WO2004023508A2 - Accessory member for dispensers of alkali metals - Google Patents
Accessory member for dispensers of alkali metals Download PDFInfo
- Publication number
- WO2004023508A2 WO2004023508A2 PCT/IT2003/000524 IT0300524W WO2004023508A2 WO 2004023508 A2 WO2004023508 A2 WO 2004023508A2 IT 0300524 W IT0300524 W IT 0300524W WO 2004023508 A2 WO2004023508 A2 WO 2004023508A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- screen
- dispenser
- alkali metals
- cesium
- dispensers
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/243—Crucibles for source material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
Definitions
- the present invention relates to an accessory member for dispensers of alkali metals. It is known that alkali metals have been used for a long time in the electronic field. In particular, a field of application of alkali metals is in the OLED screens (from the definition "Organic Light Emitting Display”).
- an OLED is formed of a first planar transparent support (of glass or plastics); a second support, not necessarily transparent, which can be made in glass, metal or plastics, essentially planar and parallel to the first support and fixed along the perimeter thereof, so as to form a closed space; and a structure active in the image formation in said space.
- Said active structure is formed of a first series of transparent electrodes, linear and mutually parallel, deposited on the first support; a multilayer of different electroluminescent organic materials, comprising at least one layer of a material conductor of electrons and a layer of a material conductor of electronic vacancies (also defined in the field as "holes") deposited on the first series of electrodes; a second series of linear and mutually parallel electrodes that are orthogonally oriented with respect to those of the first series and in contact with the opposite side of the multilayer of organic materials in such a manner that the latter is comprised between both series of electrodes.
- the doping is carried out by exposing the organic layers of the OLED to cesium vapors in a closed chamber which is maintained under vacuum, in order to avoid that said organic layers, and above all, the second series of electrodes
- the evaporation of cesium inside the production chamber of the OLED is carried out by using suitable dispensers containing a cesium compound stable to air at room temperature.
- cesium due to its high reactivity towards atmospheric gases and to moisture, cesium is not normally used in the industry as a pure metal.
- cesium chromate or dichromate can be mentioned which, in mixture which a reducing agent, release cesium as a vapor by heating at temperatures higher than 500 °C.
- Aluminum, silicon or getter alloys, i.e. alloys based on titanium or zirconium with aluminum or one or more transition elements
- the use of these mixtures is described for example in patent US 2,117,735.
- cesium dispensers particularly suitable for the production of OLEDs are known from the PCT published patent application WO 02/093664.
- Said cesium dispensers comprise a container permeable to cesium vapors and containing a mixture of a reducing agent and a cesium compound selected among molibdate, tungstate, niobate, tantalate, silicate and zirconate.
- a cesium compound selected among molibdate, tungstate, niobate, tantalate, silicate and zirconate.
- the dispensers for cesium release are essentially formed of a metal container, heatable by Joule effect, capable of retaining solid particles of the cesium compound. At least one part of their surface is permeable to cesium vapors or provided with small holes or slits through which cesium is emitted in form of vapor.
- Different shapes of dispensers are subject-matter for example of the patents US 3,578,834, US 3,579,459, US 3,598,384, US 3,636,302, US 3,663,121 and US 4,233,936.
- Said dispensers are positioned inside a chamber for the production of OLEDs, generally on the bottom thereof, whereas on the ceiling thereof is positioned the substrate on which cesium has to be deposited.
- object of the present invention is to provide an accessory member for dispensers of cesium and other alkali metals, which solves the above mentioned drawbacks. Said object is achieved by means of a screen whose main features are specified in the first claim and other features are specified in the subsequent claims.
- An advantage of the screen according to the present invention consists in that it allows capturing the cesium vapors in excess, thus preventing the deposit of the cesium on the internal walls of the evaporation chamber, but ensuring a constant and uniform deposit yield on the substrate.
- Another advantage of the screen consists in that it can be removed from the inside of the evaporation chamber in a short time and replaced, thus avoiding excessively long maintenance stops.
- An advantage of the screen according to a particular embodiment of the invention consists in that it can be used even when, in the evaporation chamber, the substrate on which the metal has to be deposited is not positioned in front of the cesium dispenser.
- - figure 1 shows in perspective view an example of a known cesium dispenser
- - figure 2 shows a sectional view along line II-IT of the same dispenser of figure 1;
- FIG. 3 shows a perspective view of a screen according to a first embodiment of the invention
- FIG. 4 shows a perspective view of a screen according to a second embodiment of the invention
- FIG. 5 shows a cross-sectional view of the screen of figure 4.
- FIG. 6 shows a perspective view of a screen according to a third embodiment of the invention.
- FIG. 1 A known cesium dispenser useable with the screen according to the present invention is shown in figures 1 and 2 in perspective and sectional view respectively; in particular, figure 2 shows the view of the dispenser sectioned along line II-IT of figure 1.
- Dispenser 10 is formed of two metal sheets, 11 and
- portion 14 In the central portion of sheet 12 is provided a cavity, 13, obtained for example by cold moulding of sheet 12. Sheet 11 is provided, in the central portion 14 (marked by the dotted line in figure 1) with a series of small holes 15.
- portion 14 will be defined as the alkali metals emission zone.
- the emission zone 14 In the assembled dispenser, the emission zone 14 is in correspondence with cavity 13; a mixture 16 suitable for releasing by heating an alkali metal is contained in cavity
- Dispenser 10 is finally provided with two lateral extensions, 17 and 17', useful for the movement with mechanical means in the production line and for the connection to electric terminals for the heating thereof.
- the above shown dispenser 10 is only one example of the alkali metals dispensers which can be used with the accessory member according to the present invention; in other embodiments of the invention, the shape of the container and in particular that of the emission zone can be different from the one which is here shown.
- the emission zone can have a circular shape instead of a rectangular one.
- the dispenser can be formed of a container having an elongated structure and trapezoidal cross-section, with a longitudinal slit closed by a metal wire which allows cesium evaporation but prevents the powder mixture to come out.
- Containers of various shapes and materials are known from the previously cited US patents, and are also available on the market, for example from the Austrian company Plansee AG or by the US company Midwest Tungsten Service, Inc.
- a screen 30 according to the present invention has a substantially tubular shape and defines an internal cavity 33.
- the cross-section of said screen can be rectangular, circular or have any other shape in such a way that it can be applied with an end 34 thereof on a alkali metals dispenser.
- the cross-section of said end must be superimposable to the whole emission zone of the dispenser, so that the vapors of the alkali metal generated by the dispenser are completely conveyed into the internal cavity of said screen.
- Screen 30 according to the present embodiment of the invention has in particular a rectangular cross-section.
- the screen according to the present invention must be provided with an internal surface of high specific area.
- specific area is intended to mean the ratio between the effective contact area of the surface with the external environment and the geometric area thereof.
- the internal surface 31 of the screen according to the present invention must have porosities, rugosity or reliefs suitable for capturing the exceeding alkali metal vapors, thus preventing these from depositing on the walls of the evaporation chamber.
- a further feature of the screen according to the present invention which allows capturing the alkali metal vapors consists in that the portion of contact between said end and said dispenser must be made in a material having low thermal conductivity. In this way, it is possible to avoid that the screen becomes hot due to the contact with the alkali metals dispenser, thus causing the re- evaporation of the alkali metals deposited on the internal surface thereof.
- screen 30 can be made completely in a low thermal conductivity material, for example in ceramics.
- screen 30 can be made in any material and can comprise spacers 32 made of ceramics or another material having a low thermal conductivity; these spacers may be removable.
- the screen can be made of a material which minimizes said effect. For this reason, it is preferably made of a white material.
- a screen 40 according to the present invention has a circular cross-section, and is therefore particularly suitable for being applied around an emission zone of corresponding shape.
- Said screen 40 comprises a tubular member 41 made of close-mesh metallic material and an external casing 42 in a material having a low thermal conductivity, for example ceramics.
- the mesh tubular member 41 is provided with an internal surface 43 having a high specific area and allows capturing the exceeding alkali metal vapors, which are emitted by the metal dispenser.
- the external casing 42 ensures the lateral tightness of the screen, thus preventing those vapors which could pass through the meshes of the tubular member to come out.
- the external casing 42 of screen 40 acts also as a support for the tubular member 41, thus avoiding the direct contact between the alkali metals dispenser and end 44 of said tubular member, and the consequent heating of the latter.
- FIG 6 a further embodiment of the invention, shown in figure 6, is particularly suitable when the substrate on which the metal has to be evaporated is not positioned exactly above the metal dispenser, but is displaced with respect to this.
- the screen according to the present invention intercepts the flow of the alkali metal vapors directed towards the chamber walls, without influencing the part of the vapors directed towards the substrate; the final effect is therefore a net flow directed towards the substrate.
- Screen 60 shown in figure 6 is provided with an opening which is oblique or slanting with respect to the axis thereof. Said opening is the one positioned at its end 65 opposite with respect to end 64 for application on the dispenser, and its obliquity allows obtaining a flow of metal vapors having the desired direction.
- the screen according to the present invention can be simply laid on the alkali metals dispenser, or it can be provided with means for fixing it to said dispenser, for example ceramics hooks.
- a seat can be provided for the application of a screen according to the invention.
- Said seat can be formed for example of a recess of shape coincident with that of the lower end of the screen, positioned around its alkali metals emission zone.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
- Physical Vapour Deposition (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003265150A AU2003265150A1 (en) | 2002-09-06 | 2003-08-28 | Accessory member for dispensers of alkali metals |
JP2004534029A JP2005538250A (en) | 2002-09-06 | 2003-08-28 | Accessories for alkaline metal dispensers |
EP03794050A EP1535302A2 (en) | 2002-09-06 | 2003-08-28 | Accessory member for dispensers of alkali metals |
MXPA05002462A MXPA05002462A (en) | 2002-09-06 | 2003-08-28 | Accessory member for dispensers of alkali metals. |
US11/057,829 US20050145179A1 (en) | 2002-09-06 | 2005-02-14 | Accessory member for dispensers of alkali metals |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITMI2002A001904 | 2002-09-06 | ||
IT001904A ITMI20021904A1 (en) | 2002-09-06 | 2002-09-06 | ACCESSORY ELEMENT FOR ALKALINE METAL DISPENSERS |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/057,829 Continuation US20050145179A1 (en) | 2002-09-06 | 2005-02-14 | Accessory member for dispensers of alkali metals |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004023508A2 true WO2004023508A2 (en) | 2004-03-18 |
WO2004023508A3 WO2004023508A3 (en) | 2004-06-17 |
Family
ID=31972208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IT2003/000524 WO2004023508A2 (en) | 2002-09-06 | 2003-08-28 | Accessory member for dispensers of alkali metals |
Country Status (11)
Country | Link |
---|---|
US (1) | US20050145179A1 (en) |
EP (1) | EP1535302A2 (en) |
JP (1) | JP2005538250A (en) |
KR (1) | KR20050043895A (en) |
CN (1) | CN1675732A (en) |
AU (1) | AU2003265150A1 (en) |
IT (1) | ITMI20021904A1 (en) |
MX (1) | MXPA05002462A (en) |
RU (1) | RU2005109926A (en) |
TW (1) | TW200409392A (en) |
WO (1) | WO2004023508A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2365513A1 (en) * | 2010-03-09 | 2011-09-14 | ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) | Protective envelope for an ion beam gun, vacuum deposition device using evaporation and including such a protective envelope and material deposition process |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7540978B2 (en) * | 2004-08-05 | 2009-06-02 | Novaled Ag | Use of an organic matrix material for producing an organic semiconductor material, organic semiconductor material and electronic component |
EP1648042B1 (en) * | 2004-10-07 | 2007-05-02 | Novaled AG | A method for doping a semiconductor material with cesium |
DE502005009415D1 (en) * | 2005-05-27 | 2010-05-27 | Novaled Ag | Transparent organic light emitting diode |
EP1729346A1 (en) * | 2005-06-01 | 2006-12-06 | Novaled AG | Light-emitting device with an electrode arrangement |
EP1739765A1 (en) * | 2005-07-01 | 2007-01-03 | Novaled AG | Organic light-emitting diode and stack of organic light emitting diodes |
EP1780816B1 (en) | 2005-11-01 | 2020-07-01 | Novaled GmbH | A method for producing an electronic device with a layer structure and an electronic device |
EP1798306B1 (en) * | 2005-12-07 | 2008-06-11 | Novaled AG | Method of vapour deposition |
JP5683104B2 (en) | 2006-03-21 | 2015-03-11 | ノヴァレッド・アクチエンゲゼルシャフト | Process for the production of doped organic semiconductor materials and formulations used therefor |
ITMI20070301A1 (en) * | 2007-02-16 | 2008-08-17 | Getters Spa | SUPPORTS INCLUDING GETTER MATERIALS AND ALKALINE OR ALKALINE-TERROSI METALS FOR THERMOREGULATION SYSTEMS BASED ON TUNNEL EFFECT |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5818841A (en) * | 1981-07-24 | 1983-02-03 | Hamamatsu Tv Kk | Manufacturing method of phosphor screen |
JPS60116771A (en) * | 1983-11-29 | 1985-06-24 | Ulvac Corp | Vapor source device for cluster ion beam |
US5182567A (en) * | 1990-10-12 | 1993-01-26 | Custom Metallizing Services, Inc. | Retrofittable vapor source for vacuum metallizing utilizing spatter reduction means |
WO2002093664A2 (en) * | 2001-05-15 | 2002-11-21 | Saes Getters S.P.A | Cesium dispensers and process for the use thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2117735A (en) * | 1936-10-01 | 1938-05-17 | Rca Corp | Getter |
US3081201A (en) * | 1957-05-15 | 1963-03-12 | Gen Electric | Method of forming an electric capacitor |
US2948635A (en) * | 1959-01-12 | 1960-08-09 | Gen Electric | Phosphor evaporation method and apparatus |
US3502051A (en) * | 1966-09-01 | 1970-03-24 | George D Adams | Vacuum deposition apparatus |
NL6716941A (en) * | 1966-12-13 | 1968-06-14 | ||
NL6913692A (en) * | 1968-09-13 | 1970-03-17 | ||
NL6913693A (en) * | 1968-09-13 | 1970-03-17 | ||
US3663121A (en) * | 1969-05-24 | 1972-05-16 | Getters Spa | Generation of metal vapors |
US3971334A (en) * | 1975-03-04 | 1976-07-27 | Xerox Corporation | Coating device |
US4233936A (en) * | 1979-05-08 | 1980-11-18 | Rca Corporation | Alkali metal dispenser |
US5104695A (en) * | 1989-09-08 | 1992-04-14 | International Business Machines Corporation | Method and apparatus for vapor deposition of material onto a substrate |
JPH10270171A (en) * | 1997-01-27 | 1998-10-09 | Junji Kido | Organic electroluminescent element |
EP1167566B1 (en) * | 2000-06-22 | 2011-01-26 | Panasonic Electric Works Co., Ltd. | Apparatus for and method of vacuum vapor deposition |
-
2002
- 2002-09-06 IT IT001904A patent/ITMI20021904A1/en unknown
-
2003
- 2003-08-27 TW TW092123643A patent/TW200409392A/en unknown
- 2003-08-28 JP JP2004534029A patent/JP2005538250A/en not_active Withdrawn
- 2003-08-28 MX MXPA05002462A patent/MXPA05002462A/en unknown
- 2003-08-28 KR KR1020057001503A patent/KR20050043895A/en not_active Application Discontinuation
- 2003-08-28 AU AU2003265150A patent/AU2003265150A1/en not_active Abandoned
- 2003-08-28 CN CNA038197332A patent/CN1675732A/en active Pending
- 2003-08-28 EP EP03794050A patent/EP1535302A2/en not_active Withdrawn
- 2003-08-28 RU RU2005109926/09A patent/RU2005109926A/en not_active Application Discontinuation
- 2003-08-28 WO PCT/IT2003/000524 patent/WO2004023508A2/en not_active Application Discontinuation
-
2005
- 2005-02-14 US US11/057,829 patent/US20050145179A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5818841A (en) * | 1981-07-24 | 1983-02-03 | Hamamatsu Tv Kk | Manufacturing method of phosphor screen |
JPS60116771A (en) * | 1983-11-29 | 1985-06-24 | Ulvac Corp | Vapor source device for cluster ion beam |
US5182567A (en) * | 1990-10-12 | 1993-01-26 | Custom Metallizing Services, Inc. | Retrofittable vapor source for vacuum metallizing utilizing spatter reduction means |
WO2002093664A2 (en) * | 2001-05-15 | 2002-11-21 | Saes Getters S.P.A | Cesium dispensers and process for the use thereof |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 0070, no. 94 (E-171), 20 April 1983 (1983-04-20) & JP 58 018841 A (HAMAMATSU TELEVISION KK), 3 February 1983 (1983-02-03) * |
PATENT ABSTRACTS OF JAPAN vol. 0092, no. 67 (C-310), 24 October 1985 (1985-10-24) & JP 60 116771 A (NIPPON SHINKU GIJUTSU KK), 24 June 1985 (1985-06-24) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2365513A1 (en) * | 2010-03-09 | 2011-09-14 | ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) | Protective envelope for an ion beam gun, vacuum deposition device using evaporation and including such a protective envelope and material deposition process |
FR2957455A1 (en) * | 2010-03-09 | 2011-09-16 | Essilor Int | PROTECTIVE ENVELOPE FOR CANON IONS, DEVICE FOR DEPOSITING VACUUM EVAPORATION MATERIALS COMPRISING SUCH A PROTECTIVE ENVELOPE AND METHOD FOR DEPOSITING MATERIALS |
US9099278B2 (en) | 2010-03-09 | 2015-08-04 | Essilor International (Compagnie Generale D'optique) | Protective enclosure for an ion gun, device for depositing materials through vacuum evaporation comprising such a protective enclosure and method for depositing materials |
Also Published As
Publication number | Publication date |
---|---|
AU2003265150A1 (en) | 2004-03-29 |
TW200409392A (en) | 2004-06-01 |
RU2005109926A (en) | 2006-08-10 |
JP2005538250A (en) | 2005-12-15 |
AU2003265150A8 (en) | 2004-03-29 |
ITMI20021904A1 (en) | 2004-03-07 |
KR20050043895A (en) | 2005-05-11 |
EP1535302A2 (en) | 2005-06-01 |
US20050145179A1 (en) | 2005-07-07 |
WO2004023508A3 (en) | 2004-06-17 |
MXPA05002462A (en) | 2005-05-27 |
CN1675732A (en) | 2005-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050145179A1 (en) | Accessory member for dispensers of alkali metals | |
KR101136879B1 (en) | Vapor deposition source with minimized condensation effects | |
JP4653089B2 (en) | Vapor deposition source using pellets for manufacturing OLEDs | |
KR100696547B1 (en) | Method for depositing film | |
KR100712217B1 (en) | evaporating source and vacuum evaporating apparatus using the same | |
TW200304171A (en) | Elongated thermal physical vapor deposition source with plural apertures for making an organic light-emitting device | |
JP2005044592A (en) | Depositing mask, film formation method using it, and film formation device using it | |
JP2009084679A (en) | Vapor production device and vapor deposition apparatus | |
NL1020820C2 (en) | Device for applying a layer to a flat substrate. | |
ITMI20010995A1 (en) | CESIUM DISPENSERS AND PROCESS FOR THEIR USE | |
US7993459B2 (en) | Delivering particulate material to a vaporization zone | |
JP2003293120A (en) | Evaporating source and thin film deposition system using the same | |
JPH10195639A (en) | Evaporation source for organic material and organic thin film forming apparatus using the same | |
KR20100108086A (en) | Linear type evaporator and vacuum evaporation apparatus having the same | |
KR100761084B1 (en) | evaporating source and vacuum evaporating apparatus using the same | |
KR100829736B1 (en) | Heating crucible of deposit apparatus | |
KR100730172B1 (en) | Apparatus for depositing organic thin film | |
JP2004006311A5 (en) | Light emitting device manufacturing method and film forming device | |
KR100696531B1 (en) | Heating crucible and deposit apparatus utilizing the same | |
US20050241585A1 (en) | System for vaporizing materials onto a substrate surface | |
JP5347938B2 (en) | Light emitting device | |
JP2012052187A (en) | Vapor deposition apparatus, film deposition method, and method for manufacturing organic el device | |
KR20120039873A (en) | Crusible furnace for fabricating the oled | |
KR20090114072A (en) | Linear type evaporator and vacuum evaporation apparatus having the same | |
JP2007009292A (en) | Vacuum deposition system, and crucible used therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020057001503 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11057829 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038197332 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003794050 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2005/002462 Country of ref document: MX Ref document number: 2004534029 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2005109926 Country of ref document: RU Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057001503 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2003794050 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2003794050 Country of ref document: EP |