WO2004025189A1 - Procede et dispositif pour reguler la gestion thermique dans des batiments - Google Patents

Procede et dispositif pour reguler la gestion thermique dans des batiments Download PDF

Info

Publication number
WO2004025189A1
WO2004025189A1 PCT/CH2003/000607 CH0300607W WO2004025189A1 WO 2004025189 A1 WO2004025189 A1 WO 2004025189A1 CH 0300607 W CH0300607 W CH 0300607W WO 2004025189 A1 WO2004025189 A1 WO 2004025189A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
specific
parameters
temperature
control unit
Prior art date
Application number
PCT/CH2003/000607
Other languages
German (de)
English (en)
Inventor
Johannes Rietschel
Original Assignee
Barix Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barix Ag filed Critical Barix Ag
Priority to CA2497839A priority Critical patent/CA2497839C/fr
Priority to AU2003257357A priority patent/AU2003257357A1/en
Priority to US10/527,314 priority patent/US20050234596A1/en
Priority to EP03794748A priority patent/EP1537366B1/fr
Priority to AT03794748T priority patent/ATE541160T1/de
Publication of WO2004025189A1 publication Critical patent/WO2004025189A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to a method for controlling the heat flows in at least one building, in which methods for controlling the temperature within the building are controlled from a plurality of input parameters.
  • Optimizing the heat flow in a building is something that residents have always dealt with intensively.
  • the modern means of air conditioning (cooling, heating, setting the air humidity) have made it much easier to influence the flow of heat, but saving energy is a big issue, especially considering economic and ecological aspects.
  • Heating houses private, commercial and public
  • any optimization in this area is potentially extremely interesting.
  • the invention is therefore based on the object of providing a method and a device for controlling the heat flows in at least one building, in which means for influencing the temperature within the building are controlled from a plurality of input parameters.
  • the regulation should be as forward-looking and efficient as possible.
  • the means for controlling the temperature of a specific, considered space or at least a region of a specific space are controlled by the following as input parameters: a) at least one target value, in particular the desired temperature of the specific space; b) at least one general parameter which is characteristic of at least one size inside and / or outside the building and which at least indirectly influences the temperature within the specific room; and c) at least one special parameter which is characteristic of the specific heat flow conditions of the specific space under consideration or of the area of the specific space; are used and the control of the means is calculated from these input parameters in a control unit.
  • the essence of the invention is therefore to design the control specifically for each room in an adapted manner. For this purpose, a target value is defined for each room, which can be different for different rooms.
  • This target can either be fixed by the user, possibly depending on the time of day and day of the week etc. (schedule). Or it is also possible to derive this target value from a history, so to speak, that is, the control unit "observes", if necessary additionally via motion sensors, the effective use of the corresponding space and automatically adjusts the heat flows to the actually expected use. If, for example, a room is never needed on weekends, and usually not on Monday morning, the control unit determines this and after a certain number of repetitions of such regular behavior, the control unit reacts automatically by adjusting the target value accordingly defining, sets a minimum value when there is typically no person in the room and to a different target value when the presence of a person is typically to be expected.
  • the presence of people can be determined in a room-specific manner, as already mentioned, using sensors, but it is also possible to do this e.g. B. derived from indirect sizes such as the presence of the person who usually works in the room under consideration, as can be seen from a time monitoring system, or by querying the local computer network whether the person in question is logged in or not.
  • At least one general parameter is used as an input variable, which to a certain extent stands for external, variable factors influencing the heat flows of the room under consideration.
  • it is e.g. B. the temperature outside the building, this temperature is particularly preferably measured where possible, which are particularly relevant for the room under consideration.
  • special parameters are provided in particular as input variables for the control, these special parameters being characteristic for the heat input or the heat outflow from the room under consideration.
  • these are sizes such as B. the window surfaces and their Isolation state of the room under consideration or similar such sizes.
  • the means for temperature control are typically at least one heater.
  • these means comprise at least one air conditioning system and / or at least one ventilation system and / or at least one device for influencing the solar radiation (for example sun blinds) in the room.
  • the control unit has access to a database in which historical values of the parameters (b, c) and the target values (a) of the specific space under consideration and / or the specific building under consideration are contained.
