WO2004025317A1 - Methode de mesure de la mouillabilite de roches par resonance magnetique nucleaire - Google Patents

Methode de mesure de la mouillabilite de roches par resonance magnetique nucleaire Download PDF

Info

Publication number
WO2004025317A1
WO2004025317A1 PCT/FR2003/002544 FR0302544W WO2004025317A1 WO 2004025317 A1 WO2004025317 A1 WO 2004025317A1 FR 0302544 W FR0302544 W FR 0302544W WO 2004025317 A1 WO2004025317 A1 WO 2004025317A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
water
sample
porous surface
saturated
Prior art date
Application number
PCT/FR2003/002544
Other languages
English (en)
Inventor
Marc Fleury
Françoise Deflandre
Original Assignee
Institut Francais Du Petrole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Francais Du Petrole filed Critical Institut Francais Du Petrole
Priority to AU2003274261A priority Critical patent/AU2003274261A1/en
Priority to EP03758245A priority patent/EP1540363A1/fr
Priority to US10/527,088 priority patent/US7397240B2/en
Publication of WO2004025317A1 publication Critical patent/WO2004025317A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/241Earth materials for hydrocarbon content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/082Measurement of solid, liquid or gas content

Definitions

  • the present invention relates to a method of. measurement of the wettability of rock samples by the measurement of the relaxation time by low field nuclear magnetic resonance.
  • the method finds applications in particular for the analysis of rocks taken from an underground formation containing or likely to harbor hydrocarbons
  • the invention also has applications in civil engineering to make the hydrology of land to assess their degree of pollution, for example, or in the building to test building materials in particular to decide water-repellent treatments for example.
  • a complete cycle for measuring the capillary pressure generally comprises (FIG. 1):
  • porous plate In a so-called “porous plate” device, described in particular by US Pat. No. 4,506,542, the porous rock sample containing two fluids in continuous phases is placed in an elongate cell terminated at its two opposite ends by permeable capillary barriers. to a first fluid.
  • This first fluid is injected under pressure through the first membrane and the pressure difference between the injection pressure and the pressure of the fluid discharged at the other end is measured.
  • the pressures of the two fluids as well as the capillary pressure Pc are constant along the sample, and the saturation is assumed to be uniform.
  • the assembly is then subjected to a centrifugal force directed along the length of the container so as to exert on it an expulsion force which tends to extract a portion of the first fluid.
  • the pressure field created by the centrifugation is expressed as a function of the density r, the radius R and the angular velocity w, by the relation: ⁇ / 2 F or each fluid. It is required that the pressure of the two fluids at the outlet of the sample be the same and be zero at the exit.
  • the second fluid enters the interior of the sample. The two fluids move within the sample to an equilibrium position where the force due to the capillary pressure in the pores compensates for the centrifugal force exerted.
  • a measuring probe is placed in the cup on the side of the sample.
  • the probe may be capacitive type for example and comprise a metal rod, insulated by a ceramic sheath.
  • the capacity between the rod and the conductive fluid (brine), which is proportional to the immersed height, is measured. With this measuring means, the measurement accuracy is 1.5% of the pore volume.
  • the probe detects the position of the interface between the two liquids in the bucket and transmits the measurement signals to an automaton E for controlling and acquiring measurement signals comprising hydraulic fluid circulation means and an acquisition apparatus
  • the rate is decreased so as to study the reintegration of the initial fluid in the sample.
  • Local saturations measured with this type of device are calculated by an inversion program from the total amount of water expelled out of the sample.
  • a sample is placed in an elongate cell terminated at both ends by membranes permeable to water.
  • pressurized oil is injected directly into the chamber. Water is also injected but this injection is made through the membrane and at a lower pressure.
  • the oil is discharged directly as the water exits through the terminal membrane.
  • a so-called semi dynamic method is also known in which a sample of rock impregnated with a first fluid is confined in a closed cell, another fluid is injected under pressure at a first end of the chamber and the opposite end is swept by a low pressure fluid circulated by pumping means which drives the drained fluid out.
  • the device comprises means for measuring the pressure and the saturation of the sample different from its length, the quantity of fluid evacuated and the electrical resistivity of the sample.
  • the method for measuring the wettability of a porous rock sample in the presence of water and oil comprises the determination of the porous surface wetted by the water and the porous surface wetted by the oil when the sample is saturated with water and oil, and the calculation of the wettability index by combination of the values obtained from said surfaces.
  • the determination of the wetted porous surface in water and the porous surface wetted by the oil when the sample is saturated with water and oil is obtained for example by means of relaxation time measurements of the sample placed in a nuclear magnetic resonance apparatus.
  • the wettability index is determined by the relation
  • SM W is the water-wet porous surface and SMQ is the oil-wetted porous surface when the porous medium is saturated with water and oil.
  • the wettability index is determined by the following operations:
  • the characteristic relaxation times of the sample saturated with water are measured; b) the characteristic relaxation times of the oil in the sample are measured in the presence of water, in a zone near the saturation (Swir) of the sample; c) the characteristic times of relaxation of the water in the sample are measured in the presence of oil, in a zone close to the residual saturation (Sor); d) measuring the relaxation times of the sample in a state where its saturation point at 100% oil is reached; and e) combining the measurements of the different relaxation times to obtain said index.
  • the relaxation times of steps a) to c) are determined after application to the sample of a centrifugation.
  • the relaxation times of step d) are determined after forced displacement of the fluids in the sample placed in a confinement cell.
  • an oil is chosen whose intrinsic relaxation time (T ⁇ ) is as great as possible and the closest to water, for example dodecane.
  • the characteristic relaxation times are, for example, those which correspond either to the maximum of the saturation curves or to average values of the said curves.
  • FIG. 1 shows examples of capillary pressure curves necessary for the determination of the conventional wetting index U SBM (United States Bureau of Mines);
  • FIGS. 2a and 2b respectively show the distribution of the relaxation times T 2 for a rock that is wettable with water saturated with water and oil, and a representation of the phase distribution (hatched matrix, water in light gray and oil in darker gray);
  • FIGS. 3a and 3b respectively show the distribution of the relaxation times T for a saturated water and oil saturated wettability rock (same central part as in FIG. 2), and a representation of the phase distribution (hatched matrix, water in light gray and oil in darker gray);
  • FIG. 4 shows, on capillary pressure curves, the saturation values where the NMR relaxation measurements are made
  • FIG. 5 shows an example of distribution of the relaxation times T 2 at the saturation values indicated in FIG. 4 (from bottom to top: 100% water, Swi, Sor and 100% dodecane);
  • FIG. 6 shows the relation between the NMR index and the standard USBM index
  • FIG. 7 schematically shows a confinement cell with a permanent heating circuit by fluid circulation
  • Figure 8 shows schematically the arrangement of a centrifuge device used for the implementation of the method.
  • the NMR analysis technique essentially consists of recalling, to apply to an object to be tested a first static magnetic field Bo of polarization for aligning the nuclei of hydrogen protons initially randomly oriented in the direction of the field and then a second pulsating magnetic field oscillating at the Larmor frequency perpendicular to the first created by coils excited by a control signal to achieve a nuclear magnetic resonance experiment.
  • this pulse field ceases, the return of nuclei to their initial state or relaxation, generates electromagnetic signals (echoes) which are detected and analyzed. From the amplitude characteristics of these signals, the presence of physical parameters of the object is determined.
  • the quantities SM W and SMo are obtained for example by measuring the dominant relaxation time in a low field nuclear magnetic resonance experiment.
  • T IB , 2B is the relaxation time of the fluid out of the porous medium.
  • this relationship comes from the fact that the molecules in the pore undergo diffusion motions and interact with the porous wall during the measurement time (the time of typical relaxation is of the order of 100 ms).
  • the surface interactions are gathered in the coefficient p ⁇ , 2 called surface relaxivity.
  • the relation 2 is strictly valid for a pore saturated with a single fluid.
  • the natural porous media have a pore size distribution and thus the S / V ratio. Thus, in general, a distribution of relaxation times is observed, but this does not modify the method described here.
  • the irreducible water saturation (Swi, FIG. 4) will be chosen to determine the wet surface area of the oil in the presence of water (SM W ), and the residual saturation in water.
  • oil (Sor, FIG. 4) to determine the wetted surface by water in the presence of oil.
  • An oil is also chosen whose intrinsic relaxation time (T B ) is the greatest possible and the closest to the water. Indeed, if T B is too weak, the method will be limited to porous media with a large S / V ratio (small pore sizes), or media with high surface relaxivity.
  • the dodecane for example is a refined oil that is adapted to the proposed measure because its intrinsic relaxation time (T ⁇ 0 ) is 1 s, close to the relaxation time of water (T ⁇ w , about 2.7 s).
  • T ⁇ 0 intrinsic relaxation time
  • T ⁇ w close to the relaxation time of water
  • crude petroleum oils must be excluded because they have too little relaxation time and also have a relaxation time distribution which greatly hinders the analysis. The practical details of the calculation are detailed below.
  • H c p - x 'T l wl00 -H 1 TBw p p 0 l / T om -l / T Bo
  • Figure 5 illustrates the two measurements made.
  • a level of Single rotation at maximum speed makes it possible to reach them quickly.
  • a measuring apparatus is used.
  • NMR which conventionally comprises (Fig.7) magnets 1 with an air gap in which are placed windings 2.
  • the coils are connected to an electronic box to generate the excitatory signals (signals in the range of radio frequencies for example) creating an electric field oscillating and acquiring the response of the sample S to the exciter signals.
  • a device of this type is implemented for example in the patent application FR-A-2 823 308.
  • the wettability index is obtained by performing for example the following succession of steps with a reservoir sample whose wettability is intermediate:
  • the sample is saturated with 100% brine and placed in the NMR measuring apparatus (that of Fig. 7-8 for example) to measure the Ti, T relaxation time distributions. 2 and deduce the TwlOO parameter from Equation 6;
  • the sample is centrifuged at maximum speed until the residual saturation point of Sor oil is reached; then transferred into the NMR apparatus again to measure the relaxation times Ti, T and deduce T w . 4. This done, the sample is placed in a confinement cell such as those described in the aforementioned patents and a solvent miscible with water and oil and then oil (for example dodecane) is injected until 'to achieve saturation 100% in oil. Once this point has been reached, the relaxation times Ti, T 2 are again measured in the NMR apparatus from which the value of 100 ° necessary for the determination of C p is deduced.
  • USBM measurement can therefore advantageously be replaced by a measurement of NMR that is as sensitive but requires much less time to establish and is applicable to a large number of samples.

Abstract

Méthode pour la mesure de la mouillabilité de roches par résonance magnétique nucléaire à faible champ. La méthode comporte essentiellement la détermination de la surface poreuse mouillée par l'eau et de la surface poreuse mouillée par l'huile quand l'échantillon est saturé en eau et en huile, par le biais de mesures de temps de relaxation (T1, T2) de l'échantillon placé dans un appareil à résonance magnétique nucléaire, amené préalablement à différents états de saturation en eau ou en huile, et le calcul de l'indice de mouillabilité par combinaison des valeurs obtenues des dites surfaces. Applications à l'étude ou l'exploitation de gisements d'hydrocarbures ou en génie civil, etc.

Description

METHODE DE MESURE DE LA MOUILLABILITE DE ROCHES PAR RESONANCE MAGNETIQUE NUCLEAIRE
Désignation du domaine technique
La présente invention concerne une méthode de. mesure de la mouillabilité d'échantillons de roches par la mesure du temps de relaxation par résonance magnétique nucléaire à faible champ.
La méthode trouve des applications notamment pour l'analyse de roches prélevées dans une formation souterraine recelant ou susceptible de receler des hydrocarbures
La connaissance de différents paramètres et notamment de la mouillabilité des roches, est aussi utile notamment quand on doit procéder à une récupération assistée d'une formation, par une injection d'un fluide sous pression, et que l'on doit déterminer par des tests préalables le fluide (liquide ou gaz) qui convient le mieux pour déplacer les effluents.
L'invention trouve aussi des applications en génie civil pour faire de l'hydrologie de terrains pour évaluer leur degré de pollution par exemple, ou encore dans le bâtiment pour tester des matériaux de construction afin notamment de décider de traitements hydrofuges par exemple.
Présentation de l'art antérieur
On connaît des méthodes pour déterminer la mouillabilité des roches vis à vis de l'eau et de l'huile qui peuvent y être contenues, comportant la réalisation de cycles de drainage de la roche c'est-à-dire de déplacement des fluides visant à diminuer la saturation en eau, suivi d'une imbibition, en désignant par ce terme un déplacement des fluides permettant d'augmenter la saturation en eau (Sw) de la roche. La pression capillaire Pc en un point se définit comme la différence à l'équilibre entre la pression P(huile) de l'huile et celle P(eau) de l'eau. Ce paramètre n'a de sens que si les deux fluides sont en phase continue dans le milieu poreux. Pour un milieu mouillable à l'eau, seules les valeurs positives ont un sens. Par contre, lorsque le milieu a une mouillabilité mixte, les fluides peuvent rester en phase continue aussi bien pour les pressions capillaires (Pc) positives que négatives.
Pour une application de ce type, un cycle complet de mesure de la pression capillaire comporte généralement (Fig.l) :
a) un drainage primaire positif d'un échantillon saturé initialement en eau à 100% (courbe i) ; b) une imbibition positive (courbe 2) ; c) une imbibition négative (courbe 3) ; d) un drainage négatif (courbe 4) ; et e) un drainage secondaire positif (courbe 5).
Il existe différents types de dispositif capables de dresser les courbes de la Fig.l.
Dans un dispositif dit à "plaque poreuse", décrit notamment par le brevet US 4 506 542, l'échantillon de roche poreuse contenant deux fluides en phases continues, est placé dans une cellule allongée terminée à ses deux extrémités opposées par des barrières capillaires perméables à un premier fluide. Ce premier fluide est injecté sous pression au travers de la première membrane et on mesure la différence de pression entre la pression d'injection et la pression du fluide évacué à l'autre extrémité. Les pressions des deux fluides ainsi que la pression capillaire Pc sont constantes le long de l'échantillon, et la saturation est supposée uniforme.
Il est également connu de procéder par centrifugation à vitesse progressive au moyen de dispositifs de centrifugation tels que ceux décrits par exemple par les brevets FR 2 772 477 (US 6 185 985) ou FR 2 763 690 ou encore dans les brevets EP 603 040 (US 5 463 894) ou FR 2 798 734) du demandeur. L'échantillon initialement saturé avec un premier liquide (de la saumure par exemple) est placé (Fig.10) dans un récipient ou godet allongé A contenant un deuxième fluide de densité différente de l'huile par exemple). Le godet A est fixé au bout d'un bras tournant B, et on lui applique une force centrifuge de façon à étudier les déplacements des fluides dans l'échantillon au cours d'au moins deux phases distinctes. Durant une première phase de drainage, on soumet alors l'ensemble à une force centrifuge dirigée suivant la longueur du récipient de manière à exercer sur lui une force d'expulsion qui tend à faire sortir une partie du premier fluide. Le champ de pression créé par la centrifugation s'exprime en fonction de la densité r, du rayon R et de la vitesse angulaire w, par la relation : χ/2
Figure imgf000005_0001
Pour chaque fluide. On impose que la pression des deux fluides à la sortie s l'échantillon soit la même et qu'elle s'annule à la sortie. Dans le même temps, le deuxième fluide pénètre à l'intérieur de l'échantillon. Les deux fluides se déplacent à l'intérieur de l'échantillon jusqu'à une position d'équilibre où la force due à la pression capillaire dans les pores, compense la force centrifuge exercée. Une sonde de mesure, est placée dans le godet, sur le côté de l'échantillon. La sonde peut être de type capacitif par exemple et comporter une tige métallique, isolée par une gaine en céramique. On mesure la capacité entre la tige et le fluide conducteur (la saumure), qui est proportionnelle à la hauteur immergée. Avec ce moyen de mesure, la précision de mesure est de 1,5% du volume poreux. La sonde détecte la position de l'interface entre les deux liquides dans le godet et transmet les signaux de mesure à un automate E de commande et d'acquisition de signaux de mesure regroupant des moyens hydrauliques de circulation des liquides et un appareil d'acquisition
Dans la phase de ré-imbibition, on diminue la vitesse de façon à étudier la réintégration du fluide initial dans l'échantillon. Les saturations locales mesurées avec ce type de dispositif, sont calculées par un programme d'inversion à partir de la quantité totale d'eau expulsée hors de l'échantillon.
Suivant une autre méthode dite "dynamique", on place un échantillon dans une cellule allongée terminée à ses deux extrémités par des membranes perméables à l'eau. A une première extrémité, on injecte directement de l'huile sous pression dans l'enceinte. De l'eau y est également injectée mais cette injection est effectuée au travers de la membrane et à une pression inférieure. A l'extrémité opposée, l'huile est évacuée directement alors que l'eau sort au travers de la membrane terminale. En réglant les débits d'injection d'huile et d'eau, on s'arrange pour que la pression capillaire soit la même à l'entrée de l'enceinte qu'à sa sortie, ce qui entraîne une saturation uniforme pouvant être déduite du bilan des fluides. La pression capillaire est obtenue par exemple en mesurant la différence entre les pressions de l'huile et de l'eau à la sortie de l'enceinte. Une telle méthode est décrite notamment par Brown H.W. in "Capillary Pressure Investigations" Petroleum Transaction AIME, vol. 192, 1951. Des exemples de mise en œuvre sont décrits par exemple dans les brevets EP 729 022 (US 5 698 772) ou EP-A- 974 839 (US 6 229 312) du demandeur.
On connaît également une méthode dite semi dynamique dans laquelle on confine un échantillon de roche imbibé avec un premier fluide dans une cellule close, on injecte un autre fluide sous pression à une première extrémité de l'enceinte et on balaie l'extrémité opposée par un fluide à basse pression mis en circulation par des moyens de pompage qui entraîne au dehors le fluide drainé. Le dispositif comporte des moyens de mesure de la pression et la saturation de l'échantillon différents de sa longueur, la quantité de fluide évacué et la résistivite électrique de l'échantillon. Cette méthode est mise en œuvre par exemple dans le brevet FR 2 708 742 (US 5 679 885) du demandeur.
Ces courbes de drainage et d'imbibition ayant été établies, il est connu de calculer les indices de mouillabilité WI à partir des aires Ad et Ai délimitées par les courbes de pression capillaire positives et négatives, comme le montre la Fig.l, par la relation
Figure imgf000006_0001
La méthode selon l'invention
La méthode de mesure de la mouillabilité d'un échantillon de roche poreuse en présence d'eau et d'huile, selon l'invention comporte la détermination de la surface poreuse mouillée par l'eau et de la surface poreuse mouillée par l'huile quand l'échantillon est saturé en eau et en huile, et le calcul de l'indice de mouillabilité par combinaison des valeurs obtenues des dites surfaces.
La détermination de la surface poreuse mouillée en eau et de la surface poreuse mouillée par l'huile quand l'échantillon est saturé en eau et en huile, est obtenue par exemple par le biais de mesures de temps de relaxation de l'échantillon placé dans un appareil à résonance magnétique nucléaire. On détermine par exemple l'indice de mouillabilité par la relation
SM - SM. SM ation 1RMN = log10 w
IRMN ou la rel mN SM,., + SM„ mN 10 SM o
dans lesquelles SMW est la surface poreuse mouillée par l'eau et SMQ est la surface poreuse mouillée par l'huile lorsque le milieu poreux est saturé en eau et huile.
Suivant un mode de mise en œuvre, on détermine l'indice de mouillabilité par les opérations suivantes :
a) on mesure les temps caractéristiques de relaxation de l'échantillon saturé en eau ; b) on mesure les temps caractéristiques de relaxation de l'huile dans l'échantillon en présence d'eau, dans une zone proche de la saturation (Swir) de l'échantillon ; c) on mesure les temps caractéristiques de relaxation de l'eau dans l'échantillon en présence d'huile, dans une zone proche de la saturation résiduelle (Sor) ; d) on mesure les temps de relaxation de l'échantillon dans un état où son point de saturation à 100% en huile est atteint ; et e) on combine les mesures des différentes temps de relaxation pour obtenir le dit indice.
Suivant un mode préféré de mise en œuvre, on détermine les temps de relaxation des étapes a) à c) après application à l'échantillon d'une centrifugation.
Suivant un mode préféré de mise en œuvre, on détermine les temps de relaxation de l'étape d) après déplacement forcé des fluides dans l'échantillon placé dans une cellule de confinement.
De préférence, on choisit une huile dont le temps de relaxation intrinsèque (Tβ) est le plus grand possible et le plus proche de l'eau, du dodécane par exemple.
Les temps caractéristiques de relaxation sont par exemple ceux qui correspondent soit au maxima des courbes de saturation soit à des valeurs moyennes des dites courbes.
On vérifie à l'expérience que la mesure de IRMN obtenue par la méthode est aussi sensible mais nécessite bien moins de temps à établir et qu'elle est applicable à un grand nombre d'échantillons. Présentation succincte des figures
Les caractéristiques et avantages de la méthode et du dispositif selon l'invention, apparaîtront plus clairement à la lecture de la description ci-après d'un exemple non limitatif de réalisation, en se référant aux dessins annexés où :
- la figure 1 montre des exemples de courbes de pression capillaire nécessaires à la détermination de l'indice de mouillabilité classique USBM (United States Bureau of Mines) ;
- les figure 2a et 2b montrent respectivement la distribution des temps de relaxation T2 pour une roche mouillable à l'eau saturée en eau et en huile, et une représentation de la distribution de phase (matrice en hachuré, eau en gris clair et huile en gris plus foncé) ;
les figure 3a et 3b montrent respectivement la distribution des temps de relaxation T pour une roche de mouillabilité intermédiaire saturée en eau et en huile (même partie centrale que pour la figure 2), et une représentation de la distribution de phase (matrice en hachuré, eau en gris clair et huile en gris plus foncé) ;
- la figure 4 montre sur des courbes de pression capillaire, les valeurs de saturation où les mesures de relaxation RMN sont faites ;
la figure 5 montre un exemple de distribution des temps de relaxation T2 aux valeurs de saturation indiquées à la figure 4 (de bas en haut : 100% eau, Swi, Sor et 100% dodecane) ; et
- la figure 6 montre la relation entre l'indice IRMN et l'indice IUSBM standard ;
la figure 7 montre schématiquement une cellule de confinement avec un circuit permanent de chauffage par circulation de fluide ; et
la figure 8 montre schématiquement l'agencement d'un dispositif de centrifugation utilisé pour la mise en œuvre de la méthode.
Description détaillée de la méthode
On rappelle que la technique d'analyse RMN consiste essentiellement on le rappelle, à appliquer à un objet à tester un premier champ magnétique statique Bo de polarisation destiné à aligner les noyaux des protons d'hydrogène initialement orientés au hasard, suivant la direction du champ puis à un deuxième champ magnétique impulsionnel oscillant à la fréquence de Larmor perpendiculaire au premier créé par des bobinages excités par un signal de commande pour réaliser une expérience de résonance magnétique nucléaire. Quand ce champ impulsionnel cesse, le retour des noyaux vers leur état initial ou relaxation, engendre des signaux électromagnétiques (échos) qui sont détectés et analysés. A partir des caractéristiques d'amplitude de ces signaux, on détermine la présence de paramètres physiques de l'objet.
On propose de définir un nouvel indice de mouillabilité construit en combinant des valeurs de la surface poreuse SMW mouillée par l'eau et de la surface poreuse SM0 mouillée par l'huile lorsque le milieu poreux est saturé en eau et huile. L'indice peut être calculé par exemple par la relation suivante :
Iκa __ ∞. -™. (la)
R SMW + SM0
ou encore par la relation :
/ = ιogl0 ^ïL (1b)
SM0
Les quantitées SMW et SMo sont obtenues par exemple par la mesure du temps de relaxation dominant dans une expérience de résonance magnétique nucléaire à faible champ.
En effet, dans une telle expérience, la relation fondamentale liant le temps de relaxation longitudinal Ti ou transversal T2 à la surface S et au volume de ce pore est la suivante :
1 = 1 S_ r-rt rj-t ' 1 , L -w \ s
- , 2 '- XB.2B "
où TIB,2B est le temps de relaxation du fluide hors du milieu poreux. Fondamentalement, cette relation provient du fait que les molécules dans le pore subissent des mouvements de diffusion et interagissent avec la paroi poreuse pendant le temps de mesure (le temps de relaxation typique est de l'ordre de 100 ms). Les interactions de surface sont rassemblées dans le coefficient pι,2 appelé relaxivité de surface. Nous avons négligé par ailleurs un terme de gradient qui est important lorsque la mesure est faite à haut champ magnétique (>0.1T). La relation 2 est strictement valable pour un pore saturé d'un seul fluide. En général, les milieux poreux naturels présentent une distribution de tailles de pore et donc du rapport S/V. On observe ainsi en général une distribution des temps de relaxation mas ceci ne modifie pas la méthode décrite ici.
Lorsque deux fluides sont présents dans un pore au sein du milieu poreux, le même mécanisme physique de diffusion est valable, mais la distribution des deux fluides vis à vis de la surface poreuse a une importance cruciale. Par exemple, lorsque le milieu est mouillable à l'eau, l'eau se trouve en surface et interagit avec elle, tandis que l'huile se trouve à l'intérieur du pore et n'interagit pas avec la surface. Lorsque l'on mesure la distribution des temps de relaxation pour un tel système, on observe le résultat de la figure 2a. L'eau est marquée par des temps de relaxation plus courts qu'à la saturation 100% en eau, car le volume d'eau V a diminué (voir équation 1). L'huile est caractérisée par un temps de relaxation qui est le même que si la mesure était faite hors milieu poreux ( TIB,2B) car il n'y a pas d'interaction avec la surface poreuse. Il est par ailleurs connu que les interactions à l'interface eau/huile ne donnent pas lieu à une relaxation différente de celle de l'huile hors milieu poreux, à condition que l'huile considérée soit légère (par une huile raffinée tel le dodecane). Schématiquement, la distribution de phase est représentée à la figure 2b. Lorsque le même milieu poreux a une mouillabilité différente, non franche à l'eau, la distribution des temps de relaxation est modifiée (figure 3a). Essentiellement, le temps caractéristique de l'huile sera plus faible du fait d'une interaction de l'huile à la surface poreuse car l'eau n'est plus en premier voisin de la surface. On représente la distribution possible des deux fluides à la figure 3b. Un tel effet a été obtenu en utilisant les procédures standards permettant de reproduire les propriétés de surface de roches provenant d'un réservoir pétrolier : nettoyage puis vieillissement dans l'huile réservoir à la température du réservoir à la saturation irréductible en eau.
Ainsi, on généralise la relation (2) à un système diphasique eau-huile. Pour l'eau, nous avons : SM.
+ AW, 2w (3) l lw,2w> l X Bw.2Bw
et pour l'huile :
Figure imgf000011_0001
On peut donc déterminer les quantités SMW et SMQ par la mesure des temps de
5 relaxation Ti ou T2 en milieux poreux, des temps de relaxation TιB ou T2B des fluides hors milieux poreux, des volumes liquides N0 ou Vw présents dans le milieux poreux. Les constantes d'interaction p peuvent être déterminées séparément, mais nous verrons que seul le rapport de ces constantes est nécessaire.
En introduisant les relations 3 et 4 dans la relation de base 1, nous obtenons :
i n r _ W * wr~ * bw )-CpSo( • o ~ bo ) (e\ i υ l RMN ~~ 1 1 i 1 \J'
Sw( ~—) + CpSo(--—) w * bw l o '' bo
où Sw=Vw/Np est la saturation en eau,
So=Vo/Vp est la saturation en huile Vp le volume poreux
Cp = le rapport des relaxivités pour les surface mouillées par l'eau (w) et
Figure imgf000011_0002
15 par l'huile (o). Pour alléger la notation, les indices 1 et 2 ont été supprimés.
Il reste donc à déterminer les saturations les plus appropriées pour mesurer les quantités SMW et SM0. Pour des raisons liées au calcul des distributions de temps de relaxation, on choisira la saturation irréductible en eau (Swi, figure 4) pour déterminer la surface mouillée par l'huile en présence d'eau (SMW), et la saturation résiduelle en huile 20 (Sor, figure 4) pour déterminer la surface mouillée par l'eau en présence d'huile. On choisit également une huile dont le temps de relaxation intrinsèque (TB) est le plus grand possible et le plus proche de l'eau. En effet, si TB est trop faible, la méthode sera limitée à des milieux poreux dont le rapport S/V est grand (des tailles de pore petites), ou à des milieux dont la relaxivité de surface est grande. Le dodecane par exemple est une huile raffinée qui est adaptée à la mesure proposée car son temps de relaxation intrinsèque (Tβ0) est de 1 s, proche du temps de relaxation de l'eau (Tβw, environ 2.7 s). Il faut en général exclure les huiles pétrolières brutes car elles ont des temps de relaxation trop faibles et possèdent également une distribution de temps de relaxation qui gêne considérablement l'analyse. Les détails pratiques du calcul sont détaillés ci-dessous.
A partir de la distribution des temps de relaxation aux différentes saturations (voir l'exemple de la figure 5), on peut facilement déterminer le temps de relaxation correspondant au pic dominant (Tw à Sor, To à Swi), et ce sont ces valeurs que l'on utilise dans la relation 5. Il est connu que la détermination du temps de relaxation dominant est robuste et dépend peu du procédé de calcul des distributions. On note que le pic dominant correspond à celui de l'huile à Swi, et à l'eau à Sor. La présence du deuxième fluide à ces différentes saturations est importante du point de vue physique mais perturbe peu le calcul. On peut montrer que quel que soit le temps de relaxation du deuxième fluide présent en faible quantité (l'eau à Swi, l'huile à Sor), le temps de relaxation du fluide dominant fluctue peu. Cet aspect est important pour la robustesse du calcul. La figure 5 présente la distribution des temps de relaxation transversal T2. On peut également utiliser le temps de relaxation longitudinal T] mais cette mesure est moins favorable en général car Tι>T2 mais T] B=T2B pour un fluide donné.
Pour déterminer le rapport de relaxivité de surface Cp, on utilise les temps de relaxation dominants Twιoo et T0IOQ respectivement aux deux saturations Sw=100% et So=100% . La formule utilisée est la suivante :
H cp =— x ' T l wl00 -H 1 TBw p p0 l/Tom -l/TBo
(6)
La figure 5 illustre les deux mesures effectuées. Ainsi, au total, on doit donc mesurer les distributions de temps de relaxation à quatre saturations : 100% saumure, 100% huile et les saturations extrêmes Swi et Sor. Pour cela on pourra utiliser la technique de la centrifugation pour atteindre, en partant de Sw=100%, Swi puis Sor. Un palier de rotation unique à vitesse maximale permet de les atteindre rapidement. Pour la mesure à So=100%, on utilise une succession de déplacements miscibles en injectant un alcool puis l'huile raffinée.
Mise en œuvre
Pour la mise en œuvre de la méthode, on utilise par exemple un appareil de mesure
RMN qui comporte classiquement (Fig.7) des aimants 1 avec un entrefer dans lequel sont placés des bobinages 2. Les bobinages sont connectés à un boîtier électronique pour engendrer les signaux excitateurs (signaux dans la gamme des radiofréquences par exemple) créant un champ électrique oscillant et acquérir la réponse de l'échantillon S aux signaux excitateurs. Un dispositif de ce type est mis en œuvre par exemple dans la demande de brevet FR-A-2 823 308.
Exemple pratique de mise en œuvre
L'indice de mouillabilité est obtenu en réalisant par exemple la succession d'étapes suivantes avec un échantillon de réservoir dont la mouillabilité est intermédiaire :
1. On sature l'échantillon à 100% avec de la saumure de gisement et on le place dans l'appareil de mesure RMN (celui de la Fig.7-8 par exemple) pour mesurer les distributions des temps de relaxation Ti, T2 et en déduire le paramètre TwlOO de l'équation 6 ;
2. On le place ensuite dans le dispositif de centrifugation (tel que celui schématisé à la Fig.lO) et on le centrifuge à la vitesse maximale dans un godet rempli d'huile jusqu'à atteindre la saturation irréductible en eau Swir ; après quoi on mesure les distributions des temps de relaxation Ti, T2 dans l'appareil de RMN, de façon à en déduire T0 de l'équation 5 ;
3. Placé de nouveau dans le dispositif de centrifugation, on centrifuge l'échantillon à vitesse maximale jusqu'à atteindre le point de saturation résiduelle en huile Sor ; puis on le transfère dans l'appareil RMN de nouveau pour mesurer les temps de relaxation Ti, T et en déduire Tw. 4. Ceci fait, on place l'échantillon dans une cellule de confinement telle que celles décrites dans les brevets précités et on injecte un solvant miscible à l'eau et à l'huile puis de l'huile (par exemple du dodecane) jusqu'à atteindre la saturation 100% en huile. Ce point étant atteint, on mesure de nouveau les temps de relaxation Ti, T2 dans l'appareil RMN d'où l'on déduit la valeur de Toioo-nécessaire à la détermination de Cp .
On connaît ainsi tous les paramètres pour calculer le coefficient de mouillabilité IRMN-
Comparaison avec l'indice IUSBM
La comparaison entre l'indice de mouillabilité IUSBM et le nouvel indice IRMN montre une bonne corrélation entre ces deux quantités (figure 6) pour des roches réservoir.
On peut donc avantageusement remplacer la mesure de IUSBM par une mesure de IRMN aussi sensible mais nécessitant bien moins de temps à établir et applicable à un grand nombre d'échantillons.
On a décrit un exemple de mise en œuvre où l'on utilise une méthode de relaxometrie de type RMN pour mesurer la surface et le volume des pores. Cette méthode n'a cependant rien de limitatif. On peut utiliser toute autre méthode d'analyse et notamment la cryomicroscopie.

Claims

REVENDICATIONS
1) Méthode de mesure de la mouillabilité d'un échantillon de roche poreuse en présence d'eau et d'huile, caractérisée en ce qu'elle comporte la détermination de la surface poreuse mouillée en eau et de la surface poreuse mouillée par l'huile quand l'échantillon est saturé en eau et en huile, et le calcul de l'indice de mouillabilité par combinaison des valeurs obtenues des dites surfaces.
2 Méthode selon la revendication 1, caractérisée en ce que la détermination de la surface poreuse mouillée en eau et de la surface poreuse mouillée par l'huile quand l'échantillon est saturé en eau et en huile, est obtenue par le biais de mesures de temps de relaxation (Ti, T2) de l'échantillon placé dans un appareil à résonance magnétique nucléaire
3) Méthode selon la revendication 1 ou 2, caractérisée en ce que l'indice de mouillabilité est obtenu par la relation :
SMW -SM„ l RMN SM + SMn
où SMW est la surface poreuse mouillée par l'eau et SMQ est la surface poreuse mouillée par l'huile lorsque le milieu poreux est saturé en eau et huile.
4) Méthode selon la revendication 1 ou 2, caractérisée en ce que l'indice de mouillabilité est obtenu par la relation :
SM XV
* RMN '°§10 „, ,
SM0
où SMW est la surface poreuse mouillée par l'eau et SM0 est la surface poreuse mouillée par l'huile lorsque le milieu poreux est saturé en eau et huile.
5) Méthode selon l'une des revendications précédentes, caractérisée en ce que l'on détermine l'indice de mouillabilité par les opérations suivantes :
a) on mesure les temps caractéristiques de relaxation de l'échantillon saturé en eau ;
b) on mesure les temps caractéristiques de relaxation de l'huile dans l'échantillon en présence d'eau, dans une zone proche de la saturation (Swir) de l'échantillon ; c) on mesure les temps caractéristiques de relaxation de de l'eau dans l'échantillon en présence d'huile, dans une zone proche de la saturation résiduelle (Sor) ;
d) on mesure les temps de relaxation de l'échantillon dans un état où son point de saturation à 100% en huile est atteint ; et
e) on combine les mesures des différentes temps de relaxation pour obtenir le dit indice.
6) Méthode selon la revendication 5, caractérisée en ce que l'on mesure les temps de relaxation des étapes a) à c) après application à l'échantillon d'une centrifugation.
7) Méthode selon la revendication 5, caractérisée en ce que l'on mesure les temps de relaxation de l'étape d) après déplacement forcé des fluides dans l'échantillon placé dans une cellule de confinement.
8) Méthode selon l'une des revendications précédentes, caractérisée en ce que l'on choisit une huile dont le temps de relaxation intrinsèque (TB) est le plus grand possible et le plus proche de l'eau.
9) Méthode selon la revendication 5, caractérisée en ce que les temps caractéristiques de relaxation sont ceux qui correspondent soit au maxima des courbes de saturation soit à des valeurs moyennes des dites courbes.
PCT/FR2003/002544 2002-09-11 2003-08-18 Methode de mesure de la mouillabilite de roches par resonance magnetique nucleaire WO2004025317A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003274261A AU2003274261A1 (en) 2002-09-11 2003-08-18 Method of measuring rock wettability by means of nuclear magnetic resonance
EP03758245A EP1540363A1 (fr) 2002-09-11 2003-08-18 Methode de mesure de la mouillabilite de roches par resonance magnetique nucleaire
US10/527,088 US7397240B2 (en) 2002-09-11 2003-08-18 Method of measuring rock wettability by means of nuclear magnetic resonance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/11283 2002-09-11
FR0211283A FR2844355B1 (fr) 2002-09-11 2002-09-11 Methode de mesure de la mouillabilite de roches par resonnance magnetique nucleaire

Publications (1)

Publication Number Publication Date
WO2004025317A1 true WO2004025317A1 (fr) 2004-03-25

Family

ID=31726034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/002544 WO2004025317A1 (fr) 2002-09-11 2003-08-18 Methode de mesure de la mouillabilite de roches par resonance magnetique nucleaire

Country Status (5)

Country Link
US (1) US7397240B2 (fr)
EP (1) EP1540363A1 (fr)
AU (1) AU2003274261A1 (fr)
FR (1) FR2844355B1 (fr)
WO (1) WO2004025317A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316554A (zh) * 2014-10-27 2015-01-28 中国石油天然气股份有限公司 储层孔隙水可动性测试方法
CN105891248A (zh) * 2015-04-17 2016-08-24 北京大学 一种高温高压岩石物性及渗流机理核磁共振在线测试装置
CN107315024A (zh) * 2016-04-26 2017-11-03 中国石油化工股份有限公司 一种识别致密砂岩储层油水层的方法
CN107505350A (zh) * 2017-10-20 2017-12-22 河南工业大学 一种基于低场核磁的葡萄籽油掺伪快速鉴别方法
CN107561109A (zh) * 2017-08-03 2018-01-09 中国石油大学(华东) 基于核磁共振横向弛豫谱技术的鲜花生含水率检测方法
CN107831186A (zh) * 2017-09-28 2018-03-23 同济大学 岩芯毛细压力与饱和度曲线、油气藏参数的一维1h核磁共振成像测量表征方法
CN108414560A (zh) * 2018-03-06 2018-08-17 中国石油大学(华东) 一种核磁-驱替联用装置评价致密油充注过程的方法
CN112924356A (zh) * 2021-01-28 2021-06-08 中国石油大学(北京) 一种储层动态渗流特征获取方法及装置

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0719427B1 (pt) * 2007-01-18 2018-03-27 Halliburton Energy Services, Inc. Aparelho de ressonância magnética nuclear (nmr) para determinar uma propriedade do fluido estimando distribuições de tempo de relaxação, sistema para determinar uma propriedade do fluido, método de inversão de tempo de relaxação simultânea para determinar uma propriedade do fluido, e, meio legível por computador
US7567079B2 (en) 2007-06-08 2009-07-28 University Of New Brunswick Methods suitable for measuring capillary pressure and relative permeability curves of porous rocks
FR2920876B1 (fr) * 2007-09-07 2009-12-04 Inst Francais Du Petrole Methode de mesure rapide de la saturation et de la resistivite d'un milieu poreux.
EP2144053A1 (fr) * 2008-07-08 2010-01-13 Services Pétroliers Schlumberger Détermination de paramètres de formations géologiques par mesures RMN de dispersion du temps de relaxation longitudinal T1
US8278922B2 (en) * 2009-03-23 2012-10-02 Schlumberger Technology Corporation Continuous wettability logging based on NMR measurements
US8076933B2 (en) 2009-04-29 2011-12-13 Schlumberger Technology Corporation Method for determining wettability of an oil reservoir
US8201439B2 (en) * 2009-11-02 2012-06-19 Schlumberger Technology Corporation Material wettability characterization and chemical additive evaluation
EP2341372A1 (fr) * 2009-12-16 2011-07-06 BP Exploration Operating Company Limited Procédé pour mésurer la mouillabilité de roche
EP2513678B1 (fr) * 2009-12-16 2015-01-07 BP Exploration Operating Company Limited Procédé pour mesurer la mouillabilité d'une roche
BR112012017778A2 (pt) * 2010-01-22 2018-08-14 Prad Res & Development Ltd método para determinar capacidade de umectação de formações de rocha utilizando medições de ressonância magnética nuclear, método para determinar uma relaxatividade de superfície de uma formação de rocha de subsuperfície usando medições de ressonância magnética nuclear feitas de dentro de um furo de poço penetrando a formação de rocha, método para determinar uma relaxatividade de superfície de uma formação de rocha de subsuperfície, e método para determinar saturação de água e de hidrocarbonetos em uma formação de rocha de subsuperfície usando medições de tempo de relaxação de ressonância magnética nuclear (nmr) e medições de constante de difusão
US8768628B2 (en) * 2010-10-20 2014-07-01 Shawket Ghedan Rise in core wettability characterization method
US9678185B2 (en) 2013-03-15 2017-06-13 Pepsico, Inc. Method and apparatus for measuring physico-chemical properties using a nuclear magnetic resonance spectrometer
US10533933B2 (en) 2015-04-22 2020-01-14 Saudi Arabian Oil Company Nuclear magnetic resonance gas isotherm technique to evaluate reservoir rock wettability
US9599581B2 (en) 2015-04-22 2017-03-21 Saudi Arabian Oil Company Nuclear magnetic resonance gas isotherm technique to evaluate reservoir rock wettability
US10718701B2 (en) * 2015-05-12 2020-07-21 Schlumberger Technology Corporation NMR based reservoir wettability measurements
WO2016210151A1 (fr) * 2015-06-24 2016-12-29 Conocophillips Company Déterminations de la mouillabilité d'une roche
CN106525888B (zh) * 2016-09-26 2018-10-16 中国石油天然气股份有限公司 一种测试致密油藏润湿性的方法及装置
CN106814018B (zh) * 2017-01-18 2023-04-28 西南石油大学 一种致密岩石气相相对渗透率测量装置及方法
EP3574291B1 (fr) 2017-01-26 2023-12-06 Dassault Systemes Simulia Corp. Visualisations d'écoulements à phases multiples basées sur un temps d'occupation de fluide
US10488352B2 (en) * 2017-01-27 2019-11-26 Saudi Arabian Oil Company High spatial resolution nuclear magnetic resonance logging
FR3067811B1 (fr) * 2017-06-19 2019-06-21 IFP Energies Nouvelles Procede de mesure du coefficient de diffusion de l'eau au sein d'un milieu poreux par une methode de resonance magnetique nucleaire
FR3069643B1 (fr) * 2017-07-27 2021-10-01 Ifp Energies Now Procede de determination par centrifugation de la saturation residuelle d'un premier fluide dans un milieu poreux suite a l'injection d'un deuxieme fluide
CN108020488B (zh) * 2017-11-21 2019-11-19 中国石油大学(北京) 核磁共振评价致密砂岩油气储层润湿性的方法与装置
US10451571B2 (en) 2017-12-11 2019-10-22 Saudi Arabian Oil Company Measuring the wettability of porous media based on the temperature sensitivity of nuclear magnetic resonance relaxation time
US11714040B2 (en) * 2018-01-10 2023-08-01 Dassault Systemes Simulia Corp. Determining fluid flow characteristics of porous mediums
US10495589B2 (en) 2018-04-17 2019-12-03 Saudi Arabian Oil Company Determining permeability of porous media based on nuclear magnetic resonance measurement
CN108827853B (zh) * 2018-05-22 2024-02-06 西南石油大学 基于核磁共振的致密储层岩电测量装置及测量方法
CN109100384B (zh) * 2018-08-21 2021-07-30 中国石油天然气股份有限公司 致密油藏水驱油微观机理信息确定方法、装置及系统
CN109030292B (zh) * 2018-09-26 2019-12-17 西南石油大学 一种致密岩石润湿性确定的新方法
CN110646331B (zh) * 2019-09-10 2020-08-11 中国石油天然气股份有限公司 高含粘土岩心的有效孔隙度确定方法及装置
CN110687612B (zh) * 2019-09-17 2020-09-08 中国石油天然气股份有限公司 吸附油和游离油含量连续表征的页岩油分析方法及装置
CN110672495A (zh) * 2019-10-30 2020-01-10 哈尔滨工业大学 一种基于低场磁共振技术的水泥基材料水分渗透率的预测方法
CN111537543B (zh) * 2020-06-03 2021-04-16 中国矿业大学 低场核磁共振测定页岩黏土与脆性矿物相对含量的方法
US11847391B2 (en) 2020-06-29 2023-12-19 Dassault Systemes Simulia Corp. Computer system for simulating physical processes using surface algorithm
US11187766B1 (en) 2020-07-09 2021-11-30 Saudi Arabian Oil Company Methods and systems for determining fluid content in formation samples using low field nuclear magnetic resonance
CN112858364B (zh) * 2020-07-27 2023-07-21 苏州泰纽测试服务有限公司 一种利用核磁共振测量岩心物性的方法
US11907625B2 (en) 2020-12-29 2024-02-20 Dassault Systemes Americas Corp. Computer simulation of multi-phase and multi-component fluid flows including physics of under-resolved porous structures
US11821861B2 (en) * 2021-04-22 2023-11-21 Baker Hughes Oilfield Operations Llc Wettability estimation using magnetic resonance
US11493461B1 (en) * 2021-06-28 2022-11-08 Baker Hughes Oilfield Operations Llc Wettability estimation using T2 distributions of water in wetting and non-wetting phases
US11614417B2 (en) 2021-07-06 2023-03-28 Saudi Arabian Oil Company Determining saturation in low resistivity pay zones
CN113834840A (zh) * 2021-09-24 2021-12-24 西安工程大学 一种测试岩心渗吸效率的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4506542A (en) 1983-04-22 1985-03-26 Chandler Engineering Company Apparatus and procedure for relative permeability measurements
US4543821A (en) * 1983-12-14 1985-10-01 Texaco Inc. Method and apparatus for measuring relative permeability and water saturation of a core
EP0603040A1 (fr) 1992-12-15 1994-06-22 Institut Français du Pétrole Procédé et dispositif perfectionnés pour l'étude des propriétés d'un matériau perméable
FR2708742A1 (fr) 1993-07-29 1995-02-10 Inst Francais Du Petrole Procédé et dispositiphi pour mesurer des paramètres physiques d'échantillons poreux mouillables par des fluides.
EP0729022A1 (fr) 1995-02-27 1996-08-28 Institut Français du Pétrole Méthode et dispositif pour déterminer différents paramètres physiques d'échantillons de matériaux poreux, en présence de fluides di- ou triphasiques
FR2763690A1 (fr) 1997-05-23 1998-11-27 Inst Francais Du Petrole Dispositif perfectionne pour faire des mesures de caracteristiques physiques d'un echantillon poreux
FR2772477A1 (fr) 1997-12-11 1999-06-18 Inst Francais Du Petrole Procede et dispositif pour mesurer des caracteristiques physiques d'un echantillon poreux en y deplacant des fluides par centrifugation
EP0974839A1 (fr) 1998-07-24 2000-01-26 Institut Francais Du Petrole Méthode de mesure rapide de l'indice de résistivité d'échantillons solides tels que des roches
FR2798734A1 (fr) 1999-09-21 2001-03-23 Inst Francais Du Petrole Methode optimisee pour determiner des parametres physiques d'un echantillon soumis a centrifugation
WO2001042817A1 (fr) * 1999-12-10 2001-06-14 Schlumberger Limited Procede de resonance magnetique nucleaire (rmn) et appareil de diagraphie
US20020067164A1 (en) * 2000-07-21 2002-06-06 Lalitha Venkataramanan Nuclear magnetic resonance measurements and methods of analyzing nuclear magnetic resonance data
FR2823308A1 (fr) 2001-04-05 2002-10-11 Inst Francais Du Petrole Cellule de confinement thermostatee pour echantillon destine a des mesures par rmn et une methode pour sa mise en oeuvre

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162733A (en) * 1991-02-26 1992-11-10 Phillips Petroleum Company Method for determining relative wettability
US6765380B2 (en) * 2002-05-23 2004-07-20 Schlumberger Technology Corporation Determining wettability of an oil reservoir using borehole NMR measurements

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4506542A (en) 1983-04-22 1985-03-26 Chandler Engineering Company Apparatus and procedure for relative permeability measurements
US4543821A (en) * 1983-12-14 1985-10-01 Texaco Inc. Method and apparatus for measuring relative permeability and water saturation of a core
EP0603040A1 (fr) 1992-12-15 1994-06-22 Institut Français du Pétrole Procédé et dispositif perfectionnés pour l'étude des propriétés d'un matériau perméable
US5463894A (en) 1992-12-15 1995-11-07 Institut Francais Du Petrole Process and device for surveying the properties of a permeable material
FR2708742A1 (fr) 1993-07-29 1995-02-10 Inst Francais Du Petrole Procédé et dispositiphi pour mesurer des paramètres physiques d'échantillons poreux mouillables par des fluides.
US5679885A (en) 1993-07-29 1997-10-21 Institut Francais Du Petrole Process and device for measuring physical parameters of porous fluid wet samples
EP0729022A1 (fr) 1995-02-27 1996-08-28 Institut Français du Pétrole Méthode et dispositif pour déterminer différents paramètres physiques d'échantillons de matériaux poreux, en présence de fluides di- ou triphasiques
US5698772A (en) 1995-02-27 1997-12-16 Institut Francais Du Petrole Method and device for determining different physical parameters of porous material samples in the presence of two-phase or three-phase fluids
FR2763690A1 (fr) 1997-05-23 1998-11-27 Inst Francais Du Petrole Dispositif perfectionne pour faire des mesures de caracteristiques physiques d'un echantillon poreux
FR2772477A1 (fr) 1997-12-11 1999-06-18 Inst Francais Du Petrole Procede et dispositif pour mesurer des caracteristiques physiques d'un echantillon poreux en y deplacant des fluides par centrifugation
US6185985B1 (en) 1997-12-11 2001-02-13 Institut Francais Du Petrole Process and device for measuring physical characteristics of a porous sample by centrifugal displacement of fluids
EP0974839A1 (fr) 1998-07-24 2000-01-26 Institut Francais Du Petrole Méthode de mesure rapide de l'indice de résistivité d'échantillons solides tels que des roches
US6229312B1 (en) 1998-07-24 2001-05-08 Institut Francais Du Petrole Method and device for fast measurement of the resistivity index of solid samples such as rocks
FR2798734A1 (fr) 1999-09-21 2001-03-23 Inst Francais Du Petrole Methode optimisee pour determiner des parametres physiques d'un echantillon soumis a centrifugation
WO2001042817A1 (fr) * 1999-12-10 2001-06-14 Schlumberger Limited Procede de resonance magnetique nucleaire (rmn) et appareil de diagraphie
US20020067164A1 (en) * 2000-07-21 2002-06-06 Lalitha Venkataramanan Nuclear magnetic resonance measurements and methods of analyzing nuclear magnetic resonance data
FR2823308A1 (fr) 2001-04-05 2002-10-11 Inst Francais Du Petrole Cellule de confinement thermostatee pour echantillon destine a des mesures par rmn et une methode pour sa mise en oeuvre

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BROWN H.W.: "Capillary Pressure Investigations", PETROLEUM TRANSACTION AIME, vol. 192, 1951

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316554A (zh) * 2014-10-27 2015-01-28 中国石油天然气股份有限公司 储层孔隙水可动性测试方法
CN104316554B (zh) * 2014-10-27 2016-07-06 中国石油天然气股份有限公司 储层孔隙水可动性测试方法
CN105891248A (zh) * 2015-04-17 2016-08-24 北京大学 一种高温高压岩石物性及渗流机理核磁共振在线测试装置
CN107315024A (zh) * 2016-04-26 2017-11-03 中国石油化工股份有限公司 一种识别致密砂岩储层油水层的方法
CN107561109A (zh) * 2017-08-03 2018-01-09 中国石油大学(华东) 基于核磁共振横向弛豫谱技术的鲜花生含水率检测方法
CN107831186A (zh) * 2017-09-28 2018-03-23 同济大学 岩芯毛细压力与饱和度曲线、油气藏参数的一维1h核磁共振成像测量表征方法
CN107831186B (zh) * 2017-09-28 2019-09-20 同济大学 岩芯毛细压力与饱和度曲线、油气藏参数的一维1h核磁共振成像测量表征方法
CN107505350A (zh) * 2017-10-20 2017-12-22 河南工业大学 一种基于低场核磁的葡萄籽油掺伪快速鉴别方法
CN108414560A (zh) * 2018-03-06 2018-08-17 中国石油大学(华东) 一种核磁-驱替联用装置评价致密油充注过程的方法
CN108414560B (zh) * 2018-03-06 2020-07-07 中国石油大学(华东) 一种核磁-驱替联用装置评价致密油充注过程的方法
CN112924356A (zh) * 2021-01-28 2021-06-08 中国石油大学(北京) 一种储层动态渗流特征获取方法及装置

Also Published As

Publication number Publication date
AU2003274261A1 (en) 2004-04-30
FR2844355B1 (fr) 2005-03-25
US7397240B2 (en) 2008-07-08
FR2844355A1 (fr) 2004-03-12
EP1540363A1 (fr) 2005-06-15
US20060132131A1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
WO2004025317A1 (fr) Methode de mesure de la mouillabilite de roches par resonance magnetique nucleaire
EP1167948B1 (fr) Méthode pour évaluer des paramètres physiques d'un gisement souterrain à partir de débris de roche qui y sont prélevés
CA2474712C (fr) Methode et dispositif pour evaluer des parametres physiques d'un gisement souterrain a partir de debris de roche qui y sont preleves
CA2461521C (fr) Methode et dispositif pour evaluer des parametres physiques d'un gisement souterrain a partir de debris de roche qui y sont preleves
Al-Mahrooqi et al. Pore-scale modelling of NMR relaxation for the characterization of wettability
CA2482751C (fr) Methode d'evaluation de la courbe de pression capillaire des roches d'un gisement souterrain a partir de mesures sur des debris de roche
FR2869694A1 (fr) Methode de determination des proprietes des fluides de formation
NO335578B1 (no) Bestemmelse av fuktningsevne i et oljereservoar ved bruk av NMR-borehullsmålinger
NO312266B1 (no) Fremgangsmåte for bestemmelse av permeabilitet i poröst medium, spesielt et fluidummettet medium
WO2013148516A1 (fr) Essai de résonance magnétique nucléaire (rmn) pour produits organiques et fluides dans une source et roche de réservoir
EP1548455A1 (fr) Détermination de la perméabilité d'un milieu souterrain à partir de mesures par RMN de la perméabilité de fragments de roche issu du milieu
Venkataramanan et al. Experimental study of the effects of wettability and fluid saturation on nuclear magnetic resonance and dielectric measurements in limestone
EP2034308B1 (fr) Méthode de mesure rapide de la saturation et de la résistivité d'un milieu poreux
EP1398630B1 (fr) Méthode pour déterminer l'indice de résistivité en fonction de la saturation en eau, de certaines roches de porosité complexe
Mitchell et al. Quantitative remaining oil interpretation using magnetic resonance: from the laboratory to the pilot
FR2772477A1 (fr) Procede et dispositif pour mesurer des caracteristiques physiques d'un echantillon poreux en y deplacant des fluides par centrifugation
FR2846365A1 (fr) Procede et dispositif de localisation d'une interface par rapport a un trou fore
Al-Mahrooqi et al. Wettability alteration during aging: The application of NMR to monitor fluid redistribution
Mitra Diffusion in porous materials as probed by pulsed gradient NMR measurements
FR3069643A1 (fr) Procede de determination par centrifugation de la saturation residuelle d'un premier fluide dans un milieu poreux suite a l'injection d'un deuxieme fluide
CA2472087A1 (fr) Methode de detection et de suivi par resonance magnetique nucleaire de la cinetique de floculation des fractions lourdes d'un fluide complexe
FR2831917A1 (fr) Procede de determination de la variation de la permeabilite relative a au moins un fluide d'un reservoir contenant des fluides en fonction de la saturation en l'un d'entre eux
FR2836227A1 (fr) Methode pour evaluer des parametres physiques d'un gisement souterrain a partir de debris de roche qui y sont preleves
Looyestijn Practical Approach to Derive Wettability Index by NMR in Core Analysis Experiments
Johannesen et al. Evaluation of wettability distributions in experimentally aged core

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003758245

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003758245

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006132131

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10527088

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10527088

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP