WO2004025641A1 - Method of producing optical recording medium-use original and method of producing optical recording medium - Google Patents

Method of producing optical recording medium-use original and method of producing optical recording medium Download PDF

Info

Publication number
WO2004025641A1
WO2004025641A1 PCT/JP2003/011668 JP0311668W WO2004025641A1 WO 2004025641 A1 WO2004025641 A1 WO 2004025641A1 JP 0311668 W JP0311668 W JP 0311668W WO 2004025641 A1 WO2004025641 A1 WO 2004025641A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording medium
laser beam
optical recording
master
virtual
Prior art date
Application number
PCT/JP2003/011668
Other languages
French (fr)
Japanese (ja)
Inventor
Syuji Tsukamoto
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to AU2003266510A priority Critical patent/AU2003266510A1/en
Publication of WO2004025641A1 publication Critical patent/WO2004025641A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits
    • G11B7/24088Pits for storing more than two values, i.e. multi-valued recording for data or prepits

Definitions

  • the present invention relates to a method for manufacturing an optical recording medium master and a method for manufacturing an optical recording medium.
  • the present invention relates to a method for manufacturing a master for an optical recording medium and a method for manufacturing an optical recording medium. More specifically, 2N types of pits having different sizes are provided in a virtual recording cell of the optical recording medium. Assignment, 2N types of pits with different sizes are assigned to the manufacturing method of the master for the optical recording medium and the virtual recording cell that can change the light reflectance of the virtual recording cell to 2N steps, The present invention relates to a method for manufacturing an optical recording medium in which the light reflectance of a cell is changed in 2N steps.
  • optical recording media such as CDs and DVDs have been widely used as recording media for recording digital data.
  • These optical recording media include CD-ROMs, DVD-ROMs, and other types of optical recording media (ROM-type optical recording media) that cannot write or rewrite data, and CD-R and DVD-R.
  • ROM-type optical recording media ROM-type optical recording media
  • Optical recording media that can write data but cannot rewrite data write-once optical recording media
  • optical recording media that can rewrite data such as CD-RW and DVD-RW ( Rewritable optical recording medium).
  • a data recording method a method of modulating data to be recorded to the length of a pit and a blank area along a track is widely used.
  • the present invention provides 2N kinds of pits having different sizes to the virtual recording cells of the optical recording medium, and can change the light reflectance of the virtual recording cells to 2N steps.
  • the purpose is to provide a method for manufacturing a master.
  • Another object of the present invention is to provide a method for manufacturing an optical recording medium in which 2 N kinds of different-sized pits are assigned to virtual recording cells, and the light reflectance of the virtual recording cells is changed in 2N steps. To provide.
  • the inventor of the present invention has conducted intensive studies in order to achieve the object of the present invention.
  • the exposure power of the laser beam irradiated for exposing the photoresist master is changed, the laser to the photoresist master is changed.
  • the relationship between the irradiation time of the beam and the light reflectance of the virtual recording cell of the optical recording medium changes, and the higher the level of the exposure power of the laser beam irradiated to expose the photoresist master, the higher the optical recording medium Highest virtual recording cell
  • the present invention is based on such findings, and according to the present invention, the object of the present invention is to form 2N kinds of pits in a plurality of virtually set virtual recording cells,
  • a method for producing an optical recording medium master for producing an optical recording medium on which the above data is recorded comprising irradiating a laser beam, exposing the photoresist master, and forming a pattern on the photoresist master.
  • Forming an optical recording medium master by transferring the pattern formed on the photoresist master, and forming a maximum optical reflection allocated to the virtual recording cell of the optical recording medium.
  • the exposure power of the laser beam applied to the photoresist master is set to a higher level as the maximum reflectance assigned to the virtual recording cell of the optical recording medium is higher.
  • the exposure power of the laser beam for irradiating the photoresist master is set to a lower level.
  • the photo height is higher.
  • the exposure power of the laser beam irradiating the resist master is set to a high level, and satisfies the maximum relative light reflectance RR a H and the minimum relative light reflectance RR h H 1S 100-RR a H and RR h H It is set as follows.
  • the exposure power of the laser beam for irradiating the photoresist master is set to a lower level.
  • the maximum relative light reflectance RRaH and the minimum relative light reflectance RRhH are set so as to satisfy 100—RRaL> RRhL.
  • the inventor formed pits of the same size in virtual recording cells of an optical recording medium and recorded data of the same recording level.
  • the exposure power and / or the pulse width of the exposure power of the laser beam applied to the photoresist master regardless of the linear velocity of the laser beam applied to the photoresist master. It has been found that two or more bits of data in each virtual recording cell can be recorded.
  • the present invention is based on such findings, and according to the present invention, the object of the present invention is also to form 2N kinds of pits in a plurality of virtual recording cells that are virtually set, and to provide two bits.
  • Forming an optical recording medium master by transferring the pattern formed on the photoresist master, and forming a virtual recording cell of the same size on the virtual recording cell of the optical recording medium.
  • the laser beam applied to the photo-resist master is used. This is achieved by a method for manufacturing a master for an optical recording medium, wherein the exposure power of the beam and / or the pulse width of the exposure power are set to be substantially the same.
  • a pit of the same size is formed in the virtual recording cell of the optical recording medium, and data of the same recording level is formed.
  • the exposure power and the pulse width of the exposure power of the laser beam applied to the photoresist master are substantially the same regardless of the linear velocity of the laser beam applied to the photoresist master. As described above, the power of the laser beam applied to the photoresist master is controlled.
  • the linear velocity V of the laser beam irradiating the photoresist master, the length L of the virtual recording cell, and the photo necessary to substantially saturate the light reflectance of the virtual recording cell.
  • the exposure power level of the laser beam irradiating the photoresist master and the length of the virtual recording cell so that the irradiation time T s of the laser beam irradiating the resist master satisfies T s ⁇ L / V. L and the linear velocity V of the laser beam applied to the photoresist master are set.
  • Another object of the present invention is to manufacture an optical recording medium in which 2N kinds of pits are formed in a plurality of virtual recording cells virtually set on a substrate, and data of 2 bits or more are recorded. Irradiating a laser beam to expose a photoresist master, forming a pattern on the photoresist master, and transferring the pattern formed on the photoresist master, A step of producing an optical recording medium master, and a step of transferring the pattern transferred to the optical recording medium master to produce the substrate, wherein the maximum allocated to the virtual recording cells of the optical recording medium is provided.
  • a method for manufacturing an optical recording medium comprising: setting an exposure power of the laser beam for irradiating the photoresist master according to a light reflectance and a Z or a minimum light reflectance. It is made.
  • the exposure power of the laser beam applied to the photoresist master is set to a higher level as the maximum reflectance assigned to the virtual recording cell of the optical recording medium is higher.
  • the higher the maximum reflectance assigned to the virtual recording cell of the optical recording medium the higher the exposure power of the laser beam applied to the photoresist master is set to a higher level. Is done.
  • the higher the maximum relative reflectance assigned to the virtual recording cell of the optical recording medium the higher the exposure power of the laser beam applied to the photo resist master is set to a higher level. It is set to satisfy the maximum relative light reflectance RR a H and the minimum relative light reflectance RR h H 110 0-RR a H ⁇ RR h H.
  • the exposure power of the laser beam for irradiating the photoresist master is set to a lower level
  • the maximum relative light reflectance RRaH and the minimum relative light reflectance RRhH are set so as to satisfy 100—RRaL> RRhL.
  • the object of the present invention is also to manufacture an optical recording medium in which 2N kinds of pits are formed in a plurality of virtual recording cells virtually set on a substrate and data of 2 bits or more is recorded.
  • the exposure power of the laser beam and / or the pulse width of the exposure power are set to be substantially the same.
  • a laser is applied to the photoresist master. Laser irradiating the photoresist master so that the exposure power of the laser beam and the pulse width of the exposure beam are substantially the same regardless of the linear velocity of the beam. Beam power Controlled.
  • the linear velocity V of the laser beam irradiating the photoresist master, the length L of the virtual recording cell, and the light reflectance required to substantially saturate the light reflectance of the virtual recording cell are set.
  • FIG. 1 is a schematic perspective view of an optical recording medium according to a preferred embodiment of the present invention.
  • FIG. 2 is an enlarged schematic cross-sectional view of a portion surrounded by a circle of the optical recording medium shown in FIG.
  • FIG. 3 shows the pits P a, P b, P c, P d, P e, P f, and P h formed in the plurality of virtual recording cells S of the optical recording medium 1 and the respective virtual recording cells S.
  • 4 is a diagram illustrating a relationship between light reflectances.
  • Figure 4 is preferably t Figure 5 is a diagram showing a cutlet coating machine used in the method of manufacturing a master for optical recording medium according to embodiment (a) to FIG. 5 of the present invention (f), the optical recording FIG. 4 is a process chart showing a production process of a medium master.
  • 6 (a) to 6 (c) are process diagrams showing a manufacturing process of the optical recording medium 1.
  • FIG. 7 is a diagram showing a modulation pattern of the power of a laser beam applied to a virtual region of a photosensitive material layer of a photoresist master corresponding to a virtual recording cell of an optical recording medium.
  • FIG. 8 is a process chart showing a method of forming a minimum pit Pa in a virtual recording cell of an optical recording medium.
  • FIG. 9 is a process chart showing a method of forming a maximum pit Ph in a virtual recording cell of an optical recording medium.
  • Fig. 10 shows the time of irradiating the laser beam with the power set to the exposure power to the virtual area corresponding to the virtual recording cell of the photosensitive material layer of the photoresist master, and using the photoresist master.
  • 7 is a graph showing a relationship between the optical reflectance of a virtual recording cell of the manufactured optical recording medium.
  • Fig. 11 shows the irradiation time of the laser beam when the exposure power w of the laser beam irradiating the virtual area corresponding to the virtual recording cell of the photosensitive material layer of the photoresist master was changed
  • the photo resist 6 is a graph showing the relationship between the master disk and the optical reflectance of a virtual recording cell of an optical recording medium manufactured.
  • FIG. 12 is a view showing a virtual region of a photosensitive material layer of a photoresist master corresponding to a virtual recording cell of an optical recording medium used in a method of manufacturing an optical recording medium master according to another preferred embodiment of the present invention.
  • 6 is a diagram showing a modulation pattern of the power of an irradiated laser beam.
  • Figure 13 shows the irradiation time of the laser beam when the exposure power w of the laser beam applied to the virtual area corresponding to the virtual recording cell of the photosensitive material layer of the photoresist master was changed
  • the photoresist master 5 is a graph showing the relationship between the optical recording medium and the light reflectance of the virtual recording cell of the manufactured optical recording medium.
  • FIG. 1 is a partially cut-away schematic perspective view of an optical recording medium
  • FIG. 2 is a substantially enlarged perspective view of a circled portion in FIG.
  • the optical recording medium 1 is configured as a CD-ROM type optical recording medium, and has a light transmitting substrate. It comprises a plate 11, a reflective layer 22 and a protective layer 23 provided on the light-transmitting substrate 11.
  • the light-transmitting substrate 11 is formed in a disk shape using a light-transmitting resin.
  • the light-transmitting resin used for forming the light-transmitting substrate 11 is not particularly limited as long as it has a high transmittance with respect to a laser beam used for reproducing data.
  • polycarbonate is preferably used.
  • the lower surface of the light-transmitting substrate 11 constitutes a light incident surface on which a laser beam is incident.
  • the upper surface of the light-transmitting substrate 11 has a central portion.
  • a plurality of eight different sizes of pits P a, P b, P c, P d, P e, P f, P g, and P h are formed spirally from the vicinity to the outer edge. I have.
  • the reflective layer 22 is a thin film layer for reflecting a laser beam transmitted through the light-transmitting substrate 11 when reproducing data recorded on the optical recording medium 1, and mainly includes a metal such as gold or silver. It is formed by the sputtering method used as a component.
  • a protective layer 23 is formed so as to cover the surface of the reflective layer 22.
  • the light-transmitting substrates 11 each have a thickness of about 1.2 mm.
  • the track of the optical recording medium 1 is virtually divided into a plurality of virtual recording cells S, S,... Having a predetermined length. Constitute a recording unit for recording.
  • FIG. 3 shows the pits Pa, Pb, Pc, Pd, Pe, Pf, Pg, Ph formed on the plurality of virtual recording cells S of the optical recording medium 1, and each virtual recording.
  • 6 is a diagram illustrating a relationship between light reflectances of a cell S.
  • the virtual recording cells S, S,... are virtually set so that the length L in the direction along the track is smaller than the spot diameter D of the laser beam. ing.
  • 3-bit data is recorded on the optical recording medium 1.
  • the optical recording medium 1 configured as described above is manufactured as follows.
  • an optical recording medium master ie, a stamper, for producing the light-transmitting substrate 11 is produced.
  • FIG 4 is a diagram showing the force Tsu coating machine used in the method of manufacturing the master for such an optical recording medium to embodiment c Figure 4 of the present invention, Chikara' according to this embodiment
  • the scanning machine 100 includes a laser generator 102 for generating a laser beam 101, an optical modulator (EOM: Electro Optic Modulator) 103 using an electro-optic effect, and a beam splitter 104, 1 , A light modulation unit 105, an optical head 107, and a turntable 108. On the turntable 108, a photo resist master 110 is placed.
  • EOM Electro Optic Modulator
  • the photoresist master 110 is a disk-shaped master having a glass substrate 110a and a photosensitive material layer 110b laminated on the glass substrate 110a, and is used for an optical recording medium. Used as a mold for producing masters.
  • the optical modulation unit 105 includes a lens 105a, an optical modulator 105b, and a lens 105c, and the optical head 107 includes: A mirror 107a and a lens 107b are provided.
  • the laser beam 101 is focused on the photosensitive material layer 110 b of the photo resist master 110 as follows, and The master layer 110 is exposed to the light-sensitive material layer 110b, and as a result, the latent image corresponding to the pit Pk to be formed in the virtual recording cell S 110c force Photosensitive material layer 1 Formed as 10b.
  • a pulse signal train 105 d corresponding to the pattern of the latent image 110 c to be formed on the photosensitive material layer 110 b of the photoresist master 110 is sent to the light modulation unit 105. While input to the optical modulator 105 b, the turntable 108 on which the photoresist master 110 is placed is rotated, and the optical head 107 is moved to the photoresist master 110. Move in the radial direction of.
  • the power of the laser beam 101 generated by the laser generator 102 was modulated by the optical modulator 103 to a predetermined power suitable for the exposure of the photosensitive material layer 110b. After that, it is reflected by the beam splitter 104, the beam splitter 106 and the mirror 107a, and is condensed on the photo resist master 110 by the lens 107b. . As a result, the pulsed laser beam 101 is irradiated onto the photosensitive material layer 110 b of the photo resist master 110, and a latent image corresponding to the pit P k to be formed in the virtual recording cell S is formed. 110c force formed on the photosensitive material layer 110b.
  • FIGS. 5 (a) to 5 (f) are process drawings showing the process of manufacturing an optical recording medium master.
  • a glass substrate 110a and a photosensitive material layer 1 having a thickness of 100 to 150 nm formed on the glass substrate 110a are formed.
  • a photoresist master 110 having 10b is prepared.
  • An adhesive layer for improving the adhesiveness may be formed between the glass substrate 110a and the photosensitive material layer 110b.
  • the laser beam 101 whose power has been modulated by the optical modulator 105b, the power lens 107b, and the photo-resist master 1
  • the area of the photosensitive material layer 110 Ob irradiated with the laser beam 101 after being focused on the 10 photosensitive material layer 110 b is exposed by the laser beam 101.
  • the width and depth of the exposed region of the photosensitive material layer 110b are determined according to the irradiation energy of the laser beam 101.
  • a virtual recording cell S is formed on the photosensitive material layer 110b.
  • a latent image 110c corresponding to the power pit Pk is formed.
  • a developing solution such as a sodium hydroxide solution is sprayed on the exposed area of the photosensitive material layer 110b of the photoresist master 110, as shown in FIG. 5 (c).
  • the latent image 110c formed on the photosensitive material layer 110b is developed to form a concave portion 202 corresponding to the latent image 110c.
  • FIG. 1 When a plurality of recesses 202 corresponding to the pits P k to be formed in the virtual recording cell S are formed in the photosensitive material layer 110 b in this way, FIG. As shown in (1), a thin metal film 203 such as nickel is formed on the developed photosensitive material layer 110b by electroless plating or vapor deposition.
  • the metal thin film 203 is formed by using a thick film with the surface of the metal thin film 203 as a cathode and nickel or the like as a cathode.
  • a metal film 204 having a thickness of m is formed.
  • the photoresist master 110 is peeled off from the metal thin film 203, washed and subjected to necessary processing, and as shown in FIG. 5 (f), the optical recording medium master 210 is removed. 5 is produced.
  • the master for optical recording medium 205 produced in this manner has a pattern of a plurality of recesses 202 formed in the photosensitive material layer 110 b. Is transferred to form a plurality of convex portions 206. Further, using the optical recording medium master 205, the optical recording medium 1 in which the pit Pk is formed in each virtual recording cell S is manufactured as follows.
  • 6 (a) to 6 (c) are process diagrams showing a manufacturing process of the optical recording medium 1.
  • a light transmissive substrate 11 having a thickness of about 1.2 mm is injected by an injection molding method using an optical recording medium master 205. Molded.
  • the light-transmitting substrate 11 on which a plurality of pits are formed is manufactured.
  • a reflection layer 22 is formed on the surface of the light transmitting substrate 11 on which the pits Pk are formed.
  • the reflective layer 22 can be formed, for example, by a vapor phase growth method using a chemical species containing the constituent element of the reflective layer 22. Examples of the vapor growth method include a vacuum evaporation method and a sputtering method.
  • a protective layer 23 is formed on the surface of the reflective layer 22.
  • the protective layer 23 is formed, for example, by dissolving an acrylic ultraviolet curable resin or an epoxy ultraviolet curable resin in a solvent to prepare a resin solution, and spin-coating or the like on the reflective layer 22. It can be formed by applying a resin solution.
  • the optical recording medium 1 in which the pit Pk is formed in each virtual recording cell S is manufactured.
  • the pit pk to be formed in the virtual recording cell S of the optical recording medium 1 is obtained by transferring the plurality of convex portions 206 formed on the optical recording medium master 205,
  • the plurality of projections 206 formed on the optical recording medium master 205 are formed on the photosensitive material layer 110b of the photoresist master 110. Since the recesses 202 are transferred and formed, in order to form eight kinds of pits having different sizes on the optical recording medium 1, the photo-resist master 110 can be used as a light-sensitive medium.
  • a plurality of recesses 202 having sizes corresponding to the pits Pk having different sizes to be formed in the virtual recording cell S of the optical recording medium 1 may be formed. is necessary.
  • the width and depth of the exposed region of the photosensitive material layer 110b that is, the size of the concave portion 202 is irradiated to the region of the photosensitive material layer 110b. Determined by the energy of the laser beam 101 8
  • FIG. 7 shows the power of the laser beam 101 applied to the virtual area 3 'of the photosensitive material layer 11013 of the photoresist master 110 corresponding to the virtual recording cell S of the optical recording medium 1.
  • 6 is a diagram illustrating a modulation pattern. As shown in FIG.
  • the power of 0 1 is selectively modulated into the exposure power and the base power P b, and corresponds to the size of the concave portion 202 to be formed in the virtual region S ′ of the photosensitive material layer 110 b.
  • the time Ta, Tb, Tc, Td, Te, Tf, Tg, Th in which the power of the laser beam is set to the exposure power ⁇ PH is set.
  • the modulation pattern of the power of the laser beam 101 corresponds to the waveform of the pulse signal train 105 d input to the optical modulator 105 b.
  • FIG. 8 is a process chart showing a method of forming the minimum pit Pa in the virtual recording cell S of the optical recording medium 1.
  • the pulse width of the laser beam 101 to be irradiated on the photosensitive material layer 110b is set to the minimum width Ta.
  • the laser beam 101 is irradiated onto the virtual region s ′ of the photosensitive material layer 110 b of the photo resist master 110.
  • the pulse width of the laser beam 101 is set to the minimum width Ta
  • the virtual area S ′ of the photosensitive material layer 110 b of the photoresist master 110 is irradiated.
  • the energy of the laser beam 101 is minimum, and therefore the size of the latent image 110c formed on the photosensitive material layer 110b is also minimum.
  • the latent image 110 c formed in the virtual area S ′ of the photosensitive material layer 110 b of the photo resist master 110 is developed, and the photosensitive material In the virtual region S ′ of the material layer 110 b, the smallest concave portion 202 is formed.
  • a metal thin film (not shown) of nickel or the like is formed on the developed photosensitive material layer 110b by an electroless plating or a vapor deposition method, and the metal film is further formed on the metal thin film.
  • the photoresist master 110 is peeled off from the metal thin film, washed and subjected to necessary processing, and as shown in FIG. 8 (d), the optical recording medium master 205 is formed. It is made.
  • the optically transparent substrate 11 having a thickness of about 1.2 mm is injection-molded by injection molding using the optical recording medium master 205, as shown in FIG. 8 (e). Then, the light-transmitting substrate 11 on which the minimum pit Pa is formed is manufactured.
  • the minimum pit Pa can be formed in the virtual recording cell S of the optical recording medium 1, and the maximum light reflectance can be assigned to the virtual recording cell S.
  • FIG. 9 is a process chart showing a method of forming a maximum pit Ph in a virtual recording cell of an optical recording medium.
  • the pulse width of the laser beam 101 to be irradiated on the photosensitive material layer 110b is set to the maximum width Th.
  • the laser beam is applied to the virtual region S ′ of the photosensitive material layer 110 b of the photo resist master 110.
  • the pulse width of the laser beam 101 is set to the maximum width Th, so that the virtual region S ′ of the photosensitive material layer 110 b of the photoresist master 110 is irradiated.
  • the energy of the laser beam 101 is maximum, and therefore, the size of the latent image 110c formed on the photosensitive material layer 110b is also maximum.
  • the latent image 110 c formed in the virtual region S ′ of the photosensitive material layer 110 b of the photoresist master 110 is developed, and the photosensitive material TJP2003 / 011668
  • the smallest concave portion 202 is formed.
  • a metal thin film (not shown) of nickel or the like is formed on the developed photosensitive material layer 11 Ob by an electroless plating or a vapor deposition method, and a metal film is further formed on the metal thin film.
  • the photoresist master 110 is peeled off from the metal thin film, washed and subjected to necessary processing, and as shown in FIG. 8 (d), the master for optical recording medium 205 is formed. Is produced.
  • a light-transmitting substrate 11 having a thickness of about 1.2 mm is injection-molded by an injection molding method using the optical recording medium master 205, as shown in FIG. 8 (e). Then, the light-transmitting substrate 11 on which the maximum pit Ph is formed is produced.
  • the pulse width of the laser beam 01 irradiating the virtual region S ′ of the photosensitive material layer 110 b of the photo resist master 110 to the maximum width Th, the light width can be increased.
  • the maximum pit Ph can be formed in the virtual recording cell S of the recording medium 1, and the minimum light reflectance can be assigned to the virtual recording cell S.
  • the pulse widths of the laser beam 101 irradiating the virtual region S ′ of the photosensitive material layer 110 b of the photo resist master 110 are represented by T b, T c, and T b, respectively.
  • T b, T c, and T b the pulse widths of the laser beam 101 irradiating the virtual region S ′ of the photosensitive material layer 110 b of the photo resist master 110 are represented by T b, T c, and T b, respectively.
  • FIG. 10 shows a laser beam 1 1 having a power set to the exposure power w in a virtual area S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110 b of the photo resist master 110.
  • 5 is a graph showing the relationship between the time of irradiating 0 and the light reflectance of the virtual recording cell S of the optical recording medium 1 manufactured using the photoresist master 11.
  • the laser beam 110 whose power is set to the exposure power P w Irradiation time was increased Accordingly, that is, as the pulse width of the laser beam 110 increases, the pit P k formed in the virtual recording cell s of the optical recording medium 1 increases, and the light reflectance of the virtual recording cell s Drops.
  • the time during which the laser beam 101 set to the exposure power is applied to the virtual area S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110 b of the photo resist master 110 is set.
  • the light reflectance Ra of the virtual recording cell S at the shortest time is assigned as the light reflectance of the virtual recording cell S having the maximum light reflectance
  • the laser beam 1 set to the exposure power 1 0 1 irradiates the virtual area S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110 b of the photo resist master 110, and the time when it is Th is the longest.
  • the reflectance R h is assigned as the light reflectance of the virtual recording cell S having the minimum light reflectance, and the light reflectance between the maximum light reflectance Ra and the minimum light reflectance R h is set to seven. And determine the six different types of light reflectance R b, R c, R d, R e, R i, and R g, and determine the pit P k Are assigned as the light reflectances of the virtual recording cells S having different sizes, and the light reflectances of the virtual recording cells S are defined as Ra, Rb, Rc, Rd, Re, Rf, Rg, and R.
  • the irradiation time of the laser beam 101 with the exposure power to the virtual area S ′ of the photosensitive material layer 110 b is determined, and the virtual recording cell of the optical recording medium 1 is determined.
  • the laser beam 10 1 is applied to the virtual area S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110 b of the photo resist master 110. Irradiation makes it possible to record 3-bit data in each virtual recording cell S of the optical recording medium 1.
  • the maximum irradiation time Tma X of the laser beam 101 to the virtual region S of the photosensitive material layer 110 of the photoresist master 110, and Tma X is LZV (where L is the photosensitive material layer).
  • the length of the virtual area S ′ corresponding to the virtual recording cell S of 110b, that is, the length of the virtual recording cell S, and V is the linear velocity of the force-setting machine 100.
  • the irradiation time T h of the laser beam 101 for forming the maximum pit P h on the virtual recording cell S is set so that the virtual recording cell S has the minimum light reflectance R h. It must be set below T max.
  • the light reflectance of the virtual recording cell S of the optical recording medium 1 is determined by the laser beam set to the exposure power to the virtual area 3 ′ of the photosensitive material layer 111).
  • the irradiation time of 101 was within the area A shorter than the first predetermined time, the irradiation power of i 7 was not changed much even if the irradiation time of the laser beam 101 was increased.
  • the irradiation time of the laser beam 101 is within the region B that is equal to or longer than the first predetermined time and shorter than the second predetermined time, the irradiation time of the laser beam 101 increases substantially as the irradiation time of the laser beam 101 increases.
  • the irradiation time of the laser beam 101 set to the exposure power falls within the region C for the second predetermined time or more, even if the irradiation time of the laser beam 101 increases, The light reflectivity reaches R s without much change. This is because the photosensitive material layer 110b of the photo-resist master 110 changes little by little immediately after being irradiated with the laser beam 101 set at the exposure power, and the exposure power After the first predetermined time has elapsed from the start of the irradiation of the laser beam 101, the degree of deterioration of the photosensitive material layer 110b is increased according to the increase in the irradiation time of the laser beam 101.
  • the irradiation time of the laser beam 101 is increased, and the degree of deterioration of the photosensitive material layer 110b hardly increases even after the second predetermined time has elapsed. This is because it has the property of:
  • the light reflectance in the area B becomes By using the light reflectance in the area A and the area C as compared with the case where pits having different sizes are formed in the virtual recording cell S and data of different recording levels are recorded, the virtual recording cell S is used.
  • the laser beam set to the exposure area to the virtual area S ′ of the photosensitive material layer 11 Ob is used. Since it is necessary to greatly change the irradiation time of 101, the light reflectance in the area B shown in FIG.
  • the optical recording time is controlled by controlling the irradiation time of the laser beam 101 set to the exposure power to the virtual area S of the photosensitive material layer 110b so that the rate becomes the assigned value. It is preferable that pits having different sizes are formed in the virtual recording cell s of the medium 1 to record data having different recording levels.
  • the light reflectance in the area B shown in FIG. 10 is assigned as the light reflectance of the virtual recording cell S, and the light reflectance of the virtual recording cell S becomes the assigned value.
  • the virtual recording cell s of the optical recording medium 1 is When pits with different sizes are formed and data with different recording levels are recorded, the difference between the maximum reflectance Ra and the minimum reflectance Rh cannot be made sufficiently large, and as a result, However, it becomes difficult to obtain a reproduced signal having a sufficiently wide dynamic range.
  • the maximum light reflectance Ra of the virtual recording cell S is as close as possible to the light reflectance Ro of the virtual recording cell S where no recording mark is formed, and The light reflectance of each virtual recording cell S is assigned so that the minimum light reflectance R h is as close as possible to the saturated light reflectance R s, and the laser beam 101 set to the exposure power w is exposed to light. It is preferable to determine the minimum value and the maximum value of the time for irradiating the virtual region 3 ′ of the conductive material layer 111> in reproducing a signal having a wide dynamic range.
  • FIG. A virtual area S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110 b of the indicated photo resist master 110 is irradiated with a laser beam 110 whose power is set to the exposure power w.
  • the relationship between the time and the light reflectance of the virtual recording cell S of the optical recording medium 1 produced using the photoresist master 110 changes, and the level of the exposure power w of the laser beam 101 increases.
  • the virtual recording cell S has a different size without changing the irradiation time of the laser beam 101 set to the exposure power. Can be formed to record data having different recording levels.
  • the lower the level of the exposure power w of the laser beam 101 the lower the minimum reflectivity assigned to the virtual recording cell S. Exposure power It is possible to record data of different recording levels by forming pits of different sizes in the virtual recording cell S without greatly changing the irradiation time of the set laser beam 101. Possible It was found that.
  • FIG. 11 shows that the exposure power 1 ⁇ of the laser beam 101 irradiating the virtual area S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110 b of the photoresist master 110 is changed.
  • FIG. 9 is a graph showing the relationship between the irradiation time of the laser beam 101 and the light reflectance of the virtual recording cell s of the optical recording medium 1 manufactured using the photoresist master 110. .
  • the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b is set to a high level
  • the light reflectance of the virtual recording cell S of the recording medium 1 is reduced in a short time after starting the irradiation of the laser beam 101 set at the exposure power, in other words, at a stage where the light reflectance is high.
  • the irradiation time of the laser beam 101 increases, it decreases almost linearly, and at an early stage, in other words, at a stage where the light reflectance does not decrease so much, the irradiation time of the laser beam 101 It is recognized that the light reflectance does not change much even if the laser beam is increased, and eventually reaches the saturated light reflectance Rs.
  • the laser beam used for exposing the photosensitive material layer 110b is exposed.
  • the exposure power w of 101 is set to a low level, optical recording
  • the light reflectance of the virtual recording cell S of the medium 1 is set to a relatively long time after the irradiation of the set laser beam 101 is started. Even when the irradiation time of the laser beam 101 increased, the light reflection did not change much, and when the light reflectance became relatively low, the light reflection increased as the irradiation time of the laser beam 101 increased. Rate decreases almost linearly and the laser beam
  • the irradiation time of 101 increases, it takes a long time until the light reflectance does not change much, and the irradiation time of the laser beam 101 is the first time when the light reflectance is considerably low. It is recognized that the light reflectivity does not change much even if increases.
  • the exposure power of the laser beam 101 used for exposing the photosensitive material layer 110b is set to a high level, even if the maximum light reflectance assigned to the virtual recording cell S is set to a high value, the exposure It is possible to record data with different recording levels by forming pits with different sizes in the virtual recording cell s without greatly changing the irradiation time of the laser beam 101 set in the power section.
  • the maximum light reflectance R a H that can be assigned to the virtual recording cell S and
  • the maximum relative light reflectance R a H (%) and the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b are w (PwL ⁇ PwH)
  • the virtual recording cell S The maximum light reflectance R a L and And the maximum relative light reflectance R R a L (%) satisfies the following equation.
  • the relative light reflectance RR i (%) when the absolute light reflectance is R i is defined by the following equation.
  • RR i (%) ⁇ (R i-R s) / (R o-R s) ⁇ X 100
  • the maximum light reflectance Ra and the maximum relative light reflectance RR a allocated to the virtual recording cell S By setting the level of the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b in accordance with (%), the maximum light reflectance Ra assigned to the virtual recording cell S And the maximum relative light reflectance RR a (%) is set to a high value, the exposure power P Without changing the irradiation time of the laser beam 101 set to w, the pits with different sizes can be formed in the virtual recording cell s, and data with different recording levels can be recorded. A reproduced signal having a wide dynamic range can be obtained.
  • the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b is set to a low level, the minimum light reflectance assigned to the virtual recording cell S is set to a low value.
  • the pits having different sizes are formed in the virtual recording cell S without largely changing the irradiation time of the laser beam 101 set to the exposure power W, so that data having different recording levels can be obtained. Since recording becomes possible, when the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b is w / J, it can be assigned to the virtual recording cell S.
  • the minimum light reflectance R h L and the minimum relative light reflectance RR h L (%) and the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b are (P wL ⁇ PwH) In some cases, the minimum light reflectance R h L that can be assigned to virtual recording cell S Minimum relative reflectance and RR h L (%) would satisfy the following equation.
  • the laser beam 101 used for exposing the photosensitive material layer 11 Ob By setting the level of the exposure power w, even if the minimum light reflectance R h and the minimum relative light reflectance RR h (%) assigned to the virtual recording cell S are set to low values, the exposure power is set.
  • the pits having different sizes can be formed in the virtual recording cell S without greatly changing the irradiation time of the laser beam 101, so that data with different recording levels can be recorded. Thus, it is possible to obtain a reproduced signal having the edge.
  • the exposure power i ⁇ w of the laser beam 101 used for exposing the photosensitive material layer 110b is set to a high level w / in order to increase the maximum light reflectance assigned to the virtual recording cell S
  • the virtual recording cell S The maximum relative light reflectance RRaH and the minimum relative light reflectance RRhH assigned to are determined so as to satisfy the following equation.
  • the maximum relative light reflectance RRaH and the minimum relative light reflectance assigned to the virtual recording cell S By determining RRhH in this manner, when the exposure power w of the laser beam 101 is wH, the irradiation time of the laser beam 101 set to the exposure power w does not need to be largely changed.
  • the virtual recording cell S pits having different sizes are formed, and the maximum relative light reflectance RR aH and the minimum relative light reflectance of the virtual and recording cells S are respectively set within a range where data of different recording levels can be recorded. Relative light reflectance RR h H can be assigned.
  • the exposure power of the laser beam 101 used for exposure of the photosensitive material layer 110b is set to a low level! Set to ⁇
  • the maximum relative light reflectance RRaL and the minimum relative light reflectance RRhL assigned to the virtual recording cell S are determined so as to satisfy the following equation.
  • the exposure power P w of the laser beam 101 used for exposing the photosensitive material layer 110 b is w
  • the maximum relative light reflectance RR a L and the minimum relative light reflectance assigned to the virtual recording cell S are By determining the relative light reflectance RR h L of the laser beam in this manner, the exposure power of the laser beam used to expose the photosensitive material layer 110 b is Even if the irradiation time of the laser beam 101 set at the time is not largely changed, pits having different sizes are formed in the virtual recording cell s so that data having different recording levels can be recorded within a range.
  • Each is a virtual recording cell
  • the exposure power of the laser beam 101 used for exposing the photosensitive material layer 110 b of the photo resist master 110 is selected, and other characteristics, such as the error rate when data is reproduced, are selected. Accordingly, from among the selected laser beam 1 0 1 exposure power / 5 w, the optimum exposure power is determined.
  • the light reflectance between the maximum light reflectance R a and the minimum light reflectance R h is roughly divided into seven equal parts, and six different light reflectances R b, R c, R d, R e, R f and R g are determined, and the data recording levels are assigned as the light reflectivity of the virtual recording cell S, and the light reflectivity of the virtual recording cell S is calculated as Ra, R b, R c, and R d , R e, R f, R g, and R h, and the optimal level of the exposure power w of the laser beam 101 to be applied to the virtual area S ′ of the material layer 110 b.
  • the irradiation time of the laser beam 101 set to the optimum exposure power to the virtual area S 'of the photosensitive material layer 110b is determined for each virtual recording cell S having a different pit size.
  • the exposure condition setting data is generated.
  • the lower the minimum light reflectance R h and the minimum relative light reflectance RRh (%) assigned to the virtual recording cell S the lower the photosensitive material layer 1 of the photo resist master 110. Since the exposure power of the laser beam 101 used for the exposure of 100 b is set to a low level, the minimum light reflectance R h and the minimum relative light reflectance RR h ( %) Is set to a low value, pits of different sizes are formed in the virtual recording cell S without greatly changing the irradiation time of the laser beam 101 set to the exposure power ⁇ . In addition, data of different recording levels can be recorded, and a reproduced signal having a wide dynamic range can be obtained.
  • the laser beam 10 used for exposing the photosensitive material layer 110 b of the photo resist master 110 is used.
  • the exposure power of 1 is set to a high level wf
  • the maximum relative light reflectance RR a H and the minimum relative light reflectance RR h H assigned to the virtual recording cell S satisfy the following equation. Therefore, if the exposure power P w of the laser beam 101 used for exposing the photosensitive material layer 110 b of the photo resist master 110 is P w!
  • the exposure power Even if the irradiation time of the set laser beam 101 is not largely changed, the virtual recording cell S
  • the maximum relative light reflectance RR a H and the minimum relative light reflectance RR h H of the virtual recording cell S should be allocated to the extent that data of different recording levels can be recorded by forming pits of different sizes. Becomes possible.
  • the laser beam 1 used for exposing the photosensitive material layer 110 b of the photo resist master 110 is not used.
  • the exposure power of 1 is set to a low level w L
  • the maximum relative light reflectance RR a L and the minimum relative light reflectance RR h L assigned to the virtual recording cell s satisfy the following formula: as such, since determined, the Photo Regis laser beam 1 0 1 exposure power / 5 used for preparative master 1 first photosensitive material layer 1 1 0 b exposure of 0
  • the pits having different sizes are formed in the virtual recording cell S, and each of the virtual recording cells is within a range where data of different recording levels can be recorded. It is possible to assign a maximum relative light reflectivity RR a L and a minimum relative light reflectivity RR h L of S.
  • FIG. 12 shows a photoresist master 110 corresponding to a virtual recording cell S of an optical recording medium 1 used in a method of manufacturing an optical recording medium master 205 according to another preferred embodiment of the present invention.
  • 4 is a diagram showing a modulation pattern of the power of the laser beam 101 applied to the virtual region S ′ of the photosensitive material layer 110 b of FIG.
  • the length of the virtual area S of the photosensitive material layer 110 b of the photoresist master 110 corresponding to the virtual recording cell S of the optical recording medium 1 is represented by the laser beam 10.
  • the maximum irradiation time Tmax of the laser beam 101 to the virtual area S ′ of the photosensitive material layer 110b of the photoresist master 110 is L / V (where L Is the length of the virtual area S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110b, that is, the length of the virtual recording cell S, V is the linear velocity of the force-setting machine 100. ),
  • the irradiation time T h of the laser beam 101 for forming the maximum pit P h on the virtual recording cell S is set so that the virtual recording cell S has the minimum light reflectance R h. It must be set to TmaX or less.
  • the linear velocity V of the cutting machine 100 is 1.2 / sec, which is the reference linear velocity X1, as shown in Fig. 12
  • the irradiation time T h of the laser beam 101 for forming the latent image 110 c corresponding to the maximum pit P h in the virtual area S ′ is set to 500 nsec or less.
  • the linear velocity V of the cutting machine 100 is double speed X 2 and the speed is 2.4 m / sec, as shown in Fig.
  • the maximum area is The irradiation time Th of the laser beam 101 for forming the latent image 110 c corresponding to the pit P h is set to 250 nse C or less, and the linear velocity V of the cutting machine 100 is In the case of 4.8 mZ sec, which is 4 ⁇ speed 4, as shown in FIG. 12, a latent image 110c corresponding to the maximum pit Ph is formed in the virtual area S 'as shown in FIG. Laser bee for 1 0 1 irradiation morphism time T h, it is necessary to set the following 1 2 5 nsec. Further, as is apparent from FIG.
  • the maximum light reflectance Ra of the virtual recording cell S is as close as possible to the light reflectance Ro of the virtual recording cell S where no recording mark is formed, and
  • the light reflectance of each virtual recording cell S is assigned so that the minimum light reflectance R h of the recording cell S is as close as possible to the saturated light reflectance R s at which the light reflectance is substantially saturated, and Determining the minimum value and the maximum value of the laser beam irradiation time set to the exposure power w used for exposure of the photosensitive material layer 110b of the storage master 110 is a signal having a wide dynamic range. It is preferable to reproduce.
  • a virtual area S of the photosensitive material layer 110 b of the photo resist master 110 is The photosensitive material layer 111 of the photo resist master 110 should be set so that the irradiation time Ts of the laser beam required to irradiate the laser beam 101 is shorter than the time Ts, that is, the following equation is satisfied. It is preferable that the level of the exposure power of the laser beam used for the exposure of 0b, the length L of the virtual recording cell, and the linear velocity V of the power cutting machine 100 are set.
  • the laser beam 101 irradiated onto the virtual area S ′ of the photosensitive material layer 110 b of the photoresist master 110 has an exposure power And the base powers, which are selectively modulated to form the virtual recording cells S corresponding to the pitches Pa, Pb, Pc, Pd, Pe, Pf, Pg, and Ph.
  • the time during which the power of the laser beam 101 is set to the exposure power that is, the pulse width Ta, Tb, Tc, Td, Te, Tf, Tg, Th of the exposure power Pw is Is set.
  • the maximum irradiation time TmaX of the laser beam 101 to the virtual area S 'of the photosensitive material layer 110b of the photoresist master 110 is The linear velocity V of the machine 100 becomes shorter as the linear velocity V becomes higher.However, in the present embodiment, even in the case of the quadruple-speed X4 where the recording linear velocity is the maximum, the Tmax becomes the virtual recording velocity.
  • the irradiation time T h of the laser beam 101 to the virtual area S ′ necessary for forming the maximum pit P h in the cell S, that is, the light reflectance of the virtual recording cell S is minimized.
  • the exposure of the photo-resist master 110 so that it is longer than the irradiation time T h of the laser beam 101 to the virtual area S Power w of the laser beam for exposing the conductive material layer 110b and the length L of the virtual recording cell S are set.
  • the photosensitive material layer 110b of the photo resist master 110 is used using a constant modulation pattern.
  • different sizes of pits P a, P b, P c, P d, P e, and P f can be stored in the virtual recording cell S as desired.
  • P g and P h can be formed.
  • FIG. 13 shows that the exposure power 5 ⁇ of the laser beam 101 for irradiating the virtual region S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110b of the photoresist master 110 is changed.
  • 4 is a graph showing the relationship between the irradiation time of the laser beam 101 and the optical reflectivity of the virtual recording cell s of the optical recording medium 1 manufactured using the photoresist master 110.
  • the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b is set to a high level
  • the light reflectance of the virtual recording cell S of the optical recording medium 1 becomes Power P
  • the irradiation time of the laser beam 101 is almost increased as the irradiation time increases. Even if the irradiation time of the laser beam 101 is increased at an early stage, in other words, at a stage where the light reflectivity does not decrease so much, the light reflectivity changes too much.
  • the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b is set to a low level, optical recording is started.
  • the light reflectance of the virtual recording cell s of medium 1 is Even if the irradiation time of the laser beam 101 is increased for a relatively long time after the irradiation of the laser beam 101 set in the exposure paper is started, the light reflectance does not change much, and the light reflectance does not change.
  • the light reflectance decreases almost linearly, and even if the irradiation time of the laser beam 101 increases, It takes a long time for the light reflectance to change little, and for the first time, even when the irradiation time of the laser beam 101 is increased, the light reflectance is not very high, even if the light reflectance is significantly reduced. It is acknowledged that it will not change.
  • the photosensitive material layer 110b required for the light reflectance of the virtual recording cell S of the optical recording medium 1 to substantially reach the saturation reflectance Rs is obtained.
  • the irradiation time Ts of the laser beam 101 becomes shorter as the level of the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110b becomes higher, and the virtual recording of the optical recording medium 1 is performed.
  • Ts Tmax L / Vmax, so that the exposure power of the laser beam 101 used for exposure of the photosensitive material layer 110 b is Leveled Honoré, it is preferable to set the length L and force Tsu computing machine 1 0 0 linear velocity V of the virtual recording cells S.
  • the cutting machine 100 Regardless of the linear velocity V of the laser beam, the pulse width of the exposure power w and the exposure power w of the laser beam 101 used for exposure of the photosensitive material layer 110 b of the photoresist master 110 are the same.
  • the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the invention described in the claims, and these are also included in the scope of the present invention. Needless to say, there is.
  • a description has been given of a case where 3-bit data is recorded in each virtual recording cell S of the optical recording medium 1.
  • the present invention is not limited to the case where 3-bit data is recorded in the cell S, but is widely applied to the case where 2-bit or more data is recorded in each virtual recording cell S of the optical recording medium 1. Can be.
  • the present invention relates to the CD-ROM type optical recording medium 1.
  • the present invention is not limited to the case where 3-bit data is recorded, but can be widely applied to the case where 2-bit or more data is recorded on an optical recording medium including at least a ROM area. it can.
  • a pit Pk of the same size is formed in the virtual recording cell S of the optical recording medium 1 to record data of the same level.
  • the photo resist master 110 is adjusted so that the exposure power w of the laser beam 101 and the pulse width of the exposure power are constant.
  • the power of the laser beam 101 for exposing the photosensitive material layer 110b is set, but a pit Pk of the same size is formed in the virtual recording cell s of the optical recording medium 1.
  • the photosensitive material layer 110 of the photo resist master 110 is so adjusted that the exposure power of the laser beam 101 and the pulse width of the exposure power P are constant. Set the power of the laser beam 101 to expose b It is not always necessary.
  • the timing for raising the power of the laser beam 101 from the base power P to the exposure power must be determined arbitrarily. Can be. Further, in the embodiment shown in FIGS.
  • the maximum light allocated to the virtual recording cell S Set the reflectance Ra and the maximum relative light reflectance RRa, the minimum light reflectance Rh, and the minimum relative light reflectance RRh, and set the maximum light reflectance Ra and the minimum light reflectance Rh or the maximum relative light.
  • the difference between the reflectance RR a and the minimum relative light reflectance RR h is roughly divided into seven equal parts, and six different types of light reflectances R b, R c, R d, R e, R i, and R g are obtained.
  • the optically transparent substrate 11 is manufactured by the injection molding method using the optical recording medium master 205, but the optical recording medium master 205 is used. Therefore, it is not always necessary to manufacture the light-transmitting substrate 11 by an injection molding method.
  • the light-transmitting substrate 11 is formed by using a light-curing method ( 2P method).
  • ADVANTAGE OF THE INVENTION According to this invention, 2N types of different pits are allocated to the virtual recording cell of the optical recording medium, and the optical reflectance of the virtual recording cell can be changed in 2N steps. It becomes possible to provide a method for manufacturing a master. Further, according to the present invention, there is provided a method for manufacturing an optical recording medium in which 2 N kinds of different-sized pits are assigned to virtual recording cells and the light reflectance of the virtual recording cells is changed in 2N steps. Can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