  • the means for temperature control are controlled from the input parameters taking these historical values into account, with the control of the means for temperature control from the input parameters being particularly preferably optimized in an adaptation process, taking these historical values into account. It is, to a certain extent, an intelligent learning process that runs in the control unit and that optimally takes into account the microclimate typical of the specific building and even the specific room.
  • this embodiment has the advantage that such a system does not require any special installation steps to be adapted for the specific object, since after a certain learning period in which the system is optimized autonomously, the control is specifically set optimally.
  • a combination is of course possible by already storing a rough data set suspected for the specific object as a starting value for the history so that the settling behavior of the control system, which usually occurs in such learning processes, is not too pronounced.
  • the at least one general parameter is one or a selection from the following parameters, in particular measured by sensors: temperature on the outside of the building under consideration (temperature sensors on different facades at different heights on the outside of the building); Moisture on the outside of the viewed Building (moisture sensors also on the different facades); Wind and in particular wind direction on the outside of the building under consideration (e.g. wind turbine on the roof); the solar radiation on the outside of the building under consideration (brightness sensors also on the different facades on the outside or, if necessary, also in the room in places where the window can be expected to emit somien radiation).
  • These general parameters are particularly preferably measured at several points with different clinic influences for the space under consideration, such as on different facades and / or on the roof of the building, possibly at different heights.
  • information about the weather forecast, in particular of the region may be used as a general parameter (possibly a combination of global weather forecasts, e.g. for the country, and local weather forecasts, e.g. for the region).
  • These data can e.g. B. consist of a corresponding provider providing precipitation waliischlicliceiten, Sonnenst ⁇ ndenwalirscheinlicl, etc. in a defined form, depending on the time of day if possible.
  • Such a system can be implemented particularly easily using today's technical means if the general parameters are at least partially via a wired or wireless network, particularly preferably via a LAN, wireless LAN, GPRS or the like, using standard protocols such as SMTP, ftp, http be transmitted to the control unit periodically or continuously. It is particularly easy to do e.g. B. integrate the weather forecast into the system by periodically accessing a corresponding provider via the WWW from the control unit in order to collect the corresponding information, or by actively sending the information from a provider to specific control units. This can be done using standard protocols such as SMTP or HTTP, whereby the information is passed in a defined format (eg XML / SOAP) so that it can be automatically processed by the control units.
  • SMTP Simple Object Access Protocol
  • HTTP HyperText Transfer Protocol
  • Another preferred embodiment of the present invention not only uses the parameters measured on the building under consideration, but also uses parameters from other buildings which are integrated in a similar system. This allows a further adjustment of the control to the MikiOry valid for the object in question.
  • general parameters as described above are also used as input parameters, which are measured on at least one other building, these other buildings particularly preferably adjacent or at a distance relevant to the climate, in particular the microclimate, of the building under consideration is arranged.
  • each building of a corresponding network makes its data available in a general database managed by a provider to the control units of other buildings. Accordingly, the control units of other buildings can then access the entirety of this data and optimize their regulation, which can be of particular interest in connection with the above-mentioned learning process using a history if the database does not only include the current values but also the buildings also historical data.
  • the value of the temperature in the specific room under consideration and / or the value of the temperature in neighboring specific rooms should also be used as input parameters.
  • At least one specific parameter for the specific space mentioned at the outset is one or a selection from the following parameters: window area; Isolation state; Orientation with regard to cardinal direction and sun exposure; Shading through neighboring buildings and / or vegetation (especially depending on the season) Topography; Building height above nominal level; Coordinates of the building.
  • These specific parameters can either be determined once and entered into the tax input, and / or it is possible to have the entire influence of at least certain of these specific parameters automatically by the tax input in an, if appropriate continuous, adaptation process, taking into account the influence of the general parameters and to determine the activation of the temperature control means to the value actually brought about in the specific room. The acquisition of historical data is of great help here.
  • the present invention also relates to a device for controlling the heat flows in at least one building using a method as described above.
  • the device comprises at least one control unit with which means for influencing the temperature within the building under consideration are controlled, a plurality of sensors for deleting the parameters, preferably also the possibility of accessing a weather forecast, and a communication network or at least a coupling to one Communication network, in particular in the form of a LAN, WAN, WWW, via which the parameters are transmitted from the sensors to the control unit or via which the weather forecast is transmitted to the control unit. is made available.
  • control unit for carrying out an implementation as described above or for use in a device as described above.
  • the control unit in this case comprises at least one processor, internal means for data storage and at least one network interface, a database preferably being provided on the means for data storage, on which the data of the input parameters and the target values actually achieved are continuously documented, and the control unit is designed in such a way that means for temperature control are controlled from the current input parameters, taking into account the history content of the database, in an optimizing and learning manner.
  • the present invention also a data processing program for carrying out such a procedure in such a control unit.
  • a system in which a control unit, which is designed to a certain extent as a reclmer, regulates heating elements such as radiators, for example, in their supply with either heating fluid or electrical current.
  • the Steuereinlieit has a CPU, i. H. a processor, as well as the possibility of controlling the corresponding control means for the heating elements (flow control or current control).
  • These control means can either be connected to the control unit via dedicated cabling, but it is also possible to design these control means as autonomous units, which are connected to a local network (LAN, possibly wireless, GPRS) using standard protocols (SMTP, http etc. ) communicate with the control unit.
  • LAN local network
  • GPRS GPRS
  • standard protocols SMTP, http etc.
  • control unit has a network connection via which other data sources can be accessed via standard protocols such as SMTP or http with standard data formats (XML / SOAP), and via which access to the control unit is also possible from the outside.
  • This network connection can be implemented, for example, via a modem. It is also possible to configure the tax input remotely from the outside, ie from any computer in the same house or elsewhere, which can be interesting, for example, on vacation (preheating the winter house before arrival).
  • system has sensors which are arranged on the outside of the building under consideration and which measure the outside temperature and, if appropriate, also the outside humidity in the building Location.
  • the sensors are attached to the outer shell of the building at different points, in particular there is a separate sensor on each facade, which has its own climate characteristics (sun exposure, wind exposure, rain exposure, etc.).
  • climate characteristics unsun exposure, wind exposure, rain exposure, etc.
  • sensors are also arranged on the facade at different heights.
  • At least one additional temperature sensor is arranged in each of the rooms to be controlled separately, in order to enable control to the target value.
  • the measured values of the individual sensors are either transferred to the control unit via cables or lines to be provided for this purpose, or, and this proves to be particularly advantageous in terms of the installation effort, it is possible to place the sensors directly in a network (for example LAN , possibly wireless).
  • a network for example LAN , possibly wireless.
  • the individual sensors directly it is possible to design the individual sensors directly as small autonomous units, which in turn have an actual sensor, a small processor, possibly memory requirements and in particular a network connection (possibly wireless or alternatively generally via GPRS), so that the sensor can be installed simply has to be installed and then a connection to the local network is established using a corresponding power cable or wirelessly.
  • Such a sensor box comprising a temperature and / or humidity or air pressure sensor and possibly further sensors relevant for determining the climate, further comprising a processor, possibly means for local data storage (RAM, ROM, hard disk, SANDISK or the like ), a network card (modem also possible) for connection to a wired or wireless network (alternatively also connection to a general radio network with GPRS possible) as well as a case and an internal (battery or accumulator) or external power supply is in itself and independent of the above considered system new and inventive. Installation is particularly simple, particularly when such a sensor box is equipped with a data processing program which establishes an automatic integration into a network that does not require any further configuration.
  • a processor possibly means for local data storage (RAM, ROM, hard disk, SANDISK or the like ), a network card (modem also possible) for connection to a wired or wireless network (alternatively also connection to a general radio network with GPRS possible) as well as a case and an internal (b
  • an IP address can be automatically assigned (or assigned via DHCP, for example), and an independent login can be made to a server provided for this purpose, which can either be the control unit, or which can be a data server that subsequently merges the data Control units (possibly in different buildings) or weather evaluation centers.
  • the control unit uses the data provided in this way to control the heating elements, specifically in a specific way for each room.
  • the special parameters which are characteristic of the room and which are typical for the heat input or for the heat dissipation of the room under consideration are additionally determined and used. These include, among other things, the insulation status, window area of the room, etc.
  • the data of those sensors that are actually relevant in relation to the climatic conditions of the room under consideration are taken into account in particular. With in other words, for example, the sensors on the outside of the facade are used, which are at the same height and which are arranged on facades to which the space under consideration actually borders. Which sensors and to what extent are actually of thermal relevance for the space under consideration can be continuously adjusted, ie it is possible to let the tax authorities learn such considerations or weightings successively.
  • the goal is to make an accurate prediction PRO ROOM whether it is a) used b) how the heat input from outside (solar radiation etc., this can also be taken into account depending on the season due to the different length of day and / or different vegetation) in the next few hours is c) "wind chill", to what extent a room is cooled from the outside through windows etc. d) etc.
  • Each of these sensors transmits its data with object designation and orientation (cardinal direction) via a communication network (Internet, LAN ..) to a central database (this central database can either be arranged separately in the control unit or separately) -
  • a communication network Internet, LAN ..
  • this central database can either be arranged separately in the control unit or separately
  • the object height above sea level, exact coordinates, location (on a slope, etc.) are also recorded in this.
  • each room is based on the following data: a) Default temperature, possibly schedule-controlled (schedule) a2) "History” - was the room used yesterday, the day before yesterday, etc.? Are there regularities that can be used? bl) Weather forecast for the day (since the control unit has a network connection, corresponding data from a provider periodically queried automatically over the Internet and interpreted for needs). b2) Room orientation (special parameter) and entry / cooling factor (general parameter) b3) Sun track (from when does the radiation into the room start, etc.)
  • the regulation can be based exclusively on the actual values of the sensors and on a corresponding extrapolation based on the consulted bet prediction.
  • the extrapolation can also be improved by taking into account the development which has been observed in the measured values of the individual sensors over the past time periods. Typically one speaks of the development over the last minutes to hours.
  • a further improvement of the regulation can be achieved in that not only the data of the sensors of the building under consideration are used as input variables for the regulation, but also that corresponding measured values of other buildings are taken into account.
  • This data can either be picked up by the control units directly from the similarly equipped other buildings, or it is possible that each building in such a network stores its data on a central server, and all control units of the respective buildings on the data of this server can access.
  • the other buildings can either be in the immediate vicinity of the building under consideration, but it is also possible to take into account buildings that are in the same region or even further away, and so to a certain extent further improve or improve the weather forecast by corresponding regional trends to draw more detailed conclusions for the building under consideration.
  • a further improvement of the regulation can, and this seems to be particularly interesting, be achieved by the control unit being able to learn to a certain extent and successively taking into account the microclimate relevant for the building concerned.
  • This ability to learn can be achieved by using the averaged data of the Sensors, the target values and the corresponding weather forecasts are stored in a database in the sense of a Hislory. It is then possible to have the tax authorities search in this historical database for similar, already expired scenarios of the microclimate (Pattem Malcliing). If such a similar or the same situation is found in the database, it can be checked in what respect the regulation subsequently effected at that time was not optimal, and the regulation can be adapted accordingly for the expected behavior in the near future.
  • Values of sensors from the database are therefore selected which, based on historical data, are the maximum match from the set of all available sensors (with a shift on the time axis) and depending on the general weather situation, wind direction and wind speed. This can be done decentrally in the controller or centrally.
  • the controller uses the database to select the sensors that in this specific weather situation with a lead time of 2 hours had the greatest correspondence with the local weather (in this case presumably buildings to the west, approx. 40 km away) has an inertia of about 2 hours to start in time before the weather front will cool the building from the outside quite a lot cools.
  • Another example concerns the awning regulation in sultry summer.
  • a specific room is shaded with the awning.
  • the awning is retracted in good time if sensors on other houses within a radius of approx.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Temperature (AREA)

Abstract

La présente invention concerne un procédé pour réguler la gestion thermique dans au moins un bâtiment, procédé selon lequel, à partir d'une pluralité de paramètres d'entrée, des moyens servant à influer sur la température à l'intérieur du bâtiment sont commandés. Une régulation la plus économique possible peut être atteinte en ce que les moyens servant à réguler la température d'une pièce spécifique considérée ou d'au moins une zone d'une pièce spécifique considérée sont mis en fonction par le fait que l'on utilise comme paramètres d'entrée, à partir desquels la commande desdits moyens est calculée dans une unité de commande, : a) au moins une valeur cible, en particulier la température souhaitée de la pièce spécifique ; b) au moins un paramètre général qui est caractéristique d'au moins une grandeur intérieure et/ou extérieure au bâtiment, laquelle influe sur la température intérieure de la pièce spécifique au moins indirectement ; et c) au moins un paramètre spécial qui est caractéristique des conditions de flux thermique spécifiques de la pièce spécifique considérée ou de la zone de ladite pièce spécifique. De préférence, il est tenu compte des valeurs fournies par une pluralité de capteurs spécifiques disposés sur le bâtiment considéré et, éventuellement, sur d'autres bâtiments, ainsi que des informations disponibles concernant les prévisions météorologiques, en tant que paramètres généraux, et, notamment, leurs influences spécifiques sur la pièce considérée sont, avec ces paramètres, enregistrées dans une banque de données pour constituer un historique qui sera mis à disposition, d'une certaine façon en servant d'enseignement, pour l'optimisation de processus de régulation futurs.
PCT/CH2003/000607 2002-09-13 2003-09-09 Procede et dispositif pour reguler la gestion thermique dans des batiments WO2004025189A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2497839A CA2497839C (fr) 2002-09-13 2003-09-09 Procede et dispositif pour reguler la gestion thermique dans des batiments
AU2003257357A AU2003257357A1 (en) 2002-09-13 2003-09-09 Method and device for controlling the thermal balance in buildings
US10/527,314 US20050234596A1 (en) 2002-09-13 2003-09-09 Method and device for controlling the thermal balance in buildings
EP03794748A EP1537366B1 (fr) 2002-09-13 2003-09-09 Procede et dispositif pour reguler la gestion thermique dans des batiments
AT03794748T ATE541160T1 (de) 2002-09-13 2003-09-09 Verfahren und vorrichtung zur steuerung des wärmehaushaltes in gebäuden

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH15592002 2002-09-13
CH1559/02 2002-09-13

Publications (1)

Publication Number Publication Date
WO2004025189A1 true WO2004025189A1 (fr) 2004-03-25

Family

ID=31983664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2003/000607 WO2004025189A1 (fr) 2002-09-13 2003-09-09 Procede et dispositif pour reguler la gestion thermique dans des batiments

Country Status (6)

Country Link
US (1) US20050234596A1 (fr)
EP (1) EP1537366B1 (fr)
AT (1) ATE541160T1 (fr)
AU (1) AU2003257357A1 (fr)
CA (1) CA2497839C (fr)
WO (1) WO2004025189A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1600697A1 (fr) * 2004-04-27 2005-11-30 BBT Thermotechnik GmbH Procédé de régulation d'une installation de chauffage
EP1715254A1 (fr) * 2005-04-22 2006-10-25 Franklin Rappoport Système de régulation pour une installation de chauffage prédictive basé sur un système d'information de prévision météorologique et de chauffage
WO2007042371A1 (fr) * 2005-10-14 2007-04-19 Siemens Aktiengesellschaft Dispositif pour assurer la commande d'une temperature ambiante dans un batiment, au moyen d'un dispositif de commande a prediction
EP1777465A2 (fr) * 2005-10-18 2007-04-25 DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. Méthode pour la détermination de la demande de chaleur d'un bâtiment
WO2009039849A1 (fr) * 2007-09-25 2009-04-02 Danfoss A/S Système d'énergie commandé par prédiction par modèle
EP2336835A1 (fr) * 2009-12-15 2011-06-22 Siemens Aktiengesellschaft Procédé et agencement de commande prédicitve de temperatures dans un bâtiment en considérant le coût des sources d' énergie
FR2969742A1 (fr) * 2010-12-28 2012-06-29 Oze En Controle et gestion optimises du chauffage de la production d'eau chaude sanitaire et du renouvellement d'air d'un batiment
EP2588811A1 (fr) * 2010-06-30 2013-05-08 Ecofective AB Procédé et dispositif de régulation d'énergie
WO2014053988A1 (fr) 2012-10-03 2014-04-10 Pronoó Gmbh Procede predictif de commande par exemple du chauffage et dispositif pour la mise en œuvre du procede
EP3537051A1 (fr) * 2018-03-09 2019-09-11 Liljegren Development AB Procédé, appareil de commande et produit de programme informatique de système de chauffage
EP3637204A1 (fr) * 2018-10-10 2020-04-15 Siemens Schweiz AG Dispositif d'automatisation de bâtiment et procédé

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8463441B2 (en) 2002-12-09 2013-06-11 Hudson Technologies, Inc. Method and apparatus for optimizing refrigeration systems
US20060004492A1 (en) * 2004-07-01 2006-01-05 Terlson Brad A Devices and methods for providing configuration information to a controller
US10253564B2 (en) 2004-05-06 2019-04-09 Mechoshade Systems, Llc Sky camera system for intelligent building control
US8120292B2 (en) 2004-05-06 2012-02-21 Mechoshade Systems, Inc. Automated shade control reflectance module
US8890456B2 (en) 2004-05-06 2014-11-18 Mechoshade Systems, Inc. Automated shade control system utilizing brightness modeling
US8723467B2 (en) 2004-05-06 2014-05-13 Mechoshade Systems, Inc. Automated shade control in connection with electrochromic glass
US10619415B2 (en) 2004-05-06 2020-04-14 Mechoshade Systems, Llc Sky camera system utilizing circadian information for intelligent building control
US11187035B2 (en) 2004-05-06 2021-11-30 Mechoshade Systems, Llc Sky camera virtual horizon mask and tracking solar disc
US8836263B2 (en) 2004-05-06 2014-09-16 Mechoshade Systems, Inc. Automated shade control in connection with electrochromic glass
US8525462B2 (en) * 2005-03-08 2013-09-03 Mechoshade Systems, Inc. Automated shade control method and system
US7983796B2 (en) * 2006-09-21 2011-07-19 Kassel Edward A Energy efficient method of monitoring and controlling an HVAC system
US7904209B2 (en) * 2007-03-01 2011-03-08 Syracuse University Open web services-based indoor climate control system
US20090076658A1 (en) * 2007-08-21 2009-03-19 Ralph Kinnis Building climate control system and method
EP2045674A1 (fr) * 2007-10-01 2009-04-08 Koninklijke Philips Electronics N.V. Système de gestion d'immeubles doté d'un revêtement d'immeuble actif, collecteur de ressources environnementales prévu pour être utilisé avec un tel système et procédé pour la gestion de ressources utilisées dans un immeuble.
US8160752B2 (en) 2008-09-30 2012-04-17 Zome Networks, Inc. Managing energy usage
US20110231320A1 (en) * 2009-12-22 2011-09-22 Irving Gary W Energy management systems and methods
EP2372483B1 (fr) * 2010-03-16 2012-10-31 Siemens Aktiengesellschaft Procédé de régulation d'une grandeur liée au confort dans une pièce
US20120166151A1 (en) * 2010-12-22 2012-06-28 Honeywell International Inc. System and method for performance monitoring of commercial refrigeration
FI126110B (fi) 2011-01-19 2016-06-30 Ouman Oy Menetelmä, laitteisto ja tietokoneohjelmatuote toimilaitteen ohjaamiseksi lämpötilan säätelyssä
US9002532B2 (en) 2012-06-26 2015-04-07 Johnson Controls Technology Company Systems and methods for controlling a chiller plant for a building
US10520205B2 (en) * 2013-03-13 2019-12-31 Digi International Inc. Thermostat
SG10201606873UA (en) * 2015-08-28 2017-03-30 Yulong Zhang Environmentally Friendly Heating Ventilation and Air Conditioning System
US10253994B2 (en) 2016-07-22 2019-04-09 Ademco Inc. HVAC controller with ventilation review mode
US10838441B2 (en) 2017-11-28 2020-11-17 Johnson Controls Technology Company Multistage HVAC system with modulating device demand control
US10838440B2 (en) 2017-11-28 2020-11-17 Johnson Controls Technology Company Multistage HVAC system with discrete device selection prioritization
US11215373B2 (en) * 2018-01-08 2022-01-04 Broan-Nutone Llc System and method for integrated control of supply fan
CN117311417B (zh) * 2023-11-30 2024-02-06 山东泽林农业科技有限公司 基于物联网的智慧农业信息综合管理方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897798A (en) * 1986-12-08 1990-01-30 American Telephone And Telegraph Company Adaptive environment control system
DE19831127A1 (de) 1998-07-11 2001-03-15 Baelz Gmbh Helmut Vorhersagegeführte Klimatisierungsanlage
US6263260B1 (en) * 1996-05-21 2001-07-17 Hts High Technology Systems Ag Home and building automation system
WO2002021231A1 (fr) * 2000-09-04 2002-03-14 Forskarpatent I Uppsala Ab Systeme de regulation de climatisation et son procede de commande

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10003548A1 (de) * 1999-02-05 2000-08-10 Denso Corp Vorrichtung und Verfahren zur Berechnung einer von einem Klimaanlagensystem gesteuerten Variablen
US6604023B1 (en) * 2000-04-28 2003-08-05 International Business Machines Corporation Managing an environment utilizing a portable data processing system
US6636808B1 (en) * 2000-04-28 2003-10-21 International Business Machines Corporation Managing an environment via a universally accessible server system
US6622115B1 (en) * 2000-04-28 2003-09-16 International Business Machines Corporation Managing an environment according to environmental preferences retrieved from a personal storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897798A (en) * 1986-12-08 1990-01-30 American Telephone And Telegraph Company Adaptive environment control system
US6263260B1 (en) * 1996-05-21 2001-07-17 Hts High Technology Systems Ag Home and building automation system
DE19831127A1 (de) 1998-07-11 2001-03-15 Baelz Gmbh Helmut Vorhersagegeführte Klimatisierungsanlage
WO2002021231A1 (fr) * 2000-09-04 2002-03-14 Forskarpatent I Uppsala Ab Systeme de regulation de climatisation et son procede de commande

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1600697A1 (fr) * 2004-04-27 2005-11-30 BBT Thermotechnik GmbH Procédé de régulation d'une installation de chauffage
EP1715254A1 (fr) * 2005-04-22 2006-10-25 Franklin Rappoport Système de régulation pour une installation de chauffage prédictive basé sur un système d'information de prévision météorologique et de chauffage
WO2007042371A1 (fr) * 2005-10-14 2007-04-19 Siemens Aktiengesellschaft Dispositif pour assurer la commande d'une temperature ambiante dans un batiment, au moyen d'un dispositif de commande a prediction
US8818563B2 (en) 2005-10-14 2014-08-26 Siemens Aktiengesellschaft System for controlling room temperature in a building using a free energy source, an additional energy source, and predictive control
CN101390028B (zh) * 2005-10-14 2013-01-02 西门子公司 利用预测式控制器件用于控制建筑物中室温的装置
EP1777465A2 (fr) * 2005-10-18 2007-04-25 DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. Méthode pour la détermination de la demande de chaleur d'un bâtiment
EP1777465A3 (fr) * 2005-10-18 2014-08-06 Deutsches Zentrum für Luft- und Raumfahrt e. V. Méthode pour la détermination de la demande de chaleur d'un bâtiment
WO2009039849A1 (fr) * 2007-09-25 2009-04-02 Danfoss A/S Système d'énergie commandé par prédiction par modèle
EP2336835A1 (fr) * 2009-12-15 2011-06-22 Siemens Aktiengesellschaft Procédé et agencement de commande prédicitve de temperatures dans un bâtiment en considérant le coût des sources d' énergie
EP2588811A4 (fr) * 2010-06-30 2014-04-09 Ecofective Ab Procédé et dispositif de régulation d'énergie
EP2588811A1 (fr) * 2010-06-30 2013-05-08 Ecofective AB Procédé et dispositif de régulation d'énergie
FR2969742A1 (fr) * 2010-12-28 2012-06-29 Oze En Controle et gestion optimises du chauffage de la production d'eau chaude sanitaire et du renouvellement d'air d'un batiment
WO2014053988A1 (fr) 2012-10-03 2014-04-10 Pronoó Gmbh Procede predictif de commande par exemple du chauffage et dispositif pour la mise en œuvre du procede
EP3537051A1 (fr) * 2018-03-09 2019-09-11 Liljegren Development AB Procédé, appareil de commande et produit de programme informatique de système de chauffage
EP3637204A1 (fr) * 2018-10-10 2020-04-15 Siemens Schweiz AG Dispositif d'automatisation de bâtiment et procédé

Also Published As

Publication number Publication date
EP1537366B1 (fr) 2012-01-11
ATE541160T1 (de) 2012-01-15
AU2003257357A1 (en) 2004-04-30
US20050234596A1 (en) 2005-10-20
EP1537366A1 (fr) 2005-06-08
CA2497839C (fr) 2011-04-05
CA2497839A1 (fr) 2004-03-25

Similar Documents

Publication Publication Date Title
EP1537366B1 (fr) Procede et dispositif pour reguler la gestion thermique dans des batiments
EP1934665B1 (fr) Dispositif pour assurer la commande d'une temperature ambiante dans un batiment, au moyen d'un dispositif de commande a prediction
EP2638442B1 (fr) Système d'automatisation du bâtiment
DE102017205033B4 (de) Verfahren und System zum internetgestützten Optimieren von Parametern einer Heizungsregelung
WO2007065783A2 (fr) Dispositif et procede pour employer l'energie solaire pour des applications techniques
DE19831127A1 (de) Vorhersagegeführte Klimatisierungsanlage
WO2015074791A1 (fr) Procédé de commande pour climatiser un espace
AT509882B1 (de) Verfahren zur steuerung einer wärmeversorgungsanlage
EP3059652B1 (fr) Dispositif de commande et installation de regulation de temperature ambiante
EP1770454A1 (fr) Système d'automatisation doméstique
EP1777465A2 (fr) Méthode pour la détermination de la demande de chaleur d'un bâtiment
DE102004032562A1 (de) Steuersystem für eine Klimatisierungsvorrichtung sowie Verfahren zum Steuern einer Klimatisierungsvorrichtung
DE102008034923A1 (de) Verfahren und Einrichtung zum Steuern der klimatischen Bedingungen eines eine Klimaanlage enthaltenden Gebäudes
DE102014102275B4 (de) Verfahren zur Regelung einer Heizungs- und/oder Klimaanlage und Heizungs- und/oder Klimaanlage hierzu
EP3947964A1 (fr) Procédé et dispositif permettant d'établir et de distribuer une puissance escomptée
DE102005032042B4 (de) Vorrichtung und Verfahren zur Ermittlung des Energieeintrags in einen Raum durch eine Strahlungsquelle
EP2420748A2 (fr) Procédé et système d'exécution d'une égalisation hydraulique dans un système de chauffage
DE102010031830A1 (de) Adaptiver Störgrößensensor und adaptives Regelungssystem für eine witterungsgeführte Haustechnikregelung sowie Verfahren zum Betreiben dieser
DE102017218742A1 (de) Verfahren zum Ermitteln einer erwarteten Temperaturkurve sowie Verfahren zum Ermitteln eines Heiz- und/oder Kühlprogramms eines Heiz- und/oder Kühlsystems
DE102014014325A1 (de) Wärmepumpenvorrichtung und Verfahren zum Steuern einer Wärmepumpenvorrichtung
EP0670534B1 (fr) Dispositif de réglage pour plusieurs appareils (uniques)
EP3318948B1 (fr) Thermostat de radiateur
EP2799945B1 (fr) Commande d'un dispositif de climatisation en fonction de paramètres environnementaux pronostiqués
DE102017219239A1 (de) Verfahren und Vorrichtung zum rechnergestützten Bestimmen von Gebäudeautomatisierungsparametern eines Gebäudes
DE202004010561U1 (de) Steuersystem für eine Klimatisierungsvorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003794748

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2497839

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10527314

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003794748

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP