JPS60116771A - Vapor source device for cluster ion beam - Google Patents
Vapor source device for cluster ion beamInfo
- Publication number
- JPS60116771A JPS60116771A JP22313383A JP22313383A JPS60116771A JP S60116771 A JPS60116771 A JP S60116771A JP 22313383 A JP22313383 A JP 22313383A JP 22313383 A JP22313383 A JP 22313383A JP S60116771 A JPS60116771 A JP S60116771A
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- crucible
- heater
- aperture
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/221—Ion beam deposition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/243—Crucibles for source material
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はクラスタイオンビーム蒸着に使用さ几る蒸発源
装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an evaporation source device for use in cluster ion beam deposition.
従来真空室内にノズルを有する密閉形のるつけと基板と
を対向して設けると共にその中間にイオン化フィラメン
トからなるイオン化手段と引出電極からなる加速手段と
を設け、ヒータの加熱忙よシ該るつぼから蒸発する蒸発
物質をノズルを介して噴出させる式のものが知らnてい
る。Conventionally, a closed type crucible having a nozzle in a vacuum chamber and a substrate are provided facing each other, and an ionization means made of an ionization filament and an acceleration means made of an extraction electrode are provided between them, and the heating process of the heater is carried out from the crucible. There are known types in which the evaporated material is ejected through a nozzle.
この式のものは蒸発物質がノズルから噴出する際過冷却
さnて塊状の原子集団のビーム即ちクラスタビームとな
シ、イオン化手段と加速手段で該ビームの基板への入射
エネルギを制御するもので、蒸着速度が速く基板温度も
低く膜質も一夕はるつほの側方を加熱すべく設けらnて
いるのでノズル付近の温度が低く、蒸発物が滴状で噴き
出すスピッティング状態になシ易くその結果膜質不良を
生じ勝ちであシ、またるつぼの直径を大きくするとさら
にノズル付近の温度が下るので大径のるつぼを使用出来
ない欠点がある。In this type of system, when the evaporated material is ejected from a nozzle, it is supercooled and becomes a beam of a mass of atoms, that is, a cluster beam, and the incident energy of the beam to the substrate is controlled by ionization means and acceleration means. The evaporation speed is fast, the substrate temperature is low, and the film quality remains overnight.As the nozzle is designed to heat the sides, the temperature near the nozzle is low, creating a spitting state in which the evaporated material is spewed out in droplets. This easily results in poor film quality, and if the diameter of the crucible is increased, the temperature near the nozzle further decreases, so there is a drawback that a crucible with a large diameter cannot be used.
本発明はこうした欠点を解消したクラスタイオンビーム
蒸着用の蒸発源装置を提供することを目的としたもので
、真空室内にノズルを有する密閉形のるつぼと基板とを
対向して設け、該るつほを、ヒータで加熱してノズルか
ら然発物のクラスタビームを噴出させ、該るつぼと基板
の中1間に#クラスタビームのイオン化手段と加速手段
を設ける式のものに於て、該るつほを加熱するヒータf
該るつぼの上面及び側面全種う略筒形に形成すると共に
該ノズ、ルに対向する個所にこれよシもやや大きい開口
部を設け、該るつぼの上面をこj、に接近して配置して
成る。An object of the present invention is to provide an evaporation source device for cluster ion beam evaporation that eliminates these drawbacks. The melt is heated with a heater to eject a spontaneous cluster beam from a nozzle, and an ionization means and an acceleration means for the cluster beam are provided between the crucible and the middle part of the substrate. Heater f that heats the body
The upper surface and side surfaces of the crucible are all formed into a substantially cylindrical shape, and a slightly larger opening is provided at a portion facing the nozzle, and the upper surface of the crucible is placed close to the nozzle. It consists of
本発明の実施例を図面につき説明する罠、第1゛図に於
て、(1)は真空室(2)内に設けたるつぼ、(3)は
該真空室(2)内のるりは(1)と対向して設けた基板
を示し、該るつは(1)はその上方にノズル(4)を有
する密閉形に形成さ九、昇降台(5)上に載せられてヒ
ータ(6)内に自在に出没する構成とした。Embodiments of the present invention will be explained with reference to the drawings. In FIG. 1), which is formed in a sealed shape with a nozzle (4) above it, and placed on a lifting platform (5) and equipped with a heater (6). The structure is such that it can appear freely inside the building.
該ヒータ(6)によυるつぼ(1)が加熱されるとその
内部の物質(7)が蒸気となってノズル(4)を介して
基板(3)へビーム状に噴出するが、ノズル(4)から
噴出の際に蒸発物質は断熱膨張によシ過冷却さn原子が
互に緩く結合した塊状原子集団即ちクラスタのビームと
なる。(8)はるつぼ(1)と基板(3)の中間に於て
クラスタビームをイオン化するイオン化フィラメント(
8a)とグリッド(8b)とで構成したイオン化手段、
(9)は該イオン化手段(8)でイオン化さ几たビーム
即ちクラスタイオン♂−ムを基板(3)方向へ引出す電
極で構成さfした加速手段を示し、両手段(8) (9
) ’e制御することによシ該ビームの運動エネルギの
制御を行なえ蒸着速度を変え低い基板温度で膜の形成が
可能であり、イオン加速電圧を制御する仁とで膜質をコ
ントロール出来る。When the crucible (1) is heated by the heater (6), the substance (7) inside turns into steam and is ejected in the form of a beam onto the substrate (3) through the nozzle (4). When ejected from 4), the evaporated material undergoes adiabatic expansion and becomes supercooled and becomes a beam of lumpy atomic groups, ie, clusters, in which n atoms are loosely bonded to each other. (8) Ionization filament (
8a) and a grid (8b),
(9) shows an accelerating means consisting of an electrode that extracts the beam ionized by the ionizing means (8), that is, cluster ions, toward the substrate (3); both means (8) (9)
) By controlling the kinetic energy of the beam, it is possible to change the deposition rate and form a film at a low substrate temperature, and by controlling the ion acceleration voltage, the film quality can be controlled.
以上の構成は従来のクラスタイオンビーム蒸着のものと
略同様である力、工、この構成ではるつは(1)の側面
(1a)よシもノズル(4)付近の温度が低くな夛蒸発
物質がノズル(4)K凝結してスピッティングを生じ易
い等の不都合がある。本発明ではヒータ(6)を例えば
第2図示のようにコツプを伏せたAaな筒形のものに電
気抵抗性の材料で構成し、るつぼ(1)の上面(1b)
及び側面(1a)を覆う形状とし、該ノズル(4)に封
部する個所に該ノズル(4)よりもやや大きい開口部0
0f形成すると共に側面(]a)に対向する個所にスリ
ットQllを形成してノズル(4)付近の加、熱と該側
面(1a)全体の均一な加熱が与えらn、るようにした
。5るつぼ(1)の加熱はその側方に設けた電極からの
電子衝撃によシ行なわn、ることもあるが、この帯金に
6該スリツ) Qll)’を介して電極から、るつは(
1)の側面(1a)へと電子を突入亨せ得る。(6)は
膜厚モニタ、θ1は温度調節計、a→は熱電対、αQは
夫々独立した電源である。The above configuration is almost the same as that of conventional cluster ion beam evaporation. With this configuration, the temperature near the nozzle (4) is lower than that of the side surface (1a) of (1). There are disadvantages such as a tendency for substances to condense on the nozzle (4) and cause spitting. In the present invention, the heater (6) is made of an electrically resistive material in the shape of an Aa cylinder with the top turned down as shown in the second figure, and the upper surface (1b) of the crucible (1) is
and the side surface (1a), and has an opening slightly larger than the nozzle (4) at the location where the nozzle (4) is sealed.
0f, and a slit Qll was formed at a location opposite to the side surface (]a) to provide uniform heating to the vicinity of the nozzle (4) and to the entire side surface (1a). 5 Heating of the crucible (1) is sometimes done by electron bombardment from electrodes provided on the side of the crucible (1). teeth(
Electrons can be allowed to rush into the side surface (1a) of 1). (6) is a film thickness monitor, θ1 is a temperature controller, a→ is a thermocouple, and αQ is an independent power supply.
その作動を説明するにるつぼ(1)はその側面(1a)
及び上面(1b)を覆うヒータ(6) Kより加熱さn
1丙部の物質(7)が溶解してその蒸讐がノイル(4)
から噴出し、イオン化手段(8)及び加速手段(9)に
よシ制御さn、て薄膜状に基[(3) K付着するが、
該ヒータ(6)は側面にスリレトαη又は線型ヒータを
備え、またるつぼ(1)の上面(1b)を覆うのでノズ
ル(4)付近の温度低下が防止さn、ノズル(4)付近
に蒸発物質が凝結してスピッティングが生ずることを防
止出来る。To explain its operation, the crucible (1) is its side (1a)
and a heater (6) covering the top surface (1b) heated from K
1 part of substance (7) is dissolved and its vapor is noil (4)
The ionizing means (8) and the accelerating means (9) control the ionizing means (8) and the accelerating means (9) to eject and deposit K in the form of a thin film.
The heater (6) is equipped with a srillet αη or a linear heater on the side, and also covers the upper surface (1b) of the crucible (1), so that a drop in temperature near the nozzle (4) is prevented, and evaporated substances are prevented near the nozzle (4). It is possible to prevent the occurrence of spitting due to condensation.
このように本発明によるときはノズルを有する密閉形の
るつぼを、該ノズルに対向した開口部と側方のスリット
を備えた筒形のヒータで覆ったのでるつ1丁の側面の均
一加熱と低温化し勝ちなノズル付近の加熱とを行なえ、
スピッティングの発生を防止出来、膜質が向上すると共
に大径のるつばを使用してもノズル付近の温度低下がな
く炉−を小屋とし長時間の蒸着が可能になる等の効果が
ある。In this way, according to the present invention, a closed crucible having a nozzle is covered with a cylindrical heater having an opening facing the nozzle and a slit on the side, so that uniform heating of the sides of one crucible can be achieved. The area around the nozzle, which tends to get colder, can be heated.
It is possible to prevent the occurrence of spitting, improve the film quality, and even when using a large-diameter crucible, there is no temperature drop near the nozzle, making it possible to use the furnace as a shed and perform vapor deposition for a long time.
第1図は本発明の実施例の裁断側面図、第2図はヒータ
の構成例の斜視図であ6・
(1)・・・名つは (2)・・・真空室(j)・・・
基板 (4)・・・ノズル(6)j・・ヒータ (8)
・・・イオン化手段(9)・・・加速手段 00・・・
開口部(1a)・・・側面
(1b)・・・上面Fig. 1 is a cut side view of an embodiment of the present invention, and Fig. 2 is a perspective view of an example of the configuration of a heater.・・・
Board (4)...Nozzle (6)j...Heater (8)
...Ionization means (9) ...Acceleration means 00...
Opening (1a)...Side surface (1b)...Top surface
Claims (1)
とを対向して設け、該るつぼをヒータで加熱してノズル
から蒸発物のクラスタビームを噴出させ、該るつぼと基
板の中間に該クラスタビームのイオン化手段と加速手段
を設ける式のものに於て、該るつぼを加熱するヒータを
、該るつぼの上面及び側面を覆う略筒形に形成すると共
に該ノズルに対向する個所にこ几よシもやや大きい開口
部を設け、該るつは上面をこnK接近して配置して成る
クラスタイオンビーム蒸発源装置。A closed crucible with a nozzle on the upper surface and a substrate are placed in a vacuum chamber facing each other, and the crucible is heated with a heater to eject a cluster beam of evaporated material from the nozzle, and the cluster beam is placed between the crucible and the substrate. In the type provided with an ionization means and an acceleration means, the heater for heating the crucible is formed into a substantially cylindrical shape that covers the top and side surfaces of the crucible, and is also placed at a location opposite to the nozzle. A cluster ion beam evaporation source device that has a somewhat large opening and has its upper surfaces placed nK close to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22313383A JPS60116771A (en) | 1983-11-29 | 1983-11-29 | Vapor source device for cluster ion beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22313383A JPS60116771A (en) | 1983-11-29 | 1983-11-29 | Vapor source device for cluster ion beam |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60116771A true JPS60116771A (en) | 1985-06-24 |
Family
ID=16793309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22313383A Pending JPS60116771A (en) | 1983-11-29 | 1983-11-29 | Vapor source device for cluster ion beam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60116771A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6212120A (en) * | 1985-07-09 | 1987-01-21 | Mitsubishi Electric Corp | Heating filament for evaporation source |
US5182567A (en) * | 1990-10-12 | 1993-01-26 | Custom Metallizing Services, Inc. | Retrofittable vapor source for vacuum metallizing utilizing spatter reduction means |
WO2004023508A2 (en) * | 2002-09-06 | 2004-03-18 | Saes Getters S.P.A. | Accessory member for dispensers of alkali metals |
WO2006057021A1 (en) * | 2004-11-24 | 2006-06-01 | Saes Getters S.P.A. | Dispensing system for alkali metals capable of releasing a high quantity of metals |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4991080A (en) * | 1972-12-29 | 1974-08-30 |
-
1983
- 1983-11-29 JP JP22313383A patent/JPS60116771A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4991080A (en) * | 1972-12-29 | 1974-08-30 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6212120A (en) * | 1985-07-09 | 1987-01-21 | Mitsubishi Electric Corp | Heating filament for evaporation source |
US5182567A (en) * | 1990-10-12 | 1993-01-26 | Custom Metallizing Services, Inc. | Retrofittable vapor source for vacuum metallizing utilizing spatter reduction means |
WO2004023508A2 (en) * | 2002-09-06 | 2004-03-18 | Saes Getters S.P.A. | Accessory member for dispensers of alkali metals |
WO2004023508A3 (en) * | 2002-09-06 | 2004-06-17 | Getters Spa | Accessory member for dispensers of alkali metals |
WO2006057021A1 (en) * | 2004-11-24 | 2006-06-01 | Saes Getters S.P.A. | Dispensing system for alkali metals capable of releasing a high quantity of metals |
US7842194B2 (en) | 2004-11-24 | 2010-11-30 | Saes Getters S.P.A. | Dispensing system for alkali metals capable of releasing a high quantity of metals |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4856457A (en) | Cluster source for nonvolatile species, having independent temperature control | |
JPS59165356A (en) | Ion source | |
JPS60116771A (en) | Vapor source device for cluster ion beam | |
JPS60116770A (en) | Vapor source device for cluster ion beam | |
KR0144917B1 (en) | Ionized cluster beam deposition method and apparatus thereof | |
JPS60255971A (en) | Thin film forming apparatus | |
JPS60215759A (en) | Thin film forming device | |
JPH0414185B2 (en) | ||
JPS5910992B2 (en) | Vapor deposition equipment | |
JPS61279668A (en) | Thin film formation device | |
JPH04187760A (en) | Thin film forming device | |
JPS60116772A (en) | Vapor source device for cluster ion beam | |
JPH0343228Y2 (en) | ||
JPH03158458A (en) | Cluster ion beam device | |
JPS6115965A (en) | Method and device for generating cluster ion beam | |
JPH01119663A (en) | Thin film-forming apparatus | |
JPH0641731A (en) | Vacuum vapor deposition device | |
JPH0733570B2 (en) | Vapor deposition equipment | |
JPS61279115A (en) | Thin film forming device | |
JPS6091625A (en) | Manufacture of thin film | |
JPS6096757A (en) | Thin film vapor deposition apparatus | |
JPH0347571B2 (en) | ||
JPS60158619A (en) | Thin film evaporating device | |
JPS62118516A (en) | Thin film forming device | |
JPH0225424B2 (en) |