A method of producing an optical recording medium-use original, capable of assigning 2N kinds of pits different in size to the virtual recording cells of an optical recording medium to change the light reflectance of the virtual recording cells in 2N steps. The method comprises the step of applying a laser beam to expose a photoresist original and form patterns on the photoresist original, and the step of transferring the patterns formed on the photoresist original to produce an optical recording medium-use original, wherein the exposure power of a laser beam to be applied to the photoresist original is set according to a maximum light reflectance and/or a minimum light reflectance assigned to the virtual recording cells of the optical recording medium.

Description

明細書 光記録媒体用原盤の製造方法および光記録媒体の製造方法 技術分野  TECHNICAL FIELD The present invention relates to a method for manufacturing an optical recording medium master and a method for manufacturing an optical recording medium.
本発明は、 光記録媒体用原盤の製造方法および光記録媒体の製造方 法に関するものであり、 さらに詳細には、 光記録媒体の仮想記録セル に、 2 N種類の大きさの異なるピッ トを割り当て、 仮想記録セルの光 反射率を 2 N段階に変化させることができる光記録媒体用原盤の製造 方法および仮想記録セルに、 2N種類の大きさの異なるピッ トが割り 当てられ、 仮想記録セルの光反射率が 2 N段階に変化された光記録媒 体の製造方法に関するものである。 従来の技術 The present invention relates to a method for manufacturing a master for an optical recording medium and a method for manufacturing an optical recording medium. More specifically, 2N types of pits having different sizes are provided in a virtual recording cell of the optical recording medium. Assignment, 2N types of pits with different sizes are assigned to the manufacturing method of the master for the optical recording medium and the virtual recording cell that can change the light reflectance of the virtual recording cell to 2N steps, The present invention relates to a method for manufacturing an optical recording medium in which the light reflectance of a cell is changed in 2N steps. Conventional technology
従来より、 デジタルデータを記録するための記録媒体として、 CD や DVDに代表される光記録媒体が広く利用されている。 これらの光 記録媒体は、 CD_ROMゃDVD— ROMのょぅに、 データの追記 や書き換えができないタイプの光記録媒体 (ROM型光記録媒体) と、 CD— Rや D VD— Rのように、 データの追記はできるが、 データの 書き換えができないタイプの光記録媒体 (追記型光記録媒体) と、 C D— RWや D VD— RWのように、 データの書き換えが可能なタイプ の光記録媒体 (書き換え型光記録媒体) とに大別することができる。 これらの光記録媒体においては、 データ記録方式と して、 記録すべき データをトラックに沿ったピッ トおよびブランク領域の長さに変調す るという方式が広く用いられている。  Conventionally, optical recording media such as CDs and DVDs have been widely used as recording media for recording digital data. These optical recording media include CD-ROMs, DVD-ROMs, and other types of optical recording media (ROM-type optical recording media) that cannot write or rewrite data, and CD-R and DVD-R. Optical recording media that can write data but cannot rewrite data (write-once optical recording media), and optical recording media that can rewrite data, such as CD-RW and DVD-RW ( Rewritable optical recording medium). In these optical recording media, as a data recording method, a method of modulating data to be recorded to the length of a pit and a blank area along a track is widely used.
近年、 データの高密度記録の要請にともない、 光記録媒体のトラッ クを、 仮想的に、 所定の長さを有する仮想記録セルに分割し、 仮想記 録セルに、 2N種類 (Nは 2以上の整数である。) の異なる記録マーク のいずれかを形成して、 Nビッ トのデータを記録するいわゆる 「マル チレベル記録方式」 が提案されている。 マルチレベル記録方式においては、 2 N種類のピッ トのうちの 1つ を、 仮想記録セルに形成して、 Nビッ トのデータを記録するように構 成されている。 その結果、 仮想記録セルは、 形成されたピッ トの種類 に応じた光反射率を有することになり、 したがって、 異なったピッ ト が形成された仮想記録セルは、 レーザビームに対して異なる光反射率 を有することになるから、 レーザビームを、 光記録媒体のトラックに 沿って、 照射し、 仮想記録セルによって反射されたレーザビームの光 量を検出することによって、 データを再生することができる。 In recent years, in response to the demand for high-density data recording, tracks on optical recording media are virtually divided into virtual recording cells having a predetermined length, and 2 N types of virtual recording cells (N is 2 A so-called “multi-level recording method” has been proposed in which one of the recording marks having different numbers is formed and N-bit data is recorded. In the multi-level recording method, one of 2N types of pits is formed in a virtual recording cell to record N-bit data. As a result, the virtual recording cell has a light reflectivity according to the type of the formed pit, and therefore, the virtual recording cell formed with a different pit has a different light reflection with respect to the laser beam. Therefore, the data can be reproduced by irradiating the laser beam along the track of the optical recording medium and detecting the light amount of the laser beam reflected by the virtual recording cell.
このようなマルチレベル記録方式を用いて、 各仮想記録セルに、 N ビッ トのデータが記録された R O M型光記録媒体を作製するためには、 仮想記録セルに、 2 N種類の大きさの異なるピッ トを割り当て、 仮想 記録セルの光反射率を 2 N段階に変化させることが要求され、 したが つて、 光記録媒体の仮想記録セルに、 2 N種類の大きさの異なるピッ トを割り当て、 仮想記録セルの光反射率を 2 N段階に変化させること ができるように、 光記録媒体用原盤を作製することが要求される。 発明の開示 In order to manufacture a ROM-type optical recording medium in which N-bit data is recorded in each virtual recording cell using such a multi-level recording method, 2 N types of sizes are required for the virtual recording cell. different allocation of pit, is required to alter the light reflectance of the virtual recording cell 2 N stages, the but connexion, the virtual recording cell having an optical recording medium, allocated 2 N kinds of different sizes pit the However, it is required to fabricate an optical recording medium master so that the light reflectance of the virtual recording cell can be changed in 2N steps. Disclosure of the invention
したがって、 本発明は、 光記録媒体の仮想記録セルに、 2 N種類の 大きさの異なるピッ トを割り当て、 仮想記録セルの光反射率を 2 N段 階に変化させることができる光記録媒体用原盤の製造方法を提供する ことを目的とするものである。 Therefore, the present invention provides 2N kinds of pits having different sizes to the virtual recording cells of the optical recording medium, and can change the light reflectance of the virtual recording cells to 2N steps. The purpose is to provide a method for manufacturing a master.
本発明の別の目的は、 仮想記録セルに、 2 N種類の大きさの異なる ピッ トが割り当てられ、 仮想記録セルの光反射率が 2 N段階に変化さ れた光記録媒体の製造方法を提供することにある。 Another object of the present invention is to provide a method for manufacturing an optical recording medium in which 2 N kinds of different-sized pits are assigned to virtual recording cells, and the light reflectance of the virtual recording cells is changed in 2N steps. To provide.
本発明者は、 本発明のかかる目的を達成するため、 鋭意研究を重ね た結果、 フォ トレジスト原盤を露光するために照射されるレーザビー ムの露光パワーが変化する と、 フォ トレジス ト原盤へのレーザビーム の照射時間と、 光記録媒体の仮想記録セルの光反射率との関係が変化 し、 フォ トレジス ト原盤を露光するために照射されるレーザビームの 露光パワーのレベルが高いほど、 光記録媒体の仮想記録セルに高い最 大反射率を割り当てても、 フォ トレジス ト原盤へのレーザビ"ムの照 射時間を大きく変化させることなく、 仮想記録セルに、 大きさの異な るピッ トを形成して、 記録レベルの異なるデータを記録することがで き、 その一方で、 フォ トレジス ト原盤を露光するために照射されるレ 一ザビームの露光パワーのレベルが低いほど、 仮想記録セルに低い最 小反射率を.割り当てても、 フォ トレジス ト原盤へのレーザビームの照 射時間を大きく変化させることなく、 仮想記録セルに、 大きさの異な るピッ トを形成して、 記録レベルの異なるデータを記録することが可 能になることを見出した。 The inventor of the present invention has conducted intensive studies in order to achieve the object of the present invention. As a result, when the exposure power of the laser beam irradiated for exposing the photoresist master is changed, the laser to the photoresist master is changed. The relationship between the irradiation time of the beam and the light reflectance of the virtual recording cell of the optical recording medium changes, and the higher the level of the exposure power of the laser beam irradiated to expose the photoresist master, the higher the optical recording medium Highest virtual recording cell Even if a large reflectivity is assigned, pits of different sizes are formed in the virtual recording cell without significantly changing the irradiation time of the laser beam onto the photoresist master, and data with different recording levels are formed. On the other hand, the lower the level of the exposure power of the laser beam emitted to expose the photoresist master, the lower the minimum reflectivity assigned to the virtual recording cell. It is now possible to record data of different recording levels by forming pits of different sizes in the virtual recording cell without significantly changing the irradiation time of the laser beam onto the photoresist master. I found out.
本発明はかかる知見に基づく ものであり、 本発明によれば、 本発明 の前記目的は、 仮想的に設定された複数の仮想記録セルに、 2 N種類 のピッ トが形成され、 2ビッ ト以上のデータが記録された光記録媒体 を作製するための光記録媒体用原盤の製造方法であって、 レーザビー ムを照射して、 フォ トレジス ト原盤を露光し、 前記フォ トレジス ト原 盤にパターンを形成する工程と、 前記フォ トレジス ト原盤に形成され た前記パターンを転写して、 光記録媒体用原盤を作製する工程とを備 え、 前記光記録媒体の前記仮想記録セルに割り当てる最大光反射率お よび/または最小 反射率に応じて、 前記フォ トレジス ト原盤に照射 する前記レーザビームの露光パワーを設定することを特徴とする光記 録媒体用原盤の製造方法によって達成される。 The present invention is based on such findings, and according to the present invention, the object of the present invention is to form 2N kinds of pits in a plurality of virtually set virtual recording cells, A method for producing an optical recording medium master for producing an optical recording medium on which the above data is recorded, comprising irradiating a laser beam, exposing the photoresist master, and forming a pattern on the photoresist master. Forming an optical recording medium master by transferring the pattern formed on the photoresist master, and forming a maximum optical reflection allocated to the virtual recording cell of the optical recording medium. An exposure power of the laser beam for irradiating the photoresist master according to the reflectance and / or the minimum reflectance. It is.
本発明の好ましい実施態様においては、 前記光記録媒体の前記仮想 記録セルに割り当てる最大反射率が高いほど、 前記フォ トレジス ト原 盤に照射する前記レーザビームの露光パワーが高いレベルに設定され る。  In a preferred embodiment of the present invention, the exposure power of the laser beam applied to the photoresist master is set to a higher level as the maximum reflectance assigned to the virtual recording cell of the optical recording medium is higher.
本発明の別の好ましい実施態様においては、 前記光記録媒体の前記 仮想記録セルに割り当てる最小反射率が低いほど、 前記フォ トレジス ト原盤に照射する前記レーザビームの露光パワーが低いレベルに設定 される。  In another preferred embodiment of the present invention, as the minimum reflectance assigned to the virtual recording cell of the optical recording medium is lower, the exposure power of the laser beam for irradiating the photoresist master is set to a lower level. .
本発明のさらに好ましい実施態様においては、 前記光記録媒体の前 記仮想記録セルに割り当てる最大相対反射率が高いほど、 前記フォ ト レジス ト原盤に照射する前記レーザビームの露光パワーが高いレベル に設定され、 最大相対光反射率 R R a Hと最小相対光反射率 R R h H 1S 1 0 0— R R a Hく R R h Hを満たすように設定される。 In a further preferred aspect of the present invention, as the maximum relative reflectance assigned to the virtual recording cell of the optical recording medium is higher, the photo height is higher. The exposure power of the laser beam irradiating the resist master is set to a high level, and satisfies the maximum relative light reflectance RR a H and the minimum relative light reflectance RR h H 1S 100-RR a H and RR h H It is set as follows.
本発明の別の好ましい実施態様においては、 前記光記録媒体の前記 仮想記録セルに割り当てる最小反射率が低いほど、 前記フォ トレジス ト原盤に照射する前記レーザビームの露光パワーが,低いレベルに設定 され、 最大相対光反射率 R R a Hと最小相対光反射率 R R h Hが、 1 0 0— R R a L > R R h Lを満たすように設定される。  In another preferred embodiment of the present invention, as the minimum reflectance assigned to the virtual recording cell of the optical recording medium is lower, the exposure power of the laser beam for irradiating the photoresist master is set to a lower level. The maximum relative light reflectance RRaH and the minimum relative light reflectance RRhH are set so as to satisfy 100—RRaL> RRhL.
さらに、 本発明者は、 本発明の前記目的を達成するため、 鋭意研究 を重ねた結果、 光記録媒体の仮想記録セルに、 同じ大きさのピッ トを 形成し、 同じ記録レベルのデータを記録するときに、 フォ トレジス ト 原盤に照射するレーザビームの線速度にかかわらず、 フォ トレジス ト 原盤に照射するレーザビームの露光パワーおよび/または露光パワー のパルス幅を実質的に同一に設定することによって、 各仮想記録セル の 2ビッ ト以上のデータを記録し得ることを見出した。  Further, as a result of intensive studies to achieve the above object of the present invention, the inventor formed pits of the same size in virtual recording cells of an optical recording medium and recorded data of the same recording level. The exposure power and / or the pulse width of the exposure power of the laser beam applied to the photoresist master, regardless of the linear velocity of the laser beam applied to the photoresist master. It has been found that two or more bits of data in each virtual recording cell can be recorded.
本発明はかかる知見に基づく ものであり、 本発明によれば、 本発明 の前記目的はまた、 仮想的に設定された複数の仮想記録セルに、 2 N 種類のピッ トが形成され、 2ビッ ト以上のデータが記録された光記録 媒体を作製するための光記録媒体用原盤の製造方法であって、 レーザ ビームを照射して、 フォ トレジス ト原盤を露光し、 前記フォ トレジス ト原盤にパターンを形成する工程と、 前記フォ トレジス ト原盤に形成 された前記パターンを転写して、 光記録媒体用原盤を作製する工程と を備え、 前記光記録媒体の前記仮想記録セルに、 同じ大きさのピッ ト を形成し、 同じ記録レベルのデータを記録するときに、 前記フオ トレ ジス ト原盤に照射するレーザビームの線速度にかかわらず、 前記フォ トレジス ト原盤に照射するレーザビームの露光パワーおよび または 露光パワーのパルス幅を実質的に同一に設定することを特徴とする光 記録媒体用原盤の製造方法によって達成される。 The present invention is based on such findings, and according to the present invention, the object of the present invention is also to form 2N kinds of pits in a plurality of virtual recording cells that are virtually set, and to provide two bits. A method for manufacturing an optical recording medium master for producing an optical recording medium on which data equal to or more than the data is recorded, comprising irradiating a laser beam to expose the photoresist master, and forming a pattern on the photoresist master. Forming an optical recording medium master by transferring the pattern formed on the photoresist master, and forming a virtual recording cell of the same size on the virtual recording cell of the optical recording medium. When forming a pit and recording data at the same recording level, regardless of the linear velocity of the laser beam applied to the photo-resist master, the laser beam applied to the photo-resist master is used. This is achieved by a method for manufacturing a master for an optical recording medium, wherein the exposure power of the beam and / or the pulse width of the exposure power are set to be substantially the same.
本発明の好ましい実施態様においては、 前記光記録媒体の前記仮想 記録セルに、 同じ大きさのピッ トを形成し、 同じ記録レベルのデータ を記録するときに、 前記フォトレジスト原盤に照射するレーザビーム の線速度にかかわらず、 前記フォ ト レジス ト原盤に照射するレーザビ ームの露光パワーおよび露光パワーのパルス幅を実質的に同一になる ように、 前記フォトレジスト原盤に照射されるレーザビームのパワー が制御される。 In a preferred embodiment of the present invention, a pit of the same size is formed in the virtual recording cell of the optical recording medium, and data of the same recording level is formed. When recording the laser beam, the exposure power and the pulse width of the exposure power of the laser beam applied to the photoresist master are substantially the same regardless of the linear velocity of the laser beam applied to the photoresist master. As described above, the power of the laser beam applied to the photoresist master is controlled.
本発明の好ましい実施態様においては、 前記フォトレジスト原盤に 照射するレーザビームの線速度 V、 仮想記録セルの長さ Lおよび仮想 記録セルの光反射率が実質的に飽和するのに必要な前記フォトレジス ト原盤に照射するレーザビームの照射時間 T sが、 T s≤ L / Vを満 たすように、 前記フォ トレジス ト原盤に照射するレーザビームの露光 パワーのレベル、 仮想記録セルの長さ Lおよび前記フォ トレジス ト原 盤に照射するレーザビームの線速度 Vが設定されている。  In a preferred embodiment of the present invention, the linear velocity V of the laser beam irradiating the photoresist master, the length L of the virtual recording cell, and the photo necessary to substantially saturate the light reflectance of the virtual recording cell. The exposure power level of the laser beam irradiating the photoresist master and the length of the virtual recording cell so that the irradiation time T s of the laser beam irradiating the resist master satisfies T s ≤ L / V. L and the linear velocity V of the laser beam applied to the photoresist master are set.
本発明の前記目的はまた、 基板に、 仮想的に設定された複数の仮想 記録セルに、' 2 N種類のピッ トが形成され、 2ビッ ト以上のデータが 記録された光記録媒体の製造方法であって、レーザビームを照射して、 フォ トレジス ト原盤を露光し、 前記フォ ト レジス ト原盤にパターンを 形成する工程と、 前記フォトレジス ト原盤に形成された前記パターン を転写して、 光記録媒体用原盤を作製する工程と、 前記光記録媒体用 原盤に転写された前記パターンを転写して、 前記基板を作製する工程 とを備え、 前記光記録媒体の前記仮想記録セルに割り当てる最大光反 射率および Zまたは最小光反射率に応じて、 前記フォトレジスト原盤 に照射する前記レーザビームの露光パワーを設定することを特徴とす る光記録媒体の製造方法によって達成される。 Another object of the present invention is to manufacture an optical recording medium in which 2N kinds of pits are formed in a plurality of virtual recording cells virtually set on a substrate, and data of 2 bits or more are recorded. Irradiating a laser beam to expose a photoresist master, forming a pattern on the photoresist master, and transferring the pattern formed on the photoresist master, A step of producing an optical recording medium master, and a step of transferring the pattern transferred to the optical recording medium master to produce the substrate, wherein the maximum allocated to the virtual recording cells of the optical recording medium is provided. A method for manufacturing an optical recording medium, comprising: setting an exposure power of the laser beam for irradiating the photoresist master according to a light reflectance and a Z or a minimum light reflectance. It is made.
本発明の好ましい実施態様においては、 前記光記録媒体の前記仮想 記録セルに割り当てる最大反射率が高いほど、 前記フォ トレジス ト原 盤に照射する前記レーザビームの露光パワーが高いレベルに設定され る。  In a preferred embodiment of the present invention, the exposure power of the laser beam applied to the photoresist master is set to a higher level as the maximum reflectance assigned to the virtual recording cell of the optical recording medium is higher.
本発明の別の好ましい実施態様においては、 前記光記録媒体の前記 仮想記録セルに割り当てる最大反射率が高いほど、 前記フォ トレジス ト原盤に照射する前記レーザビームの露光パワーが高いレベルに設定 される。 In another preferred embodiment of the present invention, the higher the maximum reflectance assigned to the virtual recording cell of the optical recording medium, the higher the exposure power of the laser beam applied to the photoresist master is set to a higher level. Is done.
本発明のさらに好ましい実施態様においては、 前記光記録媒体の前 記仮想記録セルに割り当てる最大相対反射率が高いほど、 前記フォ ト レジス ト原盤に照射する前記レーザビームの露光パワーが高いレベル に設定され、 最大相対光反射率 R R a Hと最小相対光反射率 R R h H 1 1 0 0 - R R a H < R R h Hを満たすように設定される。  In a further preferred aspect of the present invention, the higher the maximum relative reflectance assigned to the virtual recording cell of the optical recording medium, the higher the exposure power of the laser beam applied to the photo resist master is set to a higher level. It is set to satisfy the maximum relative light reflectance RR a H and the minimum relative light reflectance RR h H 110 0-RR a H <RR h H.
本発明の別の好ましい実施態様においては、 前記光記録媒体の前記 仮想記録セルに割り当てる最小反射率が低いほど、 前記フォトレジス ト原盤に照射する前記レーザビームの露光パワーが低いレベルに設定 され、 最大相対光反射率 R R a Hと最小相対光反射率 R R h Hが、 1 0 0— R R a L〉R R h Lを満たすように設定される。  In another preferred embodiment of the present invention, as the minimum reflectance assigned to the virtual recording cell of the optical recording medium is lower, the exposure power of the laser beam for irradiating the photoresist master is set to a lower level, The maximum relative light reflectance RRaH and the minimum relative light reflectance RRhH are set so as to satisfy 100—RRaL> RRhL.
本発明の前記目的はまた、 基板に、 仮想的に設定された複数の仮想' 記録セルに、 2 N種類のピッ トが形成され、 2ビッ ト以上のデータが 記録された光記録媒体の製造方法であって、レーザビームを照射して、 フォ ト レジス ト原盤を露光し、 前記フォ ト レジス ト原盤にパターンを 形成する工程と、 前記フォ トレジス ト原盤に形成された前記パターン を転写して、 光記録媒体用原盤を作製する工程と、 前記光記録媒体用 原盤に転写された前記パターンを転写して、 前記基板を作製する工程 とを備え、 前記光記録媒体の前記仮想記録セルに、 同じ大きさのピッ トを形成し、 同じ記録レベルのデータを記録するときに、 前記フォ ト レジス ト原盤に照射するレーザビームの線速度にかかわらず、 前記フ オ トレジス ト原盤に照射するレーザビームの露光パワーおよび/また は露光パワーのパルス幅を実質的に同一に設定することを特徴とする 光記録媒体の製造方法によって達成される。 The object of the present invention is also to manufacture an optical recording medium in which 2N kinds of pits are formed in a plurality of virtual recording cells virtually set on a substrate and data of 2 bits or more is recorded. A method of irradiating a laser beam to expose a photoresist master to form a pattern on the photoresist master, and transferring the pattern formed on the photoresist master. Producing a master for an optical recording medium, and transferring the pattern transferred to the master for an optical recording medium to produce the substrate. When forming a pit of the same size and recording data of the same recording level, irradiate the photoresist master to the photo resist master regardless of the linear velocity of the laser beam to irradiate the photoresist master. The exposure power of the laser beam and / or the pulse width of the exposure power are set to be substantially the same.
本発明の好ましい実施態様においては、 前記光記録媒体の前記仮想 記録セルに、 同じ大きさのピッ トを形成し、 同じ記録レベルのデータ を記録するときに、 前記フォトレジス ト原盤に照射するレーザビーム の線速度にかかわらず、 前記フォトレジス ト原盤に照射するレーザビ ームの露光パワーおよぴ露光パヮ一のパルス幅が実質的に同一になる ように、 前記フォ トレジス ト原盤に照射する レーザビームのパワーが 制御される。 In a preferred embodiment of the present invention, when a pit having the same size is formed in the virtual recording cell of the optical recording medium and data of the same recording level is recorded, a laser is applied to the photoresist master. Laser irradiating the photoresist master so that the exposure power of the laser beam and the pulse width of the exposure beam are substantially the same regardless of the linear velocity of the beam. Beam power Controlled.
本発明の好ましい実施態様においては、 前記フォ トレジス ト原盤に 照射するレーザビームの線速度 V、 仮想記録セルの長さ Lおよび仮想 記録セルの光反射率が実質的に飽和するのに必要な前記フォ トレジス ト原盤に照射するレーザビームの照射時間 T sが、 T s≤L/Vを満 たすよ うに、 前記フォ トレジス ト原盤に照射するレーザビームの露光 パワーのレベル、 仮想記録セルの長さ Lおよび前記フォ トレジス ト原 盤に照射するレーザビームの線速度 Vが設定される。  In a preferred embodiment of the present invention, the linear velocity V of the laser beam irradiating the photoresist master, the length L of the virtual recording cell, and the light reflectance required to substantially saturate the light reflectance of the virtual recording cell. The exposure power level of the laser beam applied to the photoresist master and the length of the virtual recording cell so that the irradiation time T s of the laser beam applied to the photoresist master satisfies T s ≤ L / V. And the linear velocity V of the laser beam applied to the photoresist master are set.
本発明の上記およびその他の目的や特徴は、 以下の記述及び対応す る図面から明らかになるであろう。  The above and other objects and features of the present invention will be apparent from the following description and corresponding drawings.
0面の簡単な説明 A brief description of surface 0
第 1図は、 本発明の好ましい実施態様にかかる光記録媒体の略斜視 図である。  FIG. 1 is a schematic perspective view of an optical recording medium according to a preferred embodiment of the present invention.
第 2図は、 第 1図に示された光記録媒体の丸で囲んだ部分の拡大略 断面図である。  FIG. 2 is an enlarged schematic cross-sectional view of a portion surrounded by a circle of the optical recording medium shown in FIG.
第 3図は、 光記録媒体 1の複数の仮想記録セル Sに形成されたピッ ト P a、 P b、 P c、 P d、 P e、 P f 、 P hと、 各仮想記録セル S の光反射率の関係を示すダイアグラムである。  FIG. 3 shows the pits P a, P b, P c, P d, P e, P f, and P h formed in the plurality of virtual recording cells S of the optical recording medium 1 and the respective virtual recording cells S. 4 is a diagram illustrating a relationship between light reflectances.
第 4図は、 本発明の好ましい実施態様にかかる光記録媒体用原盤の 製造方法に用いられるカツティングマシンを示すダイアグラムである t 第 5図 ( a) ないし第 5図 ( f ) は、 光記録媒体用原盤の製造プロ セスを示す工程図である。 Figure 4 is preferably t Figure 5 is a diagram showing a cutlet coating machine used in the method of manufacturing a master for optical recording medium according to embodiment (a) to FIG. 5 of the present invention (f), the optical recording FIG. 4 is a process chart showing a production process of a medium master.
第 6図 ( a ) ないし第 6図 ( c) は、 光記録媒体 1の製造プロセス を示す工程図である。  6 (a) to 6 (c) are process diagrams showing a manufacturing process of the optical recording medium 1.
第 7図は、 光記録媒体の仮想記録セルに対応するフォ トレジス ト原 盤の感光性材料層の仮想領域に照射されるレーザビームのパワーの変 調パターンを示すダイアグラムである。  FIG. 7 is a diagram showing a modulation pattern of the power of a laser beam applied to a virtual region of a photosensitive material layer of a photoresist master corresponding to a virtual recording cell of an optical recording medium.
第 8図は、 光記録媒体の仮想記録セルに、 最小のピッ ト P aを形成 する方法を示す工程図である。 第 9図は、 光記録媒体の仮想記録セルに、 最大のピッ ト P hを形成 する方法を示す工程図である。 FIG. 8 is a process chart showing a method of forming a minimum pit Pa in a virtual recording cell of an optical recording medium. FIG. 9 is a process chart showing a method of forming a maximum pit Ph in a virtual recording cell of an optical recording medium.
第 1 0図は、 フォ トレジスト原盤の感光性材料層の仮想記録セルに 対応する仮想領域に、 パワーが露光パワーに設定されたレーザビ一ム を照射した時間と、 フォ ト レジス ト原盤を用いて、 作製された光記録 媒体の仮想記録セルの光反射率との関係を示すグラフである。  Fig. 10 shows the time of irradiating the laser beam with the power set to the exposure power to the virtual area corresponding to the virtual recording cell of the photosensitive material layer of the photoresist master, and using the photoresist master. 7 is a graph showing a relationship between the optical reflectance of a virtual recording cell of the manufactured optical recording medium.
第 1 1図は、 フォ トレジスト原盤の感光性材料層の仮想記録セルに 対応する仮想領域に照射するレーザビームの露光パワー wを変化さ せたときのレーザビームの照射時間と、フォ ト レジス ト原盤を用いて、 作製された光記録媒体の仮想記録セルの光反射率との関係を示すダラ フである。  Fig. 11 shows the irradiation time of the laser beam when the exposure power w of the laser beam irradiating the virtual area corresponding to the virtual recording cell of the photosensitive material layer of the photoresist master was changed, and the photo resist 6 is a graph showing the relationship between the master disk and the optical reflectance of a virtual recording cell of an optical recording medium manufactured.
第 1 2図は、 本発明の他の好ましい実施態様にかかる光記録媒体用 原盤の製造方法において用いられる光記録媒体の仮想記録セルに対応 するフォ トレジス ト原盤の感光性材料層の仮想領域に照射されるレー ザビームのパワーの変調パターンを示すダイアグラムである。  FIG. 12 is a view showing a virtual region of a photosensitive material layer of a photoresist master corresponding to a virtual recording cell of an optical recording medium used in a method of manufacturing an optical recording medium master according to another preferred embodiment of the present invention. 6 is a diagram showing a modulation pattern of the power of an irradiated laser beam.
第 1 3図は、 フォ トレジスト原盤の感光性材料層の仮想記録セルに 対応する仮想領域に照射するレーザビームの露光パワー wを変化さ せたときのレーザビームの照射時間と、フォ トレジス ト原盤を用いて、 作製された光記録媒体の仮想記録セルの光反射率との関係を示すダラ フである。  Figure 13 shows the irradiation time of the laser beam when the exposure power w of the laser beam applied to the virtual area corresponding to the virtual recording cell of the photosensitive material layer of the photoresist master was changed, and the photoresist master 5 is a graph showing the relationship between the optical recording medium and the light reflectance of the virtual recording cell of the manufactured optical recording medium.
発明の好ましい実施態様の説明 DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
以下、 添付図面に基づき、 本発明の好ましい実施態様につき、 詳細 に説明を加える。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
第 1図は、 光記録媒体の一部切り欠き略斜視図であり、 第 2図は、 第 1図の丸で囲んだ部分の略拡大斜視図である。  FIG. 1 is a partially cut-away schematic perspective view of an optical recording medium, and FIG. 2 is a substantially enlarged perspective view of a circled portion in FIG.
第 1図および第 2図に示されるように、 本実施態様にかかる光記録 媒体 1は、 C D— R O M型の光記録媒体と して構成され、 光透過性基 板 1 1 と、 光透過性基板 1 1上に設けられた反射層 2 2および保護層 2 3を備えている。 As shown in FIGS. 1 and 2, the optical recording medium 1 according to the present embodiment is configured as a CD-ROM type optical recording medium, and has a light transmitting substrate. It comprises a plate 11, a reflective layer 22 and a protective layer 23 provided on the light-transmitting substrate 11.
第 1図に示されるように、 光透過性基板 1 1は、 光透過性樹脂によ つて、 円盤状に形成されている。  As shown in FIG. 1, the light-transmitting substrate 11 is formed in a disk shape using a light-transmitting resin.
光透過性基板 1 1を形成するために用いられる光透過性樹脂は、 デ ータを再生するために用いるレーザビームに対して、 高い透過率を有 するものであれば、 とくに限定されるものではないが、 ポリカーボネ ートが好ましく用いられる。  The light-transmitting resin used for forming the light-transmitting substrate 11 is not particularly limited as long as it has a high transmittance with respect to a laser beam used for reproducing data. However, polycarbonate is preferably used.
第 2図において、 光透過性基板 1 1の下面は、 レーザビームが入射 する光入射面を構成し、 第 2図に示されるように、 光透過性基板 1 1 の上面には、 その中心部近傍から、 外縁部に向けて、 8種類の大きさ の異なる複数のピッ ト P a、 P b、 P c、 P d、 P e、 P f 、 P g、 P hが螺旋状に形成されている。  In FIG. 2, the lower surface of the light-transmitting substrate 11 constitutes a light incident surface on which a laser beam is incident. As shown in FIG. 2, the upper surface of the light-transmitting substrate 11 has a central portion. A plurality of eight different sizes of pits P a, P b, P c, P d, P e, P f, P g, and P h are formed spirally from the vicinity to the outer edge. I have.
反射層 2 2は、 光記録媒体 1に記録されたデータの再生する際に、 光透過性基板 1 1を透過したレーザビームを反射するための薄膜層で あり、 金や銀などの金属を主成分として用いたスパッタリング法よつ て形成されている。  The reflective layer 22 is a thin film layer for reflecting a laser beam transmitted through the light-transmitting substrate 11 when reproducing data recorded on the optical recording medium 1, and mainly includes a metal such as gold or silver. It is formed by the sputtering method used as a component.
第 2図に示されるように、 反射層 2 2を保護するために、 反射層 2 2の表面を覆うように、 保護層 2 3が形成されている。  As shown in FIG. 2, in order to protect the reflective layer 22, a protective layer 23 is formed so as to cover the surface of the reflective layer 22.
本実施態様においては、 光透過性基板 1 1は、 それぞれ、 約 1 . 2 m mの厚さを有している。  In this embodiment, the light-transmitting substrates 11 each have a thickness of about 1.2 mm.
第 2図に示されるように、 光記録媒体 1のトラックは、 仮想的に、 所定の長さを有する複数の仮想記録セル S、 S、 …に分割され、 各仮 想記録セル Sが、 データを記録する記録単位を構成している。  As shown in FIG. 2, the track of the optical recording medium 1 is virtually divided into a plurality of virtual recording cells S, S,... Having a predetermined length. Constitute a recording unit for recording.
第 3図は、 光記録媒体 1の複数の仮想記録セル Sに形成されたピッ ト P a、 P b、 P c、 P d、 P e、 P f 、 P g、 P hと、 各仮想記録 セル Sの光反射率の関係を示すダイアグラムである。  FIG. 3 shows the pits Pa, Pb, Pc, Pd, Pe, Pf, Pg, Ph formed on the plurality of virtual recording cells S of the optical recording medium 1, and each virtual recording. 6 is a diagram illustrating a relationship between light reflectances of a cell S.
第 3図に示されるように、 仮想記録セル S、 S、 …は、 トラックに 沿った方向の長さ Lが、 レーザビームのスポッ ト径 Dよりも小さくな るように、 仮想的に設定されている。 第 3図に示されるように、 仮想記録セル Sの光反射率は、 仮想記録 セル Sに形成されたピッ ト P k (1^ = &なぃし11) の大きさが小さい ほど、 大きく、 本実施態様においては、 大きさの異なる 8種類のピッ トが仮想記録セル Sに形成されているから、 光記録媒体 1に、 3ビッ トのデータが記録されている。 As shown in FIG. 3, the virtual recording cells S, S,... Are virtually set so that the length L in the direction along the track is smaller than the spot diameter D of the laser beam. ing. As shown in FIG. 3, the light reflectivity of the virtual recording cell S increases as the size of the pit P k (1 ^ = & Nana 11) formed in the virtual recording cell S decreases. In this embodiment, since eight types of pits having different sizes are formed in the virtual recording cell S, 3-bit data is recorded on the optical recording medium 1.
以上のように構成された光記録媒体 1は、 以下のようにして、 製造 される。  The optical recording medium 1 configured as described above is manufactured as follows.
まず、 光透過性基板 1 1 を作製するための光記録媒体用原盤、 すな わち、 スタンパが作製される。  First, an optical recording medium master, ie, a stamper, for producing the light-transmitting substrate 11 is produced.
第 4図は、 本発明の好ましい実施態様にかかる光記録媒体用原盤の 製造方法に用いられる力ッティングマシンを示すダイアグラムである c 第 4図に示されるように、 本実施態様にかかる力ッティングマシン 1 00は、 レーザビーム 1 0 1を生成するレーザ発生装置 1 0 2と、 電気光学効果を用いた光変調器 (EOM: Electro Optic Modulator) 1 03 と、 ビームスプリ ッタ 1 04、 1 0 6 と、 光変調ュニッ ト 1 0 5と、 光学へッ ド 1 0 7と、 ターンテーブル 1 0 8 とを備えている。 ターンテーブル 1 08には、 フォ トレジス ト原盤 1 1 0が載置され る。 Figure 4, as shown in the preferred is a diagram showing the force Tsu coating machine used in the method of manufacturing the master for such an optical recording medium to embodiment c Figure 4 of the present invention, Chikara' according to this embodiment The scanning machine 100 includes a laser generator 102 for generating a laser beam 101, an optical modulator (EOM: Electro Optic Modulator) 103 using an electro-optic effect, and a beam splitter 104, 1 , A light modulation unit 105, an optical head 107, and a turntable 108. On the turntable 108, a photo resist master 110 is placed.
フォ トレジス ト原盤 1 1 0は、 ガラス基板 1 1 0 a と、 ガラス基板 1 1 0 a上に積層された感光性材料層 1 1 0 bを備えた円盤状の原盤 であり、 光記録媒体用原盤を作製するための型として用いられる。 また、 第 4図に示されるように、 光変調ュニッ ト 1 0 5は、 レンズ 1 05 a、 光変調器 1 0 5 bおよびレンズ 1 0 5 cを備え、 光学へッ ド 1 0 7は、 ミラー 1 0 7 aおよびレンズ 1 0 7 bを備えている。 このように構成されたカッティングマシン 1 00においては、 以下 のようにして、 レーザビーム 1 0 1力 フォ ト レジス ト原盤 1 1 0の 感光性材料層 1 1 0 bに集光されて、 フォ トレジス ト原盤 1 1 0の感 光性材料層 1 1 0 bが露光され、 その結果、 仮想記録セル Sに形成さ れるべきピッ ト P kに対応する潜像 1 1 0 c力 感光性材料層 1 1 0 bに形成される。 まず、 フォトレジス ト原盤 1 1 0の感光性材料層 1 1 0 bに形成す べき潜像 1 1 0 cのパターンに対応するパルス信号列 1 0 5 dを、 光 変調ュニッ ト 1 0 5の光変調器 1 0 5 bに入力しつつ、 フォ トレジス ト原盤 1 1 0が載置されたターンテーブル 1 0 8を回転させるととも に、 光学へッド 1 0 7をフォ トレジスト原盤 1 1 0の半径方向に移動 させる。 The photoresist master 110 is a disk-shaped master having a glass substrate 110a and a photosensitive material layer 110b laminated on the glass substrate 110a, and is used for an optical recording medium. Used as a mold for producing masters. Further, as shown in FIG. 4, the optical modulation unit 105 includes a lens 105a, an optical modulator 105b, and a lens 105c, and the optical head 107 includes: A mirror 107a and a lens 107b are provided. In the cutting machine 100 configured as described above, the laser beam 101 is focused on the photosensitive material layer 110 b of the photo resist master 110 as follows, and The master layer 110 is exposed to the light-sensitive material layer 110b, and as a result, the latent image corresponding to the pit Pk to be formed in the virtual recording cell S 110c force Photosensitive material layer 1 Formed as 10b. First, a pulse signal train 105 d corresponding to the pattern of the latent image 110 c to be formed on the photosensitive material layer 110 b of the photoresist master 110 is sent to the light modulation unit 105. While input to the optical modulator 105 b, the turntable 108 on which the photoresist master 110 is placed is rotated, and the optical head 107 is moved to the photoresist master 110. Move in the radial direction of.
レーザ発生装置 1 0 2によって生成されたレーザビーム 1 0 1は、 光変調器 1 0 3によって、 そのパワーが、 感光性材料層 1 1 0 bの露 光に適した所定のパワーに変調された後、 ビームスプリ ッタ 1 0 4、 ビームスプリ ッタ 1 0 6およびミラー 1 0 7 aによつて反射され、 レ ンズ 1 0 7 bによって、 フォ トレジス ト原盤 1 1 0上に集光される。 その結果、 パルス状のレーザビーム 1 0 1力 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bに照射され、 仮想記録セル Sに形成さ れるべきピッ ト P kに対応する潜像 1 1 0 c力 感光性材料層 1 1 0 bに形成される。  The power of the laser beam 101 generated by the laser generator 102 was modulated by the optical modulator 103 to a predetermined power suitable for the exposure of the photosensitive material layer 110b. After that, it is reflected by the beam splitter 104, the beam splitter 106 and the mirror 107a, and is condensed on the photo resist master 110 by the lens 107b. . As a result, the pulsed laser beam 101 is irradiated onto the photosensitive material layer 110 b of the photo resist master 110, and a latent image corresponding to the pit P k to be formed in the virtual recording cell S is formed. 110c force formed on the photosensitive material layer 110b.
第 5図 ( a ) ないし第 5図 ( f ) は、 光記録媒体用原盤の製造プロ セスを示す工程図である。  FIGS. 5 (a) to 5 (f) are process drawings showing the process of manufacturing an optical recording medium master.
まず、 第 5図 ( a ) に示されるように、 ガラス基板 1 1 0 a と、 ガ ラス基板 1 1 0 a上に形成された厚さ 1 0 0ないし 1 5 0 nmの感光 性材料層 1 1 0 bとを有するフォトレジス ト原盤 1 1 0が用意される。 ガラス基板 1 1 0 a と感光性材料層 1 1 0 b との間には、 接着性を高 めるための接着層が形成されていてもよい。  First, as shown in FIG. 5 (a), a glass substrate 110a and a photosensitive material layer 1 having a thickness of 100 to 150 nm formed on the glass substrate 110a are formed. A photoresist master 110 having 10b is prepared. An adhesive layer for improving the adhesiveness may be formed between the glass substrate 110a and the photosensitive material layer 110b.
次いで、 第 5図 (b ) に示されるように、 光変調器 1 0 5 bによつ て、 そのパワーが変調されたレーザビーム 1 0 1力 レンズ 1 0 7 b によって、 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 b上に集 光されて、 レーザビーム 1 0 1が照射された感光性材料層 1 1 O bの 領域がレーザビーム 1 0 1によって露光される。 感光性材料層 1 1 0 bの露光された領域の幅や深さは、 レーザビーム 1 0 1 の照射エネル ギ一にしたがって決定される。  Next, as shown in FIG. 5 (b), the laser beam 101 whose power has been modulated by the optical modulator 105b, the power lens 107b, and the photo-resist master 1 The area of the photosensitive material layer 110 Ob irradiated with the laser beam 101 after being focused on the 10 photosensitive material layer 110 b is exposed by the laser beam 101. The width and depth of the exposed region of the photosensitive material layer 110b are determined according to the irradiation energy of the laser beam 101.
こう して、 感光性材料層 1 1 0 bに、 仮想記録セル Sに形成される べきピッ ト P kに対応する潜像 1 1 0 cが形成される。 Thus, a virtual recording cell S is formed on the photosensitive material layer 110b. A latent image 110c corresponding to the power pit Pk is formed.
さらに、 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bの露光 された領域に、 水酸化ナトリ ゥム溶液などの現像液がスプレーされ、 第 5図 (c ) に示されるように、 感光性材料層 1 1 0 bに形成された 潜像 1 1 0 cが現像されて、 潜像 1 1 0 cに対応する凹部 2 0 2が形 成される。  Further, a developing solution such as a sodium hydroxide solution is sprayed on the exposed area of the photosensitive material layer 110b of the photoresist master 110, as shown in FIG. 5 (c). The latent image 110c formed on the photosensitive material layer 110b is developed to form a concave portion 202 corresponding to the latent image 110c.
こう して、 仮想記録セル Sに形成されるべきピッ ト P kに対応する 複数の凹部 2 0 2が、感光性材料層 1 1 0 bに形成されると、次いで、 第 5図 (d) に示されるように、 現像処理された感光性材料層 1 1 0 b上に、 無電解メツキや蒸着法によって、 ニッケルなどの金属薄膜 2 0 3が形成される。  When a plurality of recesses 202 corresponding to the pits P k to be formed in the virtual recording cell S are formed in the photosensitive material layer 110 b in this way, FIG. As shown in (1), a thin metal film 203 such as nickel is formed on the developed photosensitive material layer 110b by electroless plating or vapor deposition.
さらに、 金属薄膜 2 0 3の表面を陰極とし、 ニッケルなどを陰極と した厚膜メ ツキによって、 第 5図 ( e ) に示されるように、 金属薄膜 2 0 3上に、約 0. 3 μ mの厚さを有する金属膜 2 0 4が形成される。 次いで、 金属薄膜 2 0 3から、 フォ トレジス ト原盤 1 1 0が剥離さ れ、 洗浄および必要な加工が施されて、 第 5図 ( f ) に示されるよう に、 光記録媒体用原盤 2 0 5が作製される。  Further, as shown in FIG. 5 (e), about 0.3 μm is formed on the metal thin film 203 by using a thick film with the surface of the metal thin film 203 as a cathode and nickel or the like as a cathode. A metal film 204 having a thickness of m is formed. Next, the photoresist master 110 is peeled off from the metal thin film 203, washed and subjected to necessary processing, and as shown in FIG. 5 (f), the optical recording medium master 210 is removed. 5 is produced.
第 5図 ( f ) に示されるように、 こ う して作製された光記録媒体用 原盤 2 0 5には、 感光性材料層 1 1 0 bに形成された複数の凹部 2 0 2のパターンが転写されて、 複数の凸部 2 0 6が形成されている。 さらに、 光記録媒体用原盤 2 0 5を用いて、 以下のようにして、 各 仮想記録セル Sに、 ピッ ト P kが形成された光記録媒体 1が作製され る。  As shown in FIG. 5 (f), the master for optical recording medium 205 produced in this manner has a pattern of a plurality of recesses 202 formed in the photosensitive material layer 110 b. Is transferred to form a plurality of convex portions 206. Further, using the optical recording medium master 205, the optical recording medium 1 in which the pit Pk is formed in each virtual recording cell S is manufactured as follows.
第 6図 (a ) ないし第 6図 ( c ) は、 光記録媒体 1の製造プロセス を示す工程図である。  6 (a) to 6 (c) are process diagrams showing a manufacturing process of the optical recording medium 1.
まず、 第 6図 (a ) に示されるように、 光記録媒体用原盤 2 0 5を 用いて、 射出成形法により、 約 1. 2 mmの厚さを有する光透過性基 板 1 1が射出成形される。  First, as shown in FIG. 6 (a), a light transmissive substrate 11 having a thickness of about 1.2 mm is injected by an injection molding method using an optical recording medium master 205. Molded.
その結果、 光記録媒体用原盤2 0 5の表面に形成された複数の凸部 2 0 6が、 光透過性基板 1 1の表面に転写されて、 表面に、 複数の回 11668 As a result, a plurality of convex portions 2 0 6 formed on the surface of the master for optical recording medium 2 0 5, are transferred to the light transmitting substrate 1 1 surface, the surface, a plurality of times 11668
13  13
部、 すなわち、 多数のピッ トが形成された光透過性基板 1 1が作製さ れる。 The light-transmitting substrate 11 on which a plurality of pits are formed is manufactured.
次いで、 第 6図 (b ) に示されるように、 光透過性基板 1 1のピッ ト P kが形成されている側の表面に、 反射層 2 2が形成される。 反射 層 2 2は、 たとえば、 反射層 2 2の構成元素を含む化学種を用いた気 相成長法によって、 形成することができる。 気相成長法と しては、 真 空蒸着法、 スパッタリング法などが挙げられる。  Next, as shown in FIG. 6 (b), a reflection layer 22 is formed on the surface of the light transmitting substrate 11 on which the pits Pk are formed. The reflective layer 22 can be formed, for example, by a vapor phase growth method using a chemical species containing the constituent element of the reflective layer 22. Examples of the vapor growth method include a vacuum evaporation method and a sputtering method.
さらに、 第 6図 (c ) に示されるように、 反射層 2 2の表面上に、 保護層 2 3が形成される。 保護層 2 3は、 たとえば、 アクリル系紫外 線硬化性樹脂あるいはエポキシ系の紫外線硬化性樹脂を、 溶剤に溶解 して、 樹脂溶液を調製し、 スピンコート法などにより、 反射層 2 2上 に、 樹脂溶液を塗布して、 形成することができる。  Further, as shown in FIG. 6 (c), a protective layer 23 is formed on the surface of the reflective layer 22. The protective layer 23 is formed, for example, by dissolving an acrylic ultraviolet curable resin or an epoxy ultraviolet curable resin in a solvent to prepare a resin solution, and spin-coating or the like on the reflective layer 22. It can be formed by applying a resin solution.
以上のようにして、 各仮想記録セル Sに、 ピッ ト P kが形成された 光記録媒体 1が製造される。  As described above, the optical recording medium 1 in which the pit Pk is formed in each virtual recording cell S is manufactured.
上述のように、 光記録媒体 1の各仮想記録セル Sに、 3ビッ トのデ ータを記録するためには、 光記録媒体 1に、 大きさが互いに異なる 8 種類のピッ トを形成することが必要である。  As described above, in order to record 3-bit data in each virtual recording cell S of the optical recording medium 1, eight types of pits having different sizes are formed on the optical recording medium 1. It is necessary.
しかるに、 上述のように、 光記録媒体 1の仮想記録セル Sに形成さ れるべきピッ ト p kは、 光記録媒体用原盤 2 0 5に形成された複数の 凸部 2 0 6が転写されて、 形成されたものであり、 光記録媒体用原盤 2 0 5に形成された複数の凸部 2 0 6は、 フォ トレジス ト原盤 1 1 0 の感光性材料層 1 1 0 bに形成された複数の凹部 2 0 2が転写されて、 形成されたものであるから、 光記録媒体 1に、 大きさが互いに異なる 8種類のピッ トを形成するためには、 フォ トレジス ト原盤 1 1 0の感 光性材料層 1 1 0 bに、 光記録媒体 1の仮想記録セル Sに形成される べき互いに大きさの異なるピッ ト P kに対応する大きさを有する複数 の凹部 2 0 2を形成することが必要である。  However, as described above, the pit pk to be formed in the virtual recording cell S of the optical recording medium 1 is obtained by transferring the plurality of convex portions 206 formed on the optical recording medium master 205, The plurality of projections 206 formed on the optical recording medium master 205 are formed on the photosensitive material layer 110b of the photoresist master 110. Since the recesses 202 are transferred and formed, in order to form eight kinds of pits having different sizes on the optical recording medium 1, the photo-resist master 110 can be used as a light-sensitive medium. In the conductive material layer 110b, a plurality of recesses 202 having sizes corresponding to the pits Pk having different sizes to be formed in the virtual recording cell S of the optical recording medium 1 may be formed. is necessary.
上述のように、感光性材料層 1 1 0 bの露光された領域の幅や深さ、 すなわち、 凹部 2 0 2の大きさは、 感光性材料層 1 1 0 bのその領域 に照射されるレーザビーム 1 0 1のエネルギーによって決定されるか 8 As described above, the width and depth of the exposed region of the photosensitive material layer 110b, that is, the size of the concave portion 202 is irradiated to the region of the photosensitive material layer 110b. Determined by the energy of the laser beam 101 8
14  14
ら、 光記録媒体 1の各仮想記録セル Sに、 3 ビッ トのデータを記録す るためには、 光記録媒体 1の仮想記録セル Sに対応するフォ トレジス ト原盤 1 1 0の感光性材料層 1 1 01)の仮想領域3 ' に照射されるレ 一ザビーム 1 0 1のエネルギーを 8段階に制御することが必要になる。 第 7図は、 光記録媒体 1の仮想記録セル Sに対応するフォ トレジス ト原盤 1 1 0の感光性材料層 1 1 013の仮想領域3 ' に照射されるレ 一ザビーム 1 0 1のパワーの変調パターンを示すダイアグラムである。 第 7図に示されるように、 光記録媒体 1の仮想記録セル Sに対応す るフォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bの仮想領域 S' に照射されるレーザビーム 1 0 1のパワーは、 露光パワー と基底 パワー P bとに選択的に変調され、 感光性材料層 1 1 0 bの仮想領域 S ' に形成されるべき凹部 2 0 2の大きさに対応して、 レーザビーム のパワーが露光パワー ^P Hこ設定される時間 T a、 T b、 T c、 T d、 T e、 T f 、 T g、 T hが設定される。 ここに、 レーザビーム 1 0 1 のパワーの変調パターンは、 光変調器 1 0 5 bに入力されるパルス信 号列 1 0 5 dの波形に対応している。 In order to record 3-bit data in each virtual recording cell S of the optical recording medium 1, the photosensitive material of the photoresist master 110 corresponding to the virtual recording cell S of the optical recording medium 1 must be used. It is necessary to control the energy of the laser beam 101 applied to the virtual area 3 ′ of the layer 1 1 1 1) in eight steps. FIG. 7 shows the power of the laser beam 101 applied to the virtual area 3 'of the photosensitive material layer 11013 of the photoresist master 110 corresponding to the virtual recording cell S of the optical recording medium 1. 6 is a diagram illustrating a modulation pattern. As shown in FIG. 7, the laser beam 1 applied to the virtual area S ′ of the photosensitive material layer 110 b of the photoresist master 110 corresponding to the virtual recording cell S of the optical recording medium 1 The power of 0 1 is selectively modulated into the exposure power and the base power P b, and corresponds to the size of the concave portion 202 to be formed in the virtual region S ′ of the photosensitive material layer 110 b. The time Ta, Tb, Tc, Td, Te, Tf, Tg, Th in which the power of the laser beam is set to the exposure power ^ PH is set. Here, the modulation pattern of the power of the laser beam 101 corresponds to the waveform of the pulse signal train 105 d input to the optical modulator 105 b.
第 8図は、. 光記録媒体 1の仮想記録セル Sに、 最小のピッ ト P aを 形成する方法を示す工程図である。  FIG. 8 is a process chart showing a method of forming the minimum pit Pa in the virtual recording cell S of the optical recording medium 1.
まず、 第 8図 (a ) に示されるように、 感光性材料層 1 1 0 bに照 射されるべきレーザビーム 1 0 1のパルス幅が最小幅である T aに設 定される。  First, as shown in FIG. 8 (a), the pulse width of the laser beam 101 to be irradiated on the photosensitive material layer 110b is set to the minimum width Ta.
次いで、 レーザビーム 1 0 1カ 、 フォ ト レジス ト原盤 1 1 0の感光 性材料層 1 1 0 bの仮想領域 s ' に照射される。 ここに、 レーザビー ム 1 0 1のパルス幅が最小幅である T aに設定されているから、 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bの仮想領域 S ' に照射 されるレーザビーム 1 0 1のエネルギーは最小であり、 したがって、 感光性材料層 1 1 0 bに形成される潜像 1 1 0 cの大きさも最小とな る。 ·  Next, the laser beam 101 is irradiated onto the virtual region s ′ of the photosensitive material layer 110 b of the photo resist master 110. Here, since the pulse width of the laser beam 101 is set to the minimum width Ta, the virtual area S ′ of the photosensitive material layer 110 b of the photoresist master 110 is irradiated. The energy of the laser beam 101 is minimum, and therefore the size of the latent image 110c formed on the photosensitive material layer 110b is also minimum. ·
さらに、 こ う してフォ ト レジス ト原盤 1 1 0の感光性材料層 1 1 0 bの仮想領域 S ' に形成された潜像 1 1 0 cが現像されて、 感光性材 料層 1 1 0 bの仮想領域 S ' に、 最小の凹部 2 0 2が形成される。 次いで、 現像処理された感光性材料層 1 1 0 b上に、 無電解メ ツキ や蒸着法によって、 ニッケルなどの金属薄膜 (図示せず) が形成され、 さらに、 金属薄膜上に、 金属膜が形成された後、 金属薄膜から、 フォ トレジス ト原盤 1 1 0が剥離され、洗浄および必要な加工が施されて、 第 8図 (d) に示されるように、 光記録媒体用原盤 20 5が作製され る。 Further, the latent image 110 c formed in the virtual area S ′ of the photosensitive material layer 110 b of the photo resist master 110 is developed, and the photosensitive material In the virtual region S ′ of the material layer 110 b, the smallest concave portion 202 is formed. Next, a metal thin film (not shown) of nickel or the like is formed on the developed photosensitive material layer 110b by an electroless plating or a vapor deposition method, and the metal film is further formed on the metal thin film. After the formation, the photoresist master 110 is peeled off from the metal thin film, washed and subjected to necessary processing, and as shown in FIG. 8 (d), the optical recording medium master 205 is formed. It is made.
さらに、 光記録媒体用原盤 2 0 5を用いて、 射出成形法により、 約 1. 2mmの厚さを有する光透過性基板 1 1が射出成形され、 第 8図 ( e ) に示されるように、 最小のピッ ト P aが形成された光透過性基 板 1 1が作製される。  Further, the optically transparent substrate 11 having a thickness of about 1.2 mm is injection-molded by injection molding using the optical recording medium master 205, as shown in FIG. 8 (e). Then, the light-transmitting substrate 11 on which the minimum pit Pa is formed is manufactured.
このよ うに、 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bの 仮想領域 S ' に照射されるレーザビーム 1 0 1のパルス幅を最小幅で ある T aに設定することによって、光記録媒体 1の仮想記録セル Sに、 最小のピッ ト P aを形成することができ、 仮想記録セル Sに、 最大の 光反射率を割り当てることが可能になる。  Thus, by setting the pulse width of the laser beam 101 irradiating the virtual area S ′ of the photosensitive material layer 110 b of the photoresist master 110 to the minimum width Ta, The minimum pit Pa can be formed in the virtual recording cell S of the optical recording medium 1, and the maximum light reflectance can be assigned to the virtual recording cell S.
第 9図は、 光記録媒体の仮想記録セルに、 最大のピッ ト P hを形成 する方法を示す工程図である。  FIG. 9 is a process chart showing a method of forming a maximum pit Ph in a virtual recording cell of an optical recording medium.
まず、 第 9図 ( a ) に示されるように、 感光性材料層 1 1 0 bに照 射されるべきレーザビーム 1 0 1のパルス幅が最大幅である T hに設 定される。  First, as shown in FIG. 9 (a), the pulse width of the laser beam 101 to be irradiated on the photosensitive material layer 110b is set to the maximum width Th.
次いで、 レーザビーム 1 0 1力 フォ トレジス ト原盤 1 1 0の感光 性材料層 1 1 0 bの仮想領域 S ' に照射される。 ここに、 レ ザビー ム 1 0 1のパルス幅が最大幅である T hに設定されているから、 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bの仮想領域 S ' に照射 されるレーザビーム 1 0 1のエネルギーは最大であり、 したがって、 感光性材料層 1 1 0 bに形成される潜像 1 1 0 cの大きさも最大とな る。  Next, the laser beam is applied to the virtual region S ′ of the photosensitive material layer 110 b of the photo resist master 110. Here, the pulse width of the laser beam 101 is set to the maximum width Th, so that the virtual region S ′ of the photosensitive material layer 110 b of the photoresist master 110 is irradiated. The energy of the laser beam 101 is maximum, and therefore, the size of the latent image 110c formed on the photosensitive material layer 110b is also maximum.
さらに、 こ う してフォトレジス ト原盤 1 1 0の感光性材料層 1 1 0 bの仮想領域 S ' に形成された潜像 1 1 0 cが現像されて、 感光性材 TJP2003/011668 Further, the latent image 110 c formed in the virtual region S ′ of the photosensitive material layer 110 b of the photoresist master 110 is developed, and the photosensitive material TJP2003 / 011668
16  16
料層 1 1 0 bの仮想領域 S ' に、 最小の凹部 2 0 2が形成される。 In the virtual region S ′ of the material layer 110 b, the smallest concave portion 202 is formed.
次いで、 現像処理された感光性材料層 1 1 O b上に、 無電解メ ツキ や蒸着法によって、 ニッケルなどの金属薄膜 (図示せず) が形成され、 さらに、 金属薄膜上に、 金属膜が形成された後、 金属薄膜から、 フォ トレジス ト原盤 1 1 0が剥離され、洗浄および必要な加工が施されて、 第 8図 (d) に示されるように、 光記録媒体用原盤 2 0 5が作製され る。  Next, a metal thin film (not shown) of nickel or the like is formed on the developed photosensitive material layer 11 Ob by an electroless plating or a vapor deposition method, and a metal film is further formed on the metal thin film. After the formation, the photoresist master 110 is peeled off from the metal thin film, washed and subjected to necessary processing, and as shown in FIG. 8 (d), the master for optical recording medium 205 is formed. Is produced.
さらに、 光記録媒体用原盤 2 0 5を用いて、 射出成形法により、 約 1. 2 mmの厚さを有する光透過性基板 1 1が射出成形され、 第 8図 ( e ) に示されるように、 最大のピッ ト P hが形成された光透過性基 板 1 1が作製される。  Further, a light-transmitting substrate 11 having a thickness of about 1.2 mm is injection-molded by an injection molding method using the optical recording medium master 205, as shown in FIG. 8 (e). Then, the light-transmitting substrate 11 on which the maximum pit Ph is formed is produced.
このように、 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bの 仮想領域 S ' に照射されるレーザビーム 0 1のパルス幅を最大幅で ある T hに設定することによって、光記録媒体 1の仮想記録セル Sに、 最大のピッ ト P hを形成することができ、 仮想記録セル Sに、 最小の 光反射率を割り当てることが可能になる。  As described above, by setting the pulse width of the laser beam 01 irradiating the virtual region S ′ of the photosensitive material layer 110 b of the photo resist master 110 to the maximum width Th, the light width can be increased. The maximum pit Ph can be formed in the virtual recording cell S of the recording medium 1, and the minimum light reflectance can be assigned to the virtual recording cell S.
同様にして、 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bの 仮想領域 S ' に照射されるレーザビーム 1 0 1のパルス幅を、 それぞ れ、 T b、 T c、 T d、 T e、 T f 、 T gに設定することによって、 対応する大きさを有するピッ ト P b、 P c、 P d、 P e、 P f 、 P g を、 それぞれ、 仮想記録セル Sに形成し、 対応する光反射率を、 仮想 記録セル Sに割り当てることができる。  Similarly, the pulse widths of the laser beam 101 irradiating the virtual region S ′ of the photosensitive material layer 110 b of the photo resist master 110 are represented by T b, T c, and T b, respectively. By setting d, T e, T f, and T g, the pits P b, P c, P d, P e, P f, and P g having corresponding sizes are respectively stored in the virtual recording cell S. Once formed, a corresponding light reflectance can be assigned to the virtual recording cell S.
第 1 0図は、 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bの 仮想記録セル Sに対応する仮想領域 S ' に、 パワーが露光パワー尸 w に設定されたレーザビーム 1 1 0を照射した時間と、 フォ トレジス ト 原盤 1 1 0を用いて、 作製された光記録媒体 1の仮想記録セル Sの光 反射率との関係を示すグラフである。  FIG. 10 shows a laser beam 1 1 having a power set to the exposure power w in a virtual area S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110 b of the photo resist master 110. 5 is a graph showing the relationship between the time of irradiating 0 and the light reflectance of the virtual recording cell S of the optical recording medium 1 manufactured using the photoresist master 11.
上述のように、 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 b の仮想記録セル Sに対応する仮想領域 S ' に、 パワーが露光パワー P wに設定されたレーザビーム 1 1 0を照射した時間が長くなるにした がって、 すなわち、 レーザビーム 1 1 0のパルス幅が大きくなるにし たがって、 光記録媒体 1の仮想記録セル sに形成されるピッ ト P kは 大きくなり、 仮想記録セル sの光反射率は低下する。 As described above, in the virtual area S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110 b of the photo resist master 110, the laser beam 110 whose power is set to the exposure power P w Irradiation time was increased Accordingly, that is, as the pulse width of the laser beam 110 increases, the pit P k formed in the virtual recording cell s of the optical recording medium 1 increases, and the light reflectance of the virtual recording cell s Drops.
したがって、 露光パワー に設定されたレーザビーム 1 0 1が、 フォ ト レジス ト原盤 1 1 0の感光性材料層 1 1 0 bの仮想記録セル S に対応する仮想領域 S ' に照射される時間が T aで、 最も短いときの 仮想記録セル Sの光反射率 R aを、 最大の光反射率を有する仮想記録 セル Sの光反射率と して割り当てるとともに、 露光パワー に設定 されたレーザビーム 1 0 1が、 フォ トレジス ト原盤 1 1 0の感光性材 料層 1 1 0 bの仮想記録セル Sに対'応する仮想領域 S ' に照射される 時間が T hで、 最も長いときの光反射率 R hを、 最小の光反射率を有 する仮想記録セル Sの光反射率として割り当て、 最大の光反射率 R a と最小の光反射率 R hとの間の光反射率を 7つに分割して、 6種類の 互いに異なる光反射率 R b、 R c、 R d、 R e、 R i、 R gを決定し、 ピッ ト P kの大きさが異なる仮想記録セル Sの光反射率として割り当 て、 仮想記録セル Sの光反射率を、 R a、 R b、 R c、 R d、 R e、 R f 、 R g、 R hとするのに必要な感光性材料層 1 1 0 bの仮想領域 S ' への露光パワー のレーザビーム 1 0 1の照射時間を、 それぞ れ、 決定し、 光記録媒体 1の仮想記録セル Sに形成すべきピッ ト P k の大きさに応じて、 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bの仮想記録セル Sに対応する仮想領域 S ' にレーザビーム 1 0 1を 照射することによって、 光記録媒体 1の各仮想記録セル Sに、 3ビッ トのデータを記録することが可能になる。  Therefore, the time during which the laser beam 101 set to the exposure power is applied to the virtual area S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110 b of the photo resist master 110 is set. At Ta, the light reflectance Ra of the virtual recording cell S at the shortest time is assigned as the light reflectance of the virtual recording cell S having the maximum light reflectance, and the laser beam 1 set to the exposure power 1 0 1 irradiates the virtual area S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110 b of the photo resist master 110, and the time when it is Th is the longest. The reflectance R h is assigned as the light reflectance of the virtual recording cell S having the minimum light reflectance, and the light reflectance between the maximum light reflectance Ra and the minimum light reflectance R h is set to seven. And determine the six different types of light reflectance R b, R c, R d, R e, R i, and R g, and determine the pit P k Are assigned as the light reflectances of the virtual recording cells S having different sizes, and the light reflectances of the virtual recording cells S are defined as Ra, Rb, Rc, Rd, Re, Rf, Rg, and R. h, the irradiation time of the laser beam 101 with the exposure power to the virtual area S ′ of the photosensitive material layer 110 b is determined, and the virtual recording cell of the optical recording medium 1 is determined. Depending on the size of the pit P k to be formed on S, the laser beam 10 1 is applied to the virtual area S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110 b of the photo resist master 110. Irradiation makes it possible to record 3-bit data in each virtual recording cell S of the optical recording medium 1.
ただし、 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bの仮想 領域 S, へのレーザビーム 1 0 1の最大照射時間 Tm a Xは、 LZV (ここに、 Lは感光性材料層 1 1 0 bの仮想記録セル Sに対応する仮 想領域 S ' の長さ、 すなわち、 仮想記録セル Sの長さであり、 Vは力 ッティングマシン 1 00の線速度である。) に等しいから、仮想記録セ ル Sが最小の光反射率 R hを有するように、 仮想記録セル Sに最大の ピッ ト P hを形成するためのレーザビーム 1 0 1の照射時間 T hは、 T m a x以下に設定することが必要である。 However, the maximum irradiation time Tma X of the laser beam 101 to the virtual region S of the photosensitive material layer 110 of the photoresist master 110, and Tma X is LZV (where L is the photosensitive material layer). The length of the virtual area S ′ corresponding to the virtual recording cell S of 110b, that is, the length of the virtual recording cell S, and V is the linear velocity of the force-setting machine 100.) Thus, the irradiation time T h of the laser beam 101 for forming the maximum pit P h on the virtual recording cell S is set so that the virtual recording cell S has the minimum light reflectance R h. It must be set below T max.
第 1 0図に示されるように、 光記録媒体 1の仮想記録セル Sの光反 射率は、 感光性材料層 1 1 0 1)の仮想領域3 ' への露光パワー に 設定されたレーザビーム 1 0 1の照射時間が、 第一の所定時間未満の 領域 A内にあるときは、 レーザビーム 1 0 1の照射時間を増大させて も、 あまり変化せず、 露光パワー i7 こ設定されたレーザビーム 1 0 1の照射時間が、 第一の所定時間以上で、 第二の所定時間未満の領域 B内にあるときは、 レーザビーム 1 0 1の照射時間の増大にしたがつ て、 ほぼ線形に低下し、 露光パワー に設定されたレーザビーム 1 0 1の照射時間が、 第二の所定時間以上の領域 C内にあるときは、 レ 一ザビーム 1 0 1の照射時間が増大しても、 あまり変化せず、 光反射 率が R sに達する。 これは、 フォ ト レジス ト原盤 1 1 0の感光性材料 層 1 1 0 bは、 露光パワー に設定されたレーザビーム 1 0 1が照 射された直後は、 わずかづつ、 変質し、 露光パワー尸 こ設定された レーザビーム 1 0 1の照射開始から、 第一の所定時間が経過すると、 感光性材料層 1 1 0 bの変質の程度は、 レーザビーム 1 0 1の照射時 間の増大にしたがって、 ほぼ線形に増大し、 第二の所定時間が経過し た後は、 レーザビーム 1 0 1の照射時間を増大させそも、 感光性材料 層 1 1 0 bの変質の程度は、 ほとんど増大しないという性質を有して いるためである。 As shown in FIG. 10, the light reflectance of the virtual recording cell S of the optical recording medium 1 is determined by the laser beam set to the exposure power to the virtual area 3 ′ of the photosensitive material layer 111). When the irradiation time of 101 was within the area A shorter than the first predetermined time, the irradiation power of i 7 was not changed much even if the irradiation time of the laser beam 101 was increased. When the irradiation time of the laser beam 101 is within the region B that is equal to or longer than the first predetermined time and shorter than the second predetermined time, the irradiation time of the laser beam 101 increases substantially as the irradiation time of the laser beam 101 increases. When the irradiation time of the laser beam 101 set to the exposure power falls within the region C for the second predetermined time or more, even if the irradiation time of the laser beam 101 increases, The light reflectivity reaches R s without much change. This is because the photosensitive material layer 110b of the photo-resist master 110 changes little by little immediately after being irradiated with the laser beam 101 set at the exposure power, and the exposure power After the first predetermined time has elapsed from the start of the irradiation of the laser beam 101, the degree of deterioration of the photosensitive material layer 110b is increased according to the increase in the irradiation time of the laser beam 101. After the second predetermined time has elapsed, the irradiation time of the laser beam 101 is increased, and the degree of deterioration of the photosensitive material layer 110b hardly increases even after the second predetermined time has elapsed. This is because it has the property of:
したがって、 領域 B内の光反射率だけでなく、 領域 Aおよび領域 C 内の光反射率をも、 仮想記録セル Sの光反射率として、 割り当てたと きには、 領域 B内の光反射率を用いて、 仮想記録セル Sに、 大きさの 異なるピッ トを形成し、 異なる記録レベルのデータを記録する場合に 比して、 領域 Aおよび領域 C内の光反射率を用いて、 仮想記録セル S に、 大きさの異なるピッ トを形成し、 異なる記録レベルのデータを記 録する場合には、 感光性材料層 1 1 O bの仮想領域 S ' への露光パヮ 一 に設定されたレーザビーム 1 0 1の照射時間を大きく変化させ ることが必要になるから、第 1 0図に示された領域 B内の光反射率を、 仮想記録セル Sの光反射率として割り当て、 仮想記録セル Sの光反射 率が、 割り当てられた値となるように、 感光性材料層 1 1 0 bの仮想 領域 S, への露光パワー尸 wに設定されたレーザビ ム 1 0 1の照射 時間を制御して、 光記録媒体 1の仮想記録セル sに、 大きさの異なる ピッ トを形成して、 記録レベルの異なるデータを記録することが好ま しい。 Therefore, when the light reflectance in the area A and the area C as well as the light reflectance in the area B are assigned as the light reflectance of the virtual recording cell S, the light reflectance in the area B becomes By using the light reflectance in the area A and the area C as compared with the case where pits having different sizes are formed in the virtual recording cell S and data of different recording levels are recorded, the virtual recording cell S is used. When pits having different sizes are formed on S and data of different recording levels are to be recorded, the laser beam set to the exposure area to the virtual area S ′ of the photosensitive material layer 11 Ob is used. Since it is necessary to greatly change the irradiation time of 101, the light reflectance in the area B shown in FIG. 10 is assigned as the light reflectance of the virtual recording cell S, and the virtual recording cell S Light reflection The optical recording time is controlled by controlling the irradiation time of the laser beam 101 set to the exposure power to the virtual area S of the photosensitive material layer 110b so that the rate becomes the assigned value. It is preferable that pits having different sizes are formed in the virtual recording cell s of the medium 1 to record data having different recording levels.
しかしながら、 第 1 0図に示された領域 B内の光反射率を、 仮想記 録セル Sの光反射率と して割り当て、 仮想記録セル Sの光反射率が、 割り当てられた値となるように、感光性材料層 1 1 0 bの仮想領域 S ' への露光パワー尸 wに設定されたレーザビーム 1 0 1 の照射時間を制 御して、 光記録媒体 1の仮想記録セル sに、 大きさの異なるピッ トを 形成して、 記録レベルの異なるデータを記録する場合には、 最大反射 率 R a と、 最小反射率 R hとの差を十分に大きくすることができず、 その結果、 十分に広いダイナミックレンジを有する再生信号を得るこ とが困難になる。  However, the light reflectance in the area B shown in FIG. 10 is assigned as the light reflectance of the virtual recording cell S, and the light reflectance of the virtual recording cell S becomes the assigned value. In addition, by controlling the irradiation time of the laser beam 101 set to the exposure power w to the virtual area S ′ of the photosensitive material layer 110 b, the virtual recording cell s of the optical recording medium 1 is When pits with different sizes are formed and data with different recording levels are recorded, the difference between the maximum reflectance Ra and the minimum reflectance Rh cannot be made sufficiently large, and as a result, However, it becomes difficult to obtain a reproduced signal having a sufficiently wide dynamic range.
したがって、 露光パワー に設定されたレーザビーム 1 0 1の照 射時間を大きく変化させなくても、光記録媒体 1の仮想記録セル sに、 大きさの異なるピッ トを形成して、 記録レベルの異なるデータを記録 可能な範囲で、 仮想記録セル Sの最大光反射率 R a力 記録マークが 形成されていない仮想記録セル Sの光反射率 R oに、できるだけ近く、 かつ、 仮想記録セル Sの最小光反射率 R hが、 飽和光反射率 R sに、 できるだけ近くなるように、各仮想記録セル Sの光反射率を割り当て、 露光パワー尸 wに設定されたレーザビーム 1 0 1を、 感光性材料層 1 1 0 1>の仮想領域3 ' へ照射する時間の最小値および最大値を決定す ることが、 広いダイナミックレンジを有する信号を再生する上で、 好 ましい。  Therefore, even if the irradiation time of the laser beam 101 set to the exposure power is not largely changed, pits having different sizes are formed in the virtual recording cell s of the optical recording medium 1 to reduce the recording level. Within the range where different data can be recorded, the maximum light reflectance Ra of the virtual recording cell S is as close as possible to the light reflectance Ro of the virtual recording cell S where no recording mark is formed, and The light reflectance of each virtual recording cell S is assigned so that the minimum light reflectance R h is as close as possible to the saturated light reflectance R s, and the laser beam 101 set to the exposure power w is exposed to light. It is preferable to determine the minimum value and the maximum value of the time for irradiating the virtual region 3 ′ of the conductive material layer 111> in reproducing a signal having a wide dynamic range.
そこで、 本発明者が鋭意研究を重ねたところ、 感光性材料層 1 1 0 bの仮想領域 S ' に照射するレーザビーム 1 0 1の露光パワー尸 wの レベルが変化すると、 第 1 0図に示されたフォ トレジス ト原盤 1 1 0 の感光性材料層 1 1 0 bの仮想記録セル Sに対応する仮想領域 S 'に、 パワーが露光パワー wに設定されたレーザビーム 1 1 0を照射する 時間と、 フォトレジス ト原盤 1 1 0を用いて、 作製された光記録媒体 1の仮想記録セル Sの光反射率との関係が変化し、 レーザビーム 1 0 1 の露光パワー wのレベルが高いほど、 仮想記録セル Sに高い最大 反射率を割り当てても、 露光パワー に設定されたレ ザビーム 1 0 1の照射時間を大きく変化させることなく、 仮想記録セル Sに、 大 きさの異なるピッ トを形成して、 記録レベルの異なるデータを記録す ることができ、 その一方で、 レーザビーム 1 0 1の露光パワー wの レベルが低いほど、仮想記録セル Sに低い最小反射率を割り当てても、 露光パワー こ設定されたレーザビーム 1 0 1の照射時間を大きく 変化させることなく、 仮想記録セル Sに、 大きさの異なるピッ トを形 成して、 記録レベルの異なるデータを記録することが可能になること が見出された。 Thus, the inventor conducted intensive research and found that, when the level of the exposure power w of the laser beam 101 irradiating the virtual region S ′ of the photosensitive material layer 110 b changes, FIG. A virtual area S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110 b of the indicated photo resist master 110 is irradiated with a laser beam 110 whose power is set to the exposure power w. The relationship between the time and the light reflectance of the virtual recording cell S of the optical recording medium 1 produced using the photoresist master 110 changes, and the level of the exposure power w of the laser beam 101 increases. As a result, even if a higher maximum reflectance is assigned to the virtual recording cell S, the virtual recording cell S has a different size without changing the irradiation time of the laser beam 101 set to the exposure power. Can be formed to record data having different recording levels. On the other hand, the lower the level of the exposure power w of the laser beam 101, the lower the minimum reflectivity assigned to the virtual recording cell S. Exposure power It is possible to record data of different recording levels by forming pits of different sizes in the virtual recording cell S without greatly changing the irradiation time of the set laser beam 101. Possible It was found that.
第 1 1図は、 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bの 仮想記録セル Sに対応する仮想領域 S ' に照射するレーザビーム 1 0 1の露光パワー 1 ^を変化させた-ときのレーザビーム 1 0 1の照射時 間と、 フォ トレジス ト原盤 1 1 0を用いて、 作製された光記録媒体 1 の仮想記録セル sの光反射率との関係を示すグラフである。  FIG. 11 shows that the exposure power 1 ^ of the laser beam 101 irradiating the virtual area S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110 b of the photoresist master 110 is changed. FIG. 9 is a graph showing the relationship between the irradiation time of the laser beam 101 and the light reflectance of the virtual recording cell s of the optical recording medium 1 manufactured using the photoresist master 110. .
第 1 1図に示されるように、 本発明者の研究によれば、 感光性材料 層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー尸 wを高 いレベルに設定すると、光記録媒体 1の仮想記録セル Sの光反射率は、 露光パワー に設定されたレーザビーム 1 0 1の照射を開始してか ら、 短時間で、 換言すれば、 光反射率が高い段階で、 レーザビーム 1 0 1の照射時間の増大にしたがって、ほぼ線形に低下するようになり、 また、 早い段階で、 換言すれば、 光反射率があまり低くならない段階 で、 レーザビーム 1 0 1の照射時間を増大させても、 光反射率が、 あ まり変化しなくなって、 やがて、 飽和光反射率 R sに達することが認 められ、 一方、 感光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー尸 wを低いレベルに設定すると、 光記録媒体 1の仮 想記録セル Sの光反射率は、 露光パワー尸 こ設定されたレーザビー ム 1 0 1の照射を開始してから、 比較的長時間にわたって、 レーザビ ーム 1 0 1の照射時間が増大しても、 あまり変化せず、 光反射率が比 較的低くなった段階で、 レーザビーム 1 0 1の照射時間の増大にした がって、 光反射率が、 ほぼ線形に低下するようになり、 レーザビームAs shown in FIG. 11, according to the study of the present inventor, when the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b is set to a high level, The light reflectance of the virtual recording cell S of the recording medium 1 is reduced in a short time after starting the irradiation of the laser beam 101 set at the exposure power, in other words, at a stage where the light reflectance is high. As the irradiation time of the laser beam 101 increases, it decreases almost linearly, and at an early stage, in other words, at a stage where the light reflectance does not decrease so much, the irradiation time of the laser beam 101 It is recognized that the light reflectance does not change much even if the laser beam is increased, and eventually reaches the saturated light reflectance Rs. On the other hand, the laser beam used for exposing the photosensitive material layer 110b is exposed. When the exposure power w of 101 is set to a low level, optical recording The light reflectance of the virtual recording cell S of the medium 1 is set to a relatively long time after the irradiation of the set laser beam 101 is started. Even when the irradiation time of the laser beam 101 increased, the light reflection did not change much, and when the light reflectance became relatively low, the light reflection increased as the irradiation time of the laser beam 101 increased. Rate decreases almost linearly and the laser beam
1 0 1の照射時間が増大しても、 光反射率が、 あまり変化しなくなる までに、 長い時間を要し、 光反射率がかなり低くなつて、 初めて、 レ 一ザビーム 1 0 1の照射時間が増大しても、 光反射率が、 あまり変化 しなくなることが認められている。 Even if the irradiation time of 101 increases, it takes a long time until the light reflectance does not change much, and the irradiation time of the laser beam 101 is the first time when the light reflectance is considerably low. It is recognized that the light reflectivity does not change much even if increases.
したがって、 感光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー を高いレベルに設定すれば、 仮想記録セル Sに 割り当てる最大光反射率を高い値に設定しても、 露光パワー尸 に設 定されたレーザビーム 1 0 1の照射時間を大きく変化させることなく、 仮想記録セル sに、 大きさの異なるピッ トを形成して、 記録レベルの 異なるデータを記録することが可能になるから、 感光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー尸 wが であ る場合に、 仮想記録セル Sに割り当てることができる最大光反射率 R a Hおよび最大相対光反射率 R a H (%) ならびに感光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー wが尸 w (PwL< PwH) である場合に、 仮想記録セル Sに割り当てること ができる最大光反射率 R a Lおよび最大相対光反射率 R R a L (%) は、 次式を満足することになる。  Therefore, if the exposure power of the laser beam 101 used for exposing the photosensitive material layer 110b is set to a high level, even if the maximum light reflectance assigned to the virtual recording cell S is set to a high value, the exposure It is possible to record data with different recording levels by forming pits with different sizes in the virtual recording cell s without greatly changing the irradiation time of the laser beam 101 set in the power section. Therefore, when the exposure power w of the laser beam 101 used for exposure of the photosensitive material layer 110 b is, the maximum light reflectance R a H that can be assigned to the virtual recording cell S and When the maximum relative light reflectance R a H (%) and the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b are w (PwL <PwH), the virtual recording cell S The maximum light reflectance R a L and And the maximum relative light reflectance R R a L (%) satisfies the following equation.
R a L < R a H  R a L <R a H
R R a L < R R a H  R R a L <R R a H
ここに、絶対光反射率が R i である場合の相対光反射率 RR i (%) は、 次式によって、 定義される。  Here, the relative light reflectance RR i (%) when the absolute light reflectance is R i is defined by the following equation.
R R i (%) = {(R i - R s ) / (R o - R s )} X 1 00 このように、 仮想記録セル Sに割り当てる最大光反射率 R aおよび 最大相対光反射率 RR a (%) に応じて、 感光性材料層 1 1 0 bの露 光に用いるレーザビーム 1 0 1の露光パワー尸 wのレベルを設定する ことによって、 仮想記録セル Sに割り当てる最大光反射率 R aおよび 最大相対光反射率 RR a (%) を高い値に設定しても、 露光パワー P wに設定されたレーザビーム 1 0 1の照射時間を大きく変化させるこ となく、 仮想記録セル sに、 大きさの異なるピッ トを形成して、 記録 レベルの異なるデータを記録することができ、 広いダイナミ ックレン ジを有する再生信号を得ることが可能になる。 RR i (%) = {(R i-R s) / (R o-R s)} X 100 Thus, the maximum light reflectance Ra and the maximum relative light reflectance RR a allocated to the virtual recording cell S By setting the level of the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b in accordance with (%), the maximum light reflectance Ra assigned to the virtual recording cell S And the maximum relative light reflectance RR a (%) is set to a high value, the exposure power P Without changing the irradiation time of the laser beam 101 set to w, the pits with different sizes can be formed in the virtual recording cell s, and data with different recording levels can be recorded. A reproduced signal having a wide dynamic range can be obtained.
一方、 感光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の 露光パワー尸 wを低いレベルに設定すれば、 仮想記録セル Sに割り当 てる最小光反射率を低い値に設定しても、 露光パワー尸 Wに設定され たレーザビーム 1 0 1の照射時間を大きく変化させることなく、 仮想 記録セル Sに、 大きさの異なるピッ トを形成して、 記録レベルの異な るデータを記録することが可能になるから、 感光性材料層 1 1 0 bの 露光に用いるレーザビーム 1 0 1の露光パワー wが尸 w/Jである場 合に、 仮想記録セル Sに割り当てることができる最小光反射率 R h L および最小相対光反射率 R R h L (%) ならびに感光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー wが尸 ( P wL< PwH) である場合に、 仮想記録セル Sに割り当てることがで きる最小光反射率 R h Lおよび最小相対光反射率 RR h L (%) は、 次式を満足することになる。  On the other hand, if the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b is set to a low level, the minimum light reflectance assigned to the virtual recording cell S is set to a low value. However, the pits having different sizes are formed in the virtual recording cell S without largely changing the irradiation time of the laser beam 101 set to the exposure power W, so that data having different recording levels can be obtained. Since recording becomes possible, when the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b is w / J, it can be assigned to the virtual recording cell S. The minimum light reflectance R h L and the minimum relative light reflectance RR h L (%) and the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b are (P wL <PwH) In some cases, the minimum light reflectance R h L that can be assigned to virtual recording cell S Minimum relative reflectance and RR h L (%) would satisfy the following equation.
R h L < R h H  R h L <R h H
R R h L< RR hH  R R h L <RR hH
このよ うに、 仮想記録セル Sに割り当てる最小光反射率 R hおよび 最小相対光反射率 RR h (%) に応じて、 感光性材料層 1 1 O bの露 光に用いるレーザビーム 1 0 1の露光パワー尸 wのレベルを設定する ことによって、 仮想記録セル S,に割り当てる最小光反射率 R hおよび 最小相対光反射率 RR h (%) を低い値に設定しても、 露光パワー尸 こ設定されたレーザビーム 1 0 1の照射時間を大きく変化させるこ となく、 仮想記録セル Sに、 大きさの異なるピッ トを形成して、 記録 レベルの異なるデータを記録することができ、 広いダイナミック レン ジを有する再生信号を得ることが可能になる。  Thus, according to the minimum light reflectance R h and the minimum relative light reflectance RR h (%) assigned to the virtual recording cell S, the laser beam 101 used for exposing the photosensitive material layer 11 Ob By setting the level of the exposure power w, even if the minimum light reflectance R h and the minimum relative light reflectance RR h (%) assigned to the virtual recording cell S are set to low values, the exposure power is set. The pits having different sizes can be formed in the virtual recording cell S without greatly changing the irradiation time of the laser beam 101, so that data with different recording levels can be recorded. Thus, it is possible to obtain a reproduced signal having the edge.
さらに、 第 1 1図に示されるように、 感光性材料層 1 1 0 bの露光 に用いるレーザビーム 1 0 1の露光パワー P wのレベルが高いときは、 光記録媒体 1の仮想記録セル Sの光反射率は、 光反射率のレベルが比 較的高い段階で、レーザビーム 101の照射時間の増大にしたがって、 ほぼ線形に低下するようになり、 その一方で、 光記録媒体 1の仮想記 録セル sの光反射率は、 光反射率のレベルがあまり低くなっていない 段階で、 レーザビーム 101の照射時間を増大させても、 ほとんど変 化しなくなるから、 仮想記録セル Sに割り当てる最大光反射率を高く するために、 感光性材料層 110bの露光に用いるレーザビーム 10 1の露光パワー i^wを高いレベル w / に設定するときは、 仮想記録 セル Sに割り当てられる最大の相対光反射率 R R a Hおよび最小の相 対光反射率 RR hHは、 次式を満たすように、 決定される。 Further, as shown in FIG. 11, when the exposure power P w of the laser beam 101 used for exposing the photosensitive material layer 110 b is high, The light reflectivity of the virtual recording cell S of the optical recording medium 1 decreases almost linearly as the irradiation time of the laser beam 101 increases at a relatively high light reflectivity level. Therefore, the light reflectance of the virtual recording cell s of the optical recording medium 1 hardly changes even if the irradiation time of the laser beam 101 is increased at a stage where the light reflectance level is not so low. When the exposure power i ^ w of the laser beam 101 used for exposing the photosensitive material layer 110b is set to a high level w / in order to increase the maximum light reflectance assigned to the virtual recording cell S, the virtual recording cell S The maximum relative light reflectance RRaH and the minimum relative light reflectance RRhH assigned to are determined so as to satisfy the following equation.
100-RR a H<RR h H  100-RR a H <RR h H
感光性材料層 110bの露光に用いるレーザビーム 101の露光パ ヮー尸 wが/ /である場合に、 仮想記録セル Sに割り当てられる最 大の相対光反射率 R R a Hおよび最小の相対光反射率 R R h Hを、 こ のよ うに決定することによって、 レーザビーム 101の露光パワー wが w Hである場合に、 露光パワー尸 wに設定されたレーザビーム 101の照射時間を大きく変化させなくても、 仮想記録セル Sに、 大 きさの異なるピッ トを形成して、 記録レベルの異なるデータを記録可 能な範囲で、 それぞれ、 仮想,記録セル Sの最大相対光反射率 RR a H および最小相対光反射率 R R h Hを割り当てることが可能になる。 これに対して、 感光性材料層 110 bの露光に用いるレーザビーム 101の露光パワー ^Pwのレベルが低いときは、 第 11図に示される ように、 光記録媒体 1の仮想記録セル sの光反射率は、 光反射率のレ ベルが比較的低くなるまで、 レーザビーム 101の照射時間の増大に したがって、 ほぼ線形に低下することがなく、 その一方で、 光記録媒 体 1の仮想記録セル Sの光反射率は、 光反射率のレベルがかなり低く なるまで、 レーザビーム 101の照射時間の増大にしたがって、 ほぼ 線形に低下することが認められるから、 仮想記録セル Sに割り当てる 最小光反射率を高くするために、 感光性材料層 110bの露光に用い るレーザビーム 101の露光パワー尸 wを低いレベル尸!^ に設定す るときは、 仮想記録セル Sに割り当てられる最大の相対光反射率 RR a Lおよび最小の相対光反射率 R R h Lは、'次式を満たすように、 決 定される。 When the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110b is //, the maximum relative light reflectance RRaH and the minimum relative light reflectance assigned to the virtual recording cell S By determining RRhH in this manner, when the exposure power w of the laser beam 101 is wH, the irradiation time of the laser beam 101 set to the exposure power w does not need to be largely changed. In the virtual recording cell S, pits having different sizes are formed, and the maximum relative light reflectance RR aH and the minimum relative light reflectance of the virtual and recording cells S are respectively set within a range where data of different recording levels can be recorded. Relative light reflectance RR h H can be assigned. On the other hand, when the level of the exposure power ^ Pw of the laser beam 101 used for exposing the photosensitive material layer 110b is low, the light of the virtual recording cell s of the optical recording medium 1 is reduced as shown in FIG. The reflectivity does not decrease almost linearly with the increase in the irradiation time of the laser beam 101 until the level of the light reflectivity becomes relatively low, while the virtual recording cell of the optical recording medium 1 does not decrease. It is recognized that the light reflectance of S decreases almost linearly as the irradiation time of the laser beam 101 increases until the level of the light reflectance becomes considerably low. In order to increase the exposure power, the exposure power of the laser beam 101 used for exposure of the photosensitive material layer 110b is set to a low level! Set to ^ In this case, the maximum relative light reflectance RRaL and the minimum relative light reflectance RRhL assigned to the virtual recording cell S are determined so as to satisfy the following equation.
1 00 -RR a L >RR h L  1 00 -RR a L> RR h L
感光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パ ヮー P wが尸 w である場合に、 仮想記録セル Sに割り当てられる最 大の相対光反射率 RR a Lおよび最小の相対光反射率 R R h Lを、 こ のように決定することによって、 感光性材料層 1 1 0 bの露光に用い るレーザビームの露光パワー尸 wが尸 である場合に、 露光パワー 尸 wに設定されたレーザビーム 1 0 1の照射時間を大きく変化させな くても、 仮想記録セル sに、 大きさの異なるピッ トを形成して、 記録 レベルの異なるデータを記録可能な範囲で、 それぞれ、 仮想記録セル When the exposure power P w of the laser beam 101 used for exposing the photosensitive material layer 110 b is w, the maximum relative light reflectance RR a L and the minimum relative light reflectance assigned to the virtual recording cell S are By determining the relative light reflectance RR h L of the laser beam in this manner, the exposure power of the laser beam used to expose the photosensitive material layer 110 b is Even if the irradiation time of the laser beam 101 set at the time is not largely changed, pits having different sizes are formed in the virtual recording cell s so that data having different recording levels can be recorded within a range. Each is a virtual recording cell
Sの最大相対光反射率 RR a Lおよび最小相対光反射率 RR h Lを割 り当てることが可能になる。 It becomes possible to assign the maximum relative light reflectance RR a L and the minimum relative light reflectance RR h L of S.
以上のような基本的な考えにしたがって、 仮想記録セル Sに割り当 てる最大光反射率 R および最大相対光反射率 RR aならびに最小光 反射率 R hおよび最小相対光反射率 RR hに応じて、 フォ トレジス ト 原盤 1 1 0の感光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー尸 wが選択され、 他の特性、 たとえば、 データを再生 したときのエラーレートにしたがって、 選択されたレーザビーム 1 0 1の露光パワー/5 wの中から、 最適な露光パワー が決定される。 さらに、 最大光反射率 R a と最小光反射率 R hとの間の光反射率が 略 7等分されて、 6種類の互いに異なる光反射率 R b、 R c、 R d、 R e、 R f 、 R gが決定され、 データの記録レベルが異なる仮想記録 セル Sの光反射率と して割り当てられ、仮想記録セル Sの光反射率を、 R a、 R b、 R c、 R d、 R e、 R f 、 R g、 R hとするのに必要な 感光性.材料層 1 1 0 bの仮想領域 S ' に照射されるべきレーザビーム 1 0 1の露光パワー wの最適レベルと、 最適な露光パワー に設 定されたレーザビーム 1 0 1の感光性材料層 1 1 0 bの仮想領域 S ' への照射時間が、 ピッ トの大きさが異なる仮想記録セル Sごとに、 決 定されて、 露光条件設定用データが生成される。 According to the above basic idea, according to the maximum light reflectance R and the maximum relative light reflectance RRa and the minimum light reflectance Rh and the minimum relative light reflectance RRh assigned to the virtual recording cell S, The exposure power of the laser beam 101 used for exposing the photosensitive material layer 110 b of the photo resist master 110 is selected, and other characteristics, such as the error rate when data is reproduced, are selected. Accordingly, from among the selected laser beam 1 0 1 exposure power / 5 w, the optimum exposure power is determined. Further, the light reflectance between the maximum light reflectance R a and the minimum light reflectance R h is roughly divided into seven equal parts, and six different light reflectances R b, R c, R d, R e, R f and R g are determined, and the data recording levels are assigned as the light reflectivity of the virtual recording cell S, and the light reflectivity of the virtual recording cell S is calculated as Ra, R b, R c, and R d , R e, R f, R g, and R h, and the optimal level of the exposure power w of the laser beam 101 to be applied to the virtual area S ′ of the material layer 110 b. The irradiation time of the laser beam 101 set to the optimum exposure power to the virtual area S 'of the photosensitive material layer 110b is determined for each virtual recording cell S having a different pit size. The exposure condition setting data is generated.
本実施態様によれば、 仮想記録セル Sに割り当てる最大光反射率 R aおよび最大相対光反射率 RR a (%) が高いほど、 フォ トレジス ト 原盤 1 1 0の感光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー を高いレベルに設定するように構成されているか ら、 仮想記録セル Sに割り当てる最大光反射率 R aおよび最大相対光 反射率 RR a (%) を高い値に設定しても、 露光パワー P T こ設定さ れたレーザビーム 1 0 1の照射時間を大きく変化させることなく、 仮 想記録セル Sに、 大きさの異なるピッ トを形成して、. 記録レベルの異 なるデータを記録することがで ;き、 広いダイナミックレンジを有する 再生信号を得ることが可能になる。 According to this embodiment, the higher the maximum light reflectance R a and the maximum relative light reflectance RR a (%) assigned to the virtual recording cell S are, the more the photosensitive material layer 110 b of the photoresist master 110 Since the exposure power of the laser beam 101 used for the exposure is set to a high level, the maximum light reflectance Ra and the maximum relative light reflectance RRa (%) assigned to the virtual recording cell S are Even if it is set to a high value, the exposure power PT forms pits of different sizes in the virtual recording cell S without greatly changing the irradiation time of the set laser beam 101. out to record different data recording level; come, it is possible to obtain a reproduced signal having a wide dynamic range.
また、 本実施態様によれば、 仮想記録セル Sに割り当てる最小光反 射率 R hおよび最小相対光反射率 RRh (%) が低いほど、 フオ トレ ジス ト原盤 1 1 0の感光性材料層 1 1 0 bの露光に用いるレーザビー ム 1 0 1の露光パワー を低いレベルに設定するように構成されて いるから、 仮想記録セル Sに割り当てる最小光反射率 R hおよび最小 相対光反射率 RR h (%) を低い値に設定しても、 露光パワー ^に 設定されたレーザビーム 1 0 1の照射時間を大きく変化させることな く、 仮想記録セル Sに、 大きさの異なるピッ トを形成して、 記録レべ ルの異なるデータを記録することができ、 広いダイナミックレンジを 有する再生信号を得ることが可能になる。  Further, according to the present embodiment, the lower the minimum light reflectance R h and the minimum relative light reflectance RRh (%) assigned to the virtual recording cell S, the lower the photosensitive material layer 1 of the photo resist master 110. Since the exposure power of the laser beam 101 used for the exposure of 100 b is set to a low level, the minimum light reflectance R h and the minimum relative light reflectance RR h ( %) Is set to a low value, pits of different sizes are formed in the virtual recording cell S without greatly changing the irradiation time of the laser beam 101 set to the exposure power ^. In addition, data of different recording levels can be recorded, and a reproduced signal having a wide dynamic range can be obtained.
さらに、 本実施態様によれば、 仮想記録セル Sに割り当てる最大光 反射率を高くするために、 フォ ト レジス ト原盤 1 1 0の感光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー を高い レベル尸 w fに設定するときに、 仮想記録セル Sに割り当てられる最 大の相対光反射率 R R a Hおよび最小の相対光反射率 R R h Hが、 次 式を満たすように、 決定されるから、 フォ トレジス ト原盤 1 1 0の感 光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー P wが P w!Iである場合に、 露光パヮー こ設定されたレーザビー ム 1 0 1の照射時間を大きく変化させなくても、 仮想記録セル Sに、 大きさの異なるピッ トを形成して、 記録レベルの異なるデータを記録 可能な範囲で、 それぞれ、 仮想記録セル Sの最大相対光反射率 R R a Hおよび最小相対光反射率 RR h Hを割り当てることが可能になる。 Further, according to the present embodiment, in order to increase the maximum light reflectance to be assigned to the virtual recording cell S, the laser beam 10 used for exposing the photosensitive material layer 110 b of the photo resist master 110 is used. When the exposure power of 1 is set to a high level wf, the maximum relative light reflectance RR a H and the minimum relative light reflectance RR h H assigned to the virtual recording cell S satisfy the following equation. Therefore, if the exposure power P w of the laser beam 101 used for exposing the photosensitive material layer 110 b of the photo resist master 110 is P w! I, the exposure power Even if the irradiation time of the set laser beam 101 is not largely changed, the virtual recording cell S The maximum relative light reflectance RR a H and the minimum relative light reflectance RR h H of the virtual recording cell S should be allocated to the extent that data of different recording levels can be recorded by forming pits of different sizes. Becomes possible.
1 0 0 -R R a H< R R h H  1 0 0 -R R a H <R R h H
また、 本実施態様によれば、 仮想記録セル Sに割り当てる最小光反 射率を低くするために、 フォ ト レジス ト原盤 1 1 0の感光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー を低いレ ベル尸 w Lに設定するときに、 仮想記録セル sに割り当てられる最大 の相対光反射率 R R a Lおよび最小の相対光反射率 RR h Lが、 次式 を満たすように、 決定されるから、 フォ ト レジス ト原盤 1 1 0の感光 性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー /5 Further, according to the present embodiment, in order to lower the minimum light reflection rate assigned to the virtual recording cell S, the laser beam 1 used for exposing the photosensitive material layer 110 b of the photo resist master 110 is not used. 0 When the exposure power of 1 is set to a low level w L, the maximum relative light reflectance RR a L and the minimum relative light reflectance RR h L assigned to the virtual recording cell s satisfy the following formula: as such, since determined, the Photo Regis laser beam 1 0 1 exposure power / 5 used for preparative master 1 first photosensitive material layer 1 1 0 b exposure of 0
Wが尸 w Lである場合に、 露光パワー Wに設定されたレーザビームLaser beam set to exposure power W when W is wL
1 0 1の照射時間を大きく変化させなくても、 仮想記録セル Sに、 大 きさの異なるピッ トを形成して、 記録レベルの異なるデータを記録可 能な範囲で、 それぞれ、 仮想記録セル Sの最大相対光反射率 R R a L および最小相対光反射率 RR h Lを割り当てることが可能になる。 Even if the irradiation time of 101 is not largely changed, the pits having different sizes are formed in the virtual recording cell S, and each of the virtual recording cells is within a range where data of different recording levels can be recorded. It is possible to assign a maximum relative light reflectivity RR a L and a minimum relative light reflectivity RR h L of S.
1 0 0 -R R a L > R R h L  1 0 0 -R R a L> R R h L
第 1 2図は、 本発明の他の好ましい実施態様にかかる光記録媒体用 原盤 2 0 5の製造方法において用いられる光記録媒体 1 の仮想記録セ ル Sに対応するフォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bの 仮想領域 S ' に照射されるレーザビーム 1 0 1のパワーの変調パター ンを示すダイアグラムである。  FIG. 12 shows a photoresist master 110 corresponding to a virtual recording cell S of an optical recording medium 1 used in a method of manufacturing an optical recording medium master 205 according to another preferred embodiment of the present invention. 4 is a diagram showing a modulation pattern of the power of the laser beam 101 applied to the virtual region S ′ of the photosensitive material layer 110 b of FIG.
第 1 2図においては、 光記録媒体 1の仮想記録セル Sに対応するフ オ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bの仮想領域 S, の長 さは、 レーザビーム 1 0 1が仮想領域 S ' を通過するのに要する時間、 すなわち、 最大照射時間 Tm a xの形で、 表わされている。  In FIG. 12, the length of the virtual area S of the photosensitive material layer 110 b of the photoresist master 110 corresponding to the virtual recording cell S of the optical recording medium 1 is represented by the laser beam 10. The time required for 1 to pass through the virtual area S ′, that is, the maximum irradiation time Tmax, is represented.
上述のように、 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 b の仮想領域 S ' へのレーザビーム 1 0 1の最大照射時間 Tm a Xは、 L/V (ここに、 Lは感光性材料層 1 1 0 bの仮想記録セル Sに対応 する仮想領域 S ' の長さ、 すなわち、 仮想記録セル Sの長さであり、 Vは力ッティングマシン 1 0 0の線速度である。) に等しいから、仮想 記録セル Sが最小の光反射率 R hを有するように、 仮想記録セル Sに 最大のピッ ト P hを形成するためのレーザビーム 1 0 1の照射時間 T hは、 Tm a X以下に設定することが必要である。 As described above, the maximum irradiation time Tmax of the laser beam 101 to the virtual area S ′ of the photosensitive material layer 110b of the photoresist master 110 is L / V (where L Is the length of the virtual area S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110b, that is, the length of the virtual recording cell S, V is the linear velocity of the force-setting machine 100. ), The irradiation time T h of the laser beam 101 for forming the maximum pit P h on the virtual recording cell S is set so that the virtual recording cell S has the minimum light reflectance R h. It must be set to TmaX or less.
たとえば、 仮想記録セル Sの長さ Lが 6 0 0 n mで、 カッティ ング マシン 1 0 0の線速度 Vが基準線速度 X 1である 1 . 2 / s e cの ときは、 第 1 2図に示されるように、 仮想領域 S ' に、 最大のピッ ト P hに対応する潜像 1 1 0 cを形成するためのレーザビーム 1 0 1の 照射時間 T hを、 5 0 0 n s e c以下に設定することが必要であり、 カッティングマシン 1 0 0の線速度 Vが 2倍速 X 2である 2. 4 m/ s e cのときは、 第 1 2図に示されるように、 仮想領域 S ' に、 最大 のピッ ト P hに対応する潜像 1 1 0 cを形成するためのレーザビーム 1 0 1の照射時間 T hを、 2 5 0 n s e C以下に設定し、 カッテイン グマシン 1 0 0の線速度 Vが 4倍速 X 4である 4. 8 mZ s e cのと きは、 第 1 2図に示されるように、 仮想領域 S ' に、 最大のピッ ト P hに対応する潜像 1 1 0 cを形成するためのレーザビーム 1 0 1 の照 射時間 T hを、 1 2 5 n s e c以下に設定することが必要である。 また、 第 1 0図から明らかなように、 仮想記録セル Sの最大光反射 率 R aが、 記録マークが形成されていない仮想記録セル Sの光反射率 R oに、 できるだけ近く、 かつ、 仮想記録セル Sの最小光反射率 R h 力 光反射率が実質的に飽和する飽和光反射率 R sに、 できるだけ近 くなるように、 各仮想記録セル Sの光反射率を割り当て、 フォ ト レジ ス ト原盤 1 1 0の感光性材料層 1 1 0 bの露光に用いる露光パワー尸 wに設定されたレーザビームの照射時間の最小値および最大値を決定 することが、 広いダイナミックレンジを有する信号を再生するために 好ましい。 For example, when the length L of the virtual recording cell S is 600 nm and the linear velocity V of the cutting machine 100 is 1.2 / sec, which is the reference linear velocity X1, as shown in Fig. 12 The irradiation time T h of the laser beam 101 for forming the latent image 110 c corresponding to the maximum pit P h in the virtual area S ′ is set to 500 nsec or less. When the linear velocity V of the cutting machine 100 is double speed X 2 and the speed is 2.4 m / sec, as shown in Fig. 12, the maximum area is The irradiation time Th of the laser beam 101 for forming the latent image 110 c corresponding to the pit P h is set to 250 nse C or less, and the linear velocity V of the cutting machine 100 is In the case of 4.8 mZ sec, which is 4 × speed 4, as shown in FIG. 12, a latent image 110c corresponding to the maximum pit Ph is formed in the virtual area S 'as shown in FIG. Laser bee for 1 0 1 irradiation morphism time T h, it is necessary to set the following 1 2 5 nsec. Further, as is apparent from FIG. 10, the maximum light reflectance Ra of the virtual recording cell S is as close as possible to the light reflectance Ro of the virtual recording cell S where no recording mark is formed, and The light reflectance of each virtual recording cell S is assigned so that the minimum light reflectance R h of the recording cell S is as close as possible to the saturated light reflectance R s at which the light reflectance is substantially saturated, and Determining the minimum value and the maximum value of the laser beam irradiation time set to the exposure power w used for exposure of the photosensitive material layer 110b of the storage master 110 is a signal having a wide dynamic range. It is preferable to reproduce.
したがって、 カツティングマシン 1 0 0の線速度 Vが最大のときの Tm a x、 すなわち、 LZVが、 仮想記録セル Sの光反射率が飽和光 反射率 R s となる大きさのピッ トを仮想記録セル Sに形成するために、 フォ ト レジス ト原盤 1 1 0の感光性材料層 1 1 0 bの仮想領域 S,に、 レーザビーム 1 0 1を照射することが必要なレーザビームの照射時間 T s以下になるように、 すなわち、 次式が満たされるように、 フォ ト レジス ト原盤 1 1 0の感光性材料層 1 1 0 bの露光に用いるレーザビ ームの露光パワー のレベル、 仮想記録セルの長さ Lおよび力ッテ ィングマシン 1 00の線速度 Vが設定されることが好ましい。 Therefore, Tmax at the time when the linear velocity V of the cutting machine 100 is the maximum, that is, LZV, is a virtual recording of a pit whose size is such that the light reflectance of the virtual recording cell S becomes the saturated light reflectance Rs. In order to form a cell S, a virtual area S of the photosensitive material layer 110 b of the photo resist master 110 is The photosensitive material layer 111 of the photo resist master 110 should be set so that the irradiation time Ts of the laser beam required to irradiate the laser beam 101 is shorter than the time Ts, that is, the following equation is satisfied. It is preferable that the level of the exposure power of the laser beam used for the exposure of 0b, the length L of the virtual recording cell, and the linear velocity V of the power cutting machine 100 are set.
丄' s≤Tm a X = / V m a x  丄 's≤Tm a X = / V m a x
第 1 2図に示されるように、 フォ トレジス ト原盤 1 1 0の感光性材 料層 1 1 0 bの仮想領域 S ' に照射されるレーザビーム 1 0 1のパヮ 一は、 露光パワー尸 wと基底パワー尸 ^とに選択的に変調され、 仮想 記録セル Sに形成す きピッ ト P a、 P b、 P c、 P d、 P e、 P f 、 P g、 P hに対応して、 レーザビーム 1 0 1のパワーが露光パワー こ設定される時間、 すなわち、 露光パワー P wのパルス幅 T a、 T b、 T c、 T d、 T e、 T f 、 T g、 T hが設定されている。  As shown in FIG. 12, the laser beam 101 irradiated onto the virtual area S ′ of the photosensitive material layer 110 b of the photoresist master 110 has an exposure power And the base powers, which are selectively modulated to form the virtual recording cells S corresponding to the pitches Pa, Pb, Pc, Pd, Pe, Pf, Pg, and Ph. The time during which the power of the laser beam 101 is set to the exposure power, that is, the pulse width Ta, Tb, Tc, Td, Te, Tf, Tg, Th of the exposure power Pw is Is set.
第 1 2図に示されるように、 フォ トレジス ト原盤 1 1 0の感光性材 料層 1 1 0 bの仮想領域 S ' へのレーザビーム 1 0 1の最大照射時間 Tm a Xは、 カツティングマシン 1 0 0の線速度 Vが高くなるにした がって、 短くなるが、 本実施態様においては、 記録線速度が最大であ る 4倍速 X 4の場合においても、 Tm a xが、 仮想記録セル Sに、 最 大のピッ ト P hを形成するために必要な仮想領域 S ' へのレーザビー ム 1 0 1の照射時間 T h、 すなわち、 仮想記録セル Sの光反射率を最 小にするために必要な仮想領域 S, へのレーザビーム 1 0 1の照射時 間 T hより も大きくなるように、 すなわち、 T h≤ Tm a Xを満たす ように、 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bを露光す るためのレーザビームの露光パワー wおよび仮想記録セル Sの長さ Lが設定されている。  As shown in Fig. 12, the maximum irradiation time TmaX of the laser beam 101 to the virtual area S 'of the photosensitive material layer 110b of the photoresist master 110 is The linear velocity V of the machine 100 becomes shorter as the linear velocity V becomes higher.However, in the present embodiment, even in the case of the quadruple-speed X4 where the recording linear velocity is the maximum, the Tmax becomes the virtual recording velocity. The irradiation time T h of the laser beam 101 to the virtual area S ′ necessary for forming the maximum pit P h in the cell S, that is, the light reflectance of the virtual recording cell S is minimized. The exposure of the photo-resist master 110 so that it is longer than the irradiation time T h of the laser beam 101 to the virtual area S Power w of the laser beam for exposing the conductive material layer 110b and the length L of the virtual recording cell S are set. There.
したがって、 第 1 2図に示されるように、 カッティングマシン 1 0 0の線速度 Vにかかわらず、 一定の変調パターンを用いて、 フオ トレ ジス ト原盤 1 1 0の感光性材料層 1 1 0 bを露光するためのレーザビ ームのパワーを変調することによって、 所望のように、 仮想記録セル Sに、 異なる大きさのピッ ト P a、 P b、 P c、 P d、 P e、 P f 、 P g、 P hを形成することが可能になる。 Therefore, as shown in FIG. 12, regardless of the linear velocity V of the cutting machine 100, the photosensitive material layer 110b of the photo resist master 110 is used using a constant modulation pattern. By modulating the power of the laser beam for exposing the laser beam, different sizes of pits P a, P b, P c, P d, P e, and P f can be stored in the virtual recording cell S as desired. , P g and P h can be formed.
第 1 3図は、 フォ トレジス ト原盤 1 1 0の感光性材料層 1 1 0 bの 仮想記録セル Sに対応する仮想領域 S ' に照射するレーザビーム 1 0 1の露光パワー 5^を変化させたときのレーザビーム 1 0 1の照射時 間と、 フォ トレジス ト原盤 1 1 0を用いて、 作製された光記録媒体 1 の仮想記録セル sの光反射率との関係を示すグラフである。 FIG. 13 shows that the exposure power 5 ^ of the laser beam 101 for irradiating the virtual region S ′ corresponding to the virtual recording cell S of the photosensitive material layer 110b of the photoresist master 110 is changed. 4 is a graph showing the relationship between the irradiation time of the laser beam 101 and the optical reflectivity of the virtual recording cell s of the optical recording medium 1 manufactured using the photoresist master 110.
上述のように、 感光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー尸 wを高いレベルに設定すると、 光記録媒体 1の 仮想記録セル Sの光反射率は、 露光パワー P こ設定されたレーザビ ーム 1 0 1の照射を開始してから、 短時間で、 換言すれば、 光反射率 が高い段階で、 レーザビーム 1 0 1の照射時間の増大にしたがって、 ほぼ線形に低下するようになり、 また、 早い段階で、 換言すれば、 光 反射率があまり低くならない段階で、 レーザビーム 1 0 1の照射時間 を増大させても、 光反射率が、 あまり変化しなくなって、 やがて、 飽 和光反射率 R sに達することが認められ、 一方、 感光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー wを低いレベル に設定すると、 光記録媒体 1の仮想記録セル sの光反射率は、 露光パ ヮー に設定されたレーザビーム 1 0 1の照射を開始してから、 比 較的長時間にわたって、レーザビーム 1 0 1の照射時間が増大しても、 あまり変化せず、 光反射率が比較的低くなつた段階で、 レーザビーム 1 0 1の照射時間.の増大にしたがって、 光反射率が、 ほぼ線形に低下 するようになり、 レーザビーム 1 0 1の照射時間が増大しても、 光反 射率が、 あまり変化しなくなるまでに、 長い時間を要し、 光反射率が かなり低くなつて、 初めて、 レーザビーム 1 0 1の照射時間が増大し ても、 光反射率が、 あまり変化しなくなることが認められている。  As described above, when the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b is set to a high level, the light reflectance of the virtual recording cell S of the optical recording medium 1 becomes Power P In a short time after the irradiation of the set laser beam 101 is started, in other words, at a stage where the light reflectance is high, the irradiation time of the laser beam 101 is almost increased as the irradiation time increases. Even if the irradiation time of the laser beam 101 is increased at an early stage, in other words, at a stage where the light reflectivity does not decrease so much, the light reflectivity changes too much. When the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110 b is set to a low level, optical recording is started. The light reflectance of the virtual recording cell s of medium 1 is Even if the irradiation time of the laser beam 101 is increased for a relatively long time after the irradiation of the laser beam 101 set in the exposure paper is started, the light reflectance does not change much, and the light reflectance does not change. At a relatively low stage, as the irradiation time of the laser beam 101 increases, the light reflectance decreases almost linearly, and even if the irradiation time of the laser beam 101 increases, It takes a long time for the light reflectance to change little, and for the first time, even when the irradiation time of the laser beam 101 is increased, the light reflectance is not very high, even if the light reflectance is significantly reduced. It is acknowledged that it will not change.
したがって、 第 1 3図に示されるように、 光記録媒体 1の仮想記録 セル Sの光反射率が実質的に飽和反射率 R sに達するのに必要な感光 性材料層 1 1 0 bへのレーザビーム 1 0 1の照射時間 T sは、 感光性 材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー尸 w のレベルが高いほど、 短くなり、 光記録媒体 1の仮想記録セル Sの光 68 Therefore, as shown in FIG. 13, the photosensitive material layer 110b required for the light reflectance of the virtual recording cell S of the optical recording medium 1 to substantially reach the saturation reflectance Rs is obtained. The irradiation time Ts of the laser beam 101 becomes shorter as the level of the exposure power w of the laser beam 101 used for exposing the photosensitive material layer 110b becomes higher, and the virtual recording of the optical recording medium 1 is performed. Light of cell S 68
30  30
反射率が最小反射率に達するのに必要な感光性材料層 1 1 0 bへのレ 一ザビーム 1 0 1の照射時間 T hも、 感光性材料層 1 1 0 bの露光に 用いるレーザビーム 1 0 1の露光パワー尸 wのレベルが高いほど、 短 くなり、 その一方で、 仮想記録セル Sに対応する感光性材料層 1 1 0 bの仮想領域 S 'へのレーザビーム 1 0 1の最大照射時間 Tm a xは、 仮想記録セル Sの長さ Lおよび力ッティングマシン 1 0 0の線速度 V に依存するから、 T h≤Tm a x = L/Vm a xが満たされるように、 感光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パヮ 一尸 wのレベル、 仮想記録セル Sの長さ Lおよび力ッティングマシン 1 00の線速度 Vを設定することが必要であり、 T s Tm a x = L /Vm a xが満たされるように、 感光性材料層 1 1 0 bの露光に用い るレーザビーム 1 0 1の露光パワー尸 wのレべノレ、 仮想記録セル Sの 長さ Lおよび力ッティングマシン 1 0 0の線速度 Vを設定することが 好ましい。 The irradiation time T h of the laser beam 101 to the photosensitive material layer 110 b necessary for the reflectance to reach the minimum reflectance also depends on the laser beam 1 used to expose the photosensitive material layer 110 b. The higher the level of the exposure power w is, the shorter the exposure power is. On the other hand, the maximum of the laser beam 101 to the virtual area S ′ of the photosensitive material layer 110 b corresponding to the virtual recording cell S Since the irradiation time Tmax depends on the length L of the virtual recording cell S and the linear velocity V of the force-setting machine 100, the photosensitive material is set so that Th≤Tmax = L / Vmax. It is necessary to set the level of the exposure beam w of the laser beam 101 used for the exposure of the layer 110b, the length L of the virtual recording cell S, and the linear velocity V of the force setting machine 100. , Ts Tmax = L / Vmax, so that the exposure power of the laser beam 101 used for exposure of the photosensitive material layer 110 b is Leveled Honoré, it is preferable to set the length L and force Tsu computing machine 1 0 0 linear velocity V of the virtual recording cells S.
本実施態様によれば、 T h≤ Tm a X = L/Vm a Xあるいは T s ≤ Tm a x = L/Vm a xを満たすよ うに、 フォ ト レジス ト原盤 1 1 0の感光性材料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光 パワー/ のレベル、 仮想記録セノレ Sの長さ Lおよぴカッティングマ シン 1 0 0の線速度 Vを設定することにより、 カツティングマシン 1 00の線速度 Vにかかわらず、 フォ トレジス ト原盤 1 1 0の感光性材 料層 1 1 0 bの露光に用いるレーザビーム 1 0 1の露光パワー尸 wお よび露光パワー尸 wのパルス幅を同一に設定して、 感光性材料層 1 1 0 bの仮想領域 S ' にレーザビーム 1 0 1を照射することによって、 仮想記録セルに、 同じピッ ト P kを形成して、 おなじ記録レベルで、 データを記録することが可能になるから、 きわめて簡易な操作で、 同 じ光記録媒体 1に、 異なるカツティングマシン 1 0 0の線速度 Vで、 3ビッ トのデータを記録することが可能になる。  According to this embodiment, the photosensitive material layer 11 of the photoresist master 1 10 satisfies T ≤ Tmax X = L / Vmax or Ts ≤ Tmax = L / Vmax. By setting the level of the laser beam 100 used for the exposure of the exposure b, the level of the exposure power /, the length L of the virtual recording sensor S, and the linear velocity V of the cutting machine 100, the cutting machine 100 Regardless of the linear velocity V of the laser beam, the pulse width of the exposure power w and the exposure power w of the laser beam 101 used for exposure of the photosensitive material layer 110 b of the photoresist master 110 are the same. By irradiating the laser beam 101 to the virtual area S ′ of the photosensitive material layer 110 b, the same pit P k is formed in the virtual recording cell, and at the same recording level, Since data can be recorded, different operations can be performed on the same optical recording medium 1 with extremely simple operations. In cutlet coating machine 1 0 0 linear velocity V, it is possible to record the data of 3 bits.
本発明は、 以上の実施態様に限定されることなく、 特許請求の範囲 に記載された発明の範囲内で種々の変更が可能であり、 それらも本発 明の範囲内に包含されるものであることはいうまでもない。 たとえば、 前記実施態様においては、 光記録媒体 1の各仮想記録セ ル Sに、 3ビッ トのデータを記録する場合につき、 説明を加えたが、 本発明は、 光記録媒体 1の各仮想記録セル Sに、 3ビッ トのデータを 記録する場合に限定されるものではなく、 光記録媒体 1の各仮想記録 セル Sに、 2ビッ ト以上のデータを記録する場合に、 広く適用するこ とができる。 The present invention is not limited to the above embodiments, and various modifications can be made within the scope of the invention described in the claims, and these are also included in the scope of the present invention. Needless to say, there is. For example, in the above embodiment, a description has been given of a case where 3-bit data is recorded in each virtual recording cell S of the optical recording medium 1. The present invention is not limited to the case where 3-bit data is recorded in the cell S, but is widely applied to the case where 2-bit or more data is recorded in each virtual recording cell S of the optical recording medium 1. Can be.
また、前記実施態様においては、 CD— ROM型の光記録媒体 1に、 3ビッ トのデータを記録する場合につき、説明を加えたが、本発明は、 CD— ROM型の光記録媒体 1に、 3ビッ トのデータを記録する場合 に限定されるものではなく、 少なく とも 部に ROM領域を含む光記 録媒体に、 2ビッ ト以上のデータを記録する場合に、 広く適用するこ とができる。  Further, in the above embodiment, the case where 3-bit data is recorded on the CD-ROM type optical recording medium 1 has been described. However, the present invention relates to the CD-ROM type optical recording medium 1. However, the present invention is not limited to the case where 3-bit data is recorded, but can be widely applied to the case where 2-bit or more data is recorded on an optical recording medium including at least a ROM area. it can.
さらに、 第 1 1図および第 1 2図に示された実施態様においては、 光記録媒体 1の仮想記録セル Sに同じ大きさのピッ ト P kを形成して、 同じレベルのデータを記録する場合には、 カッティングマシン 1 0 0 の線速度 Vにかかわらず、 レーザビーム 1 0 1の露光パワー wおよ び露光パワー のパルス幅が一定になるよ うに、 フォ トレジス ト原 盤 1 1 0の感光性材料層 1 1 0 bを露光するためのレーザビーム 1 0 1のパワーが設定されているが、 光記録媒体 1の仮想記録セル sに同 じ大きさのピッ ト P kを形成して、 同じレベルのデータを記録する場 合に、 レーザビーム 1 0 1の露光パワー および露光パワー P の パルス幅が一定になるように、 フォ トレジス ト原盤 1 1 0の感光性材 料層 1 1 0 bを露光するためのレーザビーム 1 0 1のパワーを設定す ることは必ずしも必要でない。  Further, in the embodiment shown in FIGS. 11 and 12, a pit Pk of the same size is formed in the virtual recording cell S of the optical recording medium 1 to record data of the same level. In this case, regardless of the linear velocity V of the cutting machine 100, the photo resist master 110 is adjusted so that the exposure power w of the laser beam 101 and the pulse width of the exposure power are constant. The power of the laser beam 101 for exposing the photosensitive material layer 110b is set, but a pit Pk of the same size is formed in the virtual recording cell s of the optical recording medium 1. When recording data of the same level, the photosensitive material layer 110 of the photo resist master 110 is so adjusted that the exposure power of the laser beam 101 and the pulse width of the exposure power P are constant. Set the power of the laser beam 101 to expose b It is not always necessary.
また、 前記実施態様においては、 光記録媒体 1の仮想記録セル Sの 始点に対応する感光性材料層 1 1 0 bの仮想領域 S ' の始点に、 レー ザビーム 1 0 1が到達した時点で、 レーザビーム 1 0 1のパワーが、 基底パワー から、 露光パワー P こ立ち上げられているが、 レー ザビーム 1 0 1のパワーを、 基底パワー P から、 露光パワー に 立ち上げるタイミングは任意に決定することができる。 さらに、 第 1図ないし第 1 1図に示された実施態様においては、 光 記録媒体 1の各仮想記録セル Sに、 3 ビッ トのデータを記録する場合 に、 仮想記録セル Sに割り当てる最大光反射率 R aおよび最大相対光 反射率 R R aならびに最小光反射率 R hおよび最小相対光反射率 R R hを設定し、 最大光反射率 R a と最小光反射率 R hあるいは、 最大相 対光反射率 R R a と最小相対光反射率 R R hとの間を、略 7等分して、 6種類の互いに異なる光反射率 R b、 R c、 R d、 R e、 R i、 R g を決定しているが、 仮想記録セル Sに割り当てる最大光反射率 R aお ょぴ最大相対光反射率 R R aならびに最小光反射率 R hおよび最小相 対光反射率 R R hを設定することは必ずしも必要でなく、 仮想記録セ ル Sに割り当てる最大光反射率 R aおよび最大相対光反射率 R R aあ るいは仮想記録セル Sに割り当てる最小光反射率 R hおよび最小相対 光反射率 R R hを設定し、 仮想記録セル Sに割り当てる最大光反射率 R aおよび最大相対光反射率 R R aあるいは仮想記録セル Sに割り当 てる最小光反射率 R hおよび最小相対光反射率 R R hを基準として、 異なる大きさのピッ トが形成され、 異なる記録レベルのデータが記録 された仮想記録セル Sに、 仮想記録セル Sから反射されたレーザビー ムを検出して、 データを再生する際に、 データの記録レベルの違いを 認識可能な光反射率差あるいは相対光反射率差づつ、 異なる光反射率 あるいは相対光反射率を割り当てるようにすることもできる。 Further, in the above embodiment, when the laser beam 101 reaches the starting point of the virtual area S ′ of the photosensitive material layer 110 b corresponding to the starting point of the virtual recording cell S of the optical recording medium 1, Although the power of the laser beam 101 is raised from the base power to the exposure power P, the timing for raising the power of the laser beam 101 from the base power P to the exposure power must be determined arbitrarily. Can be. Further, in the embodiment shown in FIGS. 1 to 11, when recording 3-bit data in each virtual recording cell S of the optical recording medium 1, the maximum light allocated to the virtual recording cell S Set the reflectance Ra and the maximum relative light reflectance RRa, the minimum light reflectance Rh, and the minimum relative light reflectance RRh, and set the maximum light reflectance Ra and the minimum light reflectance Rh or the maximum relative light. The difference between the reflectance RR a and the minimum relative light reflectance RR h is roughly divided into seven equal parts, and six different types of light reflectances R b, R c, R d, R e, R i, and R g are obtained. Although it is determined, it is not always necessary to set the maximum light reflectance Ra assigned to the virtual recording cell S, the maximum relative light reflectance RRa, the minimum light reflectance Rh, and the minimum relative light reflectance RRh. Not required and assigned to virtual recording cell S Maximum light reflectance Ra and maximum relative light reflectance RRa or virtual recording The minimum light reflectance R h and the minimum relative light reflectance RR h to be assigned to the virtual recording cell S are assigned to the maximum light reflectance Ra and the maximum relative light reflectance RR a to be assigned to the virtual recording cell S or to the virtual recording cell S. Based on the minimum light reflectivity R h and the minimum relative light reflectivity RR h, different sizes of pits are formed and reflected from the virtual recording cell S where data of different recording levels are recorded. When reproducing the data by detecting the emitted laser beam, assign a different light reflectivity or relative light reflectivity by light reflectivity difference or relative light reflectivity difference that can recognize the difference in data recording level. You can also
また、前記実施態様においては、光記録媒体用原盤 2 0 5を用いて、 光透過性基板 1 1が、 射出成形法によって、 作製されているが、 光記 録媒体用原盤 2 0 5を用いて、 光透過性基板 1 1を、 射出成形法によ つて、 作製することは必ずしも必要でなく、 光記録媒体用原盤 2 0 5 を用いて、 光透過性基板 1 1を、 光硬化法 ( 2 P法) によって、 作製 することもできる。  In the above embodiment, the optically transparent substrate 11 is manufactured by the injection molding method using the optical recording medium master 205, but the optical recording medium master 205 is used. Therefore, it is not always necessary to manufacture the light-transmitting substrate 11 by an injection molding method. The light-transmitting substrate 11 is formed by using a light-curing method ( 2P method).
本発明によれば、 光記録媒体の仮想記録セルに、 2 N種類の大きさ の異なるピッ トを割り当て、 仮想記録セルの光反射率を 2 N段階に変 化させることができる光記録媒体用原盤の製造方法を提供することが 可能になる。 また、 本発明によれば、 仮想記録セルに、 2 N種類の大きさの異な るピッ トが割り当てられ、 仮想記録セルの光反射率が 2 N段階に変化 された光記録媒体の製造方法を提供することが可能になる。 ADVANTAGE OF THE INVENTION According to this invention, 2N types of different pits are allocated to the virtual recording cell of the optical recording medium, and the optical reflectance of the virtual recording cell can be changed in 2N steps. It becomes possible to provide a method for manufacturing a master. Further, according to the present invention, there is provided a method for manufacturing an optical recording medium in which 2 N kinds of different-sized pits are assigned to virtual recording cells and the light reflectance of the virtual recording cells is changed in 2N steps. Can be provided.

Claims

請求の範囲 . 仮想的に設定された複数の仮想記録セルに、 2 N種類のピッ トが 形成され、 2ビッ ト以上のデータが記録された光記録媒体を作製す るための光記録媒体用原盤の製造方法であって、 レーザビームを照 射して、 フォ ト レジス ト原盤を露光し、 前記フォ トレジス ト原盤に パターンを形成する工程と、 前記フォトレジス ト原盤に形成された 前記パターンを転写して、 光記録媒体用原盤を作製する工程とを備 え、 前記光記録媒体の前記仮想記録セルに割り当てる最大光反射率 および Zまたは最小光反射率に応じて、 前記フォトレジスト原盤に 照射する前記レーザビームの露光パワーを設定することを特徴とす る光記録媒体用原盤の製造方法。 . 前記光記録媒体の前記仮想記録セルに割り当てる最大反射率が高 いほど、 前記フォトレジスト原盤に照射する前記レーザビームの露 光パワーを高いレベルに設定することを特徴とする請求の範囲第 1 項に記載の光記録媒体用原盤の製造方法。 . 前記光記録媒体の前記仮想記録セルに割り当てる最小反射率が低 いほど、 前記フォ トレジス ト原盤に照射する前記レーザビームの露 光パワーを低いレベルに設定することを特徴とする請求の範囲第 1 項に記載の光記録媒体用原盤の製造方法。 . 前記光記録媒体の前記仮想記録セルに割り当てる最大相対反射率 が高いほど、 前記フォトレジス ト原盤に照射する前記レーザビーム の露光パワーを高いレベルに設定し、 最大相対光反射率 R R a Hと 最小相対光反射率 R R h Hを、 1 0 0— R R a Hく R R li Hを満た すように設定することを特徴とする請求の範囲第 2項に記載の光記 録媒体用原盤の製造方法。 Claims. An optical recording medium for producing an optical recording medium in which 2 N types of pits are formed in a plurality of virtually set virtual recording cells and data of 2 bits or more are recorded. A method for manufacturing a master, comprising: irradiating a laser beam to expose a photoresist master to form a pattern on the photoresist master; and Transferring and producing an optical recording medium master, and irradiating the photoresist master according to the maximum light reflectance and the Z or the minimum light reflectance assigned to the virtual recording cell of the optical recording medium. A method for manufacturing an optical recording medium master, comprising setting an exposure power of the laser beam. The exposure power of the laser beam applied to the photoresist master is set to a higher level as the maximum reflectance assigned to the virtual recording cell of the optical recording medium is higher. Item 13. The method for producing a master for an optical recording medium according to Item 1. The exposure power of the laser beam irradiating the photoresist master is set to a lower level as the minimum reflectance assigned to the virtual recording cell of the optical recording medium is lower. 2. The method for producing an optical recording medium master according to item 1. The higher the maximum relative reflectivity assigned to the virtual recording cell of the optical recording medium, the higher the exposure power of the laser beam applied to the photoresist master, and the higher the relative light reflectivity RRaH. 3. The production of an optical recording medium master according to claim 2, wherein the minimum relative light reflectance RRhH is set so as to satisfy 100—RRaH and RRliH. Method.
. 前記光記録媒体の前記仮想記録セルに割り当てる最小反射率が低 レ、ほど、 前記フォ トレジス ト原盤に照射する前記レーザビームの露 光パワーを低いレベルに設定し、 最大相対光反射率 R R a Hと最小 相対光反射率 R R h Hを、 1 0 0— R R a L > R R h Lを満たすよ うに設定することを特徴とする請求の範囲第 3項に記載の光記録媒 体用原盤の製造方法。 . 仮想的に設定された複数の仮想記録セルに、 2 N種類のピッ トが 形成され、 2ビット以上のデータが記録された光記録媒体を作製す るための光記録媒体用原盤の製造方法であって、 レーザビームを照. 射して、 フォ トレジス ト原盤.を露光し、 前記フォ ト レジス ト原盤に パターンを形成する工程と、 前記フォトレジスト原盤に形成された 前記パターンを転写して、 光記録媒体用原盤を作製する工程とを備 え、 前記光記録媒体の前記仮想記録セルに、 同じ大きさのピットを 形成し、 同じ記録レベルのデータを記録するときに、 前記フォ ト レ ジス ト原盤に照射するレーザビームの線速度にかかわらず、 前記フ ォトレジス ト原盤に照射するレーザビームの露光パワーおよび/ま たは露光パワーのパルス幅を実質的に同一に設定することを特徴と する光記録媒体用原盤の製造方法。 . 前記光記録媒体の前記仮想記録セルに、 同じ大きさのピットを形 成し、 同じ記録レベルのデータを記録するときに、 前記フォ トレジ スト原盤に照射するレーザビームの線速度にかかわらず、 前記フォ ト レジス ト原盤に照射するレーザビームの露光パワーおよび露光パ ヮ一のパルス幅を実質的に同一に設定することを特徴とする請求の 範囲第 6項に記載の光記録媒体用原盤の製造方法。 . 前記フォ ト レジス ト原盤に照射するレーザビームの線速度 V、 仮 想記録セルの長さ Lおよび仮想記録セルの光反射率が実質的に飽和 するのに必要な前記フォ ト レジスト原盤に照射するレーザビームの 照射時間 T sが、 T s L / Vを満たすように、 前記フォ トレジス ト原盤に照射するレーザビームの露光パワーのレベル、 仮想記録セ ルの長さ Lおよび前記フォトレジス ト原盤に照射するレーザビーム の線速度 Vを設定することを特徴とする請求の範囲第 6項または第 7項に記載の光記録媒体用原盤の製造方法。 The lower the minimum reflectivity assigned to the virtual recording cell of the optical recording medium is, the lower the exposure power of the laser beam applied to the photoresist master is set to a lower level, and the maximum relative light reflectivity RR a 4. The master for an optical recording medium according to claim 3, wherein H and the minimum relative light reflectivity RRhH are set so as to satisfy 100—RRaL> RRhL. Production method. A method of manufacturing an optical recording medium master for producing an optical recording medium in which 2 N types of pits are formed in a plurality of virtually set virtual recording cells and data of 2 bits or more are recorded. Irradiating a laser beam, exposing the photoresist master to form a pattern on the photoresist master, and transferring the pattern formed on the photoresist master. Producing a master for an optical recording medium, forming pits of the same size in the virtual recording cells of the optical recording medium, and recording the data at the same recording level. The exposure power and / or the pulse width of the exposure power of the laser beam applied to the photoresist master is set to be substantially the same regardless of the linear velocity of the laser beam applied to the master. Method for producing a master for optical recording medium characterized and. When pits of the same size are formed in the virtual recording cell of the optical recording medium and data of the same recording level is recorded, regardless of the linear velocity of the laser beam applied to the photoresist master, 7. The optical recording medium master according to claim 6, wherein the exposure power and the pulse width of the exposure beam of the laser beam applied to the photo resist master are set to be substantially the same. Production method. The linear velocity V of the laser beam applied to the photoresist master, the length L of the virtual recording cell, and the photoresist master required to substantially saturate the light reflectance of the virtual recording cell are irradiated. Laser beam The exposure power level of the laser beam irradiating the photoresist master, the length L of the virtual recording cell, and the laser irradiating the photoresist master so that the irradiation time T s satisfies T s L / V. 8. The method for producing a master for an optical recording medium according to claim 6, wherein the linear velocity V of the beam is set.
9 . 基板に、 仮想的に設定された複数の仮想記録セルに、 2 N種類の ピットが形成され、 2ビッ ト以上のデータが記録された光記録媒体 の製造方法であって、 レーザビームを照射して、 フォ トレジス ト原 盤を露光し、前記フォトレジスト原盤にパターンを形成する工程と、 前記フォトレジスト原盤に形成された前記パターンを転写して、 光 記録媒体用原盤を作製する工程と、 前記光記録媒体用原盤に転写さ れた前記パターンを転写して、 前記基板を作製する工程とを備え、 前記光記録媒体の前記仮想記録セルに割り当てる最大光反射率およ び Zまたは最小光反射率に応じて、 前記フォ トレジス ト原盤に照射 する前記レーザビームの露光パワーを設定することを特徴とする光 記録媒体の製造方法。 9. A method for manufacturing an optical recording medium in which 2N types of pits are formed in a plurality of virtual recording cells virtually set on a substrate and data of 2 bits or more are recorded, wherein a laser beam is emitted. Irradiating, exposing the photoresist master to form a pattern on the photoresist master, and transferring the pattern formed on the photoresist master to produce an optical recording medium master. Transferring the pattern transferred to the optical recording medium master to produce the substrate, wherein the maximum light reflectance and the Z or the minimum to be assigned to the virtual recording cell of the optical recording medium. A method of manufacturing an optical recording medium, comprising setting an exposure power of the laser beam to be applied to the photoresist master according to a light reflectance.
10. 前記光記録媒体の前記仮想記録セルに割り当てる最大反射率が高 いほど、 前記フォ ト レジス ト原盤に照射する前記レーザビームの露 光パワーを高いレベルに設定することを特徴とする請求の範囲第 9 項に記載の光記録媒体の製造方法。 10. The exposure power of the laser beam applied to the photo resist master is set to a higher level as the maximum reflectance assigned to the virtual recording cell of the optical recording medium is higher. Item 10. The method for manufacturing an optical recording medium according to Item 9, wherein
11. 前記光記録媒体の前記仮想記録セルに割り当てる最大反射率が高 いほど、 前記フォトレジス ト原盤に照射する前記レーザビームの露 光パワーを高いレベルに設定することを特徴とする請求の範囲第 9 項に記載の光記録媒体の製造方法。 11. The exposure power of the laser beam applied to the photoresist master is set to a higher level as the maximum reflectance assigned to the virtual recording cell of the optical recording medium is higher. Item 10. The method for manufacturing an optical recording medium according to Item 9.
12. 前記光記録媒体の前記仮想記録セルに割り当てる最大相対反射率 が高いほど、 前記フォ トレジス ト原盤に照射する前記レーザビーム の露光パワーを高いレベルに設定し、 最大相対光反射率 RR a Hと 最小相対光反射率 R R h Hを、 1 0 0— R R a H< RR h Hを満た すように設定することを特徴とする請求の範囲第 1 0項に記載の光 記録媒体の製造方法。 12. The higher the maximum relative reflectance assigned to the virtual recording cell of the optical recording medium is, the more the laser beam irradiates the photoresist master. The maximum relative light reflectance RR a H and the minimum relative light reflectance RR h H are set so that the following relationship is satisfied: 100 0— RR a H <RR h H 10. The method for manufacturing an optical recording medium according to claim 10, wherein:
13. 前記光記録媒体の前記仮想記録セルに割り当てる最小反射率が低 いほど、 前記フォ ト レジス ト原盤に照射する前記レーザビームの露 光パワーを低いレベルに設定し、 最大相対光反射率 R R a Hと最小 相対光反射率 R R h Hを、 1 00 _RR a L >RR h Lを満たすよ うに設定することを特徴とする請求の範囲第 1 1項に記載の光記録 媒体の製造方法。 13. The exposure power of the laser beam applied to the photo resist master is set to a lower level as the minimum reflectance assigned to the virtual recording cell of the optical recording medium is lower, and the maximum relative light reflectance RR is set. 12. The method for manufacturing an optical recording medium according to claim 11, wherein aH and a minimum relative light reflectance RRhH are set so as to satisfy 100_RRaL> RRhL.
14. 基板に、 仮想的に設定された複数の仮想記録セルに、 2N種類の ピッ トが形成され、 2ビット以上のデータが記録された光記録媒体 の製造方法であって、 レーザビームを照射して、 フォ トレジス ト原 盤を露光し、前記フォトレジスト原盤にパターンを形成する工程と、 前記フォトレジスト原盤に形成された前記パターンを転写して、 光 記録媒体用原盤を作製する工程と、 前記光記録媒体用原盤に転写さ れた前記パターンを転写して、 前記基板を作製する工程とを備え、 前記光記録媒体の前記仮想記録セルに、 同じ大きさのピットを形成 し、 同じ記録レベルのデータを記録するときに、 前記フォ ト レジス ト原盤に照射するレーザビームの線速度にかかわらず、 前記フォ ト レジス ト原盤に照射するレーザビームの露光パワーおよび zまたは 露光パワーのパルス幅を実質的に同一に設定することを特徴とする 光記録媒体の製造方法。 14. A method of manufacturing an optical recording medium in which 2 N types of pits are formed in a plurality of virtual recording cells virtually set on a substrate and data of 2 bits or more are recorded, wherein a laser beam is emitted. Irradiating, exposing the photoresist master to form a pattern on the photoresist master, and transferring the pattern formed on the photoresist master to produce an optical recording medium master. Transferring the pattern transferred to the optical recording medium master to produce the substrate; forming pits of the same size in the virtual recording cells of the optical recording medium; When recording data at the recording level, regardless of the linear velocity of the laser beam applied to the photo resist master, the exposure power of the laser beam applied to the photo resist master and the exposure power A method for manufacturing an optical recording medium, wherein pulse widths of z and z or exposure power are set to be substantially the same.
15. 前記光記録媒体の前記仮想記録セルに、 同じ大きさのピットを形 成し、 同じ記録レベルのデータを記録するときに、 前記フォ トレジ スト原盤に照射するレーザビームの線速度にかかわらず、 前記フォ トレジスト原盤に照射するレーザビームの露光パワーおよび露光パ ヮ一のパルス幅を実質的に同一に設定することを特徴とする請求の 範囲第 1 4項に記載の光記録媒体の製造方法。 15. When pits of the same size are formed in the virtual recording cells of the optical recording medium and data of the same recording level is recorded, regardless of the linear velocity of the laser beam applied to the photoresist master. Exposure power and exposure power of the laser beam irradiating the photoresist master 15. The method for manufacturing an optical recording medium according to claim 14, wherein the first pulse width is set to be substantially the same.
16. 前記フォトレジス ト原盤に照射するレーザビームの線速度 V、 仮 想記録セルの長さ Lおよぴ仮想記録セルの光反射率が実質的に飽和 するのに必要な前記フォ トレジス ト原盤に照射するレーザビームの 照射時間 T sが、 T S≤ L / Vを満たすよ うに、 前記フォ ト レジス ト原盤に照射するレーザビームの露光パワーのレベル、 仮想記録セ ルの長さ Lおよび前記フォ トレジス ト原盤に照射するレーザビーム の線速度 Vを設定することを特徴とする請求の範囲第 1 4項または 第 1 5項に記載の光記録媒体の製造方法。 16. The photoresist master required to substantially saturate the linear velocity V of the laser beam applied to the photoresist master, the length L of the virtual recording cell, and the light reflectance of the virtual recording cell. irradiation time T s of the laser beam irradiated to the, T S ≤ L / V I meet urchin, said the Photo Regis level of the laser beam of the exposure power to be irradiated to preparative master, virtual recording cell Le length L and the 16. The method for manufacturing an optical recording medium according to claim 14, wherein a linear velocity V of a laser beam applied to the photoresist master is set.
PCT/JP2003/011668 2002-09-13 2003-09-11 Method of producing optical recording medium-use original and method of producing optical recording medium WO2004025641A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003266510A AU2003266510A1 (en) 2002-09-13 2003-09-11 Method of producing optical recording medium-use original and method of producing optical recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002268973A JP2004110889A (en) 2002-09-13 2002-09-13 Method of manufacturing master disk for optical recording medium and method of manufacturing optical recording medium
JP2002-268973 2002-09-13

Publications (1)

Publication Number Publication Date
WO2004025641A1 true WO2004025641A1 (en) 2004-03-25

Family

ID=31986801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011668 WO2004025641A1 (en) 2002-09-13 2003-09-11 Method of producing optical recording medium-use original and method of producing optical recording medium

Country Status (4)

Country Link
JP (1) JP2004110889A (en)
AU (1) AU2003266510A1 (en)
TW (1) TW200407884A (en)
WO (1) WO2004025641A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347775C (en) * 2005-03-08 2007-11-07 清华大学 Multi-level read-only optical disc and method of production
CN100369140C (en) * 2005-03-08 2008-02-13 北京保利星数据光盘有限公司 Multistep read-only optical disk and its making method
CN100452208C (en) * 2005-03-08 2009-01-14 清华大学 Method for producing multi-level read-only optical disc
CN100452203C (en) * 2005-03-08 2009-01-14 上海香樟电子有限公司 Manufacturing method of multistage read-only master
CN100452204C (en) * 2005-03-08 2009-01-14 上海香樟电子有限公司 Manufacturing method of multistage CDROM
CN100452209C (en) * 2005-03-08 2009-01-14 清华大学 Method for producing multi-exponent read-only mother disc

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111229A (en) * 1990-08-31 1992-04-13 Toshiba Corp Information reproducing device
JPH06124450A (en) * 1992-10-12 1994-05-06 Toshiba Corp Information storage medium
JPH08124167A (en) * 1994-10-19 1996-05-17 Hitachi Ltd Method for recording and reproducing optical information and device therefor
JP2001184649A (en) * 1999-10-14 2001-07-06 Tdk Corp Optical recording system and optical recording medium
JP2001250280A (en) * 2000-03-02 2001-09-14 Sony Corp Recording medium, method of manufacturing recording medium, method of manufacturing master disk for manufacture of recording medium, device for manufacture of recording medium and device for manufacture of master disk for manufacture of recording medium
JP2001256646A (en) * 2000-03-15 2001-09-21 Hitachi Ltd Optical information recording and reproducing method
JP2003233932A (en) * 2002-02-07 2003-08-22 Ricoh Co Ltd Optical information recording medium, optical disk device, and method for manufacturing master disk

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111229A (en) * 1990-08-31 1992-04-13 Toshiba Corp Information reproducing device
JPH06124450A (en) * 1992-10-12 1994-05-06 Toshiba Corp Information storage medium
JPH08124167A (en) * 1994-10-19 1996-05-17 Hitachi Ltd Method for recording and reproducing optical information and device therefor
JP2001184649A (en) * 1999-10-14 2001-07-06 Tdk Corp Optical recording system and optical recording medium
JP2001250280A (en) * 2000-03-02 2001-09-14 Sony Corp Recording medium, method of manufacturing recording medium, method of manufacturing master disk for manufacture of recording medium, device for manufacture of recording medium and device for manufacture of master disk for manufacture of recording medium
JP2001256646A (en) * 2000-03-15 2001-09-21 Hitachi Ltd Optical information recording and reproducing method
JP2003233932A (en) * 2002-02-07 2003-08-22 Ricoh Co Ltd Optical information recording medium, optical disk device, and method for manufacturing master disk

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347775C (en) * 2005-03-08 2007-11-07 清华大学 Multi-level read-only optical disc and method of production
CN100369140C (en) * 2005-03-08 2008-02-13 北京保利星数据光盘有限公司 Multistep read-only optical disk and its making method
CN100452208C (en) * 2005-03-08 2009-01-14 清华大学 Method for producing multi-level read-only optical disc
CN100452203C (en) * 2005-03-08 2009-01-14 上海香樟电子有限公司 Manufacturing method of multistage read-only master
CN100452204C (en) * 2005-03-08 2009-01-14 上海香樟电子有限公司 Manufacturing method of multistage CDROM
CN100452209C (en) * 2005-03-08 2009-01-14 清华大学 Method for producing multi-exponent read-only mother disc

Also Published As

Publication number Publication date
AU2003266510A1 (en) 2004-04-30
TW200407884A (en) 2004-05-16
JP2004110889A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP2000231745A (en) Optical recording medium, original disk for manufacturing optical recording medium, and its manufacture
US6982944B2 (en) Optical recording medium having relation between groove depths and pit depths
EP0124950A1 (en) Record carrier in which information can be written and which can be read by optical means
WO2004025641A1 (en) Method of producing optical recording medium-use original and method of producing optical recording medium
KR100433118B1 (en) Optical disk management system, optical disk, optical disk initialization apparatus, and optical disk recording and reproducing apparatus
JP2006172688A (en) Optical information-recording medium
JP4064871B2 (en) Optical disc and optical disc manufacturing method
TWI246077B (en) Optical recording medium and the manufacturing method thereof
JP2512042B2 (en) Optical recording medium and optical recording method
JP4604854B2 (en) Optical recording medium, optical disc master and manufacturing method thereof
JP2001148140A (en) Rewritable compact disk and manufacturing method thereof
KR20070014985A (en) Information storage medium, reproducing method, recording method and recording device
JP2006085791A (en) Optical information recording medium
JP2003059121A (en) Method of manufacturing master disk for manufacturing optical recording medium, aligner and master disk for manufacturing optical recording medium, and optical recording medium
JP2001202659A (en) Optical disk of recording type and method for manufacturing the same
JP2000048409A (en) Optical recording medium, master disk for production of optical recording medium and optical recording and reproducing device
JPH083912B2 (en) Novel optical recording medium and manufacturing method thereof
JP4288818B2 (en) Optical recording medium
US20040089637A1 (en) Method for cutting a photoresist-coated glass board, cutting machine for cutting a photoresist-coated glass board and method for manufacturing an optical recording medium
TW556175B (en) Optical recording method and optical recording medium
JP4350296B2 (en) Substrate for optical recording medium, optical recording medium, master, master recording device, and signal generator
JP2003331420A (en) Optical disk control system and optical disk
JPH11328738A (en) Optical information recording medium
JP2006024245A (en) Rom type optical recording medium and stamper for manufacturing rom type optical recording medium
JPH1049913A (en) Write-once type prerecorded optical disk and its production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase