JP5006654B2 - Elastic nonwoven fabric - Google Patents

Elastic nonwoven fabric Download PDF

Info

Publication number
JP5006654B2
JP5006654B2 JP2007003121A JP2007003121A JP5006654B2 JP 5006654 B2 JP5006654 B2 JP 5006654B2 JP 2007003121 A JP2007003121 A JP 2007003121A JP 2007003121 A JP2007003121 A JP 2007003121A JP 5006654 B2 JP5006654 B2 JP 5006654B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
area
layer
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007003121A
Other languages
Japanese (ja)
Other versions
JP2008169506A (en
Inventor
郁雄 上野
正広 矢放
Original Assignee
旭化成せんい株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成せんい株式会社 filed Critical 旭化成せんい株式会社
Priority to JP2007003121A priority Critical patent/JP5006654B2/en
Publication of JP2008169506A publication Critical patent/JP2008169506A/en
Application granted granted Critical
Publication of JP5006654B2 publication Critical patent/JP5006654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、伸縮性不織布に関し、特にオムツ等の使い捨て衛生材料やテープ基材、または貼布材、包帯、あるいは包材などの伸縮性を要する部分に用いられる伸縮性不織布に関するものである。   The present invention relates to a stretchable nonwoven fabric, and more particularly, to a stretchable nonwoven fabric used for disposable hygiene materials such as diapers, tape base materials, patch materials, bandages, and packaging materials that require stretchability.
近年、オムツ等の使い捨て衛生材料や、貼布材の基布に、通気性、風合いの面から、伸縮部材としてフィルムよりも好ましい不織布の使用が多くなってきている。従来、それら伸縮部材に用いられる材料として、ゴム弾性のあるエラストマーのみからなる不織布があげられるが、肌に接触する用途においては、触感がゴム様であり、風合いの面で適さないなどの問題があった。風合いの確保、必要な伸縮性能の設定の容易さを得るため、ゴム弾性のある伸縮糸の片面あるいは両面に非エラストマーからなる不織布を貼り合わせたものがある(例えば特許文献1)。しかし、伸縮糸を用いたものは、肌への接触の際、面ではなく線で締め付けることになるため、締め付け跡が残るなどの不快感を与えてしまったり、製造時の貼合せ加工の際には高度な張力調整を要するなど難易度の高い加工が要求される。また、伸縮性フィルムを用いたもの(例えば特許文献2)もフィルムとの貼合せ加工時の張力調整や、さらに通気性を持たせるために均一な孔開けを施すのに高度な加工および複雑な工程を要し、それに付随してコスト高になってしまうなどの問題があった。そこで、工程を容易化し、且つ風合いを保持するために、不織布を延伸し、一方向性に伸縮性を付与したもの(例えば特許文献3、4)がある。しかし、伸縮特性である伸長弾性率および伸長回復応力が不十分であり、繰返し伸長すると、これら特性が大幅に低下し、材料が伸びてしまうなどの問題があった。また、一体性を得るために延伸後に部分的に接合することもあるが、繊維を接合することで、逆に伸長性が低減してしまうという問題があった。
特開平4−30847号公報 特表2003−533374号公報 特公昭62−11106号公報 特表2003−506581号公報
In recent years, non-woven fabrics that are more preferable than films as stretchable members have been increasingly used for disposable sanitary materials such as diapers and base fabrics for patch materials in terms of air permeability and texture. Conventionally, as a material used for these elastic members, a nonwoven fabric made only of an elastomer having rubber elasticity can be mentioned. However, there is a problem that in touching the skin, the touch is rubber-like and not suitable in terms of texture. there were. In order to secure the texture and to easily set the necessary stretch performance, there is a non-elastomeric nonwoven fabric bonded to one or both sides of a rubber elastic stretch yarn (for example, Patent Document 1). However, when using elastic yarn, it will be tightened with a line instead of a surface when it comes into contact with the skin. Requires a high degree of difficulty such as high tension adjustment. In addition, a film using an elastic film (for example, Patent Document 2) is highly processed and complicated in order to adjust the tension at the time of laminating with the film and to make uniform holes for further breathability. There was a problem that a process was required and the cost was increased accordingly. Therefore, in order to facilitate the process and maintain the texture, there is one in which a nonwoven fabric is stretched and stretched in one direction (for example, Patent Documents 3 and 4). However, the stretching elastic modulus and the stretching recovery stress, which are stretching properties, are insufficient, and repeated stretching causes a problem that these properties are greatly lowered and the material is stretched. Moreover, in order to obtain unity, it may join partially after extending | stretching, but there existed a problem that extensibility will reduce conversely by joining a fiber.
JP-A-4-30847 Special table 2003-533374 gazette Japanese Examined Patent Publication No. 62-11106 Japanese translation of PCT publication No. 2003-506581
本発明の課題は、不織布の伸長弾性率および伸長回復応力に優れ、且つ繰返しの使用にも耐え、実用時の風合いも損ねない伸縮性不織布を提供することにある。   An object of the present invention is to provide a stretchable nonwoven fabric that is excellent in the elongation elastic modulus and elongation recovery stress of the nonwoven fabric, can withstand repeated use, and does not impair the texture during practical use.
本発明者らは、不織布の伸縮特性を向上させるため、延伸処理後の不織布表面繊維層の繊維の状態に着目した。その結果、単なる延伸処理した不織布では、繊維が延伸方向に配列されるだけで、繰返しの伸長を行うことにより、繊維の配列がほぐされ、繊維の結束力が喪失してしまうため、元の状態へ戻ろうとする回復力が大きく低下する。この回復力の低下を防止するために、繰返し伸長に耐えうるだけの繊維配列の適度な固定化が必要であることを見出した。その固定化の程度を検討したところ、繊維の断面変形を伴う程の融着、完全にフィルム化してしまう程の融着、あるいは接着に代表される熱圧着による高度の固定化を施してしまうと、逆に、繊維配列における伸長性が消失してしまい、充分な伸縮性を得られない。そこで、本発明者らは、表面の繊維層の繊維が潰れることなく、非融着性であり、繊維としての自由度を失わない程度に、且つ高度に密集している状態(繊維高密集域)にすること、且つこの領域を特定の面積率で有すること、延伸処理した不織布の表面に、部分熱圧着とは異なるパターンで配置された繊維高密集域を特定範囲で設けることにより、伸長弾性率及び伸長回復応力が共に改善することを見出し、更に繰返しの使用にも耐え、実用時の風合いも損ねない伸縮性不織布を得ることを達成し、本発明を完成させるに到った。
すなわち、本願で特許請求される発明は以下のとおりである。
In order to improve the stretchability of the nonwoven fabric, the inventors focused on the state of the fibers in the nonwoven fabric surface fiber layer after the stretching treatment. As a result, in a non-woven fabric that has been simply stretched, the fibers are simply aligned in the stretching direction, and by repeatedly stretching, the fibers are loosened and the binding force of the fibers is lost. The resilience of trying to return is greatly reduced. In order to prevent this reduction in recovery force, it has been found that it is necessary to appropriately fix the fiber array enough to withstand repeated elongation. As a result of examining the degree of immobilization, when fusion with a cross-sectional deformation of the fiber, fusion so as to completely form a film, or high degree of immobilization by thermocompression represented by adhesion is performed. On the contrary, the extensibility in the fiber array disappears and sufficient stretchability cannot be obtained. Therefore, the inventors of the present invention do not crush the fibers in the surface fiber layer, are non-fusible, do not lose the degree of freedom as fibers, and are highly dense (fiber high-concentration region). And having a specific area ratio in this region, and providing a highly dense fiber area arranged in a specific range on the surface of the stretched nonwoven fabric in a pattern different from that of partial thermocompression bonding. It has been found that both the rate and the elongation recovery stress are improved, and furthermore, it has been achieved to obtain a stretchable nonwoven fabric that can withstand repeated use and does not impair the texture during practical use, thereby completing the present invention.
That is, the invention claimed in the present application is as follows.
(1)熱可塑性合成繊維からなり、部分熱圧着され、且つ一方向に延伸処理された不織布であって、該部分熱圧着された区域とは異なる区域に配置された繊維高密集域を有し、該繊維高密集域の面積率が5〜70%であることを特徴とする伸縮性不織布。
(2)前記不織布が、エラストマーからなる、スパンボンド繊維層および/またはメルトブロー繊維層を有することを特徴とする請求項1に記載の伸縮性不織布。
(3)前記エラストマーからなる繊維層の比率が全体の繊維層の25〜90%であることを特徴とする請求項1又は2に記載の伸縮性不織布。
(4) 前記不織布が、スパンボンド繊維層またはメルトブロー繊維層の少なくとも片面に、表面層となるスパンボンド繊維層が積層されていることを特徴とする請求項1〜3のいずれかに記載の伸縮性不織布。
(5) 前記表面層となるスパンボンド繊維層が捲縮性を有する繊維を含有することを特徴とする請求項4に記載の伸縮性不織布。
(6) 不織布の延伸方向に垂直な方向において、100%伸長5回繰返し後の弾性率が、80%以上であり、且つその保持率が90%以上であることを特徴とする請求項1〜5のいずれかに記載の伸縮性不織布。
(7)エラストマーのメルトブロー繊維層を中間層とし、その上下層にスパンボンド繊維層を積層し、部分熱圧着して一体化した不織布を、延伸後の巾入り率が30%以上となるように速度差を設けたロール間で延伸処理した後、所定のパターンを有するエンボスロールとフラット弾性ロールの間に通し、線圧100〜1200N/cmで加圧し、繊維高密集域を5〜70%の範囲で形成することを特徴とする伸縮性不織布の製造方法。
(1) A non-woven fabric made of thermoplastic synthetic fiber, partially thermocompression bonded and stretched in one direction, and having a highly dense fiber area disposed in a different area from the partially thermocompression bonded area A stretchable nonwoven fabric, wherein the area ratio of the highly dense fiber area is 5 to 70%.
(2) The stretchable nonwoven fabric according to claim 1, wherein the nonwoven fabric has a spunbond fiber layer and / or a meltblown fiber layer made of an elastomer.
(3) The stretchable nonwoven fabric according to claim 1 or 2, wherein a ratio of the fiber layer made of the elastomer is 25 to 90% of the entire fiber layer.
(4) The stretch according to any one of claims 1 to 3, wherein a spunbond fiber layer serving as a surface layer is laminated on at least one surface of the spunbond fiber layer or the meltblown fiber layer. Non-woven fabric.
(5) The stretchable nonwoven fabric according to claim 4, wherein the spunbond fiber layer serving as the surface layer contains a crimpable fiber.
(6) The elastic modulus after repeating 100% elongation 5 times in a direction perpendicular to the stretching direction of the nonwoven fabric is 80% or more, and the retention is 90% or more. 5. The stretchable nonwoven fabric according to any one of 5.
(7) A non-woven fabric in which an elastomer melt-blown fiber layer is used as an intermediate layer, and a spunbond fiber layer is laminated on the upper and lower layers and integrated by partial thermocompression bonding so that the width penetration after stretching is 30% or more. After stretching treatment between rolls provided with a speed difference, it is passed between an embossing roll having a predetermined pattern and a flat elastic roll, and pressurized at a linear pressure of 100 to 1200 N / cm, and the fiber high-density area is 5 to 70%. The manufacturing method of the elastic nonwoven fabric characterized by forming in the range.
本発明の伸縮性不織布は、部分熱圧着で一体化した不織布を、一方向に延伸処理し、不織布の表面に5〜70%の範囲で、非融着性の、繊維形状を維持した繊維高密集域を有するので、伸縮特性である伸長弾性率および伸長回復応力が向上し、例えば繰返し100%伸長5回後の弾性率が、80%以上であり、且つその保持率が90%以上であるという優れた特性を有し、繰返しの使用にも充分耐えることができる。   The stretchable nonwoven fabric of the present invention is obtained by stretching a nonwoven fabric integrated by partial thermocompression bonding in one direction, and maintaining a non-fusible fiber shape within a range of 5 to 70% on the surface of the nonwoven fabric. Since it has a dense region, the elastic modulus of elasticity and the elongation recovery stress, which are elastic properties, are improved. For example, the elastic modulus after 5 cycles of 100% elongation is 80% or more, and the retention rate is 90% or more. It has excellent characteristics and can withstand repeated use.
本発明において、延伸処理する不織布としては、熱可塑性合成繊維を主として構成され、部分熱圧着されていれば、特に限定されるものではない。不織布を構成する繊維はいわゆるカーディング、抄紙法等による短繊維でもよいが、強力、生産性の点からは連続フィラメントであることが好ましく、例えば、スパンボンド法やメルトブロー法により溶融紡糸された連続フィラメントをウェブとし、あるいはこれらを積層させたウェブとし、これを部分熱圧着により接合することで形成されたものが好ましい。特に生産工程の容易さの面から、スパンボンド層/メルトブロー層/スパンボンド層、あるいはスパンボンド層/スパンボンド層/スパンボンド層などの複層積層体となる形態がよく、さらには、伸縮特性をより保持出来る点で、表面層との間に挟まれる中間層が熱可塑性エラストマーからなる繊維層であることが好ましい。   In the present invention, the nonwoven fabric to be stretched is not particularly limited as long as it is mainly composed of thermoplastic synthetic fibers and is partially thermocompression bonded. The fibers constituting the nonwoven fabric may be short fibers by so-called carding, paper making method, etc., but are preferably continuous filaments from the viewpoint of strength and productivity, for example, continuous melt spun by a spunbond method or a melt blow method. It is preferable to use a filament as a web or a web obtained by laminating these, and joining them by partial thermocompression bonding. In particular, from the viewpoint of ease of production process, it is preferable to form a multi-layer laminate such as a spunbond layer / melt blow layer / spunbond layer, or a spunbond layer / spunbond layer / spunbond layer, and further stretch properties. It is preferable that the intermediate layer sandwiched between the surface layers is a fiber layer made of a thermoplastic elastomer.
不織布に使用する繊維の種類としては、ポプロピレン、ポリエチレン等のポリオレフィン系繊維、ポリエチレンテレフタレート等のポリエステル系繊維、ナイロンなどのポリアミド系繊維などが強度あるいは可撓性の観点から好適である。また、これらと熱可塑性エラストマーを用いることが好ましい。必要に応じて、これらの複合繊維、混合繊維、さらにはセルロース系繊維、その他特殊機能を持つ繊維との混合したものでもよい。使用可能な熱可塑性エラストマーとしては、例えば、ポリオレフィン系エラストマー、ポリスチレン系エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマー、ポリウレタン系エラストマー、ポリ塩化ビニル系エラストマーなどの繊維化が可能なものがあげ
られる。
The type of fibers used in the nonwoven fabric, it is preferable polypropylene, polyolefin fiber such as polyethylene, polyester fibers such as polyethylene terephthalate, in view of the polyamide fibers such as strength or flexibility such as nylon. Moreover, it is preferable to use these and a thermoplastic elastomer. If necessary, those mixed with these composite fibers, mixed fibers, further cellulosic fibers, and other fibers having special functions may be used. Examples of the thermoplastic elastomer that can be used include those that can be made into fibers such as polyolefin elastomers, polystyrene elastomers, polyamide elastomers, polyester elastomers, polyurethane elastomers, and polyvinyl chloride elastomers.
延伸処理される不織布は、強度および柔軟性を高めるために、部分熱圧着により接合一体化されるが、この部分熱圧着における熱圧着面積率、すなわち熱圧着域は強度保持と柔軟性の点から、5〜50%が好ましく、より好ましくは5〜20%である。部分熱圧着は、例えば超音波法により、または加熱したエンボス/フラットロール間にウェブを通して行うことができ、これによって、例えば、ピンポイント状、矩形状等の接合点であるエンボス模様が全面に散点された不織布を得ることができる。熱圧着処理により、繊維層は所謂融着接合し、一部はフィルム状の形状となる。そのため、後述の繊維嵩密集域とは異なり、繊維としての本来の形状は維持されなく、自由度もない。   The nonwoven fabric to be stretched is joined and integrated by partial thermocompression bonding in order to increase strength and flexibility. The thermocompression area ratio in this partial thermocompression bonding, that is, the thermocompression bonding area is from the viewpoint of strength retention and flexibility. 5 to 50% is preferable, and 5 to 20% is more preferable. Partial thermocompression can be performed, for example, by an ultrasonic method or through a web between heated embossing / flat rolls, whereby, for example, an embossed pattern that is a joint point such as a pinpoint shape or a rectangular shape is scattered over the entire surface. A dotted nonwoven fabric can be obtained. By the thermocompression treatment, the fiber layer is so-called fusion-bonded, and a part thereof has a film shape. Therefore, unlike the fiber dense collection area described later, the original shape as a fiber is not maintained and there is no degree of freedom.
また、延伸処理する不織布のスパンボンド繊維層の繊度は、10dtex以下が好ましく、更には衛材用、生活資材、医療用の布帛としての柔軟性、触感の点から0.5〜3.3dtex以下がより好ましい。   Further, the fineness of the spunbond fiber layer of the nonwoven fabric to be stretched is preferably 10 dtex or less, and more preferably 0.5 to 3.3 dtex or less from the viewpoint of flexibility and tactile feel as sanitary materials, daily life materials, and medical fabrics. Is more preferable.
さらに、本発明の表面層のスパンボンド繊維層の繊維には捲縮繊維を用いることがより好ましい。捲縮繊維を用いると、得られる不織布を嵩高にし、風合いがよくなるだけでなく、伸縮特性が向上される。捲縮繊維としては、らせん状捲縮を有する連続フィラメントとして形成されているのが好ましく、捲縮数は2個以上/25mmが好ましい。
捲縮繊維として、Y、V型などの異形断面糸や、複合型繊維でも良い。
Furthermore, it is more preferable to use crimped fibers for the fibers of the spunbond fiber layer of the surface layer of the present invention. Use of crimped fibers not only makes the resulting nonwoven fabric bulky, improves the texture, but also improves the stretch properties. The crimped fibers are preferably formed as continuous filaments having a helical crimp, and the number of crimps is preferably 2 or more / 25 mm.
The crimped fiber may be a modified cross-sectional yarn such as Y or V type, or a composite type fiber.
更に、本発明のスパンボンド繊維層の繊維は、糸断面が通常の丸型および、これを変形した特殊形状に形成されていてもよい。単一成分での捲縮繊維では、捲縮発現の点から一手法とし特殊形状を用いられる。この場合、糸断面形状の少なくとも一部の凸部をまたは凹部を有する形状であればよい。また、単一成分での捲縮糸は、繊維製造時に糸条を不均一に冷却する非対称冷却法等により物理的に形成してもよく、また複合繊維では、バイメタル効果によって捲縮を持つ繊維を形成することができる。   Furthermore, the fibers of the spunbond fiber layer of the present invention may be formed into a round shape with a normal yarn cross section and a special shape obtained by deforming this. For crimped fibers with a single component, a special shape is used as a method from the viewpoint of crimping. In this case, what is necessary is just the shape which has a convex part or a recessed part of at least one part of thread | yarn cross-sectional shape. In addition, a crimped yarn with a single component may be physically formed by an asymmetric cooling method or the like in which the yarn is cooled non-uniformly during fiber production. Can be formed.
不織布の延伸処理は、部分熱圧着された前記不織布を一方向に延伸するものであり、具体的な方法として、たとえば特公昭62−11106号公報などに記載のローラー間での延伸方法に類似の方法などがあげられる。また、熱によるセット性を与えるとで、伸縮特性の保持がより向上するので、加熱下で延伸を行うことが好ましい。延伸後の不織布の入り率は30%以上が好ましく、より好ましくは40〜60%の範囲である。 The stretching treatment of the nonwoven fabric is to stretch the nonwoven fabric partially thermocompression-bonded in one direction. As a specific method, for example, a method similar to the stretching method between rollers described in JP-B-62-11106 is used. Methods. Further, in the this giving a set of by heat, since the holding of the stretch characteristics are further improved, it is preferable to carry out the stretching under heating. The stretch rate of the nonwoven fabric after stretching is preferably 30% or more, more preferably in the range of 40 to 60%.
本発明の不織布において、部分熱圧着域とは異なる繊維高密集域とは、繊維が潰されることなく高度に密集した領域であり、表面に占めるその面積率が5〜70%であることが好ましく、より好ましくは20〜55%の範囲であり、特に好ましくは35〜50%の範囲である。   In the nonwoven fabric of the present invention, the highly dense fiber area different from the partial thermocompression bonding area is a highly dense area where the fibers are not crushed, and its area ratio to the surface is preferably 5 to 70%. More preferably, it is 20 to 55% of range, and particularly preferably 35 to 50%.
繊維高密集域の繊維構造は、熱圧着処理されたものとは異なり、繊維が潰されたり、融着することなく、繊維としての形状を維持し、繊維としての自由度を有する。従って、伸縮に対する追従性、回復性に優れた効果を発揮し、特に、繰返し伸縮に対し、繊維組織として優れた追従性を有する。該面積率が5%未満では、伸縮特性が向上するという効果があるとは言えず、70%を超えると伸長性の低減に伴い、弾性率が低減する。   The fiber structure of the fiber high-density region is different from the one subjected to thermocompression bonding, and maintains the shape as a fiber without causing the fiber to be crushed or fused, and has a degree of freedom as a fiber. Therefore, the effect which was excellent in the followable | trackability with respect to expansion | extension and recovery property is exhibited, and it has the followable | trackability which was excellent as a fiber structure especially with respect to repeated expansion / contraction. If the area ratio is less than 5%, it cannot be said that there is an effect that the stretchability is improved, and if it exceeds 70%, the elastic modulus is reduced along with the reduction in extensibility.
また、不織布の厚み方向への密集度は、全体の厚みに対して、繊維高密集域の厚みが80%以下にすることが伸縮特性の効果を得るのに好ましく、より好ましくは50%以下である。   In addition, the density of the nonwoven fabric in the thickness direction is preferably 80% or less, more preferably 50% or less, with respect to the total thickness, in order to obtain the effect of stretch characteristics, with the thickness of the fiber high-density region being 80% or less. is there.
繊維高密集域の嵩密度は0.1g/cm〜3.0g/cmの範囲が好ましい。3.0g/cmを超えると、熱圧着部の嵩密度に類似するレベルになり、0.1g/cm未満では、非熱圧着部と同じレベルとなる。 The bulk density of the fiber high dense areas in the range of 0.1g / cm 3 ~3.0g / cm 3 are preferred. If it exceeds 3.0 g / cm 3 , it becomes a level similar to the bulk density of the thermocompression bonding part, and if it is less than 0.1 g / cm 3 , it becomes the same level as the non-thermocompression bonding part.
本発明の実施例に基づいて、繊維高密集域の面積率と繰返し100%伸長5回後の弾性率の関係を図5に示した。
図5(a)に示したとおり、繊維高密集域の面積率と繰返し100%伸長5回後の弾性率には、極大値を示す特性を有し、繊維高密集域の面積率が35〜50%において最適な範囲を示すことがわかる。
同様に、保持率、戻り時の応力についても、 図5(c)に示すように、繊維高密集域の面積率において、極大値を示す特性を有し、同様な効果を有する。
Based on the embodiment of the present invention, the relationship between the area ratio of the high-density fiber area and the elastic modulus after repeated 100% elongation is shown in FIG.
As shown in FIG. 5 (a), the area ratio of the fiber high-concentration area and the elastic modulus after repeated 100% elongation have a characteristic that shows a maximum value, and the area ratio of the fiber high-concentration area is 35 to 35%. It can be seen that the optimum range is shown at 50%.
Similarly, as shown in FIG. 5 (c), the retention rate and the stress at the time of return have the same effect as the characteristic of showing the maximum value in the area ratio of the fiber high-density area.
さらに、繊維高密集域の形状又は模様としては、部分的に繊維高密集域を設けられることが出来れば、点状、線状、網目状、亀甲柄のものでよい。図3及び図4に本発明の代表的な形状を示した。   Further, the shape or pattern of the high-density fiber area may be a point, linear, mesh, or turtle shell pattern as long as the high-density fiber area can be partially provided. 3 and 4 show typical shapes of the present invention.
繊維高密集域の付与方法としては、前記のような範囲で繊維が潰されることなく密集出来れば、特に限定されるものではない。工程の容易さから、好ましい方法としては、彫刻を施したロールを用いる他に、平板を押しあてる方法で行うことができるが、生産効率の点でロール法が好ましい。一方を彫刻ロールとし、他方を平滑で弾性的なロールとする組合わせ、弾性的であればゴムロールあるいはペーパーロールでもよい。得られる不織布の伸縮の要求性能に応じて、上、下ロールの温度、接圧を設定することによって定められる。また、繊維高密集域の付与のタイミングとしては、延伸処理後の後加工でもよく、生産効率上の面から、ローラー延伸処理時において、速度差を付け、張力をかけるローラー自体で付与することが望ましい。   The method for imparting a high-density fiber area is not particularly limited as long as the fibers can be concentrated without being crushed within the above range. In view of the ease of the process, as a preferable method, in addition to using an engraved roll, a method of pressing a flat plate can be used, but the roll method is preferable in terms of production efficiency. A combination of one engraving roll and the other smooth and elastic roll may be a rubber roll or a paper roll as long as it is elastic. It is determined by setting the temperature and contact pressure of the upper and lower rolls according to the required performance of expansion and contraction of the obtained nonwoven fabric. In addition, as the timing of application of the high-density fiber area, post-processing after the stretching treatment may be performed, and from the viewpoint of production efficiency, it is possible to impart the difference in speed at the time of the roller stretching treatment and to apply the tension by the roller itself that applies tension. desirable.
得られる不織布は、延伸処理される方向に対して垂直な方向に伸縮特性を有し、その性能として、繰返し100%伸長5回後の弾性率が少なくとも80%を有し、且つその保持率が少なくとも90%を有することを特徴とし、また、繰返し100%伸長5回後の50%戻り時回復応力の保持率が少なくとも70%を有することが特徴である。   The resulting nonwoven fabric has stretch properties in a direction perpendicular to the direction of stretching treatment, and as its performance, it has an elastic modulus of at least 80% after repeated 100% stretching and 5 times its retention rate. It is characterized in that it has at least 90%, and also has a retention rate of 50% return recovery stress after 5 times of 100% elongation at least 70%.
更に好ましい態様としては、繰返し100%伸長5回後の弾性率が85%以上を有し、且つその保持率が95%以上であり、また、繰返し100%伸長5回後の50%戻り時回復応力の保持率が75%以上である。   As a more preferred embodiment, the elastic modulus after 5 times of 100% stretching is 85% or more, and the holding ratio is 95% or more. The stress retention is 75% or more.
本発明の実施例に基づいて、繊維高密集域の面積率と繰返し100%伸長5回後の弾性率の関係を図5(a)に示した。
図5(a)に示したとおり、繊維高密集域の面積率と繰返し100%伸長5回後の弾性率には、極大値を示す特性を有し、繊維高密集域の面積率が35〜50%において最適な範囲を示すことがわかる。
同様に、図5(b)、(c)、(d)に示すように、保持率、戻り時の回復応力、及び同保持率についても、繊維高密集域の面積率において、極大値を示す特性を有し、同様な効果を有する。
Based on the example of the present invention, the relationship between the area ratio of the high-density fiber area and the elastic modulus after repeated 100% elongation is shown in FIG.
As shown in FIG. 5 (a), the area ratio of the fiber high-concentration area and the elastic modulus after repeated 100% elongation have a characteristic that shows a maximum value, and the area ratio of the fiber high-concentration area is 35 to 35%. It can be seen that the optimum range is shown at 50%.
Similarly, as shown in FIGS. 5B, 5 </ b> C, and 5 </ b> D, the retention rate, the recovery stress at the time of return, and the retention rate also show maximum values in the area ratio of the highly dense fiber area. Have the same effect.
以下、実施例及び比較例によって本発明をさらに説明する。
なお、実施例及び比較例の不織布はスパンボンド法およびメルトブロー法により組合せて積層し不織布とした後、熱延伸処理を施し製造したものであり、測定法、評価方法は下記の通りである。表面の繊維高密集域はその繊維表面に占める平面上の面積率で示し、伸縮特性向上の効果を示す評価としては、繰返し100%伸長5回後の弾性率および繰返し100%伸長5回後の50%戻り時回復応力、且つそれぞれの保持率を測定し比較した。
(1)繊維高密集域の表面面積率の測定
キー・エンス(株)製マイクロスコープを用いて、得られた不織布の断面及び表面を倍率50で拡大して、測定した。図1の不織布断面の模式図を用いて説明すると、繊維高密集域(断面b)における表面から繊維が密集され始める部分間を10ヶ所(a、a等)測定し、その平均値を繊維高密集域の巾aとし、表面における繊維高密集域部分を区分けし、単位面積に占めるその面積率を繊維高密集域の表面面積率とした(図1参照)。表面における繊維高密集域のエンボス模様が複雑である場合、表面面積率を算出するのに必要なだけ、繊維高密集域の巾を測定して算出する。
(2)延伸後巾入り率
延伸する方向とは垂直な方向の不織布の寸法を延伸前と延伸後とで測定し、寸法変化率を延伸後巾入り率とした。
(3)不織布の100%伸長時応力測定
幅5cm、長さ7cmの試験片を、東洋ボールドウィン(株)製テンシロンSTM−101を用いて、つかみ幅30mm、試験速度50mm/minで引張試験を行い、得られた不織布の延伸処理される方向に対して垂直な方向の100%伸長時応力を測定した(図2a参照)。100%伸長時応力が小さい程、低伸長性に優れていると言える。
(4)不織布の繰返し100%伸長5回後の弾性率測定
幅5cm、長さ7cmの試験片を、東洋ボールドウィン(株)製テンシロンSTM−101を用いて、つかみ幅30mm、引張速度50mm/minでヘッドを30mm移動(100%まで伸長)させ、1分間保持した後(図2a参照)、速度50mm/minでヘッドを元の位置まで戻し、3分後、再びヘッドを同速度で30mm移動する。再び伸長する際、応力がかかり始めてからヘッドが移動30mmに到達するまでの移動率を初期の100%伸長弾性率として測定した(図2b参照)。すなわち、100%伸長弾性率は100%のヘッド移動率から応力がかかり始まるまでのヘッド移動率を差し引いた値である。100%伸長弾性率が大きい程、元の状態へ戻ろうとする性能があり、伸縮性能が良いと言える。再び100%伸長し、1分保持後、元の位置へ戻し、3分後、再び伸長する際に測定される100%伸長弾性率を繰返し1回目とした。繰返し5回目の100%伸長弾性率は上記測定を繰返し行い測定した値である。
(5)不織布の100%伸長回復50%戻り時応力
幅5cm、長さ7cmの試験片を、東洋ボールドウィン(株)製テンシロンSTM−101を用いて、つかみ幅30mm、引張速度50mm/minでヘッドを30mm移動(100%まで伸長)させ、1分間保持した後、速度50mm/minでヘッドを元の位置まで戻し、3分後、再びヘッドを同速度で30mm移動し、1分間保持後、再びヘッドを元の位置まで戻す。再びヘッドを元の位置まで戻す際、ヘッドが15mm戻った時点(50%戻り時)でかかる応力を初期の100%伸長回復50%戻り時応力として測定した(図2c参照)。100%伸長回復50%戻り時応力が大きい程、元の状態へ戻ろうとする回復力が大きく、使用される用途によっては締め付け力なり、その締め付け力が高くなると言える。繰返し5回目の性能は、上記測定を繰返し行い測定した値である。
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples.
In addition, the nonwoven fabric of an Example and a comparative example was laminated | stacked by combining with the spun bond method and the melt blow method, and after manufacturing it by heat-stretching, it manufactured and the measuring method and the evaluation method are as follows. The surface high-density area of the fiber is indicated by the area ratio on the plane of the fiber surface, and the evaluation of the effect of improving the stretch property includes the elastic modulus after repeated 100% stretching and the repeated stretching after 100% stretching 5 times. The recovery stress at 50% return and the respective retention rates were measured and compared.
(1) Measurement of surface area ratio of highly dense fiber area Using a microscope manufactured by Keyence Corporation, the cross section and the surface of the obtained nonwoven fabric were enlarged at a magnification of 50 and measured. Explaining using the schematic diagram of the cross section of the nonwoven fabric in FIG. 1, 10 portions (a 1 , a 2, etc.) are measured between the portions where the fibers start to be densely packed from the surface in the highly dense fiber area (cross section b). The width a of the fiber high-concentration region was set, the fiber high-concentration region portion on the surface was divided, and the area ratio of the unit area was defined as the surface area ratio of the fiber high-concentration region (see FIG. 1). When the embossed pattern of the fiber high-density area on the surface is complicated, the width of the fiber high-density area is measured and calculated as necessary to calculate the surface area ratio.
(2) Filling rate after stretching The dimension of the nonwoven fabric in the direction perpendicular to the stretching direction was measured before and after stretching, and the dimensional change rate was defined as the filling rate after stretching.
(3) Tensile test of a non-woven fabric with a measurement width of 5 cm and a length of 7 cm using Tensilon STM-101 manufactured by Toyo Baldwin Co., Ltd. at a grip width of 30 mm and a test speed of 50 mm / min. The stress at 100% elongation in the direction perpendicular to the direction in which the obtained nonwoven fabric was subjected to stretching treatment was measured (see FIG. 2a). It can be said that the smaller the stress at 100% elongation, the better the low elongation.
(4) Measurement of Elastic Modulus after Repeating 100% Elongation of Nonwoven Fabric 5 Times Using a Tensilon STM-101 manufactured by Toyo Baldwin Co., Ltd., a test piece having a width of 5 cm and a length of 7 cm was used. Move the head 30 mm (extend to 100%), hold for 1 minute (see FIG. 2 a), return the head to its original position at a speed of 50 mm / min, and move the head again 30 mm at the same speed after 3 minutes. . When stretching again, the rate of movement from when stress began to be applied until the head reached 30 mm was measured as the initial 100% stretched elastic modulus (see FIG. 2b). That is, the 100% elongation elastic modulus is a value obtained by subtracting the head movement rate until stress starts from the 100% head movement rate. It can be said that the larger the 100% elongation elastic modulus, the better the performance to return to the original state, and the better the expansion / contraction performance. The film was stretched 100% again, held for 1 minute, then returned to its original position, and after 3 minutes, the 100% stretch modulus measured when it was stretched again was repeated the first time. The 100% elongation modulus at the fifth repetition is a value measured by repeating the above measurement.
(5) 100% elongation recovery of nonwoven fabric 50% Return stress A test piece having a width of 5 cm and a length of 7 cm is headed with a grip width of 30 mm and a tensile speed of 50 mm / min using Tensilon STM-101 manufactured by Toyo Baldwin Co., Ltd. 30 mm (extend to 100%), hold for 1 minute, return the head to its original position at a speed of 50 mm / min, 3 minutes later, move the head again at the same speed by 30 mm, hold for 1 minute, and again Return the head to its original position. When the head was returned to the original position again, the stress applied when the head returned 15 mm (at the time of 50% return) was measured as the initial stress at 100% elongation recovery and 50% return (see FIG. 2c). 100% elongation recovery 50% The greater the return stress, the greater the recovery force to return to the original state, and it can be said that the tightening force increases depending on the application used. The performance of the fifth repetition is a value measured by repeating the above measurement.
[実施例1]
スパンボンド法を用いて、ポリプロピレン(JIS−K7210の表1の条件で測定したMFR=40)を原料とし、紡孔数2000H、紡孔径0.25mmの紡糸口金を用い、紡糸温度230℃で吐出し、吐出したポリマーを紡糸口金の近傍にて側方から冷却しながら、紡糸速度3300m/min、2.0dtexとなるようにエアーサッカー牽引引取装置で引き取った。牽引引取装置を出た糸条は、移動する金網コンベアー上にウェブとして捕集、搬送した。次にこのウェブ上に、メルトブロー法を用いて、エチレン−オクテン共重合からなるポリオレフィン系のエラストマーを原料とし、紡孔数2200H、紡孔径0.22mm、の紡糸口金を用い、ヘッド温度245℃で吐出し、吹付距離100mm、ホットエア温度360℃により吹付けを行い、ウェブを積層化した。続けて、この積層化したウェブの上に、前記スパンボンド法と同様の方法で吐出、牽引された糸条を堆積積層化させた。このウェブを搬送し、110℃に加熱した部分熱圧着面積率7%のピン柄エンボス/フラットロール間に通し、部分熱圧着したウェブを得た。続けて、二対のニップロール間に通し、ニップロール間で、このウェブに100℃の熱風を吹付けながら、且つ後方のニップロールに1.5倍の速度差を設けて延伸を施した。また、この際に後方のニップロールは、80℃に加熱した亀甲線柄エンボスと表面硬度50度(JIS−A硬度)のゴムロールを用い、線圧60kg/cmで加圧した。繊維高密集域の表面面積率が35%、目付150g/mであり、各繊維層の重量比率が上層20wt%、エラストマー層60wt%、下層20wt%となる不織布を得た。
得られた不織布は、延伸処理される方向に対して垂直な方向に繰返し100%伸長弾性率の初期は85%であり、5回後の弾性率が81%、その保持率は95%を有し、伸縮特性に優れたものであった。また、100%伸長時応力が11.5N/5cm巾、100%伸長回復50%戻り時応力の繰返し5回目の保持率は75%であった。結果を表1に示す。
[Example 1]
Using a spunbond method, polypropylene (MFR = 40 measured under the conditions of Table 1 of JIS-K7210) is used as a raw material, and a spinneret with a spinning number of 2000H and a spinning diameter of 0.25mm is used and discharged at a spinning temperature of 230 ° C. Then, while cooling the discharged polymer from the side in the vicinity of the spinneret, the polymer was taken up by an air soccer traction take-up device so that the spinning speed was 3300 m / min and 2.0 dtex. The yarn exiting the tow-pull device was collected and conveyed as a web on a moving wire mesh conveyor. Next, a melt blow method is used on this web, using a polyolefin-based elastomer made of ethylene-octene copolymer as a raw material, and using a spinneret with a spinning number of 2200H and a spinning diameter of 0.22 mm, at a head temperature of 245 ° C. The web was laminated by discharging and spraying at a spraying distance of 100 mm and a hot air temperature of 360 ° C. Subsequently, on this laminated web, the yarn discharged and pulled by the same method as the spunbond method was deposited and laminated. The web was conveyed and passed between pin pattern embossed / flat rolls with a partial thermocompression area ratio of 7% heated to 110 ° C. to obtain a partially thermocompressed web. Subsequently, the web was passed between two pairs of nip rolls, and hot air at 100 ° C. was blown onto the web between the nip rolls, and the rear nip roll was stretched with a speed difference of 1.5 times. At this time, the rear nip roll was pressed at a linear pressure of 60 kg / cm using a turtle shell line pattern emboss heated to 80 ° C. and a rubber roll having a surface hardness of 50 degrees (JIS-A hardness). A non-woven fabric was obtained in which the surface area ratio of the highly dense fiber area was 35%, the basis weight was 150 g / m 2 , and the weight ratio of each fiber layer was 20 wt% for the upper layer, 60 wt% for the elastomer layer, and 20 wt% for the lower layer.
The obtained non-woven fabric is repeatedly 85% in the initial stage of 100% elongation elastic modulus in the direction perpendicular to the direction to be stretched, the elastic modulus after 5 times is 81%, and the retention rate is 95%. And, it was excellent in stretch properties. Further, the stress at the time of 100% elongation was 11.5 N / 5 cm width, and the retention ratio at the fifth repetition of the stress at the time of 100% elongation recovery and 50% return was 75%. The results are shown in Table 1.
[実施例2]
得られる不織布の目付が92g/mであり、各繊維層の重量比率が上層40wt%、エラストマー層30wt%、下層40wt%となるようにした以外は、実施例1と同様にして、繊維高密集域の表面面積率が35%の不織布を得た。結果を表1に示す。
[Example 2]
In the same manner as in Example 1 except that the basis weight of the obtained nonwoven fabric was 92 g / m 2 and the weight ratio of each fiber layer was 40 wt% for the upper layer, 30 wt% for the elastomer layer, and 40 wt% for the lower layer, A nonwoven fabric having a surface area ratio of 35% in a dense area was obtained. The results are shown in Table 1.
[実施例3]
実施例1と同様にスパンボンド法を用いて、ポリプロピレンを原料とし、2.0dtexとなるように金網コンベアー上にウェブとして捕集、搬送した。次にスパンボンド法を用いて、エチレン−オクテン共重合からなるポリオレフィン系のエラストマーを原料とし、紡孔数2000H、紡孔径0.25mmの紡糸口金を用い、紡糸温度220℃で吐出し、吐出したポリマーを紡糸口金の近傍にて側方から冷却しながら、紡糸速度2700m/min、3.3dtexとなるようにエアーサッカー牽引引取装置で引き取った。牽引引取装置を出た糸条は、前記のポリプロピレンからなるスパンボンドウェブの上に堆積させ積層化した。続けて、この積層化したウェブの上に、前記のポリプロピレンからなるスパンボンド法と同様の方法で吐出、牽引された糸条を堆積積層化させた。このウェブを搬送し、110℃に加熱した部分熱圧着面積率7%のピン柄エンボス/フラットロール間に通し、部分熱圧着したウェブを得た。実施例1と同様の方法で延伸を施し、繊維高密集域の表面面積率が35%、目付124g/mであり、各繊維層の重量比率が上層20wt%、エラストマー層60wt%、下層20wt%となる不織布を得た。結果を表1に示す。
[Example 3]
In the same manner as in Example 1, using the spunbond method, polypropylene was used as a raw material, and it was collected and conveyed as a web on a wire mesh conveyor so as to be 2.0 dtex. Next, using a spunbond method, a polyolefin-based elastomer made of ethylene-octene copolymer was used as a raw material, and a spinneret having a spinning number of 2000H and a spinning diameter of 0.25 mm was discharged at a spinning temperature of 220 ° C. and discharged. While cooling the polymer from the side in the vicinity of the spinneret, the polymer was taken up with an air soccer pulling / drawing device so that the spinning speed was 2700 m / min and 3.3 dtex. The yarn exiting the pulling / pulling device was deposited and laminated on the above-mentioned spunbond web made of polypropylene. Subsequently, on this laminated web, the yarn discharged and pulled by the same method as the spunbond method made of polypropylene was deposited and laminated. The web was conveyed and passed between pin pattern embossed / flat rolls with a partial thermocompression area ratio of 7% heated to 110 ° C. to obtain a partially thermocompressed web. Stretching was performed in the same manner as in Example 1, the surface area ratio of the high-density fiber area was 35%, the basis weight was 124 g / m 2 , and the weight ratio of each fiber layer was 20 wt% for the upper layer, 60 wt% for the elastomer layer, and 20 wt% for the lower layer. % Nonwoven fabric was obtained. The results are shown in Table 1.
[実施例4]
実施例1におけるポリプロピレンからなるスパンボンドウェブの繊維にらせん状捲縮を有するように、異形のノズルから溶融押出した長繊維を紡口の近傍にて側方から冷却した以外は、実施例1と同様にして、繊維高密集域の表面面積率が35%、目付155g/mの不織布を得た。結果を表1に示す。
[Example 4]
Example 1 except that the long fibers melt-extruded from the irregular nozzle were cooled from the side in the vicinity of the nozzle so that the fibers of the spunbond web made of polypropylene in Example 1 had a helical crimp. Similarly, a nonwoven fabric having a surface area ratio of 35% and a basis weight of 155 g / m 2 was obtained. The results are shown in Table 1.
[実施例5]
実施例1におけるスパンボンドウェブの原料としてナイロン6を用い、これも紡糸温度260℃で吐出した。また、部分熱圧着面積率14%の織目柄エンボスロールを用いて、積層したウェブに熱圧着を施した以外は、実施例1と同様にして、繊維高密集域の表面面積率が35%、目付150g/mの不織布を得た。結果を表1に示す。
[Example 5]
Nylon 6 was used as a raw material for the spunbond web in Example 1, and this was also discharged at a spinning temperature of 260 ° C. Further, the surface area ratio of the fiber high-density area was 35% in the same manner as in Example 1 except that the laminated web was subjected to thermocompression bonding using a textured pattern embossing roll having a partial thermocompression area ratio of 14%. A nonwoven fabric having a basis weight of 150 g / m 2 was obtained. The results are shown in Table 1.
[実施例6]
実施例1におけるスパンボンドウェブの原料をポリエステルを用いて、紡糸温度300℃で吐出し、メルトブローウェブの原料はポリエステル系のエラストマーを用い、ヘッド温度300℃で吐出し、吹付距離100mm、ホットエア温度400℃により吹付けを行った。また、180℃に加熱した部分熱圧着面積率11%の横長円柄エンボスロールを用いて、積層したウェブに熱圧着を施した以外は、実施例1と同様にして、繊維高密集域の表面面積率が35%、目付151g/mの不織布を得た。結果を表1に示す。
[Example 6]
The raw material of the spunbond web in Example 1 is discharged at a spinning temperature of 300 ° C. using polyester, the raw material of the meltblown web is discharged at a head temperature of 300 ° C. using a polyester elastomer, the spray distance is 100 mm, and the hot air temperature is 400 Spraying was performed at 0 ° C. Moreover, the surface of the fiber high-density area | region was carried out similarly to Example 1 except having performed the thermocompression bonding to the laminated | stacked web using the horizontal oblong pattern embossing roll of the partial thermocompression-bonding area rate 11% heated at 180 degreeC. A nonwoven fabric having an area ratio of 35% and a basis weight of 151 g / m 2 was obtained. The results are shown in Table 1.
[実施例7]
実施例1における、延伸する際の後方のニップロールに横長円柄エンボスと表面硬度50度(JIS−A硬度)のゴムロールを用い、繊維高密集域の表面面積率が50%となるようにした以外は、実施例1と同様にして、目付150g/mの不織布を得た。結果を表1に示す。
[Example 7]
In Example 1, a horizontally long embossed emboss and a rubber roll having a surface hardness of 50 degrees (JIS-A hardness) were used for the rear nip roll when drawing, and the surface area ratio of the fiber high-density area was 50%. Produced a nonwoven fabric having a basis weight of 150 g / m 2 in the same manner as in Example 1. The results are shown in Table 1.
[実施例8]
実施例1における、延伸する際の後方のニップロールにピン柄エンボスと表面硬度50度(JIS−A硬度)のゴムロールを用い、繊維高密集域の表面面積率が15%となるようにした以外は、実施例1と同様にして、目付150g/mの不織布を得た。結果を表1に示す。
[Example 8]
In Example 1, except that a pin pattern embossing and a rubber roll having a surface hardness of 50 degrees (JIS-A hardness) were used for the rear nip roll during stretching, and the surface area ratio of the fiber high-density area was 15%. In the same manner as in Example 1, a nonwoven fabric having a basis weight of 150 g / m 2 was obtained. The results are shown in Table 1.
[実施例9]
実施例1におけるポリプロピレンからなるスパンボンドの繊度を1.0dtexとなるようにウェブを形成した以外は、実施例1と同様にして、繊維高密集域の表面面積率が35%、目付150g/mの不織布を得た。結果を表1に示す。
[Example 9]
Except that the web was formed so that the fineness of the spunbond made of polypropylene in Example 1 was 1.0 dtex, the surface area ratio of the highly dense fiber area was 35% and the basis weight was 150 g / m. 2 nonwoven fabric was obtained. The results are shown in Table 1.
[実施例10]
実施例1におけるポリプロピレンからなるスパンボンドウェブの上にポリオレフィンエラストマーからなるメルトブローウェブのみを積層化したウェブを部分熱圧着した以外は、実施例1と同様にして、繊維高密集域の表面面積率が35%、目付110g/mの不織布を得た。結果を表1に示す。
[Example 10]
In the same manner as in Example 1, except that the web obtained by laminating only the melt blown web made of polyolefin elastomer on the spunbond web made of polypropylene in Example 1 was used, the surface area ratio of the highly dense fiber area was as follows. A nonwoven fabric with a weight of 35% and a basis weight of 110 g / m 2 was obtained. The results are shown in Table 1.
[比較例1]
実施例1における、延伸する際の後方のニップロールにはピン柄エンボスロール/フラット弾性ゴムロールを用い、パスラインがS字となるように、延伸する前の積層化したウェブをフラット弾性ゴムロールの下側から通し、ピン柄エンボスロール/フラット弾性ゴムロールの間を逆向きに通し、ピン柄エンボスロールの上側を通すようにした。且つ、後方のニップロールは加圧なしで延伸を施した以外は、実施例1と同様にして、繊維高密集域の表面面積率が0%、目付150g/mの不織布を得た。
得られた不織布は、延伸処理される方向に対して垂直な方向に繰返し100%伸長弾性率の初期は81%であり、5回後の弾性率が68%、その保持率は84%、また、100%伸長回復50%戻り時応力の繰返し5回目の保持率は49%であり、伸縮特性に優れたものではなかった。結果を表1に示す。
[Comparative Example 1]
In Example 1, a pin pattern embossing roll / flat elastic rubber roll is used for the rear nip roll when stretching, and the laminated web before stretching is placed under the flat elastic rubber roll so that the pass line is S-shaped. The pin pattern embossing roll / flat elastic rubber roll was passed in the opposite direction so that the upper side of the pin pattern embossing roll was passed. In addition, a nonwoven fabric having a surface area ratio of 0% and a basis weight of 150 g / m 2 was obtained in the same manner as in Example 1 except that the rear nip roll was stretched without pressure.
The obtained non-woven fabric was repeatedly stretched in the direction perpendicular to the direction to be stretched, the initial 100% stretch modulus was 81%, the modulus after 5 cycles was 68%, its retention rate was 84%, , 100% elongation recovery 50% rebound stress retention rate for the fifth repetition was 49%, which was not excellent in stretch properties. The results are shown in Table 1.
[比較例2]
実施例1における、延伸する際の後方のニップロールに桝目線柄エンボスロールと表面硬度50度(JIS−A硬度)のゴムロールを用い、繊維高密集域の表面面積率が80%となるようにした以外は、実施例1と同様にして、目付150g/mの不織布を得た。
得られた不織布は、延伸処理される方向に対して垂直な方向に繰返し100%伸長弾性率の初期は75%であり、5回後の弾性率が65%、その保持率は87%、また、100%伸長回復50%戻り時応力の繰返し5回目の保持率は26%であり、伸縮特性に優れたものではなかった。結果を表1に示す。
[Comparative Example 2]
In Example 1, a mesh pattern embossing roll and a rubber roll having a surface hardness of 50 degrees (JIS-A hardness) were used as the nip rolls at the rear of the drawing, so that the surface area ratio of the high-density fiber area was 80%. Except for the above, a nonwoven fabric having a basis weight of 150 g / m 2 was obtained in the same manner as in Example 1.
The obtained non-woven fabric is repeatedly 75% in the initial direction of 100% elongation elastic modulus in the direction perpendicular to the direction of stretching treatment, the elastic modulus after 5 times is 65%, the retention rate is 87%, , 100% elongation recovery 50% rebound stress retention rate for the fifth repetition was 26%, which was not excellent in stretch properties. The results are shown in Table 1.
[比較例3]
実施例1における、延伸する際の後方のニップロールに亀甲線柄エンボス/フラット金属ロールを用いた以外は、実施例1と同様にして、亀甲線柄による熱圧着面積率は40%であり、目付150g/mの不織布を得た。
得られた不織布は、延伸処理される方向に対して垂直な方向に100%伸長に至るまでに破断し、伸縮特性に優れたものではなかった。結果を表1に示す。
[Comparative Example 3]
In Example 1, except that a turtle shell line pattern embossed / flat metal roll was used for the rear nip roll when stretching, the thermocompression area ratio by the turtle shell line pattern was 40%, and the basis weight was the same as in Example 1. A nonwoven fabric of 150 g / m 2 was obtained.
The obtained nonwoven fabric broke until it reached 100% elongation in a direction perpendicular to the direction of stretching treatment, and was not excellent in stretch properties. The results are shown in Table 1.
[比較例4]
実施例1における不織布の延伸の際、後方のニップロールに1.3倍の速度差を設けて延伸を施した以外は、実施例1と同様にして、繊維高密集域の表面面積率が35%、延伸後の不織布の巾入り率が25%、目付126g/mである不織布を得た。得られた不織布は、延伸処理される方向に対して垂直な方向に繰返し100%伸長弾性率の初期は73%であり、5回後の弾性率が60%、その保持率は82%、また、100%伸長回復50%戻り時応力の繰返し5回目の保持率は54%であり、伸縮特性に優れたものではなかった。結果を表1に示す。
[Comparative Example 4]
When the nonwoven fabric in Example 1 was stretched, the surface area ratio of the highly dense fiber area was 35% in the same manner as in Example 1 except that the rear nip roll was stretched with a speed difference of 1.3 times. Thus, a nonwoven fabric having a stretched nonwoven fabric width of 25% and a basis weight of 126 g / m 2 was obtained. The obtained non-woven fabric is repeatedly 73% in the initial stage of 100% elongation modulus in the direction perpendicular to the direction to be stretched, the modulus after 5 times is 60%, the retention rate is 82%, 100% elongation recovery 50% rebound stress 5th time holding ratio was 54%, which was not excellent in stretch properties. The results are shown in Table 1.
本発明の伸縮性不織布は、オムツやナプキンなどの衛生材料、貼布材などの基布、包材、テープ基材、また、簡易マスクや包帯、衣料など、伸縮性を必要とする部分の材料や製品に適している。   The stretchable nonwoven fabric of the present invention includes sanitary materials such as diapers and napkins, base fabrics such as patch materials, packaging materials, tape base materials, and materials for parts that require stretchability, such as simple masks, bandages, and clothing. Suitable for and products.
本発明の不織布の繊維高密集域の断面模式図。The cross-sectional schematic diagram of the fiber high concentration area | region of the nonwoven fabric of this invention. 不織布の伸縮特性を伸長応力曲線で示す図。aは100%伸長時応力、bは100%伸長弾性率、cは100%伸長回復50%戻り時応力を示す。The figure which shows the expansion-contraction characteristic of a nonwoven fabric with an elongation stress curve. a is the stress at 100% elongation, b is the elastic modulus at 100%, and c is the stress at 100% elongation recovery and 50% return. 本発明の繊維高密集域を形成するためのエンボス柄の例を示す平面図。a)はピン柄、b)は横長円柄の例である。The top view which shows the example of the embossing pattern for forming the fiber high concentration area | region of this invention. a) is a pin pattern, and b) is an example of a horizontally long circular pattern. 本発明の繊維高密集域を形成するためのエンボス柄の別の例を示す平面図。c)は亀甲線柄、d)は桝目線柄を示す。The top view which shows another example of the embossing pattern for forming the fiber high concentration area | region of this invention. c) shows a turtle shell line pattern, and d) shows a grid pattern. 本発明の実施例における、繊維高密集域の面積率と繰返し100%伸長5回後の弾性率の関係を示すグラフ。a)は繊維高密集域の面積率と繰返し100%伸長5回後の弾性率の関係、b)は繊維高密集域の面積率と繰返し100%伸長5回後の弾性率の保持率の関係、c)繊維高密集域の面積率と繰返し100%伸長5回後の50%戻り時回復応力との関係、d)繊維高密集域の面積率と繰返し100%伸長5回後の50%戻り時回復応力の保持率との関係を示す。The graph which shows the relationship between the area ratio of a fiber high concentration area | region, and the elasticity modulus after a 100% expansion | extension 5 times in Example of this invention. a) is the relationship between the area ratio of the highly dense fiber area and the elastic modulus after 5 repetitions of 100% elongation, and b) is the relationship between the area ratio of the fiber high density area and the elastic modulus retention after 5 repetitions of 100% elongation. C) Relationship between the area ratio of highly dense fiber area and 50% return recovery stress after 5 times of 100% stretching, and d) 50% return area ratio of highly dense fiber area and 5 times of 100% stretching repeatedly. The relationship with the retention rate of time recovery stress is shown.

Claims (6)

  1. 熱可塑性合成繊維からなり、部分熱圧着され、且つ、延伸後の巾入り率が30%以上であるように一方向に延伸処理された伸縮性積層不織布であって、前記不織布は、エラストマーからなるスパンボンド繊維層及び/又はメルトブロー繊維層を有し、該部分熱圧着された区域とは異なる区域に配置された繊維高密集域を有し、且つ、該繊維高密集域の面積率が5〜70%であることを特徴とする不織布。 A stretchable laminated nonwoven fabric made of thermoplastic synthetic fiber, partially thermocompression-bonded, and stretched in one direction so that the width penetration after stretching is 30% or more , wherein the nonwoven fabric is made of an elastomer It has a spunbond fiber layer and / or a meltblown fiber layer, has a highly dense fiber area disposed in a different area from the partially thermocompression bonded area, and the area ratio of the highly dense fiber area is 5 to 5. Nonwoven fabric characterized by being 70%.
  2. 前記エラストマーからなるスパンボンド繊維層及び/又はメルトブロー繊維層の比率が全体の繊維層の25〜90%である、請求項1に記載の不織布。 The ratio of the spunbond fiber layer of elastomeric and / or meltblown fiber layer is 25 to 90% of the total of the fibrous layer, nonwoven fabric as claimed in claim 1.
  3. 前記不織布前記スパンボンド繊維層び/はメルトブロー繊維層の少なくとも片面に、表面層となるスパンボンド繊維層がさらに積層されている、請求項1又は2に記載の不織布。 The non-woven fabric, wherein the at least one surface of the spunbond fiber layer beauty / or meltblown fiber layer, spunbond fiber layer serving as the surface layer is further laminated, nonwoven fabric according to claim 1 or 2.
  4. 前記表面層となるスパンボンド繊維層は、捲縮性を有する繊維を含有する請求項に記載の不織布。 Spunbond fiber layer serving as the surface layer contains fibers having a crimpable nonwoven fabric of claim 3.
  5. 不織布の延伸方向に垂直な方向において、100%伸長5回繰返し後の弾性率が、80%以上であり、且つその保持率が90%以上であることを特徴とする請求項1〜4のいずれか1項に記載の不織布。 In the direction perpendicular to the stretching direction of the nonwoven fabric, elastic modulus after repeated 100% elongation 5 times, at least 80%, and any of claims 1 to 4 in which the retention and wherein the 90% or more The nonwoven fabric of Claim 1 .
  6. 以下の工程:
    エラストマーのメルトブロー繊維層を中間層とし、その上下層にスパンボンド繊維層を積層し、部分熱圧着して一体化した不織布を、延伸後の巾入り率が30%以上となるように速度差を設けたロール間で延伸処理し、その後
    得られた延伸処理された不織を、所定のパターンを有するエンボスロールとフラット弾性ロールの間に通し、線圧100〜1200N/cmで加圧し、繊維高密集域を5〜70%の範囲で形成する、
    を含む、請求項1〜5のいずれか1項に記載の不織布の製造方法。
    The following steps:
    An elastomer meltblown fiber layer is used as an intermediate layer, and a spunbond fiber layer is laminated on the upper and lower layers, and a non-woven fabric that is integrated by partial thermocompression bonding has a speed difference so that the penetration ratio after stretching is 30% or more. Stretching between the provided rolls , then
    The obtained stretch-treated non-woven fabric is passed between an embossing roll having a predetermined pattern and a flat elastic roll, and pressed at a linear pressure of 100 to 1200 N / cm, so that the fiber high-density area is in the range of 5 to 70%. Form,
    The manufacturing method of the nonwoven fabric of any one of Claims 1-5 containing this .
JP2007003121A 2007-01-11 2007-01-11 Elastic nonwoven fabric Active JP5006654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003121A JP5006654B2 (en) 2007-01-11 2007-01-11 Elastic nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007003121A JP5006654B2 (en) 2007-01-11 2007-01-11 Elastic nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2008169506A JP2008169506A (en) 2008-07-24
JP5006654B2 true JP5006654B2 (en) 2012-08-22

Family

ID=39697857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003121A Active JP5006654B2 (en) 2007-01-11 2007-01-11 Elastic nonwoven fabric

Country Status (1)

Country Link
JP (1) JP5006654B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9682512B2 (en) 2009-02-06 2017-06-20 Nike, Inc. Methods of joining textiles and other elements incorporating a thermoplastic polymer material
US20100199406A1 (en) 2009-02-06 2010-08-12 Nike, Inc. Thermoplastic Non-Woven Textile Elements
CN102211426B (en) * 2010-04-06 2015-03-25 Jnc株式会社 Composite material using stretchable nonwoven fabric
JP5762091B2 (en) 2011-03-31 2015-08-12 ユニ・チャーム株式会社 Method for producing elastic sheet
US8906275B2 (en) 2012-05-29 2014-12-09 Nike, Inc. Textured elements incorporating non-woven textile materials and methods for manufacturing the textured elements
JP2015077784A (en) * 2013-09-12 2015-04-23 日東電工株式会社 Elastic member and article including the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3100300B2 (en) * 1994-01-18 2000-10-16 株式会社日本吸収体技術研究所 Composite elastic body having multi-stage elongation characteristics and method for producing the same
US5635290A (en) * 1994-07-18 1997-06-03 Kimberly-Clark Corporation Knit like nonwoven fabric composite
JPH09132856A (en) * 1995-11-06 1997-05-20 Oji Paper Co Ltd Stretchable spun-bonded nonwoven fabric
JPH1136168A (en) * 1997-05-15 1999-02-09 Polymer Processing Res Inst Nonwoven fabric for sanitary material and medical use
MXPA02000366A (en) * 1999-07-28 2002-07-02 Kimberly Clark Co Cd extensible clothlike nonwoven for facing and liner.
JP2001248055A (en) * 2000-02-29 2001-09-14 Idemitsu Petrochem Co Ltd Method for producing spunbonded elastic nonwoven fabric
JP4716638B2 (en) * 2002-09-26 2011-07-06 旭化成せんい株式会社 Flexible non-woven fabric for sanitary materials and disposable sanitary materials
JP4716639B2 (en) * 2002-10-10 2011-07-06 旭化成せんい株式会社 Nonwoven fabric for sanitary materials

Also Published As

Publication number Publication date
JP2008169506A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP6216013B2 (en) Nonwoven fabric, absorbent article sheet, and absorbent article using the same
JP6633783B2 (en) Extensible nonwoven fabric
US4333979A (en) Soft, bulky, lightweight nonwoven web and method of producing; the web has both fused spot bonds and patterned embossments
EP1572454B1 (en) Extensible laminate having improved stretch properties and method for making same
JP6069554B2 (en) Revealed crimpable composite short fiber and method for producing the same, fiber assembly and sanitary article
JP3775726B2 (en) Unidirectional cold-drawn nonwoven webs for multi-polymer fibers for stretch fabrics and disposable absorbent articles containing them
KR100300542B1 (en) Patterned embossed nonwovens, liquid impermeable materials such as fabrics and methods of making them
EP1369518B1 (en) Non-woven fabrics of wind-shrink fiber and laminates thereof
EP2150645B1 (en) Nonwoven bonding patterns producing fabrics with improved abrasion resistance and softness
KR100796223B1 (en) The absorbent article using the surface layer with the continuous filaments and the manufacturing method thereof
US6888046B2 (en) Topsheet for absorbent article
JP4068171B2 (en) Laminated nonwoven fabric and method for producing the same
JP5351070B2 (en) Elastic film laminate with tapered point joint
JP5289459B2 (en) Crimped composite fiber and nonwoven fabric made of the fiber
US5614281A (en) Creped nonwoven laminate loop fastening material for mechanical fastening systems
JP4489969B2 (en) High-strength nonwoven fabric and method for producing the same
TWI238708B (en) Spun bonded type nonwoven fabric and material for use in sanitary goods
EP1397101B1 (en) Elastic laminate web
JP5704877B2 (en) Non-woven fabric, absorbent article containing the non-woven fabric, and method for forming the non-woven fabric
AU703521B2 (en) Fine fiber barrier fabric with improved drape and strength and method of making same
US7942992B2 (en) Bulky sheet material having three-dimensional protrusions
RU2117581C1 (en) Elastic laminated material of nonwoven fibrous cloth and elastomer film and method of manufacturing thereof
KR20160147939A (en) Method of making breathable, elastic film laminates and articles derived therefrom
US6069097A (en) Composite elastic material having multistage elongation characteristics and method of manufacturing the same
EP2221172A1 (en) Stretchable composite sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120525

R150 Certificate of patent or registration of utility model

Ref document number: 5006654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350