WO2004026758A1 - 駆動体及びその製造方法 - Google Patents

駆動体及びその製造方法 Download PDF

Info

Publication number
WO2004026758A1
WO2004026758A1 PCT/JP2003/011959 JP0311959W WO2004026758A1 WO 2004026758 A1 WO2004026758 A1 WO 2004026758A1 JP 0311959 W JP0311959 W JP 0311959W WO 2004026758 A1 WO2004026758 A1 WO 2004026758A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator element
ion
exchange resin
actuator
bending
Prior art date
Application number
PCT/JP2003/011959
Other languages
English (en)
French (fr)
Inventor
Shingo Sewa
Kazuo Onishi
Original Assignee
Eamex Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eamex Corporation filed Critical Eamex Corporation
Priority to AU2003264504A priority Critical patent/AU2003264504A1/en
Priority to JP2004537991A priority patent/JP4575774B2/ja
Publication of WO2004026758A1 publication Critical patent/WO2004026758A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/006Motors

Definitions

  • the present invention relates to an actuator element that can be easily bent and a method for manufacturing the same.
  • Actuators used for medical equipment and micromachines are flexible, small and lightweight actuators.
  • an actuator there is an actuator using a polymer actuator for an actuator element which can be bent or deformed and functions as a driving section.
  • the polymer actuator an actuator element having metal electrodes in a mutually insulated state on the surface of an ion-exchange resin molded product that is a solid electrolyte is known.
  • Patent No. 296111 In Japanese Patent Publication No. 25 or Patent No. 3033031, a cylindrical actuator element is described.
  • the actuator when the actuator is used for a catheter that is a medical device, the actuator element is inserted into a blood vessel of a human body for treatment and proceeds to a target site via a complicated path, so that the actuator is driven. It is desirable that the displacement at the time is larger. Further, in order to efficiently terminate the treatment using the catheter in a short time, it is desirable that the displacement speed of the actuator element is higher.
  • Polymer actuators are not limited to medical equipment, but also include positioning devices such as fingers of robot hands, attitude control devices, elevating devices, transport devices, moving devices, adjusting devices, adjusting devices, guidance devices, and joints. It can also be used for devices, switching devices, reversing devices, winding devices, traction devices, or turning devices.
  • an actuator element having metal electrodes in a mutually insulated state on the surface of an ion-exchange resin molded product as a solid electrolyte described above includes an electrode layer and a fixed electrolyte layer as an ion-exchange resin. Therefore, the ability of the actuator element to bend or deform greatly depends on the ease with which the solid electrolyte is deformed or displaced and the flexibility or extensibility of the electrode layer.
  • the material of the solid electrolyte is limited in, for example, an actuator element requiring durability, and therefore, the improvement in bending as an actuator element is limited.
  • the electrode layer has a structure mainly composed of a metal component in order to secure electrical conductivity, the electrode layer has a small flexibility or elasticity, thereby limiting bending as an actuator element. For this reason, there is a limit to a method of selecting a material constituting the actuator element as a method of improving the bending of the actuator element. That is, it is a problem to easily provide an actuator element having an excellent bending (bending amount) without changing a material mainly constituting the actuator element in the actuator element. Disclosure of the invention
  • the present invention includes an uneven surface facing in a direction Akuchiyueta element is bent, c the Akuchiyueta element is Akuchiyueta element before Symbol irregularities to form a wave shape to facilitate bending, the conventional Akuchiyueta element Excellent bending (bending amount) can be realized.
  • the actuator element is an actuator element in which a corrugated shape due to the unevenness of the actuator element is formed over the entire outer surface in the circumferential direction, and further, the actuator element has a bellows shape, or an uneven surface.
  • the shape is a bellows-like but is Akuchiyueta element formed in a spiral shape Actuator element or surface irregularities are spiral
  • the actuator element formed as described above is preferable because the end opposite to the end fixed to the support or the like is easily bent in an arbitrary direction.
  • the present invention relates to a method for manufacturing an actuator element, comprising the steps of: winding a wire around an ion-exchange resin molded article to provide spiral irregularities on the surface; Adsorbing a metal complex; depositing a metal on the surface of the ion-exchange resin by applying a reducing agent to the metal complex adsorbed on the ion-exchange resin molded article;
  • This is a method of manufacturing an actuator element including a step of cleaning with a cleaning liquid.
  • An actuator element having irregularities on the surface facing the bending direction of the actuator element, wherein the irregularities form a waveform for facilitating bending, is easily manufactured by using this manufacturing method.
  • FIG. 1 is a schematic perspective view of an embodiment of the actuator element of the present invention.
  • FIG. 2 is a schematic vertical sectional view of the actuator element of FIG.
  • FIG. 3 is a schematic perspective view of an embodiment of the actuator element of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic perspective view of an example of an embodiment of an actuator element.
  • Actuator element 1 is an actuator element having irregularities on a surface facing the direction in which the actuator element bends, and the irregularities form a waveform shape for facilitating bending.
  • the actuator element 1 is tubular and has a convex portion 2 and a concave portion 3. Both end A and end B have openings 4. Since the outer surface of the actuator element having the convex portion 2 and the concave portion 3 has a substantially cylindrical shape, it can face four bending directions.
  • Actuator element 1 in FIG. 1 has a recess formed on the outer surface of the actuator element.
  • the concavo-convex shape is formed as a continuous concavo-convex pattern that goes around the actuator element along the circumferential direction X.
  • the actuator element is formed in a bellows shape as a whole, and a wave shape is formed on the entire element in the direction of an axis perpendicular to the width direction of the bending motion.
  • the actuator element of the present invention is not particularly limited as long as it has irregularities on a surface facing the bending direction of the actuator element, and the recess forms a waveform shape for facilitating bending.
  • the wavy shape may be formed at a portion near an end which is the tip of the bending motion (for example, near ⁇ in FIG.
  • the actuator element of the present invention is used as an actuator such as a catheter or the like, and is used for an application that requires a large bending without being restricted in the direction, the waveform of the actuator element of the present invention is used.
  • the shape is formed by continuous concaves and convexes making a round around the actuator element along the circumferential direction.
  • the surface may be substantially flat, or may be a curved surface as shown in FIG.
  • the waveform shape is formed at least in the vicinity of at least one of both ends of the actuator element.
  • a formed portion is provided. Either one of the two ends of the actuator element In the case where the end portion formed in a corrugated shape is provided in the vicinity of the end portion, and the end portion formed in the corrugated shape is fixed to a support or the like, even if the corrugated portion is relatively short, Can be greatly displaced.
  • FIG. 1 is a schematic vertical sectional view of the actuator element 1 shown in FIG.
  • the actuator element 1 includes an electrode layer 5 and a solid electrolyte layer 6.
  • the bellows-shaped tubular actuator element of the present invention is an actuator element that can be bent or deformed, and if it is an actuator element that is wholly or partially formed in a bellows configuration.
  • the actuator element of the present invention is formed in a bellows shape, a portion formed in a bellows shape also includes an electrode layer and a solid electrolyte layer. By applying a current to the electrode layer, the solid electrolyte layer is bent or displaced.
  • the electrode layer may be formed so that the actuator element 1 can be bent.
  • the electrode layer of the actuator element may be two or more electrode layers insulated from each other by providing an insulating groove formed in the axial direction.
  • the electrode layer is divided in a state where the electrode layer is circumferentially insulated from each other by an insulating groove formed in the axial direction, because the electrode layer can be freely bent in the direction perpendicular to the axis Y.
  • One split electrode layer is formed in the axial direction By being insulated from the other electrode layers by the insulating groove, the actuator element 1 can be freely bent in the direction perpendicular to the axis Y.
  • FIG. 3 is a schematic perspective view showing an actuator element 1 ′ formed in a spiral shape, which is an actuator element of the present invention.
  • the present invention is an aspect of an actuator element having irregularities on a surface facing an bending direction of an actuator element, wherein the irregularities form a waveform for facilitating bending, and the irregularities on the surface are spiral. It is also a formed actuator device.
  • the spirally-shaped tubular actuator element 1 similarly to the bellows-shaped tubular actuator element 1 of FIG. 1, includes a convex portion 2 'and a concave portion 3', and has an end portion A ' Both ends B 'are provided with openings 4'.
  • substantially the entire actuator element is formed in a spiral shape.
  • the spirally-shaped actuator element of the present invention can make a large bend similarly to the bellows-shaped actuator element, so that it is orthogonal to the width direction of the bending motion like the actuator element 1 ′. Preferably, it is formed almost entirely in the axial direction. Further, in the case where the spirally formed part is a part of the actuator element, the actuator element of the present invention has the same structure as the bellows-shaped actuator element. It is preferable that at least one of the ends has a portion formed in a spiral shape near at least one of the ends.
  • Actuator element 1 ′ has an electrode layer on the outer side surface, similarly to actuator element 1 of FIG.
  • the actuator element 1 ′ has an insulating groove for the same reason as the actuator element 1 of FIG.
  • the actuator element of the present invention has a hollow tubular shape in the actuator element 1 and the actuator element 1 ′ of FIGS. 1 to 3, but is not limited to the hollow tubular shape.
  • the actuator element of the present invention is not particularly limited in shape, as long as the actuator element has irregularities on a surface facing a bending direction, and the irregularities form a waveform shape for facilitating bending. , Spherical, cubic, columnar, A three-dimensional shape such as a cone, a rod, a tube, and a tube may be formed in a bellows shape.
  • the actuator element of the present invention is preferably a three-dimensionally shaped object having a longitudinal direction, since the bending movement can be facilitated and a larger mechanical energy can be obtained.
  • the three-dimensional object having the longitudinal direction include a column, a cone, a rod, a tube, and a tube, and may be hollow.
  • the actuator element of the present invention has a hollow tubular or tubular shape, even if the corrugated shape formed by the irregularities provided on the surface facing the bending direction is formed on the outer peripheral surface, it is formed on the inner peripheral surface.
  • the corrugated shape is formed on both the outer peripheral surface and the inner peripheral surface because it can bend more greatly. It is particularly preferred that the spiral is formed.
  • the method of forming the actuator element which has irregularities on the surface facing the bending direction of the actuator element and forms a waveform shape for facilitating the bending, is particularly limited. Instead, it can be formed by a known forming method.
  • the tubular actuator element having the corrugated shape is formed by forming a metal electrode layer by subjecting an ion-exchange resin molded article formed into a bellows-like tubular shape with a mold or the like to a plating by a known method.
  • a method of manufacturing an actuator element in which a wire is wound around an ion-exchange resin molded article to provide spiral irregularities on the surface, and the metal complex is adsorbed on the ion-exchange molded article having the irregularities.
  • the actuator element can be formed by an easy operation.
  • the spirally formed tubular actuator element of the present invention has a spirally formed part as a whole or a part, like the bellows-like tubular actuator element.
  • the method of forming the portion formed in the shape is not particularly limited, and it can be formed by a known forming method.
  • a bellows-shaped tubular actuator element can be easily obtained by forming a metal electrode layer by applying a plating method to a bellows-shaped tubular ion-exchange resin molded product by a known method as a solid electrolyte tubular body.
  • a step of winding a wire of a predetermined diameter on a tubular ion-exchange resin molded article to provide bellows-like irregularities on the surface of the tubular body is performed.
  • the actuator element formed in a bellows shape according to the present invention can be produced in a simple method. Can be formed.
  • the diameter of the wire may be appropriately selected in order to provide desired irregularities to the tubular actuator element.
  • a method of obtaining a spirally formed tubular actuator element there is provided a method of manufacturing an actuator element, in which a wire is wound around an ion-exchange resin molded article to provide spiral irregularities on the surface.
  • the bellows-shaped tubular actuator element and the spirally-shaped tubular actuator element of the present invention have a convex portion and a concave portion.
  • the bottom of the concave portion may form a corner or a curved surface, but the top of the convex portion and the bottom of the concave portion can easily be plated, and the bending or displacement of the actuator element can be achieved. At this time, it is difficult for the electrode layer to be disconnected at the top or the bottom, and therefore it is preferable that the top of the projection and the bottom of the intervening portion form a curved surface.
  • the pitch between the concaves and concaves (d or d ′ in FIG. 1 or FIG. 3) in the actuator element is not particularly limited, but is 0.1 to 0.1 with respect to a diameter of 0.8 mm of the tubular body.
  • a thickness of 3 mm is preferable because the plating can be easily applied to the top of the projection and the bottom of the depression.
  • the depth of the unevenness (e or e 'in FIG. 1 or 3), which is the difference between the top of the convex portion and the bottom of the concave portion, is not particularly limited, but the thickness of the actuator element (FIG. 1 or FIG. It is preferably 10% to 200% with respect to a—b or a′—b ′) in FIG.
  • an actuator element which has irregularities on the surface facing the bending direction of the element, and in which the irregularities form a waveform for facilitating bending, as shown in FIG.
  • the solid electrode layer is not particularly limited, and it is preferable to use an ion exchange resin. In particular, it is more preferable that the solid electrolyte layer uses a fluorine-based ion exchange resin for durability.
  • the electrode layer is also not particularly limited, and is not particularly limited as long as the layer has electrical conductivity.However, it is possible to easily form the electrode layer by applying a plating to the solid electrolyte. Therefore, a metal electrode layer is preferable, and an electrode layer mainly containing a conductive metal such as copper (Cu), gold (Au), silver (Ag), and gold (Pt) having good conductivity. More preferably, there is.
  • the actuator element does not require a large number of parts, it has a simple structure, has a large bending, and is light in weight. It can be suitably used for the pressure part. That is, the actuator element, which has irregularities on the surface facing the bending direction of the actuator element and forms a waveform shape for facilitating the bending, includes a positioning device, a posture control device, a lifting device, and a transport device. It is suitable as a positioning, moving device, adjusting device, adjusting device, guiding device, and joint device. Further, the actuator element is suitable as a pressing device.
  • the actuator element is used for OA equipment, antennas, equipment for placing people such as beds and chairs, medical equipment, engines, optical equipment, fixtures, side trimmers, vehicles, lifting equipment, food processing equipment, cleaning equipment, measuring equipment , Inspection equipment, control equipment, machine tools, processing machines, electronic equipment, electron microscopes, electric razors, electric toothbrushes, manipulators, masts, play equipment, amusement equipment, riding simulation equipment, vehicle occupant holding equipment and aircraft accessories
  • the equipment extending device it can be suitably used as a driving unit that generates a driving force for moving a track-type orbit formed by an arc portion, or a pressing unit that performs a curved operation.
  • the actuator is, for example, a valve, a brake and a lock device used in a general machine including the above-mentioned devices such as an OA device and a measuring device, and a driving force for moving a track-type orbit formed by an arc portion. It can be used as a driving unit that generates the pressure or a pressing unit that performs a curved operation.
  • the actuator element may be a driving unit of a positioning device, a driving unit of an attitude control device, a driving unit of a lifting device, a driving unit of a transfer device, in general, in machinery and equipment, in addition to the above-described devices, devices, and instruments.
  • the actuator element can be suitably used as a drive unit in a joint device, as a drive unit that applies rotational motion to a joint unit or a joint.
  • a, b, c, and d for the ion-exchange resin molded product are shown in Fig. 1.
  • the outer shape of the opening, the inner diameter of the opening, the length, and the pitch between the recesses are shown for the bellows or spiral tubular body.
  • ion exchange membrane perfluorocarboxylic acid resin, ion exchange capacity 1.8 meq Zg, trade name "Flemion", manufactured by Asahi Glass Co., Ltd.
  • a 0.8 mm
  • b 0. 5 mm
  • a c 20 mm
  • N d 1. 5 mm ion exchange resin molded article a is a bellows-shaped tube-like body.
  • ion exchange membrane perfluorocarbon resin, ion exchange capacity 1.80 meq / g, trade name “Flemion”, manufactured by Asahi Glass Co., Ltd.
  • a 0.6 mm
  • b 0.4 mm
  • c 2 Omm
  • d 1.5 mm
  • An ion-exchange resin molded product B as a bellows-like tubular body was obtained.
  • ion-exchange membrane perfluorocarboxylic acid resin, trade name “Flemion”, manufactured by Asahi Glass Co., Ltd.
  • a cylindrical tubular body is formed by a known injection molding method, and a wire is spirally wound around the tubular body.
  • ion exchange membrane perfluorocarboxylic acid resin, trade name “Flemion”, manufactured by Asahi Glass Co., Ltd.
  • a cylindrical ion-exchange resin molded product having a diameter of 4 mm and c 20 mm was obtained.
  • the temperature of the aqueous solution was set to 60 to 80 ° C., and the phenanthrene gold complex was reduced for 6 hours while gradually adding sodium sulfite.
  • (3) washing step the ion-exchange resin molded product having the gold electrode formed on the surface was taken out and washed with water at 70 ° C. for 1 hour to obtain an ion-exchange resin molded product having the gold electrode formed thereon.
  • An actuator element was obtained in the same manner as in Example 1 except that ion-exchange resin molded article B or ion-exchange resin molded article C was used instead of ion-exchange resin molded article A.
  • An actuator element was obtained by the same method as in Example 1 except that the ion-exchange resin molded product D was used instead of the ion-exchange resin molded product A. Factuator Hatako.
  • a lead was attached to each electrode and connected to a power supply.
  • fix one end of the actuator element with a support place it in water so that the tip (the other end) is vertically downward, and set it to a 2.0 V vertical 0.1 Hz rectangular wave. , 2.5 V, and 3.Apply a voltage of OV for 30 seconds, and measure the radius of curvature by approximating the curvature from the fixed part of the actuator element support by the support to the tip of the actuator element to a circle, and the following evaluation criteria. evaluated.
  • the results are shown in Table 1.
  • Bending by applying for 30 seconds, good with a radius of curvature of 6 mm or less.
  • the radius of curvature is 7 mm or more and 8 mm or less, and it can be practically used as an actuator element such as a catheter.
  • the radius of curvature is 9 mm or more, and it is not suitable for actuator elements that require large bending such as catheters.
  • the actuator elements of Examples 1 and 2 are tubular actuator elements formed in a bellows shape, and 30 seconds as compared with a conventional actuator element having no irregularities formed on the surface, which is a comparative example. In a short time, a larger bending was obtained than before, and it was good. In particular, at an applied voltage of 3.0 OV, the radius of curvature was approximately twice as small, and a large bending unlike the conventional one was obtained, showing excellent bending.
  • the actuator element of the third embodiment is a spirally shaped tubular actuator element, which is 30 seconds shorter than the comparative example which is a conventional actuator element having no irregularities formed on the side surface. Bending that was larger than in the past was obtained in a short time, which was good.
  • the actuator element of the present invention which has irregularities on the surface facing the bending direction of the actuator element that is the actuator element of the present invention, and the irregularities form a waveform shape for facilitating bending, is described in Examples 1 to 3. As shown in FIG. Industrial applicability
  • the actuator element of the present invention can be used for a drive unit of an actuator, and has a large displacement amount at the same voltage as compared with a conventional actuator element. Therefore, the efficiency of converting electric energy into mechanical energy is high, and the same voltage is applied. As a result, a large driving force as an actuator can be obtained.
  • the actuator element since the actuator element has a high displacement speed, the time from when a voltage is applied to the metal electrode of the actuator element to when the deformation is completed is short, so that the response to the deformation instruction is fast, and the operation as the actuator is performed. The property is also good.
  • the actuator element of the present invention is a polymer actuator element
  • medical instruments such as tweezers, scissors, forceps, a snare, a laser beam, a spatula, a clip, etc.
  • Articles used in water, such as supplies can also be suitably used.
  • the actuator element does not require a large number of parts, it has a simple structure, a large bending and a light weight. It is suitable as a control device, a lifting device, a transport device, a moving device, an adjusting device, an adjusting device, a guiding device, a joint device, and a pressing device.

Landscapes

  • Micromachines (AREA)
  • Chemically Coating (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

アクチュエータ素子において、アクチュエータ素子を主として構成する材料を変えることなしに、優れた変位量及び変位速度を備えたアクチュエータ素子を提供する。アクチュエータ素子が屈曲する方向に面する表面に凹凸を備え、前期凹凸が屈曲を容易にするための波形形状を形成するアクチュエータ素子を用いる。また螺旋状に形成された管状のアクチュエータ素子については、所定の直径のワイヤーを捲きつけて管状体の表面に螺旋状の凹凸を設け、所定の操作を行うことにより螺旋状に形成されたアクチュエータ素子の製造方法により製造する。

Description

明 細 書 駆動体及びその製造方法 技術分野
本発明は、 湾曲が容易なァクチユエータ素子並びにその製造方法に関する。 背景技術
医療用機器やマイクロマシンに用いられているァクチユエータは、 柔軟性に富 み、 小型且つ軽量なァクチユエータが用いられている。 このようなァクチユエ一 タとしては、 湾曲若しくは変形が可能で駆動部として機能する部分であるァクチ ユエータ素子に、 高分子ァクチユエータを用いるものがある。 前記高分子ァクチユエータとしては、 固体電解質であるイオン交換樹脂成形品 の表面に相互に絶縁状態である金属電極を備えたァクチユエータ素子が知られ、 その一態様として、 例えば、 特許第 2 9 6 1 1 2 5号公報または特許第 3 0 3 0 3 6 1号公報には、 円筒状のァクチユエータ素子が記載されている。 しかし、 例えば、 前記ァクチユエータを医療用機器であるカテーテルに用いた 場合には、 ァクチユエータ素子は、 治療のために人体の血管の内部に挿入されて 複雑な経路を経て目的部位に進行するので、 駆動時の変位量がより大きいことが 望ましい。 さらに、 カテーテルを用いた治療を効率良く短時間に終わらせるため に、 前記ァクチユエータ素子の変位速度は、 より速いことが望ましい。 また、 高分子ァクチユエータは、 医療用機器に限らず、 ロボットハンドの指部 に代表される位置決め装置、 姿勢制御装置、 昇降装置、 搬送装置、 移動装置、 調 節装置、 調整装置、 誘導装置、 関節装置、 切替え装置、 反転装置、 卷取り装置、 牽引装置、 または旋回装置にも用いることが可能である。 しかし、 実験的な用途 にとどまらず、 実用的な用途に高分子ァクチユエータを用いるためには、 前記ァ クチユエータの屈曲 (屈曲量) は、 従来よりも大きいことが好適である。 上記の固体電解質であるイオン交換樹脂成形品の表面に相互に絶縁状態である 金属電極を備えたァクチユエータ素子は、 電極層とイオン交換樹脂である固定電 解質層とを備えている。 そのため前記ァクチユエータ素子の湾曲または変形の能 力は、 固体電解質の変形若しくは変位のし易さ並びに電極層の可撓性若しくは伸 縮性に大きく依存することになる。 前記固体電解質は、 例えば耐久性が要求され るァクチユエータ素子においては材料が限定されてしまうために、 ァクチユエ一 タ素子としての屈曲の向上を制限する。 特に、 前記電極層は、 通電性を確保する ために金属成分を主とする構成を有しているので可撓性若しくは伸縮性が小さく、 ァクチユエ一素子としての屈曲を制限することとなる。 このため、 ァクチユエ一 タ素子の屈曲を向上させる方法として、 ァクチユエータ素子を構成する材料を選 択する方法には限界がある。 すなわち、 ァクチユエ一タ素子において、 ァクチユエータ素子を主として構成 する材料を変えることなしに、 優れた屈曲 (屈曲量) を備えたァクチユエータ素 子を容易に提供することが課題となる。 発明の開示
本発明は、 ァクチユエータ素子が屈曲する方向に面する表面に凹凸を備え、 前 記凹凸が屈曲を容易にするための波形形状を形成するァクチユエータ素子である c 前記ァクチユエータ素子は、 従来のァクチユエータ素子に比べて優れた屈曲 (屈 曲量) を実現できる。 特に、 前記ァクチユエータ素子が、 前記ァクチユエータ素 子の凹凸による波形形状が外側表面の周方向全体に形成されたァクチユエータ素 子であって、 さらに、 形状が蛇腹状であるァクチユエータ素子、 または、 表面の 凹凸が螺旋状に形成されたァクチユエータ素子であることが、 従来のァクチユエ ータ素子に比べて約 2倍以上の優れた屈曲 (屈曲量) 及び変位速度を実現できる c しかも、 形状が蛇腹状であるァクチユエータ素子、 または、 表面の凹凸が螺旋状 に形成されたァクチユエータ素子は、 支持体等に固定された端部と反対側の端 部が任意の方向に自在に屈曲しやすいので好ましい。 また、 本発明は、 ァクチユエータ素子の製造方法であって、 イオン交換樹脂成 形品にワイヤーを捲きつけることのより表面に螺旋状の凹凸を設ける工程、 この 凸を設けたイオン交換樹成形品に金属錯体を吸着させる工程、 前記イオン交換 樹脂成形品に吸着された金属錯体に還元剤を作用させることにより前記ィォン交 換樹脂の表面に金属を析出させる工程、 及び金属が析出したイオン交換樹脂を洗 浄液で洗浄する工程を含むァクチユエータ素子の製造方法である。 ァクチユエ一 タ素子が屈曲する方向に面する表面に凹凸を備え、 前記凹凸が屈曲を容易にする ための波形形状を形成するァクチユエータ素子は、 この製造方法を用いることに より、 容易に製造される。 図面の簡単な説明
第 1図は、 本発明のァクチユエータ素子の一実施態様例についての概略斜視図で める。
第 2図は、 第 1図のァクチユエータ素子についての概略縦断面図である。
第 3図は、 本発明のァクチユエータ素子の一実施態様例についての概略斜視図で あ 。 発明を実施するための最良の形態
以下、 本発明について図を参照して説明するが、 本発明は図に示された実施形 態に限定されるものではない。
(ァクチユエータ素子)
' 図 1は、 ァクチユエータ素子の一実施態様例についての概略斜視図である。 ァ クチユエータ素子 1は、 ァクチユエータ素子が屈曲する方向に面する表面に凹凸 を備え、 前記凹凸が屈曲を容易にするための波形形状を形成するァクチユエータ 素子である。 ァクチユエ一タ素子 1は、 管状であり、 凸部 2及び凹部 3を備え、 端部 Aと端部 Bの両方に開口部 4を備えている。 凸部 2及び囬部 3を具備する 前記ァクチユエータ素子の外側面は、 略円筒状を形成していることから、 4方向 である屈曲方向に面することができる。 図 1中のァクチユエータ素子 1は、 ァクチユエータ素子の外側面に凹 ώが形成 されている。 前記外側面において、 前記凹凸が周方向 Xに沿ってァクチユエータ 素子の周囲を一巡する連続した凹凸が形成されている。 前記ァクチユエータ素子 は、 全体として蛇腹状に形成され、 屈曲運動の幅方向に直行する軸 Υの方向に対 ェ―タ素子全体に波形形状が形成されている。 本発明のァクチユエータ素子は、 ァクチユエータ素子が屈曲する方向に面する 表面に凹凸を備え、 前記凹 ώが屈曲を容易にするための波形形状を形成していれ ば、 特に限定されるものではない。 前記波形形状は、 屈曲運動の先端となる端部 付近 (例えば図 1の Α付近) またはその反対側の端部付近 (例えば図 1の B付 近) の一部分に形成されてもよく、 屈曲運動の幅方向に直行する軸 Yの方向に対 してァクチユエータ素子の略全体に形成されても良い。 また、 ァクチユエータ素 子の屈曲が、 例えば振幅のような、 特定の方向にのみ屈曲運動する場合には、 当 該屈曲運動の方向に面する表面にのみ前記波形形状を形成することが、 製造を容 易にするために好ましい。 本発明のァクチユエータ素子をカテーテル等のァクチ ユエータとして用いる場合など、 先端部分が方向に制限されることなく大きな屈 曲をすることが要求される用途に用いる場合には、 本発明のァクチユエータ素子 の波形形状は、 周方向に沿ってァクチユエータ素子の周囲を一巡する連続した凹 凸により形成されることが好ましい。 前記表面は、 略平面であっても良く、 図 1 の様に曲面であっても良い。 本発明のァクチユエータ素子において、 波形形状に形成されている部分がァク チユエータ素子の一部分である場合には、 ァクチユエータ素子の両方の端部のう ち少なくともどちらか一の端部付近において波形形状に形成された部分が備えら れていることが好ましい。 ァクチユエータ素子の両方の端部のうちのどちらか一 の端部付近において波形形状に形成された部分が備えられ、 前記波形形状に形 成された端部が支持体等に固定された場合には、 波形形状の部分が比較的短くて も、 他の端部は大きく変位することができるからである。 特に前記ァクチユエ一 タ素子がカテーテルの先端に用いられる場合には、 カテーテルの誘導を容易に行 うことができるようにするために、 カテーテルの最先端部分の対応する端部が蛇 腹状に形成されていることが好ましい。 図 1に示すように、 凹凸により波形形状が形成されたァクチユエータ素子は、 ァクチユエータ素子である管状体に交互に凸部と凹部とが形成されて、 蛇腹状を 形成している。 前記ァクチユエータ素子は、 屈曲する方向に面する表面に凹凸を 備え、 前記凹凸が屈曲を容易にするための波形形状を形成するァクチユエータ素 子の一態様でもある。 図 2は、 図 1に示したァクチユエータ素子 1の概略縦断面図である。 ァクチュ エータ素子 1には電極層 5と固体電解質層 6とを備えている。 本発明の蛇腹状に 形成された管状のァクチユエータ素子は、 湾曲若しくは変形が可能なァクチユエ —タ素子であって、 全体または部分的に蛇腹状に形成されたァクチユエ一タ素子 であれば、 構成が特に限定されるものではないが、 図 2に示すように、 湾曲を可 能とするために電極層と固体電解質層とを備えていることが好ましい。 本発明の ァクチユエ一タ素子は、 蛇腹状に形成されているので、 蛇腹状に形成されて部分 についても電極層と固体電解質層とを備えている。 前記電極層に通電することに より前記固体電解質層が屈曲若しくは変位を生じるのである。 前記電極層は、 ァ クチユエータ素子 1が屈曲可能な様に形成されていれば良い。 特に、 屈曲可能な 素子を容易に形成することができることから、 前記ァクチユエータ素子の電極層 は、 軸方向に形成された絶縁溝を備えることにより互いに絶縁された 2以上の電 極層であることが好ましい。 前記電極層は、 軸方向に形成された絶縁溝により電 極層が円周方向に互いに絶縁された状態で分割されることが、 軸 Yに垂直方向に 自由に屈曲できるために好ましい。 分割された一の電極層が軸方向に形成された 前記絶縁溝により他の電極層と互いに絶縁されることにより、 ァクチユエータ 素子 1は、 軸 Yに垂直方向に自由に屈曲できる。 図 3は、 本発明のァクチユエータ素子であって、 螺旋状に形成されているァク チユエータ素子 1 ' を示す概略斜視図である。 本発明は、 ァクチユエータ素子が 屈曲する方向に面する表面に凹凸を備え、 前記凹凸が屈曲を容易にするための波 形形状を形成するァクチュヱータ素子の一態様であり、 表面の凹凸が螺旋状に形 成されたァクチユエ一タ素子でもある。 螺旋状に形成された管状のァクチユエ一 タ素子 1, は、 図 1の蛇腹状に形成された管状のァクチユエータ素子 1を同様に、 凸部 2 ' 及び凹部 3 ' を備え、 端部 A ' と端部 B ' の両方に開口部 4 ' を備えて いる。 図 3のァクチユエータ素子 1 ' は、 ァクチユエータ素子の略全体が螺旋状に形 成されている。 本発明の螺旋状に形成されたァクチユエータ素子は、 蛇腹状に形 成されたァクチユエータ素子と同様に、 大きな屈曲をすることができるのでァク チユエータ素子 1 ' のように屈曲運動の幅方向に直行する軸方向の略全体に形成 されることが好ましい。 また、 本発明のァクチユエータ素子は、 螺旋状に形成さ れている部分がァクチユエータ素子の一部分である場合には、 蛇腹状に形成され たァクチユエ一タ素子と同様に、 ァクチユエ一タ素子の両方の端部のうち少なく ともどちらか一の端部付近に螺旋状に形成された部分が備えられていることが好 ましい。 ァクチユエータ素子 1 ' は、 図 1のァクチユエータ素子 1と同様に、 外 側面に電極層を備える。 また、 ァクチユエータ素子 1 ' は、 図 1のァクチユエ一 タ素子 1と同様の理由により、 絶縁溝を備えることが好ましい。 本発明のァクチユエータ素子は、 図 1〜 3のァクチユエータ素子 1及びァクチ ユエータ素子 1 ' では中空管状の形状をしているが、 中空管状の形状に限定され るものではない。 本発明のァクチユエータ素子は、 屈曲する方向に面する表面に 凹凸を備え、 前記凹凸が屈曲を容易にするための波形形状を形成するァクチユエ —タ素子であれば、 形状について特に限定されず、 例えば、 球状、 立方、 柱状、 錐状、 棒状、 管状、 筒状等の立体形状が蛇腹状に形成されたものであってもよ い。 特に、 本発明のァクチユエータ素子は、 長手方向を有する立体形状物である ことが、 屈曲運動を容易にすることができ、 より大きな機械的エネルギーを得る ことができるので好ましい。 前記長手方向を有する立体形状物としては、 柱状体、 錐状体、 棒状体、 管状体及び筒状体を例示することができ、 中空であってもよい。 本発明のァクチユエータ素子が、 中空の管状または筒状である場合には、 屈曲す る方向に面する表面に備えられた凹凸が形成する波形形状が外周面に形成されて いても内周面に形成されていても良いが、 より大きな屈曲をすることができるの で、 前記波形形状が外周面及び内周面の両方に形成されていることがより好まし く、 さらに波形形状が蛇腹状若しくは螺旋状に形成されていることが特に好まし レ、。 本発明のァクチユエータ素子について、 ァクチユエータ素子が屈曲する方向に 面する表面に凹凸を備え、 前記凹凸が屈曲を容易にするための波形形状を形成す るァクチユエータ素子の形成方法は、 特に限定されるものではなく、 公知の形成 方法で形成することができる。 例えば、 前記波形形状が形成された管状のァクチ ユエータ素子は、 金型等で蛇腹状の管状に形成されたイオン交換樹脂成形品に、 公知の方法によりメツキを施して金属の電極層を形成することにより得ることが できるが、 以下の方法で得ることが好ましい。 即ち、 ァクチユエータ素子の製造方法であって、 イオン交換樹脂成形品にワイヤ 一を捲きつけることのより表面に螺旋状の凹凸を設ける工程、 この凹凸を設けた イオン交換榭成形品に金属錯体を吸着させる工程、 前記イオン交換樹脂成形品に 吸着された金属錯体に還元剤を作用させることにより前記ィォン交換樹脂の表面 に金属を析出させる工程、 及び金属が析出したイオン交換樹脂を洗浄液で洗浄す る工程、
を含むァクチユエータ素子の製造方法により、 前記ァクチユエータ素子を容易な 作業により形成することができる。 また、 本発明である螺旋状に形成された管状ァクチユエータ素子は、 蛇腹状 に形成された管状のァクチユエータ素子と同様に、 全体または一部分に螺旋状に 形成された部分を備えているが、 この螺旋状に形成さている部分の形成方法、 特 に限定されるものではなく、 公知の形成方法で形成することができる。 例えば、 蛇腹状に形成された管状のァクチユエータ素子は、 固体電解質の管状体として、 蛇腹状の管状のイオン交換樹脂成形品に公知の方法によりメツキを施して金属の 電極層を形成することにより簡単に得ることができるが、 以下の方法で得ること が好ましい。 蛇腹状に形成されたァクチユエ一タ素子の製造方法としては、 管状体であるィ オン交換樹脂成形品に所定の直径のワイヤーを捲きつけて管状体の表面に蛇腹状 の凹凸を設ける工程、 この凹凸を設けた管状のイオン交換樹成形品に金属錯体を 吸着させる工程、 前記ィオン交換樹脂成形品に吸着された金属錯体に還元剤を作 用させることにより前記イオン交換樹脂の表面に金属を析出させる工程、 及び、 金属が析出したイオン交換樹脂を洗浄液で洗浄する工程を含むァクチユエータ素 子の製造方法を用いることにより、 本発明である蛇腹状に形成されたァクチユエ ータ素子を簡便な方法で形成することができる。 なお、 前記ワイヤーの直径は、 所望の凹凸を管状のァクチユエータ素子に与えるために、 適宜選択されれば良い。 また、 螺旋状に形成された管状ァクチユエータ素子を得る方法としては、 ァク チユエータ素子の製造方法であって、 ィォン交換樹脂成形品にワイヤーを捲きつ けることのより表面に螺旋状の凹凸を設ける工程、 この凹凸を設けたイオン交換 樹成形品に金属錯体を吸着させる工程、 前記ィォン交換樹脂成形品に吸着された 金属錯体に還元剤を作用させることにより前記ィオン交換樹脂の表面に金属を析 出させる工程、 及び金属が析出したイオン交換樹脂を洗浄液で洗浄する工程を含 むァクチユエ一タ素子の製造方法である。 本発明である蛇腹状に形成された管状のァクチユエータ素子及び螺旋状に形成 された管状ァクチユエータ素子は、 凸部及び凹部を備えているが、 凸部の頂部と 凹部の底部が、 角を形成していても曲面を形成していても良いが、 凸部の頂部 と凹部の底部とにも容易にメツキを施すこができ、 ァクチユエータ素子の屈曲ま たは変位の際に前記頂部若しくは前記底部とにおいての電極層の断線が生じにく いので、 凸部の頂部と間部の底部とが曲面を形成していることが好ましい。 また、 前記ァクチユエータ素子における凹凹間ピッチ (図 1または図 3における dまた は d ' ) は、 特に限定されるものではないが、 管状体の直径 0 . 8 mmに対して 0 . 1〜0 . 3 mmであれば凸部の頂部と凹部の底部とにも容易にメツキを施す こができるので好ましい。 また、 凸部の頂部と凹部の底部との差である凹凸の深 さ (図 1または 3における eまたは e ' ) は、 特に限定されるものではないが、 ァクチユエータ素子の厚さ (図 1または図 3における a— b、 または a ' — b ' ) に対して 1 0 %〜2 0 0 %であることが好ましい。
(固定電解質層及び電極層)
また、 本願における発明であるァクチユエ一 素子が屈曲する方向に面する表 面に凹凸を備え、 前記凹凸が屈曲を容易にするための波形形状を形成するァクチ ユエータ素子は、 図 2に示すように、 屈曲可能な構造を容易に形成することがで きることから、 固定電解質層と電極層とを備えていることが好ましい。 前記固体 電極層としては、 特に限定されるものではなく、 イオン交換樹脂を用いることが 好ましい。 特に、 前記固体電解質層は、 耐久性のためにフッ素系イオン交換樹脂 を用いることがより好ましい。 前記電極層についても特に限定されるものではな く、 通電性を有する層であれば特に限定されるものではないが、 固体電解質にメ ツキを施すことにより簡単に電極層を形成することができることから、 金属電極 層であることが好ましく、 通電性の良い銅 (C u )、 金 (A u )、 銀 (A g )、 白 金 (P t ) などの電導性金属を主として含む電極層であることがより好ましい。
(用途)
前記ァクチユエータ素子は、 多数の部品を必要としないために、 構造が簡単で あり、 屈曲が大きく、 しかも軽量であることから、 種々の装置の駆動部または押 圧部に好適に用いることができる。 つまり、 ァクチユエータ素子が屈曲する方 向に面する表面に凹凸を備え、 前記凹凸が屈曲を容易にするための波形形状を形 成するァクチユエータ素子は、 位置決め装置、 姿勢制御装置、 昇降装置、 搬送装 置、 移動装置、 調節装置、 調整装置、 誘導装置、 及び関節装置として好適である。 また、 前記ァクチユエータ素子は押圧装置として好適である。 前記ァクチユエータ素子は、 O A機器、 アンテナ、 ベッドや椅子等の人を乗せ る装置、 医療機器、 エンジン、 光学機器、 固定具、 サイ ドトリマ、 車両、 昇降器 械、 食品加工装置、 清掃装置、 測定機器、 検査機器、 制御機器、 工作機械、 加工 機械、 電子機器、 電子顕微鏡、 電気かみそり、 電動歯ブラシ、 マニピュレータ、 マス ト、 遊戯装置、 アミューズメント機器、 乗車用シミュレーション装置、 車両 乗員の押さえ装置及び航空機用付属装備展張装置において、 円弧部からなるトラ ック型の軌道を移動するための駆動力を発生する駆動部、 または曲線的な動作を する押圧部として好適に用いることができる。 前記ァクチユエ一タは、 例えば、 O A機器や測定機器等の上記機器等を含む機械全般に用いられる弁、 ブレーキ及 びロック装置において、 円弧部からなるトラック型の軌道を移動するための駆動 力を発生する駆動部、 または曲線的な動作をする押圧部として用いることができ る。 また、 前記ァクチユエータ素子は、 前記の装置、 機器、 器械等以外において も、 機械機器類全般において、 位置決め装置の駆動部、 姿勢制御装置の駆動部、 昇降装置の駆動部、 搬送装置の駆動部、 移動装置の駆動部、 量や方向等の調節装 置の駆動部、 軸等の調整装置の駆動部、 誘導装置の駆動部、 及び押圧装置の押圧 部として好適に用いることができる。 また、 前記ァクチユエータ素子は、 関節装 置における駆動部として、 関節部または関節に回転運動を与える駆動部に好適に 用いることができる。
〔実施例〕
以下、 本発明の実施例及び比較例を記載するが、 これらに特に限定されるもの ではない。 なお、 イオン交換樹脂成形品についての a、 b、 c、 及ぴ dは、 図 1 及び図 3に示すように、 蛇腹状又は螺旋状の管状体についての、 開口部外形、 開口部内径、 長さ、 凹凹間ピッチを示す。
(ィオン交換樹脂成形品 A及び Bの製造例)
イオン交換膜 (パーフルォロカルボン酸樹脂、 イオン交換容量 1. 8 0me q Zg、 商品名 「フレミオン」、 旭硝子社製) を用いて公知の射出成形方法により a = 0. 8 mm, b = 0. 5 mm, c = 20 mmN d = 1. 5 mmの蛇腹状の管 状体であるイオン交換樹脂成形品 Aを得た。 イオン交換膜 (パーフルォロカルボ ン酸樹脂、 イオン交換容量 1. 80me q/g、 商品名 「フレミオン」、 旭硝子 社製) を用いて公知の射出成形方法により、 a = 0. 6mm、 b = 0. 4mm、 c = 2 Omm, d= 1. 5 mmの蛇腹状の管状体であるイオン交換樹脂成形品 B を得た。
(ィオン交換樹脂成形品 Cの製造例)
イオン交換膜 (パーフルォロカルボン酸樹脂、 商品名 「フレミオン」、 旭硝子 社製) を用いて公知の射出成形方法により円筒状の管状体を成形し、 その管状体 にワイヤーを螺旋状に捲きつけることにより表面に螺旋状の凹 ώを設けて、 a = 0. 6 mm, b = 0. 4 mm, c = 20mm、 d = 1. 5 mmのである螺旋状に 形成されたイオン交換樹脂成形品を得た。
(イオン交換樹脂成形品 Dの製造例)
イオン交換膜 (パーフルォロカルボン酸樹脂、 商品名 「フレミオン」、 旭硝子 社製) を用いて公知の射出成形方法により円筒状の管状体を成形し、 a =0. 6 mm, b = 0. 4mm、 c = 20 mmのである円筒状のイオン交換樹脂成形品を 得た。
(実施例 1 )
イオン交換樹脂成形品 Aに対して #800 のァノレミナ粒子で表面粗化を行つた後、 下記 (1)〜(3)の工程を 7サイクル繰り返して実施し、 イオン交換樹脂成形品表 面へ金電極を形成させた。 (1)吸着工程: フエナントリン金塩化物水溶液に 2 4時間浸漬し、 成形品内にフ ナントリン金錯体を吸着させ、 (2)析出工程:亜 硫酸ナトリゥムを含む水溶液中で、 吸着したフエナントリン金錯体を還元して、 イオン交換樹脂成形品表面に金電極を形成させた。 このとき、 水溶液の温度を 6 0〜8 0 °Cとし、 亜硫酸ナトリウムを徐々に添加しながら、 6時間フエナントリ ン金錯体の還元を行った。 次いで、 (3 ) 洗浄工程:表面に金電極が形成したィ オン交換樹脂成形品を取り出し、 7 0 °Cの水で 1時間洗浄し、 金電極が形成され たィォン樹脂成形品を得た。 この金電極が形成されたイオン樹脂成形品を公知の エキシマレーザー加工装置を用いて長手方向に直線的にレーザー照射することに より合計 4本の絶縁溝を形成し、 2組の電極対を形成した。 この 2組の電極対が 形成されたイオン交換樹脂成形品を 0 . 5 M ( C 4H 9 ) 4^^。 1水溶液に2 4時 間浸漬することにより実施例 1の蛇腹状に形成されたァクチユエータ素子を得た c
(実施例 2及び 3 )
ィォン交換樹脂成形品 Aの替わりに、 ィォン交換樹脂成形品 Bまたはイオン交 換樹脂成形品 Cを用いたこと以外は、 実施例 1と同様の方法によりァクチユエ一 タ素子を得て、 それぞれ実施例 2または実施例 3の蛇腹状または螺旋状に形成さ れたァクチユエータ素子とした。
(比較例)
イオン交換樹脂成形品 Aの替わりに、 イオン交換樹脂成形品 Dを用いたこと以 外は、 実施例 1と同様の方法によりァクチユエ一タ素子を得て、 比較例 1の凹凸 のない円筒状のァクチユエータ秦子とした。
(評価)
実施例 1 〜 3及び比較例の各ァクチユエータ素子について、 それぞれの電極に それぞれリード取り付けて電源と接続した。 各ァクチユエータ素子について、 ァ クチユエータ素子の一端を支持体で固定して、 先端 (他端) が鉛直下向きとなる ように水中に設匱し、 鉛直下向き 0 . 1 Hzの矩形波で 2 . 0 V、 2 . 5 V、 及 び 3 . O Vの電圧をそれぞれ 3 0秒間印加し、 ァクチユエータ素子の支持体に よる固定部分からァクチユエータ素子先端部分までについての曲がりを円に近似 して極率半径を測定し、 下記の評価基準で評価した。 結果は表 1に示す。
(評価基準)
〇 : 3 0秒間の印加による屈曲で、 極率半径が 6 mm以下で良好である。
Δ: 3 0秒間の印加による屈曲で、 極率半径が 7 m m以上、 8 mm以下であり、 カテーテル等のァクチユエ一タ素子として実用可能である。
X : 3 0秒間の印加による屈曲で、 極率半径が 9 m m以上であり、 カテーテル 等の大きな屈曲が要求されるァクチユエータ素子には不向きである。
(表 1 )
Figure imgf000015_0001
(結果)
実施例 1及び 2のァクチユエータ素子は、 蛇腹状に成形された管状のァクチュ エータ素子であり、 表面に凹凸が形成されていない従来のァクチユエータ素子で ある比較例のァクチユエータ素子と比べて、 3 0秒という短時間に従来より大き な屈曲が得られ、 良好であった。 特に、 印加電圧 3 . O Vにおいては、 極率半径 が約 2倍小さく、 従来にない大きな屈曲が得られ、 優れた屈曲を示した。 実施例 3のァクチユエータ素子は、 螺旋状に成形された管状のァクチユエータ 素子であり、 側面に対して凹凸が形成されていない従来のァクチユエータ素子で ある比較例のァクチユエータ素子と比べて、 3 0秒という短時間に従来より大き な屈曲が得られ、 良好であった。 特に、 印加電圧 3 . O Vにおいては、 極率半径 が約 2倍小さく、 従来にない大きな屈曲が得られ、 優れた屈曲を示した。 即ち、 本発明のァクチユエータ素子であるァクチユエ一タ素子が屈曲する方向 に面する表面に凹凸を備え、 前記凹凸が屈曲を容易にするための波形形状を形成 するァクチユエータ素子は、 実施例 1〜3に示すように優れた屈曲を示した。 産業上の利用可能性
本発明のァクチユエータ素子は、 ァクチユエータの駆動部に用いることができ、 従来のァクチユエータ素子に比べて同一電圧での変位量が大きいので、 電気エネ ルギーを機械的エネルギーに変換する効率が高く、 同一電圧でよりァクチユエ一 タとしての大きな駆動力を得ることができる。 また、 前記ァクチユエータ素子は、 変位速度も速いために、 ァクチユエータ素子の金属電極に電圧をかけてから変形 が終了するまでの時間が短いので、 変形の指示に対する応答性が速く、 ァクチュ エータとしての操作性も良好となる。 本発明のァクチユエータ素子が高分子ァクチユエータ素子である場合には、 マ イク口サージェリ一技術におけるピンセット、 ハサミ、 鉗子、 スネア、 レーザメ ス、 スパチュラ、 クリップなどの医療器具、 検査や補修等を行う各種センサー若 しくは補修用工具など、 健康器具、 湿度計、 湿度計コントロール装置、 ソフトマ ュュピュレーター、 水中バルブ、 ソフト運搬装置などの工業用機器、 金魚などの 水中モービル、 または動く釣り餌や推進ヒレなどのホビー用品などの水中で用い られる物品についても好適に使用することができる。 また、 前記ァクチユエータ素子は、 多数の部品を必要としないために、 構造が 簡単であり、 屈曲が大きく、 しかも軽量であることから、 位置決め装置、 姿勢制 御装置、 昇降装置、 搬送装置、 移動装置、 調節装置、 調整装置、 誘導装置、 関 節装置、 及び押圧装置として好適である。

Claims

請 求 の 範 囲
1 . ァクチユエータ素子が屈曲する方向に面する表面に凹凸を備え、 前記凹凸 が屈曲を容易にするための波形形状を形成するァクチユエータ素子。
2 . 固体電解質層上に金属層を備え、 該金属層が前記ァクチユエータ素子の外側 面を形成する請求の範囲 1に記載のァクチユエータ素子。
3 . 前記ァクチユエータ素子の形状が管状である請求の範囲 1に記載のァクチュ エータ素子。 '
4 . 表面の凹凸が蛇腹状であるァクチユエータ素子。
5 . 固体電解質層上に金属層を備え、 該金属層が前記ァクチユエータ素子の外 側面を形成する請求の範囲 4に記载のァクチユエータ素子。
6 . 前記ァクチユエータ素子の形状が管状である請求の範囲 4に記載のァクチュ エータ素子。
7 . 表面の凹凸が螺旋状に形成されたァクチユエータ素子。
8 . 固体電解質層上に金属層を備え、 該金属層が前記ァクチユエータ素子の外 側面を形成する請求の範囲 7に記載のァクチユエータ素子。
9 . 前記ァクチユエータ素子の形状が管状である請求の範囲 7に記載のァクチュ エータ素子。
1 0 . ァクチユエータ素子の製造方法であって、
イオン交換樹脂成形品にワイヤーを捲きつけることのより表面に螺旋状の凹凸を 設ける工程、
この凹凸を設けたイオン交換樹成形品に金属錯体を吸着させる工程、 前記イオン 交換樹脂成形品に吸着された金属錯体に還元剤を作用させることにより前記ィォ ン交換樹脂の表面に金属を析出させる工程、 及び
金属が析出したイオン交換樹脂を洗浄液で洗浄する工程
を含むァクチユエータ素子の製造方法。
1 1 . ァクチユエータ素子が屈曲する方向に面する表面に凹凸を備え、 前記 ffl凸 が屈曲を容易にするための波形形状を形成するァクチユエータ素子を駆動部に用 いた位置決め装置、 姿勢制御装置、 昇降装置、 搬送装置、 移動装置、 調節装置、 調整装置、 誘導装置、 または関節装置。
1 2 . ァクチユエータ素子が屈曲する方向に面する表面に凹凸を備え、 前記凹 凸が屈曲を容易にするための波形形状を形成するァクチユエータ素子を押圧部に 用いた押圧装置。
PCT/JP2003/011959 2002-09-20 2003-09-19 駆動体及びその製造方法 WO2004026758A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003264504A AU2003264504A1 (en) 2002-09-20 2003-09-19 Driver and method of producing the same
JP2004537991A JP4575774B2 (ja) 2002-09-20 2003-09-19 駆動体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002274929 2002-09-20
JP2002-274929 2002-09-20

Publications (1)

Publication Number Publication Date
WO2004026758A1 true WO2004026758A1 (ja) 2004-04-01

Family

ID=32025017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011959 WO2004026758A1 (ja) 2002-09-20 2003-09-19 駆動体及びその製造方法

Country Status (3)

Country Link
JP (1) JP4575774B2 (ja)
AU (1) AU2003264504A1 (ja)
WO (1) WO2004026758A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025507A (ja) * 2004-07-07 2006-01-26 Daikin Ind Ltd 高分子アクチュエータ
JP2009077618A (ja) * 2007-06-21 2009-04-09 Panasonic Electric Works Co Ltd 電気的伸縮機構及びアクチュエータ
WO2013122047A1 (ja) * 2012-02-14 2013-08-22 国立大学法人信州大学 ゲルアクチュエータ及びその製造方法
JP2016140407A (ja) * 2015-01-30 2016-08-08 国立研究開発法人産業技術総合研究所 カテーテルシステム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284750A (ja) * 1993-03-29 1994-10-07 Nippondenso Co Ltd 積層静電アクチュエータ
JPH08131545A (ja) * 1994-11-10 1996-05-28 Terumo Corp 電気伝導路を有する体内挿入具およびその製造方法
JPH08216876A (ja) * 1995-02-14 1996-08-27 Nippondenso Co Ltd 管内移動装置
JPH1193827A (ja) * 1997-09-18 1999-04-06 Toshiba Corp 機能素子およびアクチュエータ
EP0943402A2 (en) * 1998-02-20 1999-09-22 Agency Of Industrial Science And Technology, Ministry Of International Trade And Industry Polymeric actuators and process for producing the same
US6013024A (en) * 1997-01-20 2000-01-11 Suzuki Motor Corporation Hybrid operation system
JP2000133854A (ja) * 1998-10-27 2000-05-12 Matsushita Electric Works Ltd アクチュエータ
JP2003266392A (ja) * 2002-03-15 2003-09-24 Rigaku Corp 磁界に応答する流体を用いた運動装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779026A (ja) * 1993-06-30 1995-03-20 Tokin Corp 圧電アクチュエータ及びその製造方法
JPH0775356A (ja) * 1993-09-02 1995-03-17 Olympus Optical Co Ltd メカノケミカルアクチュエータ
JPH07135345A (ja) * 1993-11-09 1995-05-23 Casio Comput Co Ltd 圧電素子
JPH10258022A (ja) * 1997-01-20 1998-09-29 Suzuki Motor Corp ハイブリッドオペレーションシステム
JP3030361B2 (ja) * 1998-03-30 2000-04-10 工業技術院長 高分子電解質アンモニウム誘導体
JP2961125B2 (ja) * 1998-02-20 1999-10-12 工業技術院長 高分子アクチュエータの製造方法
DE10054247C2 (de) * 2000-11-02 2002-10-24 Danfoss As Betätigungselement und Verfahren zu seiner Herstellung
JP3886373B2 (ja) * 2001-12-18 2007-02-28 旭硝子エンジニアリング株式会社 高分子浸透膜組立体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284750A (ja) * 1993-03-29 1994-10-07 Nippondenso Co Ltd 積層静電アクチュエータ
JPH08131545A (ja) * 1994-11-10 1996-05-28 Terumo Corp 電気伝導路を有する体内挿入具およびその製造方法
JPH08216876A (ja) * 1995-02-14 1996-08-27 Nippondenso Co Ltd 管内移動装置
US6013024A (en) * 1997-01-20 2000-01-11 Suzuki Motor Corporation Hybrid operation system
JPH1193827A (ja) * 1997-09-18 1999-04-06 Toshiba Corp 機能素子およびアクチュエータ
EP0943402A2 (en) * 1998-02-20 1999-09-22 Agency Of Industrial Science And Technology, Ministry Of International Trade And Industry Polymeric actuators and process for producing the same
JP2000133854A (ja) * 1998-10-27 2000-05-12 Matsushita Electric Works Ltd アクチュエータ
JP2003266392A (ja) * 2002-03-15 2003-09-24 Rigaku Corp 磁界に応答する流体を用いた運動装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025507A (ja) * 2004-07-07 2006-01-26 Daikin Ind Ltd 高分子アクチュエータ
JP4661110B2 (ja) * 2004-07-07 2011-03-30 ダイキン工業株式会社 高分子アクチュエータ
JP2009077618A (ja) * 2007-06-21 2009-04-09 Panasonic Electric Works Co Ltd 電気的伸縮機構及びアクチュエータ
WO2013122047A1 (ja) * 2012-02-14 2013-08-22 国立大学法人信州大学 ゲルアクチュエータ及びその製造方法
JPWO2013122047A1 (ja) * 2012-02-14 2015-05-11 国立大学法人信州大学 ゲルアクチュエータ及びその製造方法
US10096762B2 (en) 2012-02-14 2018-10-09 Shinshu University Gel actuator and method for producing same
JP2016140407A (ja) * 2015-01-30 2016-08-08 国立研究開発法人産業技術総合研究所 カテーテルシステム

Also Published As

Publication number Publication date
JP4575774B2 (ja) 2010-11-04
AU2003264504A1 (en) 2004-04-08
JPWO2004026758A1 (ja) 2006-01-12

Similar Documents

Publication Publication Date Title
US7169822B2 (en) Polymeric actuator
US7223329B2 (en) Active slender tubes and method of making the same
US6109852A (en) Soft actuators and artificial muscles
US20090082723A1 (en) Medical devices and methods for their fabrication and use
JP3030361B2 (ja) 高分子電解質アンモニウム誘導体
JP2961125B2 (ja) 高分子アクチュエータの製造方法
US7064473B2 (en) Actuator film material, actuator film and actuator using the same
JP5052777B2 (ja) 高分子アクチュエータ集合体、その製造方法、およびその作動方法
JP2017024117A (ja) 螺旋変形可能なソフトデバイス、及びこれを用いたロボットシステム
JP4646530B2 (ja) アクチュエータ素子及び駆動方法
Wang et al. Highly flexible, large-deformation ionic polymer metal composites for artificial muscles: Fabrication, properties, applications, and prospects
JP3646166B2 (ja) アクチュエータ素子の製造方法
WO2004026758A1 (ja) 駆動体及びその製造方法
JP4154474B2 (ja) アクチュエータ素子の製造方法
JP2005039995A (ja) 可撓性素子及びその用途
JPH11169394A (ja) 金属電極を表面に有する人工筋肉体
JP4551673B2 (ja) イオン交換樹脂成型品及びこれを用いたアクチュエータ素子
JP4288324B2 (ja) 高分子電解質構造体への導電性金属パターン形成方法を利用して得られたアクチュエーター素子
WO2005001406A1 (ja) 可撓性素子
Kubo et al. Simultaneous 3d forming and patterning method of realizing soft ipmc robots
JP2008099551A (ja) 磁場応答固体高分子複合体およびアクチュエータ素子
JP5604676B2 (ja) 高分子アクチュエーター及びその製造方法
WO2004077654A1 (ja) アクチュエータ素子
JPH1044082A (ja) 首振り機構および多関節構造

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004537991

Country of ref document: JP

122 Ep: pct application non-entry in european phase