秒 / 5 c c ) と した。  (8) 5 cc water permeation rate (5 cc per second), amount of wetting back (g) As an absorber, use a specific filter paper (“93 9” 10 manufactured by Eton Dikeman) to stabilize the characteristics of the absorber. :: Place an 11-corner three-piece stack under the measuring device (same as (6) Instantaneous water permeability measuring device). Place a test cloth (10 cm square) on this absorber. First, drip artificial urine of this upper 25 mm to 5 c c. The artificial urine was prepared by adding a non-ion activator to physiological saline to 45 ± 3 dyno cm (mN / m), and the drip rate was 3.3 seconds 25 cc. The time from the dropping to the end of passage through the cloth surface was measured with an electrode, and the water permeation rate was 5 cc (second / 5 cc).
次いで、 このまま人口尿を追加し、 吸収体に含まれる液量が一定 化するよ うに、 全液量が吸収体重量の約 4倍にする。 この状態で試 験布上から 8 0 0 g / 1 0 c m角の荷重を 3分間かけ、 吸収体中の 液の分布を一定化させる。 次いで、 試験布上に、 予め秤量したろ紙 Next, artificial urine is added as it is, and the total liquid volume is made approximately four times the weight of the absorber so that the amount of liquid contained in the absorber is constant. In this state, apply a load of 800 g / 100 cm square from the test cloth for 3 minutes to stabilize the liquid distribution in the absorber. Then, pre-weighed filter paper is placed on the test cloth
(Eaton Dikeman社製 「 6 3 1」 1 2. 5 c m角 X 2枚) を重ね、 速やかに 3 6 0 0 g / 1 0 c m角 (乳幼児のォムッに加わる荷重相 当) を 2分間かけろ紙の重量増加を測定し、 濡れ戻り量 ( g ) と し た。 (Eaton Dikeman “631” 12.5 cm sq. X 2 sheets) are stacked on top of each other, and immediately squeeze 3600 g / 10 cm sq. (Equivalent to the load applied to infants' mummy) for 2 minutes. The weight increase is measured and the amount of re-wetting (g) Was.
( 9 ) 液流れ  (9) Liquid flow
4 5 ° の傾斜台上に吸収体と して トイ レツ トペーパー 1 0枚を置 き、 その上に試験布を密着させ、 布の上方 1 5 m mのスポィ 卜から 生理食塩水を 1滴 ( 0 . 1 c C / /滴) 滴下する。 布表面の滴下部か ら通過終了までに流れた長さを測定し、 液流れ (mm) と した。 Place 10 sheets of toylet paper as an absorber on a 45-degree inclined table, adhere the test cloth on it, and drop a drop of physiological saline from a spot 15 mm above the cloth ( 0. 1 c C / / drops) is added dropwise. The length of the liquid flowing from the dropping part on the cloth surface to the end of the passage was measured and defined as the liquid flow (mm).
( 1 0 ) 耐久透水透過率  (10) Durable water permeability
平面に吸収体と して トイ レツ トペーパー 1 0枚を置き、 その上に 試験布を密着させる。 布の上方 1 5 m mのスポィ 卜から生理食塩水 を 1滴 ( 0 . 1 c c Z滴) 滴下する。 滴下液が 2秒以内に吸収され たものを透過とする。 表面が乾いた後、 同じ位置に再度 1滴滴下し 、 2回目の試験とする。 同様に繰り返して 3回目の試験とする。 同 じ試料の 1 0ないし 4 0か所について試験し、 滴下した数に対する 通過数の割合を耐久透水透過率 (% ) と した。  Place 10 sheets of toilet paper as an absorber on a flat surface, and adhere the test cloth on it. Drop one drop of saline (0.1 cc Z drop) from the spot 15 mm above the cloth. Permeate the liquid that has been absorbed within 2 seconds. After the surface has dried, a drop is dropped again at the same position, and the test is repeated for the second time. Repeat for the third test. The same sample was tested at 10 to 40 locations, and the ratio of the number of passages to the number of drops was defined as the durable permeability (%).
( 1 1 ) 繊度  (1 1) Fineness
不織布を構成する繊維の直径を、 顕微鏡 (キーエンス社高倍率マ イクロ スコープ V H— 8 0 0 0 ) で測定し、 丸断面繊維と して繊維 ポリマーの密度から算出した繊度 ( d t e x : フィ ラメ ン ト 1 0 0 0 0 m長の重さ) で示した。 なお、 メノレト · ブロー繊維ウェブの繊 度は繊維直径で示した。  The diameter of the fibers that make up the nonwoven fabric was measured with a microscope (Keyence Corporation high-power microscope VH-800) and the fineness (dtex: filament) calculated from the density of the fiber polymer as a fiber with a circular cross section (A weight of 1000 m). The fineness of the menoleto-blown fiber web was indicated by the fiber diameter.
( 1 2 ) 不織布の柔軟化率  (12) Softening rate of nonwoven fabric
本発明の非結合繊維の高密度域を付与する前後のタテ方向の柔軟 度の変化率 (処理後 処理前) を柔軟化率と した。 この柔軟化率は 、 数値が小さいほど柔軟効果が大きいことを示す。  The rate of change in the flexibility in the vertical direction before and after imparting the high-density region of the non-bonded fiber of the present invention (after treatment and before treatment) was defined as the softening rate. The smaller the value of this softening ratio, the greater the softening effect.
( 1 3 ) 耐水圧  (13) Water pressure resistance
不織布の緻密さ、 防水性を示す尺度と して耐水圧をもって示す。 試料片 ( 2 0 c m角) を採取し、 J I S — L — 1 0 9 2に準じて測 定した。 Water pressure is used as a measure of the denseness and waterproofness of the nonwoven fabric. Take a sample (20 cm square) and measure according to JIS-L-1092. Specified.
〔実施例 1 、 実施例 2〕  (Example 1, Example 2)
酸化チタ ンを含有したポ リ プロ ピレン ( J I S— K 7 2 1 0の表 1 の条件で測定した M F R = 4 0 ) を原料と し、 丸断面のノズルか ら溶融押出した長繊維を紡口の近傍にて側方から冷却しながら、 ェ アーサッカ一等の牽引引取装置で引き取った。 牽引引取装置を出た 糸条は、 帯電装置を通過させて開繊させた後、 移動する金網コ ンペ ァー上にウェブと して捕集した。  Polypropylene containing titanium oxide (MFR = 40 measured under the conditions in Table 1 of JIS-K7210) was used as a raw material, and a long fiber melt-extruded from a nozzle with a round cross section was spun. While being cooled from the side in the vicinity of, it was pulled off by a pulling and pulling device such as an air sucker. The yarn exiting the pulling and pulling device was passed through a charging device to spread the yarn, and then collected as a web on a moving wire mesh conveyor.
このウェブを 1 3 5 °Cに加熱したエンボスノフラッ ト ロール間に 通し、 直径 0. 4 3 mmの円形斜め 4 5 ° 、 斜めピッチ 1 . 5 mm の千鳥状配置したピンポイ ン ト柄 (面積率約 7 %) で部分熱圧融着 してピンポイ ン トの散点模様を有する不織布を得た。  This web is passed between embossed flat rolls heated to 135 ° C, and a staggered pinpoint pattern with a diameter of 0.43mm and a diagonal pitch of 45 ° and a pitch of 1.5mm (area (Approximately 7%) to obtain a nonwoven fabric having a pinpoint dot pattern.
得られたスパンボン ド不織布の構成繊維は 2. 8 d t e X (実施 例 1 ) 及び 2. 0 d t e x (実施例 2 ) の丸断面糸で、 部分熱圧融 着面積率 7 %、 目付はそれぞれ 2 0 g m 2であった。 The constituent fibers of the obtained spunbonded nonwoven fabric were round cross-section yarns of 2.8 dte X (Example 1) and 2.0 dtex (Example 2), with a partial heat pressure fused area ratio of 7% and a basis weight of 2%. It was 0 gm 2 .
この不織布を 1辺 0. 9 mm、 線幅 0. 1 mmの連続線状のハニ カム形状柄 (亀甲凹柄 : 図 4参照) (押付面積率 1 2. 5 %、 柄ピ ツチタテ 2. 8 mm、 ョ コ 3. 2 mm、 深さ 0. 7 mm) のェンボ ス 口ール ( 1 0 0 °C) と表面硬度 5 0度 ( J I S — A硬度) のゴム ロールの間に通し、 線圧 1 0 0 k g / c mで柄を押し付けた。 亀甲 周辺が押し付けられ高密度域を持ち、 中央部が盛り上がった柔軟な 不織布が得られた。  This nonwoven fabric is a continuous honeycomb pattern with a side of 0.9 mm and a line width of 0.1 mm (concave pattern: see Fig. 4) (Pressing area ratio 12.5%, pattern pitch 2.8) mm, horizontal 3.2 mm, depth 0.7 mm) and a rubber roll with a surface hardness of 50 degrees (JIS-A hardness). The handle was pressed at a pressure of 100 kg / cm. The periphery of the tortoise shell was pressed, and a high-density area was obtained.
この不織布にグラビア方式で、 ポリ エチレングリ コールプロ ピレ ングリ コ一ルのブロ ック共重合ポリエ一テル、 ポリ エーテル変性シ リ コーンを主体に配合した活性剤からなる親水化剤を 0 · 4 5 w t %付与し、 衛生材料用不織布と した。 不織布の性能評価結果を表 1 、 2に示す。 この不織布の表の面である非結合繊維の低密度域 (エンボス凹柄 面) を ト ップシー トの肌面側に配置して、 作製した使い捨てォムッ は、 従来の不織布で構成されたものよ り、 高密度域の間で繊維層が 盛り上がって、 ソフ トであり、 濡れ戻り性の改良されたさ らさ らし た柔軟な不織布の触感をもつ良好なものであった。 細デシテックス の実施例 2は、 さ らに滑らかでソフ ト さの優れたものであった。 A hydrophilizing agent consisting of an activator mainly composed of a block copolymer of polyethylene glycol propylene glycol and a polyether-modified silicone is applied to this nonwoven fabric by a gravure method. wt% to give a nonwoven fabric for sanitary materials. Tables 1 and 2 show the performance evaluation results of the nonwoven fabric. The low-density area of the non-bonded fiber (the embossed concave surface), which is the surface of the nonwoven fabric, is placed on the skin side of the topsheet. However, the fiber layer was raised between the high-density regions and was soft, and had a good touch with the feel of a softer nonwoven fabric with improved wettability. Example 2 of fine decitex was smoother and more excellent in softness.
〔実施例 3、 実施例 4〕  (Example 3, Example 4)
非結合性の押し付けるエンボス柄を、 実施例 1 とは逆の非連続で 散在する亀甲凸柄 ( 1 辺 0. 4 5 mm、 押付面積率 2 5 %、 柄ピッ チタテ 2. 8 mm、 ョ コ 3. 2 mm、 深さ 0. 6 mm) と した以外 は実施例 1 と同様にして、 2. 8 d t e x、 目付 2 0 g Zm2の本 発明不織布を得た。 不織布の性能評価結果を表 1、 2に示す。 The non-bonding embossing pattern to be pressed is a non-continuous and scattered tortoiseshell pattern (0.45 mm per side, 25% pressing area ratio, 2.8 mm pattern pitch length, opposite to Example 1). The procedure of Example 1 was repeated except that the thickness was 3.2 mm and the depth was 0.6 mm) to obtain a nonwoven fabric of the present invention having 2.8 dtex and a basis weight of 20 g Zm 2 . Tables 1 and 2 show the performance evaluation results of the nonwoven fabric.
この不織布を ト ップシ一ト と し、 実施例 3については不織布の低 密度域の連続凸 (不織布の表の面) を ト ップシー トの肌面側に用い て、 実施例 4については逆の不織布の裏の面の高密度域の非連続の 凸柄面を ト ップシ一 卜の肌面側は用いて使い捨てォムッを製作した 。 実施例 1 と同様、 従来の不織布に比べ、 ソフ ト さに優れ、 濡れ戻 り性能も良好であった。 また、 この不織布の表裏を逆にして ト ップ シー ト と したもの (実施例 4 ) は高密度域が点状に盛り上がつたも ので、 表面の滑らかさにさ らさ ら感が加わった触感のものであった  This nonwoven fabric was used as a topsheet. In Example 3, the continuous convexity in the low-density region of the nonwoven fabric (the front surface of the nonwoven fabric) was used on the skin side of the topsheet, and in Example 4, the reverse nonwoven fabric was used. A non-continuous convex pattern in the high-density area on the back side of the top was used on the skin side of the topsheet to produce a disposable ommut. As in Example 1, the softness was excellent and the re-wetting performance was good as compared with the conventional nonwoven fabric. The top sheet of this non-woven fabric with the top and bottom reversed (Example 4) has a high-density area with a dot-like swelling, which adds to the smoothness of the surface. Was of a tactile feel
〔実施例 5〕 (Example 5)
非結合性の押し付けるエンボス柄を非連続で散在する格子凸柄 ( 1辺 0. 3 mm x 0. 7 mm、 押付面積率 2 2 %、 深さ 0. 6 mm ) と し、 この柄とかん合する格子凹柄を持つロールと組み合わせた 間に通した以外は実施例 1 と同様にして、 2. O d t e x、 目付 1 8 g Zm2の本発明不織布を得た。 不織布の性能評価結果を表 1、 2に示す。 The non-bonding embossing pattern to be pressed is assumed to be a non-continuously scattered lattice convex pattern (0.3 mm x 0.7 mm on one side, 22% pressing area ratio, 0.6 mm depth). A nonwoven fabric of the present invention having 2. O dtex and a basis weight of 18 g Zm 2 was obtained in the same manner as in Example 1 except that the roll was passed while being combined with a roll having a lattice recessed pattern. Table 1 shows the performance evaluation results of the nonwoven fabric. See Figure 2.
この不織布の低密度域の連続凸の面 (不織布の表の面) を トップ シー トの肌面に向けて用いた使い捨てォムッを製作した。 実施例 1 と同様、 従来の不織布に比べ、 ソフ トさに優れ、 濡れ戻り性能も良 好であった。  A disposable ommut was manufactured by using the continuous convex surface of the low density region of this nonwoven fabric (the front surface of the nonwoven fabric) facing the skin of the top sheet. As in Example 1, the softness was superior to the conventional nonwoven fabric, and the wettability was also excellent.
〔実施例 6及び 7〕  (Examples 6 and 7)
親水化剤を付与する前に、 コロナ処理を行い、 コロナ処理条件は 室温 2 2 °Cの雰囲気下で放電量 3 0 W · 分/ /m 2 (放電度 2. 2 W / c m2 ) で行い、 その結果不織布の表面張力は 3 7 mNZmであ り、 コロナ処理による濡れ性の向上を考慮して親水化剤の付着を 0 . 3 w t %と した以外は、 実施例 1及び実施例 3 と同様にして本発 明の衛生材料用不織布を製作し、 実施例 6、 および実施例 7を得た 。 得られた不織布を ト ップシー ト と した使い捨て衛生材料は、 従来 の不織布で構成されたものよ り、 ソフ トであり、 親水化剤の付着が 少ないが、 実施例 1及び実施例 3 と同様に透水性能が優れ、 処理剤 が少ない点で、 より さ らさ らした柔軟な不織布の触感を持つ良好な ものであった。 Before applying the hydrophilizing agent, a corona treatment is performed. The corona treatment is performed at a discharge rate of 30 W · min / m 2 (discharge rate of 2.2 W / cm 2 ) in an atmosphere at room temperature of 22 ° C. As a result, the surface tension of the nonwoven fabric was 37 mNZm, and Example 1 and Example 3 were performed except that the adhesion of the hydrophilizing agent was set to 0.3 wt% in consideration of the improvement in wettability by corona treatment. In the same manner as in the above, a nonwoven fabric for sanitary materials of the present invention was produced, and Examples 6 and 7 were obtained. The disposable sanitary material using the obtained nonwoven fabric as a topsheet is softer and less adherent with a hydrophilizing agent than the conventional nonwoven fabric, but is similar to Examples 1 and 3. Because of its excellent water permeability and few treatment agents, it had a good touch with a softer and more flexible nonwoven fabric.
〔比較例 1、 2、 3及び 4〕  (Comparative Examples 1, 2, 3, and 4)
実施例 1、 2、 5、 及び 7において、 非結合性押付を行わず、 親 水化剤を付与したものをそれぞれ比較例 1、 2、 3及び 4 と した。  In Examples 1, 2, 5, and 7, non-bonding pressing was not performed, and a lyophilic agent was applied, to Comparative Examples 1, 2, 3, and 4, respectively.
〔比較例 5、 6〕  (Comparative Examples 5, 6)
ト ップシ一 トの比較と して、 市販ォムッの トップシ一 トと して実 用されている短繊維ボイントボン ド不織布 ( 1 9 g Zm2 : 比較例 5 ) 、 2成分短繊維熱風接着不織布 ( 1 8 g Zm2 : 比較例 6 ) を 用い、 その結果を表 1及び 2に示した。
Figure imgf000030_0001
As a preparative Ppushi one DOO comparison, commercially available short fibers Toppushi Have a single bets are for real Omu' Bointobon de nonwoven (1 9 g Zm 2: Comparative Example 5), 2-component short fibers hot-air bonded nonwoven fabric (1 8 g Zm 2 : The results are shown in Tables 1 and 2 using Comparative Example 6).
Figure imgf000030_0001
表 2 Table 2
不織布の引張強力 不織布の 5%伸長 不織布柔軟性 透水性能  Tensile strength of nonwoven fabric 5% elongation of nonwoven fabric Nonwoven fabric flexibility Water permeability
(N/3cm幅) 時の応力(N/3cm幅) (mm) 瞬間透水 5 cc透水 濡れ戻り 液流れ 耐久透水(透過率) 備考 縦 横 縦 横 縦 横 (秒) (秒) (g) (nun) 1回 2回 3回 実施例 1 28.9 7.7 12.5 1.3 78 47 0.12 3.0 0.6 26 100 100 60  (N / 3cm width) Stress at time (N / 3cm width) (mm) Instantaneous water permeability 5 cc water permeability Wet return Liquid flow Durable water permeability (permeability) Remarks Vertical Horizontal Vertical Vertical Horizontal Vertical Vertical Horizontal (seconds) (seconds) (g) ( nun) 1 time 2 times 3 times Example 1 28.9 7.7 12.5 1.3 78 47 0.12 3.0 0.6 26 100 100 60
実施例 2 28.5 7.2 12.0 1.3 76 50 0.12 3.1 0.8 28 100 100 60  Example 2 28.5 7.2 12.0 1.3 76 50 0.12 3.1 0.8 28 100 100 60
実施例 3 28.3 6.8 11.6 1.1 79 49 0.11 3.2 0.8 30 100 100 60  Example 3 28.3 6.8 11.6 1.1 79 49 0.11 3.2 0.8 30 100 100 60
実施例 4 28.8 7.5 11.5 1.3 77 46 0.11 3.2 0.8 27 100 100 60  Example 4 28.8 7.5 11.5 1.3 77 46 0.11 3.2 0.8 27 100 100 60
実施例 5 27.1 6.5 11.0 1.1 78 50 0.11 3.2 0.9 28 100 100 60  Example 5 27.1 6.5 11.0 1.1 78 50 0.11 3.2 0.9 28 100 100 60
CD  CD
実施例 6 - - - - - - 0.12 3.2 0.9 21 100 100 80  Example 6------0.12 3.2 0.9 21 100 100 80
実施例 7 0.11 3.5 0.7 27 100 100 60 比較例 1 32.6 7.6 13.3 1.5 87 57 0.13 3.2 1.0 34 100 100 40  Example 7 0.11 3.5 0.7 27 100 100 60 Comparative Example 1 32.6 7.6 13.3 1.5 87 57 0.13 3.2 1.0 34 100 100 40
比較例 2 31.9 7.4 15.3 1.5 85 52 0.13 3.2 1.3 36 100 100 40  Comparative Example 2 31.9 7.4 15.3 1.5 85 52 0.13 3.2 1.3 36 100 100 40
比較例 3 29.9 7.1 12.8 1.4 83 50 0.13 3.3 1.3 35 100 100 40  Comparative Example 3 29.9 7.1 12.8 1.4 83 50 0.13 3.3 1.3 35 100 100 40
比較例 4 0.11 3.2 1.7 22 100 100 70  Comparative Example 4 0.11 3.2 1.7 22 100 100 70
比較例 5 0.24 2.8 0.5 30 100 0 0 短繊維ホ' トホ' 比較例 6 0.10 2.7 0.1 20 100 40 0 短繊維熱風 Comparative Example 5 0.24 2.8 0.5 30 100 0 0 Short fiber hot water Comparative example 6 0.10 2.7 0.1 20 100 40 0 Short fiber hot air
表 1及び表 2に示した結果から、 実施例のものは、 比較例のもの に比べて、 嵩高であり、 荷重時の厚み変化も少なく、 柔軟性があり 、 瞬間透水性、 濡れ戻り性、 液流れ性、 透水耐久性等の透水性能に おいて優れていることがわかる。 From the results shown in Tables 1 and 2, the example is bulky, has less change in thickness under load, is flexible, has instantaneous water permeability, rewetting, It can be seen that it is excellent in water permeation performance such as liquid flowability and water permeation durability.
表 1及び表 2に示した本発明の衛生材料用不織布は、 嵩高性が良 好で、 嵩高率は 1 1 0 %以上であり、 荷重を掛けた時の厚み変化が 少なく 、 荷重に対する圧縮性に優れ、 柔軟であるとともに、 良好な 透水性、 透水耐久性を示す。  The nonwoven fabric for sanitary materials of the present invention shown in Tables 1 and 2 has good bulkiness, a bulkiness ratio of 110% or more, little change in thickness when a load is applied, and compressibility against a load. It is excellent in flexibility, and has good water permeability and durability.
〔実施例 8、 実施例 9〕  (Example 8, Example 9)
ポリ プロ ピレン ( J I S - K 7 2 1 0の表 1の条件で測定した M F R = 4 0 ) を原料と し、 丸断面のノズルから溶融押出した長繊維 を紡口の近傍にて側方から冷却しながら、 エアーサッカー等の牽引 引取装置で引き取った。 牽引引取装置を出た糸条は、 帯電装置を通 過させて開繊させた後、 移動する金網コ ンベア一上にフィラメ ン ト ウェブ ( 2 . 8 d t e X (実施例 8 ) 及び 1 . 2 d t e x (実施例 9 ) 、 各々 6 . 5 g /m2 ) と して捕集した。 Using polypropylene (MFR = 40 measured under the conditions shown in Table 1 of JIS-K720) as a raw material, a long fiber melt-extruded from a round cross-section nozzle is cooled from the side near the spinneret. While pulling it, it was picked up by a tow pulling device such as air soccer. After the yarn exiting the traction take-up device is passed through the charging device and spread, the filament web (2.8 dte X (Example 8) and 1.2) is placed on the moving wire mesh conveyor. dtex (Example 9), each of which was 6.5 g / m 2 ).
このウェブ上に、 ポ リ プロ ピレン ( J 1 5 — 1: 7 2 1 0の表 1 の 条件で測定した M F R = 7 0 0 ) を原料と し、 吐出ノズル両近傍の ス リ ッ 卜から高圧高温風を吹きつけるメル ト · ブロー繊維方式のゥ ヱブ (繊径 1 . 8 μ πι、 1 g /m2 ) 2枚を積層した。 さらにこの 上に、 前記と同様にして作成したフィ ラ メ ン トウェブを積層捕集し て、 積層ウェブ ( 1 5 g Z m2 ) と した。 このウェブを 1 3 0でに 加熱したエンボス フラッ 卜ロールの間に通し、 長径約 0 . 9 m m 、 短径約 0 . 5 m m、 面積 0 . 3 6 m m2の楕円形柄を斜め 3 0 ° で縦約 3 m m、 横 1 . 7 mの千鳥状に配置した斜め鉼柄 (圧着面積 率 1 5 % ) のパターンを有する加熱したエンボス ロール間に通し、 部分熱圧融着して楕円ポイ ン ト状の散点模様 (斜め鉼柄) を有する 不織布を得た。 Polypropylene (J15—1: MFR = 700 measured under the conditions in Table 1 of 710) was used as a raw material on this web, and a high pressure was applied from a slit near both the discharge nozzles. Two sheets of melt-blow fibers (diameter 1.8 μππ, 1 g / m 2 ) spraying high-temperature air were laminated. Furthermore, the filament web prepared in the same manner as above was layered and collected to form a laminated web (15 g Zm 2 ). The web threading between the embossing flat Bok rolls heated to 1 3 0, the major axis of about 0. 9 mm, shorter diameter of about 0. 5 mm, the area 0. 3 6 mm diagonal 3 elliptic shape Pattern 2 0 ° Through a heated embossing roll with a diagonal pattern (crimp area ratio of 15%) arranged in a zigzag pattern with a length of about 3 mm and a width of 1.7 m. A nonwoven fabric having an elliptical point-like dot pattern (oblique pattern) was obtained by partial heat-pressure fusion.
この不織布を 1辺 0. 9 mm、 線幅 0. 1 mmの連続線状のハニ カム形状柄 (亀甲凹柄) (押付面積率 1 2. 5 %、 深さ 0. 7 mm ) のエンボス ロール ( 4 0 °C) と表面硬度 5 0度 ( J I S— A硬度 ) のゴム口ールの間に通し、 線圧 1 0 0 k g Z c mで柄を押し付け た。 亀甲柄周辺が押し付けられ高密度域を持ち、 中央部が盛り上が つた柔軟な不織布が得られた。 不織布の性能評価結果を表 1及び表 2に示す。 フィ ラ メ ン ト ウェブの繊度を 1 . 2 d t e x (実施例 9 ) と した不織布は表面繊維の滑らかな感触も加わり一段と ソフ トな 不織布である。  Embossed roll of this nonwoven fabric with a honeycomb pattern (concave pattern) with a continuous line shape of 0.9 mm on each side and a line width of 0.1 mm (press area ratio 12.5%, depth 0.7 mm) (40 ° C) and a surface hardness of 50 degrees (JIS-A hardness), and the handle was pressed at a linear pressure of 100 kg Z cm. A flexible non-woven fabric with a high density area pressed around the turtle pattern and a raised center was obtained. Tables 1 and 2 show the performance evaluation results of the nonwoven fabric. The nonwoven fabric whose filament web has a fineness of 1.2 dtex (Example 9) is a softer nonwoven fabric with a smooth feel of surface fibers.
これらの不織布を立体ギャザーと して製作した使い捨てォムッは 、 従来の柔軟化処理をしていない不織布で構成されたものよ り、 ソ フ トで、 厚み感がある良好なものであった。 また、 この不織布に微 多孔 P Eフィルムをラ ミネ一ト してバックシー ト と した使い捨てォ ムッは従来の柔軟化処理をしていない積層不織布では得られなかつ た触感のソフ 卜なもので十分実用に耐える強さ、 表面強度を持つも のであった。  The disposable ommut manufactured by using these nonwoven fabrics as three-dimensional gathers was softer and thicker than the conventional nonwoven fabrics that had not been subjected to a softening treatment. In addition, disposable materials that are made by laminating a microporous PE film on this nonwoven fabric and used as a backsheet are soft tactile materials that cannot be obtained with conventional nonwoven fabrics that have not been subjected to softening treatment. It had strength and surface strength to withstand heat.
〔実施例 1 0、 実施例 1 1〕  (Example 10 and Example 11)
非結合性凹凸変形を得るために、 押し付けるエンボス柄を実施例 8 とは逆の非連続で散在する亀甲凸柄 ( 1辺 0. 4 5 mm、 押付面 積率 2 5 %、 深さ 0. 6 mm) と した以外は実施例 8 と同様にして 、 目付 1 5 g Zm2 (実施例 1 0 ) 及び 1 7 g m2 (実施例 1 1 ) の本発明不織布を得た。 不織布の性能評価結果を表 3及び表 4に示 す。 In order to obtain non-bonding unevenness deformation, the embossed pattern to be pressed was changed in a non-continuous and scattered turtle pattern (0.45 mm per side, pressing area 25%, depth 0. 6 mm), and nonwoven fabrics of the present invention having a basis weight of 15 g Zm 2 (Example 10) and 17 g m 2 (Example 11) were obtained in the same manner as in Example 8. Tables 3 and 4 show the performance evaluation results of the nonwoven fabric.
この不織布を立体ギャザーと した使い捨てォムッを製作した。 実 施例 8 と同様、 従来の柔軟化処理をしていない不織布で構成された ものよ り、 ソ フ トさに優れ、 厚み感も良好であった。 また、 この不 織布の表裏を逆にして微多孔 P Eフィルムをラミネ一 ト してバッ ク シー ト と したものは非結合繊維の高密度域が点状に盛り上がつたも ので、 表面の滑らかさにさ らさ ら感が加わった触感の良好なもので あった。 A disposable ommut using this nonwoven fabric as a three-dimensional gather was produced. As in Example 8, it was made of a conventional non-woven fabric that had not been softened. It was more excellent in softness and thickness. The backsheet made by laminating a microporous PE film with the front and back of this nonwoven cloth turned over has a high-density area of non-bonded fibers that rises in a dot-like manner. It had a good tactile sensation with smoothness added.
〔実施例 1 2〕  (Example 12)
非結合性凹凸変形を得るために、 押し付けるエンボス柄を非連続 で散在する格子凸柄 ( 1辺 0. 3 mm X 0. 7 mm、 押付面積率 2 2 %、 深さ 0. 6 mm) と し、 この柄と嵌合する格子凹柄を持つ口 ールと組み合わせた間に通した以外は実施例 8 と同様にして、 目付 1 5 g m2の本発明不織布を得た。 不織布の性能評価結果を表 3 及び表 4に示す。 In order to obtain non-bonding uneven deformation, the embossed pattern to be pressed is non-continuously scattered with lattice convex patterns (0.3 mm X 0.7 mm on a side, pressing area ratio 22%, depth 0.6 mm). Then, the nonwoven fabric of the present invention having a basis weight of 15 gm 2 was obtained in the same manner as in Example 8, except that the pattern was passed while being combined with a hole having a lattice concave pattern fitted with the pattern. Tables 3 and 4 show the performance evaluation results of the nonwoven fabric.
この不織布を微多孔 P Eフィルムをラミネ一ト してバックシー ト と した使い捨てォムッを製作した。 実施例 8 と同様、 従来の不織布 に比べ、 ソ フ トさに優れ、 厚み感も良好であった。  The nonwoven fabric was laminated with a microporous PE film to produce a disposable backpack. As in Example 8, the softness was excellent and the feeling of thickness was good as compared with the conventional nonwoven fabric.
〔実施例 1 3〕  (Example 13)
非結合性凹凸変形を得るために、 押し付けるエンボス柄を連続し た斜線凸柄 (線幅 0. 2 mm、 間隔 0. 5 mm、 押付面積率 2 9 % 、 深さ 0. 6 mm) と し、 表面硬度 6 0度 ( J I S— A硬度) 、 厚 み 1 5 m mのゴムロールと組み合わせた間に通した以外は実施例 8 と同様にして、 目付 1 7 g Zm2の本発明不織布を得た。 不織布の 性能評価結果を表 3及び表 4に示す。 In order to obtain non-bonding uneven deformation, the embossed pattern to be pressed should be a continuous diagonal convex pattern (line width 0.2 mm, interval 0.5 mm, pressing area ratio 29%, depth 0.6 mm). the surface hardness of 6 0 degrees (JIS-a hardness), except through while in combination with rubber roll thickness 1 5 mm in the same manner as in example 8 to give the present invention a nonwoven fabric having a mass per unit area of 1 7 g Zm 2 . Tables 3 and 4 show the performance evaluation results of the nonwoven fabric.
この不織布は斜めの折り曲げくせを持ち、 柔軟化処理前の不織布 に比べ、 ソフ トさに優れ、 厚み感も良好な不織布であった。  This nonwoven fabric had a diagonal bending habit, was superior in softness to the nonwoven fabric before softening treatment, and had a good thickness.
〔実施例 1 4〕  (Example 14)
原料ポリマーのポリ プロ ピレン ( J I S— K 7 2 1 0の表 1 の条 件で測定した MF R = 4 0 ) をポリ プロ ピレンランダムコポリマー ( P E 3 %、 M F R = 3 5 ) と したフィ ラメ ントウェブ ( 1 . 8 d t e x、 6. 5 g /m2) を用いた以外は実施例 8 と同様にして、 目付 1 5 g /m2の本発明不織布を得た。 不織布の性能評価結果を 表 3及び表 4に示す。 The raw material polymer propylene (MFR = 40 measured under the conditions in Table 1 of JIS—K7 210) was replaced with a polypropylene random copolymer. (PE 3%, MFR = 35) Filament web (1.8 dtex, 6.5 g / m 2 ) was used as in Example 8 except that the basis weight was 15 g / m 2 . The nonwoven fabric of the present invention was obtained. Tables 3 and 4 show the performance evaluation results of the nonwoven fabric.
この不織布は表面触感がポリエチレン様のヌメ リ感を持ち、 柔軟 化処理前の不織布に比べ、 一層ソフ トさに優れ、 厚み感も良好な不 織布であった。  This nonwoven fabric had a polyethylene-like slimy feel on the surface, was more excellent in softness than the nonwoven fabric before softening treatment, and had a good thickness.
〔実施例 1 5〕  (Example 15)
実施例 8において、 片面のフィ ラメ ントゥヱプ層を外側に 1 . 2 d t e x ( 3. 3 g /m2) 、 内側に 2. 8 d t e x ( 3. 3 g / m2) のゥヱブと した以外は実施例 8 と同様にして、 目付 1 5 g Z m2の本発明の不織布を得た。 得られた不織布は表面層が滑らかさ を持った厚み感のある不織布であった。 Example 8 was repeated except that the filament layer on one side was 1.2 dtex (3.3 g / m 2 ) on the outside and 2.8 dtex (3.3 g / m 2 ) on the inside. In the same manner as in Example 8, a nonwoven fabric of the present invention having a basis weight of 15 g Zm 2 was obtained. The obtained nonwoven fabric was a thick nonwoven fabric having a smooth surface layer.
〔実施例 1 6、 実施例 1 7〕  (Example 16 and Example 17)
フィ ラメ ン トゥヱブ用の原料ポリ マーをポリエチレンテレフタ レ ー ト (粘度 7? s p / C = 0. 7 5 ) 及びナイ ロ ン 6 (相対粘度 Tj r e 1 = 2. 7 ) とし、 メルト . ブロ一繊維用ポリマ一をそれぞれの ポリエチレンテレフタ レー ト (粘度 jj s pZc- O . 4 2 ) 及びナ ィ ロ ン 6 (相対粘度 r? r e l = 2. 3 ) と して、 フィ ラメ ン ト ゥェ ブ ( 2 . O d t e x、 8. 3 g /m2) 、 メノレ ト ' ブ口一繊維ゥェ ブ (繊径それぞれ P E T = 2. 4 μ πι、 3. 4 g Zm2、 N 6 = 1 . 6 m , 3. 4 g Zm2) と し、 織目エンボス柄 ( 0. 5 mm角 、 圧着面積率 1 5 %) エンボス フラッ ト 口一ルの間に通し、 ポリ エチレンテレフタ レー トフィ ラメ ン トのウェブは 2 0 5 °C、 ナイ 口 ン 6 フィ ラメ ン トのウェブは 1 8 6度で、 部分熱圧融着した以外は 実施例 8 と同様にして各々 目付 2 0 g Zm2の本発明不織布を得た 。 不織布の性能評価結果を表 3及び表 4に示す。 これらの不織布は、 それぞれ柔軟化処理前の不織布に比べ、 ソフ 卜さに優れ、 厚み感も良好な不織布であり、 特に実施例 1 6のポリ エステル不織布はその効果が顕著に見られた。 The raw materials for the filament tube are polyethylene terephthalate (viscosity 7? Sp / C = 0.75) and nylon 6 (relative viscosity Tjre 1 = 2.7). The polymer for one fiber is polyethylene terephthalate (viscosity jjspZc-O.42) and nylon 6 (relative viscosity r? Rel = 2.3), and the filament ゥWeb (2. Odtex, 8.3 g / m 2 ), Menoleto 'fiber mouth fiber (PET = 2.4 μππ, 3.4 g Zm 2 , N 6 = 1 6 m, 3.4 g Zm 2 ) and a textured embossed pattern (0.5 mm square, crimping area ratio: 15%) Pass between the embossed flat mouth and polyethylene terephthalate film. The temperature of the web was 205 ° C, and that of the 6-filament filament was 186 ° C. The basis weight was 20 g Zm 2 in the same manner as in Example 8 except that partial heat pressure welding was performed. Nonwoven fabric of the present invention Obtained. Tables 3 and 4 show the performance evaluation results of the nonwoven fabric. Each of these nonwoven fabrics is a nonwoven fabric which is excellent in softness and good in thickness as compared with the nonwoven fabric before the softening treatment, and the effect of the polyester nonwoven fabric of Example 16 is particularly remarkable.
これらの不織布は、 衛生材料のみならず、 包装材、 印刷材、 簡易 衣料等にも使用できる、 従来にないソフ トな不織布であった。  These nonwoven fabrics were unprecedented soft nonwoven fabrics that can be used not only for sanitary materials but also for packaging materials, printing materials, simple clothing, and the like.
〔比較例 8〜 1 4〕  (Comparative Examples 8 to 14)
実施例 8、 9、 1 1、 1 4、 1 5、 1 6及び 1 7に対応する非結 合性凹凸柔軟化処理前の不織布をそれぞれの比較例 8、 9、 1 0、 1 1 、 1 2、 1 3および 1 4と し、 その特性を表 3, 4に示した。 Nonwoven fabrics before non-bonding unevenness softening treatment corresponding to Examples 8, 9, 11, 14, 15, 16 and 17 were subjected to Comparative Examples 8, 9, 10, 0, 11 and 1 respectively. The characteristics are shown in Tables 3 and 4.
3 Three
構成繊維 不織布の構成 熱圧着 凹凸加工 不賴 布 フィラメント メルトフ'口- F : フィラメント ェンホ *ス ェンボス柄 上面(表) 下面(裏) 素材 繊度(d t ex ) 素材 繊度 ( m ) M: メルトフ  Constituent fiber Non-woven fabric composition Thermo-compression Uneven processing Non-woven fabric Filament Meltoff 'F-F: Filament fenho * Shenbos pattern Upper surface (front) Lower surface (back) Material Fineness (d t ex) Material Fineness (m) M: Meltoff
低密度凸 高密度凸 実施例 8 ΡΡ 2. 8 PP 1. 8 F/M/M/F 斜め拼 亀甲凹柄  Low density convex High density convex Example 8 ΡΡ 2.8 PP 1.8 F / M / M / F diagonal 亀
(非連続) (連続) 低密度凸 高密度凸 実施例 9 ΡΡ 1. 2 PP 1. 8 F/M/M/F 斜め耕 亀甲凹柄  (Discontinuous) (Continuous) Low density convex High density convex Example 9 ΡΡ 1.2 PP 1.8 F / M / M / F Diagonal tillage
(非連続) (連続) 低密度凸 高密度凸 実施例 10 ΡΡ 2. 8 PP 1. 8 F/M/M/F 斜め耕 亀甲 ώ柄  (Discontinuous) (Continuous) Low density convex High density convex Example 10 ΡΡ 2.8 PP 1.8 F / M / M / F
(連続) (非連続) 低密度凸 高密度凸 実施例 11 ΡΡ 2. 8 PP 1. 8 F/M/M/F 斜め姘 亀甲凸柄  (Continuous) (Discontinuous) Low density convex High density convex Example 11 ΡΡ 2.8 PP 1.8 F / M / M / F diagonal 姘
(連続) (非連続) 低密度凸 高密度凸 実施例 12 ΡΡ 2. 8 PP 1. 8 F/M/M/F 斜め拼 格子凸柄  (Continuous) (Discontinuous) Low density convex High density convex Example 12 ΡΡ 2.8 PP 1.8 F / M / M / F Oblique F Lattice convex pattern
(連続) (非連続) 低密度凸 高密度凸 (Continuous) (Discontinuous) Low density convex High density convex
ΡΡ 2. 8 PP 1. 8 /メM/M/ h 斜め iff 斜線凸柄 ΡΡ 2.8 PP 1.8 / me M / M / h diagonal iff
(連続) (非連続) β /、, 低密度凸 高密度凸 芙施例 14 Κし Ρ 1. 8 PP 1. 8 F/M/F レ β、, + (Continuous) (non-continuous) β / ,, low density convex high density convex Example 14 Ρ 1.8 PP 1.8 F / M / F レβ ,, +
ヒ ノホ ィノト 亀甲凹柄  Hinohinoto Tortoiseshell concave pattern
(非連続) (連続) 低密度凸 高密度凸 芙施例 lo r 丄. ム 8 nn 上. 0 斜め統 亀甲凹 ffl  (Discontinuous) (Continuous) Low density convex High density convex Fuka example lo r 丄.
(非連続) (連続) 密度凸 高密度凸 失舰 リ上り PET 2. 0 PET 2. 4 M/ r 職通口曰 金 田 ππ ±κ 低  (Discontinuous) (Continuous) Density convexity High density convexity Loss Rising PET 2.0 PET 2.4 M / r Jobard says Kaneda ππ ± κ Low
(非連続) (連続) 低密度凸 高密度凸 実施例 17 N6 2. 0 N6 1. 6 F/M/F 織目 亀甲凹柄  (Discontinuous) (Continuous) Low density convex High density convex Example 17 N6 2.0 N6 1.6 F / M / F texture
(非連続) (連続) 比較例 8 PP 2. 8 PP 1. 8 F/M/M/F 斜め姘  (Discontinuous) (Continuous) Comparative Example 8 PP 2.8 PP 1.8 F / M / M / F Angled
比較例 9 PP 1. 2 PP 1. 8 F/M/M/F 斜め姘 Comparative Example 9 PP 1.2 PP 1.8 F / M / M / F diagonal
比較例 10 PP 2. 8 PP 1. 8 F/M/M/F 斜め姘 Comparative Example 10 PP 2.8 PP 1.8 F / M / M / F Angled
比較例 11 RCP 1. 8 PP 1. 8 F/M/F ピンホ'イント Comparative Example 11 RCP 1.8 PP 1.8 F / M / F Pinpoint
比較例 12 PP 1. 2/2. 8 PP 1. 8 F/M/M/F 斜め拼 Comparative Example 12 PP 1.2 / 2.8 PP 1.8 F / M / M / F Oblique
比較例 13 PET 2. 0 PET 2. 4 F/M/F 織目 Comparative Example 13 PET 2.0 PET 2.4 F / M / F texture
比較例 14 N6 2. 0 N6 1. 6 F/M/F 織目 Comparative Example 14 N6 2.0 N6 1.6 F / M / F texture
表 4 Table 4
不織布 各荷重下の不織布の厚み 不織布の 不織布の引張強力 不織布の 5%伸長 不織布の 不織布柔軟性 柔軟化率 の目付 ( μ m ) 嵩高率 ( N/3cmiH ) 時応力(N/3cm幅) 耐水圧 mm % ( g/ni2 ) 1. 3g 37. 5g 50g lOOg ( % ) Non-woven fabric Thickness of non-woven fabric under each load Non-woven fabric Non-woven fabric tensile strength 5% elongation of non-woven fabric Non-woven fabric non-woven fabric Flexibility Percentage (μm) Bulk (N / 3cmiH) Stress at time (N / 3cm width) Water pressure mm% (g / ni 2 ) 1.3 g 37.5 g 50 g lOOg (%)
縦 横 縦 横 縦 横  Vertical Horizontal Vertical Horizontal Vertical Vertical Horizontal
1 cm 1 cm 1 cm 1 cm  1 cm 1 cm 1 cm 1 cm
実施例 8 15 268 189 149 138 119 119 12. 2 7. 4 5. 6 2. 1 15 58 42 84 実施例 9 15 266 178 140 131 112 115 18. 2 7. 7 6. 1 2. 1 15 57 41 76 実施例 10 15 266 174 135 129 105 109 13. 1 7. 5 5. 3 1. 4 13 58 42 84 実施例 11 17 184 115 22. 8 7. 0 6. 8 1. 5 16 65 45 75 実施例 12 15 241 173 131 130 109 109 13. 0 7. 7 5. 9 1. 8 14 59 43 86 実施例 13 17 185 116 13. 3 7. 5 6. 1 1. 6 16 61 43 88 実施例 14 16 188 121 12. 0 5. 3 4. 4 1. 3 13 59 40 87 実施例 15 15 185 121 16. 5 7. 2 6. 2 1. 4 15 59 43 86 実施例 16 20 162 157 48. 3 18. 1 13. 3 5. 8 - 103 62 76 実施例 17 20 159 135 53. 0 14. 1 8. 1 2. 4 - 54 35 87 比較例 8 15 224 159 133 124 109 14. 9 9. 1 7. 1 2. 7 18 69 44  Example 8 15 268 189 149 138 119 119 12.2 7. 4 5.6 6.11 15 58 42 84 Example 9 15 266 178 140 131 112 115 18.2 7.7 6.1 2.1 15 57 41 76 Example 10 15 266 174 135 129 105 109 13.1 7.5 5 3.1.4 13 58 42 84 Example 11 17 184 115 22.8 7. 0 6.8 1.5 16 65 45 75 Example 12 15 241 173 131 130 109 109 13.0 7.7 5.9 1.8 14 59 43 86 Example 13 17 185 116 13.3 7.5 6.1 1.6 16 61 43 88 Example 14 16 188 121 12.0 5.3 4.4 1.3 13 59 40 87 Example 15 15 185 121 16.5 7.2 6.2 1.4 15 59 43 86 Example 16 20 162 157 48. 3 18.1 13.3 5.8 8-103 62 76 Example 17 20 159 135 53.0 14.1 8.1 1 2.4-54 35 87 Comparative Example 8 15 224 159 133 124 109 14. 9 9. 1 7.1 1 2. 7 18 69 44
比較例 9 15 220 155 129 119 109 19. 4 8. 3 7. 8 2. 8 24 75 47  Comparative Example 9 15 220 155 129 129 109 109 19.4 8.3 7.8 2.8 24 75 47
比較例 10 17 160 19. 8 7. 8 8. 5 1. 8 16 87 49  Comparative Example 10 17 160 19.8 7.8 8.5 1.8 16 87 49
比較例 11 16 156 12. 3 5. 6 4. 7 1. 19 68 43  Comparative Example 11 16 156 12.3 5.6 4.7 1.19 68 43
比較例 12 15 153 17. 4 8. 0 7. 5 2. 3 22 69 45  Comparative Example 12 15 153 17.4 8. 0 7. 5 2. 3 22 69 45
比較例 13 20 103 53. 0 19. 0 28. 8 11. 3 135 87  Comparative Example 13 20 103 53.0 19.0 28.8 11.3 135 87
比較例 14 20 118 55. 6 13. 6 15. 2 4. 3 62 39 Comparative Example 14 20 118 55.6 13.6 15.2 4.3 62 39
表 3及び表 4に示した結果から、 実施例のものは、 嵩高率、 引張 強力、 伸長時応力、 柔軟性において比較例のものに比して優れてい るこ と力 Sわ力 る。 From the results shown in Tables 3 and 4, it can be seen that the example has superior bulkiness, tensile strength, stress at elongation, and flexibility as compared with the comparative example.
産業上の利用可能性 Industrial applicability
本発明のスパンボン ド系不織布は、 嵩高性に優れ、 柔軟で強度も 優れており、 衛生材料用不織布と して有用である。 本発明のスパン ボン ド系不織布に、 更に、 親水化剤を (B ) の領域に主に含有させ るこ とで、 使い捨てォムッの ト ップシー ト等の衛生材料他と して所 望の性能、 嵩高、 柔軟、 透水、 ぬれ戻り の 4つの特性を同時に満足 する。  The spunbond nonwoven fabric of the present invention has excellent bulkiness, flexibility and strength, and is useful as a nonwoven fabric for sanitary materials. The spunbonded nonwoven fabric of the present invention further contains a hydrophilizing agent mainly in the region (B), so that the desired performance as a sanitary material such as a disposable omput topsheet or the like can be obtained. It satisfies the four characteristics of bulk, flexibility, water permeability and rewetting at the same time.

Claims

請 求 の 範 囲 The scope of the claims
1 . 熱可塑性合成繊維連続フィ ラメ ン ト のウェブで構成された不 織布であり、 不織布の表裏面間を貫通して一体化する部分的熱圧融 着繊維域柄及び不織布構造の両面に非結合繊維の高密度域からなる 凹又は凸柄によ り不織布の構造が固定されており、 不織布の凸ェン ボス柄の面を含む不織布の厚みに対する不織布構造の低密度域が占 める不織布の厚みの比で表される嵩高率が 1 0 0 %以上であるこ と を特徴とするスパンボン ド系不織布。 1. A non-woven fabric composed of a web of continuous thermoplastic synthetic filaments, and is formed on both sides of a partially hot-press-fused fiber area pattern and a non-woven fabric structure that penetrates between the front and back surfaces of the non-woven fabric and is integrated. The structure of the nonwoven fabric is fixed by the concave or convex pattern consisting of the high-density region of non-bonded fibers, and the low-density region of the nonwoven fabric occupies the thickness of the nonwoven fabric including the surface of the non-woven fiber including the convex-boss pattern. A spunbonded nonwoven fabric, characterized in that the bulkiness expressed by the ratio of the thickness of the nonwoven fabric is 100% or more.
2 . 非結合繊維の高密度域が連続的に配置されていることを特徴 とする請求項 1記載のスパンボン ド系不織布。  2. The spunbond nonwoven fabric according to claim 1, wherein the high-density regions of the non-bonding fibers are continuously arranged.
3 . 非結合繊維の高密度域が非連続で散在しているこ とを特徴と する請求項 1又は 2記載のスパンボン ド系不織布。  3. The spunbonded nonwoven fabric according to claim 1, wherein the high-density regions of the non-bonded fibers are discontinuously scattered.
4 . 嵩高率が 1 0 5〜 4 0 0 %であるこ とを特徴とする請求項 1 〜3のいずれかの請求項に記載のスパンボン ド系不織布。  4. The spunbonded nonwoven fabric according to any one of claims 1 to 3, wherein the bulkiness ratio is 105 to 400%.
5 . 部分的熱圧融着繊維域パターンの面積率が 5〜 4 0 %であり 、 非結合繊維の高密度域の凹又は凸パターン部の面積率が 5〜4 0 %であるこ とを特徴とする請求項 1〜 4のいずれかの請求項に記載 のスパンボン ド系不織布。  5. The area ratio of the partially hot-press fusion fiber area pattern is 5 to 40%, and the area ratio of the concave or convex pattern portion in the high-density area of the non-bonded fiber is 5 to 40%. The spunbonded nonwoven fabric according to any one of claims 1 to 4.
6 . 少なく とも一層の熱可塑性合成繊維連続フィ ラメ ン ト ウェブ と少なく とも一層のメル ト · ブ口一繊維のゥエブとを積層してなる 複合ウェブで形成された不織布であり、 不織布の表裏面間を貫通し て一体化する部分的熱圧融着繊維域柄及び不織布構造の両面に非結 合繊維の高密度域からなるエンボス凹又は凸パターンによ り不織布 の構造が固定されており、 不織布の凸エンボス柄の面を含む不織布 の厚みに対する不織布構造の低密度域が占める不織布の厚みの比で 表される嵩高率が 1 0 0 %以上であることを特徴とするスパンボン ド系不織布。 6. A nonwoven fabric formed of a composite web formed by laminating at least one layer of thermoplastic synthetic fiber continuous filament web and at least one layer of melt-blown fiber web. The structure of the nonwoven fabric is fixed by embossed concave or convex patterns consisting of a high-density region of non-bonded fibers on both sides of the partially hot-press fused fiber area pattern and the nonwoven fabric structure that penetrate through and intersect, A spunbond having a bulkiness ratio represented by a ratio of a thickness of the nonwoven fabric occupied by the low density region of the nonwoven fabric to a thickness of the nonwoven fabric including the surface of the convex embossed pattern of the nonwoven fabric of 100% or more. Non-woven fabric.
7. 非結合繊維の高密度域が連続的に配置されているこ とを特徴 とする請求項 6記載のスパンボン ド系不織布。  7. The spunbonded nonwoven fabric according to claim 6, wherein a high-density region of the non-bonded fibers is continuously arranged.
8. 非結合繊維の高密度域が非連続で散在しているこ とを特徴と する請求項 6又は 7記載のスパンボン ド系不織布。  8. The spun-bonded nonwoven fabric according to claim 6, wherein high-density regions of the non-bonding fibers are discontinuously scattered.
9. 嵩高率が 1 0 5〜 4 0 0 %であるこ とを特徴とする請求項 6 ~ 8のいずれかの請求項に記載のスパンボン ド系不織布。  9. The spunbonded nonwoven fabric according to any one of claims 6 to 8, wherein the bulkiness ratio is 105 to 400%.
1 0. 部分的熱圧融着誠意域パターンの面積率が 5〜 4 0 %であ り、 非結合繊維の高密度域の凹パターン又は凸パターンの面積率が 5〜 4 0 %であるこ とを特徴とする請求項 6〜 9のいずれか請求項 に記載のスパンボン ド系不織布。  10 0.The area ratio of the partial hot-press fusion bonding area pattern is 5 to 40%, and the area ratio of the concave or convex pattern in the high-density area of non-bonded fibers is 5 to 40%. The spunbonded nonwoven fabric according to any one of claims 6 to 9, characterized in that:
1 1. 熱可塑性合成繊維連続フィ ラメ ン トのウェブで構成された 不織布であり、 不織布の表裏面間を貫通して一体化する部分的熱圧 融着繊維域柄及び不織布構造の両面に非結合繊維の高密度域からな るエンボス凹又は凸パターンによ り不織布の構造が固定されており 1 1. A non-woven fabric composed of a web of continuous thermoplastic synthetic filaments, and a non-woven fabric on both sides of the partially hot-press fused fiber area pattern and the non-woven fabric structure that penetrates between the front and back surfaces of the non-woven fabric and is integrated. The structure of the nonwoven fabric is fixed by an embossed concave or convex pattern consisting of a high density region of the bonding fiber.
、 不織布の凸エンボスパターンの面を含む不織布の厚みに対する不 織布構造の低密度域が占める不織布の厚みの比で表される嵩高率が 1 0 0 %以上であり、 かつ且つ、 親水化剤が付与されてなるこ とを 特徴とするスパンボン ド系不織布衛生材料。 The bulkiness expressed by the ratio of the thickness of the nonwoven fabric occupied by the low density region of the nonwoven fabric to the thickness of the nonwoven fabric including the surface of the convex embossed pattern of the nonwoven fabric is 100% or more, and a hydrophilic agent A spunbond nonwoven sanitary material characterized by being provided with a nonwoven fabric.
1 2. 親水化剤が、 主に非結合繊維の高密度域に含有されている こ とを特徴とする請求項 1 1記載の衛生材料用スパンボン ド系不織 布。  12. The spunbond nonwoven fabric for sanitary materials according to claim 11, wherein the hydrophilizing agent is mainly contained in a high-density region of the non-bonded fiber.
1 3. 嵩高率が 1 0 5〜 4 0 0 %であるこ とを特徴とする請求項 1 1又は 1 2記載のスパンボン ド系不織布衛生材料。  13. The spunbonded nonwoven sanitary material according to claim 11 or 12, wherein the bulkiness ratio is from 105 to 400%.
1 4. 部分的熱圧融着繊維域パターンの面積率が 5〜 4 0 %であ り、 前記非結合繊維の高密度域のパターン凹又は凸部の面積率が 5 〜 4 0 %であるこ とを特徴とする請求項 1 1〜 1 3のいずれかに記 載のスパンボン ド系不織布衛生材料。 1 4. The area ratio of the partially hot-press fused fiber area pattern is 5 to 40%, and the area ratio of the pattern concave or convex portion in the high-density area of the non-bonded fiber is 5 to 40%. The method according to any one of claims 11 to 13, Spunbond nonwoven sanitary material.
1 5 . スパンボン ド系不織布衛生材料がコロナ放電処理を施した 後、 親水化剤を付与されてなるこ とを特徴とする請求項 1 1 〜 1 4 のいずれかの請求項に記載のスパンボン ド系不織布衛生材料。  15. The spunbond according to any one of claims 11 to 14, wherein the spunbond nonwoven sanitary material is subjected to a corona discharge treatment and then a hydrophilizing agent is applied thereto. Nonwoven sanitary material.
1 6 . 少なく とも一層の熱可塑性合成繊維連続フィ ラメ ン ト ウェ ブと少なく とも一層のメル ト · ブロー繊維のウェブとを積層してな る複合ウェブで形成された不織布であり、 不織布の表裏面間を貫通 する部分的熱圧融着繊維域パターン及び不織布構造の両面に非結合 繊維の高密度域からなるエンボス凹又は凸パターンによ り不織布の 構造が固定されており 、 不織布の凸エンボスパターンの面を含む不 織布の厚みに対する不織布構造の低密度域が占める不織布の厚みの 比で表される嵩高率が 1 0 0 %以上であり、 かつ親水化剤が付与さ れてなるスパンボン ド系不織布衛生材料。  16 6. A nonwoven fabric formed of a composite web formed by laminating at least one thermoplastic synthetic fiber continuous filament web and at least one melt-blown fiber web. The non-woven fabric structure is fixed by embossed concave or convex patterns consisting of high-density areas of non-bonded fibers on both sides of the partially hot-press fused fiber area pattern penetrating between the back surfaces and the non-woven fabric structure. A spunbond having a bulkiness expressed as a ratio of the thickness of the nonwoven fabric occupied by the low-density region of the nonwoven fabric to the thickness of the nonwoven fabric including the pattern surface of 100% or more, and to which a hydrophilic agent is added. Nonwoven sanitary materials.
1 7 . 親水化剤が、 主に非結合繊維の高密度域に含有されている こ とを特徴とする請求項 1 6記載のスパンボン ド系不織布衛生材料  17. The spunbond nonwoven sanitary material according to claim 16, wherein the hydrophilizing agent is mainly contained in the high-density region of the non-bonded fiber.
1 8 . 嵩高率が 1 0 5〜 4 0 0 %であるこ とを特徴とする請求項 1 6又は 1 7に記載のスパンボン ド系不織布衛生材料。 18. The spunbonded nonwoven sanitary material according to claim 16 or 17, wherein the bulkiness ratio is from 105 to 400%.
1 9 . 部分的熱圧融着繊維域パターンの面積率が 5〜 4 0 %であ り、 非結合繊維の高密度域のパターン凹又は凸部の面積率が 5〜 4 0 %であるこ とを特徴とする請求項 1 6から 1 8のいずれかの請求 項に記載のスパンボン ド系不織布衛生材料。  19. The area ratio of the partial hot-press fusion fiber area pattern is 5 to 40%, and the area ratio of the pattern concave or convex portions in the high-density area of the non-bonded fiber is 5 to 40%. The spunbond nonwoven sanitary material according to any one of claims 16 to 18, characterized in that:
2 0 . スパンボン ド系不織布衛生材料において、 不織布がコ ロナ 放電処理を施した後、 親水化剤が付与されてなるこ とを特徴とする 請求項 1 6から 1 9のいずれかの請求項に記載のスパンボン ド系不 織布衛生材料。  20. The spunbond nonwoven sanitary material according to any one of claims 16 to 19, wherein the nonwoven fabric is subjected to a corona discharge treatment and then a hydrophilizing agent is applied. The described spunbond nonwoven sanitary material.
2 1 . 請求項 1 1 〜 2 0のいずれかの請求項に記載のスパンボン ド系不織布衛生材料がその不織布の非結合繊維の高密度域の凹又は 凸柄を有する面が ト ップシー トの肌面に用いられるこ とを特徴とす るスパンボン ド系不織布使い捨て衛生材料。 21. The spunbond according to any one of claims 11 to 20 A spunbonded nonwoven disposable sanitary material characterized in that the surface of the nonwoven nonwoven sanitary material having a concave or convex pattern in the high-density region of the non-bonded fibers of the nonwoven is used for the skin surface of the topsheet.
2 2 . 請求項 1 1 〜 2 0のいずれかの請求項に記載のスパンボン ド系衛生材料がその不織布の不織布の非結合繊維の高密度域の凹又 は凸柄を有する面を ト ップシー トの反肌面と して用いるこ とを特徴 とする使い捨て衛生材料。  22. The spunbond type sanitary material according to any one of claims 11 to 20 has a topsheet having a concave or convex pattern in a high-density region of non-bonded fibers of the nonwoven fabric of the nonwoven fabric. A disposable sanitary material characterized by being used as an anti-skin surface.
2 3 . 請求項 6〜 1 0のいずれかの請求項に記載のスパンボン ド 系不織布を立体ギャザー部及びノ又はバックシー トに用いるこ とを 特徴とする使い捨て衛生材料。  23. A disposable sanitary material characterized by using the spunbonded nonwoven fabric according to any one of claims 6 to 10 for a three-dimensional gather portion and a back or backsheet.
PCT/JP2003/012106 2002-09-26 2003-09-22 Spun-bonded nonwoven fabric and sanitary supplies WO2004029349A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003266572A AU2003266572A1 (en) 2002-09-26 2003-09-22 Spun-bonded nonwoven fabric and sanitary supplies
KR1020057005215A KR100752979B1 (en) 2002-09-26 2003-09-22 Spun-bonded nonwoven fabric and sanitary supplies
CN03823047A CN100575584C (en) 2002-09-26 2003-09-22 Spunbond class nonwoven fabric and hygienic material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-281444 2002-09-26
JP2002281444A JP4716638B2 (en) 2002-09-26 2002-09-26 Flexible non-woven fabric for sanitary materials and disposable sanitary materials
JP2002296882A JP4716639B2 (en) 2002-10-10 2002-10-10 Nonwoven fabric for sanitary materials
JP2002-296882 2002-10-10

Publications (1)

Publication Number Publication Date
WO2004029349A1 true WO2004029349A1 (en) 2004-04-08

Family

ID=32044628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012106 WO2004029349A1 (en) 2002-09-26 2003-09-22 Spun-bonded nonwoven fabric and sanitary supplies

Country Status (5)

Country Link
KR (1) KR100752979B1 (en)
CN (1) CN100575584C (en)
AU (1) AU2003266572A1 (en)
TW (1) TWI238708B (en)
WO (1) WO2004029349A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007035038A1 (en) * 2005-09-20 2007-03-29 Yuhan-Kimberly Limited Absorbent article with apertured surge layer
CN102251345A (en) * 2011-01-13 2011-11-23 昆山市宝立无纺布有限公司 Hydrophilic non-woven fabric and making process thereof
CN101166857B (en) * 2005-03-03 2011-12-14 阿斯特罗姆公司 Process for producing nonwoven fabrics particularly soft, resistant and with a valuable appearance
USD714560S1 (en) 2012-09-17 2014-10-07 The Procter & Gamble Company Sheet material for an absorbent article
US9408761B2 (en) 2011-03-25 2016-08-09 The Procter & Gamble Company Article with nonwoven web component formed with loft-enhancing calendar bond shapes and patterns
CN106937903A (en) * 2017-03-07 2017-07-11 广东鑫雁科技有限公司 A kind of amenities core material hot pressing complex method
CN107614770A (en) * 2015-06-30 2018-01-19 尤妮佳股份有限公司 Adhesive-bonded fabric and the absorbent commodity using the adhesive-bonded fabric
US10045888B2 (en) 2014-09-12 2018-08-14 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with wide base openings
US10064766B2 (en) 2014-09-12 2018-09-04 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations that are configured to collapse in a controlled manner
US10076898B2 (en) 2014-09-12 2018-09-18 The Procter & Gamble Company Apparatus having forming members with surface texture for making nonwoven material having discrete three-dimensional deformations with wide base openings
US10226385B2 (en) 2014-09-12 2019-03-12 The Procter & Gamble Company Process for making an absorbent article comprising a topsheet/acquisition layer laminate
US20200100956A1 (en) * 2018-09-27 2020-04-02 The Procter & Gamble Company Nonwoven webs with visually discernible patterns
US10610423B2 (en) 2016-03-08 2020-04-07 The Procter & Gamble Company Absorbent article comprising a topsheet/acquisition web laminate
US20200299880A1 (en) * 2019-03-18 2020-09-24 The Procter & Gamble Company Shaped Nonwovens that Exhibit High Visual Resolution
US11149360B2 (en) 2017-06-30 2021-10-19 The Procter & Gamble Company Method for making a shaped nonwoven
US11160694B2 (en) * 2017-01-31 2021-11-02 The Procter & Gamble Company Three-dimensional substrates and absorbent articles having the same
US11179280B2 (en) 2015-01-02 2021-11-23 Essity Hygiene And Health Aktiebolag Absorbent article having a topsheet and standing gathers each having a sheet material with specified stiffness, softness and smoothness properties
US11192327B2 (en) * 2017-07-03 2021-12-07 Axel Nickel Voluminous meltblown nonwoven fabric with improved stackability and storability
US11214893B2 (en) 2017-06-30 2022-01-04 The Procter & Gamble Company Shaped nonwoven
US11696856B2 (en) 2017-03-09 2023-07-11 The Procter & Gamble Comoany Three-dimensional materials having apertures and voids
WO2023188404A1 (en) * 2022-03-31 2023-10-05 ユニ・チャーム株式会社 Nonwoven fabric and method for manufacturing said nonwoven fabric

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1969783B (en) * 2005-11-21 2010-05-05 福建恒安集团有限公司 Disposable absorption article
JP5114087B2 (en) * 2007-04-17 2013-01-09 ユニ・チャーム株式会社 Nonwoven fabric and absorbent article
WO2008146594A1 (en) * 2007-05-24 2008-12-04 Kao Corporation Surface sheet for absorptive article, method of producing the surface sheet, and absorptive article
JP5383063B2 (en) * 2008-03-04 2014-01-08 ユニ・チャーム株式会社 Absorbent articles
CN102251347A (en) * 2011-01-13 2011-11-23 昆山市宝立无纺布有限公司 Double-color non-woven fabric and making process thereof
CN102551577B (en) * 2011-12-15 2014-06-18 金红叶纸业集团有限公司 Wet towel production equipment, process and wet towel
KR102082289B1 (en) * 2011-12-23 2020-02-27 킴벌리-클라크 월드와이드, 인크. Three-dimensional sheet material and absorbent articles including such material
CN103448307B (en) * 2012-05-29 2018-04-27 东洋纺株式会社 A kind of resinous coat non-woven fabrics
JP5875157B2 (en) * 2012-09-28 2016-03-02 花王株式会社 Fiber sheet
CN103757822B (en) * 2014-01-28 2018-08-28 嘉兴学院 A kind of bubble type flexible non-woven cloth and its manufacturing method
CN109094123A (en) * 2015-05-12 2018-12-28 山田菊夫 The manufacturing method of disposable fibrous product cloth
CN106283466A (en) * 2015-06-04 2017-01-04 福懋兴业股份有限公司 Multiple dacian cloth and manufacture method thereof
CN107847377A (en) 2015-07-31 2018-03-27 宝洁公司 Utilize the package of absorbent articles part for being molded non-woven cloth
RU2673772C1 (en) 2015-07-31 2018-11-29 Дзе Проктер Энд Гэмбл Компани Forming belt conveyor for formed non-woven material
US10858768B2 (en) 2015-07-31 2020-12-08 The Procter & Gamble Company Shaped nonwoven
CN108366888B (en) * 2015-12-17 2021-11-30 宝洁公司 Shaped nonwoven fabric
US11261003B2 (en) 2016-03-10 2022-03-01 The Procter & Gamble Company Package with raised portions
US11299332B2 (en) 2016-03-10 2022-04-12 The Procter & Gamble Company Packages with raised portions
US11299325B2 (en) 2016-03-10 2022-04-12 The Procter & Gamble Company Packages with raised portions
SI3239378T1 (en) 2016-04-29 2019-06-28 Reifenhaeuser Gmbh & Co. Kg Maschinenfabrik Device and method for the manufacture of material from continuous filaments
US10888471B2 (en) 2016-12-15 2021-01-12 The Procter & Gamble Company Shaped nonwoven
EP3558189B1 (en) 2016-12-20 2021-06-23 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates with elastic strands provided with a spin finish
JP6714501B2 (en) * 2016-12-26 2020-06-24 花王株式会社 Absorbent article
JP7477295B2 (en) 2017-01-31 2024-05-01 ザ プロクター アンド ギャンブル カンパニー Molded nonwoven fabric
WO2018144296A1 (en) 2017-01-31 2018-08-09 The Procter & Gamble Company Shaped nonwoven
JP6462758B2 (en) * 2017-04-19 2019-01-30 ユニ・チャーム株式会社 Spunlace nonwoven fabric
WO2019046363A1 (en) 2017-09-01 2019-03-07 The Procter & Gamble Company Methods and apparatuses for making elastomeric laminates
US11147718B2 (en) 2017-09-01 2021-10-19 The Procter & Gamble Company Beamed elastomeric laminate structure, fit, and texture
US11925537B2 (en) 2017-09-01 2024-03-12 The Procter & Gamble Company Beamed elastomeric laminate structure, fit, and texture
US11547613B2 (en) 2017-12-05 2023-01-10 The Procter & Gamble Company Stretch laminate with beamed elastics and formed nonwoven layer
CN107997879B (en) * 2017-12-28 2023-07-18 瑞光(上海)电气设备有限公司 Embossing device, roll used for embossing device, and method for producing nonwoven fabric
WO2019131550A1 (en) * 2017-12-28 2019-07-04 ユニ・チャーム株式会社 Fiber nonwoven sheet
CN108652832B (en) * 2018-03-28 2020-11-24 嘉兴学院 Menstrual pants and preparation method thereof
CN112261925B (en) 2018-06-12 2022-04-05 宝洁公司 Absorbent article having a shaped, soft and textured nonwoven fabric
WO2019246194A1 (en) 2018-06-19 2019-12-26 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
CN109825948A (en) * 2019-01-17 2019-05-31 福建金坛实业有限公司 A kind of on-deformable dry and comfortable non-woven fabrics
TWI731294B (en) * 2019-01-22 2021-06-21 南六企業股份有限公司 Three-dimensional pattern hot-air non-woven online manufacturing process and its products
JP6557440B1 (en) * 2019-01-25 2019-08-07 三井化学株式会社 Spunbond nonwoven fabric, production method of spunbond nonwoven fabric, emboss roll
US12043019B2 (en) 2019-05-03 2024-07-23 The Procter & Gamble Company Nonwoven webs with one or more repeat units
US11819393B2 (en) 2019-06-19 2023-11-21 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
US12053357B2 (en) 2019-06-19 2024-08-06 The Procter & Gamble Company Absorbent article with function-formed topsheet, and method for manufacturing
CN113398660B (en) * 2020-03-16 2024-02-02 东丽纤维研究所(中国)有限公司 Filtering material and application thereof
CN112281307B (en) * 2020-10-16 2022-10-28 连云港柏德实业有限公司 Non-woven fabric and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317944B2 (en) * 1980-04-01 1988-04-15 Asahi Chemical Ind
JPH0288058A (en) * 1988-09-26 1990-03-28 Oji Paper Co Ltd Surface material for sanitary good
JPH1136168A (en) * 1997-05-15 1999-02-09 Polymer Processing Res Inst Nonwoven fabric for sanitary material and medical use
JPH11286863A (en) * 1998-04-06 1999-10-19 Mitsui Chem Inc Three-dimensionally shaped nonwoven fabric
JP2001064867A (en) * 1999-08-20 2001-03-13 Daiwabo Co Ltd Hydrophilic polyolefin fiber, production process therefor, nonwoven fabric using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317944B2 (en) * 1980-04-01 1988-04-15 Asahi Chemical Ind
JPH0288058A (en) * 1988-09-26 1990-03-28 Oji Paper Co Ltd Surface material for sanitary good
JPH1136168A (en) * 1997-05-15 1999-02-09 Polymer Processing Res Inst Nonwoven fabric for sanitary material and medical use
JPH11286863A (en) * 1998-04-06 1999-10-19 Mitsui Chem Inc Three-dimensionally shaped nonwoven fabric
JP2001064867A (en) * 1999-08-20 2001-03-13 Daiwabo Co Ltd Hydrophilic polyolefin fiber, production process therefor, nonwoven fabric using the same

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166857B (en) * 2005-03-03 2011-12-14 阿斯特罗姆公司 Process for producing nonwoven fabrics particularly soft, resistant and with a valuable appearance
WO2007035038A1 (en) * 2005-09-20 2007-03-29 Yuhan-Kimberly Limited Absorbent article with apertured surge layer
CN102251345A (en) * 2011-01-13 2011-11-23 昆山市宝立无纺布有限公司 Hydrophilic non-woven fabric and making process thereof
US10028866B2 (en) 2011-03-25 2018-07-24 The Procter & Gamble Company Article with nonwoven web component formed with loft-enhancing calender bond shapes and patterns
US9408761B2 (en) 2011-03-25 2016-08-09 The Procter & Gamble Company Article with nonwoven web component formed with loft-enhancing calendar bond shapes and patterns
USD714560S1 (en) 2012-09-17 2014-10-07 The Procter & Gamble Company Sheet material for an absorbent article
US10500826B2 (en) 2014-09-12 2019-12-10 The Procter & Gamble Company Method of making nonwoven material having discrete three-dimensional deformations with wide base openings
US10993845B2 (en) 2014-09-12 2021-05-04 The Procter & Gamble Company Process for making an absorbent article comprising a topsheet/acquisition layer laminate
US10045888B2 (en) 2014-09-12 2018-08-14 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with wide base openings
US10045889B2 (en) 2014-09-12 2018-08-14 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with wide base openings and specific fiber concentrations
US10064766B2 (en) 2014-09-12 2018-09-04 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations that are configured to collapse in a controlled manner
US10076898B2 (en) 2014-09-12 2018-09-18 The Procter & Gamble Company Apparatus having forming members with surface texture for making nonwoven material having discrete three-dimensional deformations with wide base openings
US10105268B2 (en) 2014-09-12 2018-10-23 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with differential opacity regions
US10182949B2 (en) 2014-09-12 2019-01-22 The Procter & Gamble Company Nonwoven material having discrete three-dimensional deformations with wide base openings that are base bonded to additional layer
US10226385B2 (en) 2014-09-12 2019-03-12 The Procter & Gamble Company Process for making an absorbent article comprising a topsheet/acquisition layer laminate
US11154428B2 (en) 2014-09-12 2021-10-26 The Procter & Gamble Company Absorbent articles with indicia and/or color
US10687987B2 (en) 2014-09-12 2020-06-23 The Procter & Gamble Company Process for making an absorbent article comprising a topsheet/acquisition layer laminate
US11179280B2 (en) 2015-01-02 2021-11-23 Essity Hygiene And Health Aktiebolag Absorbent article having a topsheet and standing gathers each having a sheet material with specified stiffness, softness and smoothness properties
CN107614770A (en) * 2015-06-30 2018-01-19 尤妮佳股份有限公司 Adhesive-bonded fabric and the absorbent commodity using the adhesive-bonded fabric
CN107614770B (en) * 2015-06-30 2019-11-08 尤妮佳股份有限公司 Adhesive-bonded fabric and the absorbent commodity for utilizing the adhesive-bonded fabric
US10610423B2 (en) 2016-03-08 2020-04-07 The Procter & Gamble Company Absorbent article comprising a topsheet/acquisition web laminate
US11160694B2 (en) * 2017-01-31 2021-11-02 The Procter & Gamble Company Three-dimensional substrates and absorbent articles having the same
CN106937903A (en) * 2017-03-07 2017-07-11 广东鑫雁科技有限公司 A kind of amenities core material hot pressing complex method
US11696856B2 (en) 2017-03-09 2023-07-11 The Procter & Gamble Comoany Three-dimensional materials having apertures and voids
US11149360B2 (en) 2017-06-30 2021-10-19 The Procter & Gamble Company Method for making a shaped nonwoven
US11214893B2 (en) 2017-06-30 2022-01-04 The Procter & Gamble Company Shaped nonwoven
US11634838B2 (en) 2017-06-30 2023-04-25 The Procter & Gamble Company Shaped nonwoven
US11746441B2 (en) 2017-06-30 2023-09-05 The Procter & Gamble Company Method for making a shaped nonwoven
US11939701B2 (en) 2017-06-30 2024-03-26 The Procter & Gamble Company Shaped nonwoven
US11192327B2 (en) * 2017-07-03 2021-12-07 Axel Nickel Voluminous meltblown nonwoven fabric with improved stackability and storability
US20200100956A1 (en) * 2018-09-27 2020-04-02 The Procter & Gamble Company Nonwoven webs with visually discernible patterns
US11998427B2 (en) * 2018-09-27 2024-06-04 The Procter & Gamble Company Nonwoven webs with visually discernible patterns
US11505884B2 (en) * 2019-03-18 2022-11-22 The Procter & Gamble Company Shaped nonwovens that exhibit high visual resolution
US20200299880A1 (en) * 2019-03-18 2020-09-24 The Procter & Gamble Company Shaped Nonwovens that Exhibit High Visual Resolution
WO2023188404A1 (en) * 2022-03-31 2023-10-05 ユニ・チャーム株式会社 Nonwoven fabric and method for manufacturing said nonwoven fabric

Also Published As

Publication number Publication date
CN100575584C (en) 2009-12-30
AU2003266572A1 (en) 2004-04-19
TWI238708B (en) 2005-09-01
CN1685099A (en) 2005-10-19
KR20050053696A (en) 2005-06-08
TW200406178A (en) 2004-05-01
KR100752979B1 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
WO2004029349A1 (en) Spun-bonded nonwoven fabric and sanitary supplies
JP4716638B2 (en) Flexible non-woven fabric for sanitary materials and disposable sanitary materials
JP4068171B2 (en) Laminated nonwoven fabric and method for producing the same
KR101251864B1 (en) Liquid-pervious sheet and method of making the same
EP1573108B1 (en) Tufted laminate web
JP5006654B2 (en) Elastic nonwoven fabric
US6468931B1 (en) Multilayer thermally bonded nonwoven fabric
JP3955650B2 (en) Laminated nonwoven fabric and method for producing the same
JP3168564B2 (en) Nonwoven fabric and absorbent article using the same
KR20090023343A (en) Nonwoven fabric
JP2004533300A (en) Laminates made from fiber layers
JP2002065738A (en) Absorptive article using surface material of continuous filament
JP6778308B2 (en) Hydrophilic bulky non-woven fabric
JP4949236B2 (en) Compression resistance nonwoven fabric
JP4716639B2 (en) Nonwoven fabric for sanitary materials
JPH0446146B2 (en)
JPH0288058A (en) Surface material for sanitary good
JPH1086256A (en) Composite nonwoven fabric and absorbent article using the same
JP3096208B2 (en) Surface sheet for absorbent articles
JP4007685B2 (en) Top sheet material for absorbent articles
JP5771518B2 (en) Non-woven
JPH0446147B2 (en)
JP2843371B2 (en) Facing hygiene products
US7919169B2 (en) Laminate made of fibrous layers for use in absorbent articles
JP4540310B2 (en) Disposable diaper backsheet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003823047X

Country of ref document: CN

Ref document number: 1020057005215

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057005215

Country of ref document: KR

122 Ep: pct application non-entry in european phase