WO2004014646A1 - Revetement brillant de surface pour roue d'automobile - Google Patents

Revetement brillant de surface pour roue d'automobile Download PDF

Info

Publication number
WO2004014646A1
WO2004014646A1 PCT/US2003/023949 US0323949W WO2004014646A1 WO 2004014646 A1 WO2004014646 A1 WO 2004014646A1 US 0323949 W US0323949 W US 0323949W WO 2004014646 A1 WO2004014646 A1 WO 2004014646A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
undercoat
wheel
undercoat layer
surface coating
Prior art date
Application number
PCT/US2003/023949
Other languages
English (en)
Inventor
Peter Yee
Pat Griffin
Ewa Pierz
Original Assignee
Hayes Lemmerz International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayes Lemmerz International, Inc. filed Critical Hayes Lemmerz International, Inc.
Priority to AU2003257077A priority Critical patent/AU2003257077A1/en
Priority to BR0305763-1A priority patent/BR0305763A/pt
Publication of WO2004014646A1 publication Critical patent/WO2004014646A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin

Definitions

  • This invention relates in general to decorative surface coatings for vehicle wheels and in particular to a bright surface coating for vehicle wheels and a process for forming the bright surface coating.
  • Vehicle wheels have a circular wheel disc attached to an annular wheel rim.
  • the wheel disc includes a central wheel hub having a pilot hole and plurality of wheel mounting holes formed therethrough.
  • a plurality of circumferentially spaced spokes typically support the wheel hub within the wheel rim.
  • the wheel rim is adapted to support a pneumatic tire.
  • vehicle wheels typically have been formed entirely from steel.
  • one piece wheels formed from light weight metals such as aluminum and magnesium or alloys thereof, are becoming increasingly popular. In addition to weighing less than conventional all-steel wheels, such light weight wheels can be manufactured having a pleasing esthetic shape. Weight savings also can be achieved with two piece wheels fabricated by attaching a wheel disc formed from a light weight metal alloy to a steel wheel rim. Alternately, a two piece wheel can be fabricated by attaching a wheel disc formed from a light weight metal to a wheel rim that also is formed from the same light weight metal. Light weight one piece wheels and light weight components for two piece wheels are typically formed by conventional methods, such as gravity or low pressure casting.
  • the wheel disc outboard surface is often machined to form a smooth surface.
  • the outboard surface is then provided with a coating having a high luster.
  • One such know coating is formed by a conventional chrome plating process.
  • a conventional chrome plating process involves a complex series of discrete steps during which multiple layers of metal are electro-chemically deposited upon the wheel surface.
  • the wheel surface Prior to chrome plating, the wheel surface is cleaned of any oil and dirt, which could inhibit adhesion of metal deposits to the wheel surface.
  • the chrome plating begins with immersion of the portion of the wheel to be chrome plated in chemical bath that contains nickel in solution. During immersion, an electric potential is applied between the wheel and the solution causing a thin layer of nickel to be electro-chemically deposited upon the wheel surface.
  • the nickel layer which is typically referred to as a prenickel layer, enhances the adhesion of the successive layers to the wheel surface.
  • the prenickel layer tends to have a relatively uneven surface.
  • a copper layer is usually electro- chemically deposited over the prenickel layer, usually by immersion of the wheel surface in another chemical bath that contains copper in solution while an electric potential is applied between the wheel and the solution.
  • the copper fills in uneven portions of the prenickel layer, forming a smooth surface.
  • the copper layer is buffed, or polished.
  • a second nickel layer which is typically referred to as a semi-bright nickel layer, is formed over the copper layer by electro-chemical deposition.
  • the semi-bright nickel layer provides corrosion resistance.
  • a layer of nickel that contains sulfur is electro-chemically deposited over the semi-bright nickel layer as a sacrificial corrosion layer.
  • a final bright layer of nickel is then electro- chemically deposited over the sacrificial nickel layer to provide reflectivity and brightness to the wheel surface.
  • the layers of nickel and copper provide a base upon which the chromium layer is electro-chemically deposited.
  • a pre-chromium layer of discontinuous chrome, or pixie dust is deposited over the bright nickel layer.
  • a layer of chromium is electro-chemically deposited over the pre- chromium layer to prevent nickel fogging.
  • each layer is formed by immersing the wheel surface in a chemical bath containing a solution of the particular metal to be deposited upon the wheel surface with an electric potential applied between the wheel and the chemical bath, each layer is chemically bonded to the preceding layer to provide a durable and attractive decorative coating. While the chrome plating process has been described above as an electro-chemical deposition process, the process is typically referred to as electro-plating.
  • a known multi-layer coating that includes a layer of vacuum deposited indium is illustrated in Fig. 1 by an enlarged cross sectional view of a portion of a vehicle wheel.
  • a portion of an aluminum wheel 10 having an outer surface 12 is covered by a multi-layer coating 14.
  • the multi-layer coating 14 includes a standard conversion coating layer 16 of a chemical or electrochemical treatment such as a chromate coating.
  • the conversion coating layer 16 is covered by primer coat layer 18 formed from an urethane resin.
  • the primer coat layer 18 is, in turn, covered by a base coat layer 20 of a suitable urethane polymer.
  • the base coat layer 20 is covered by a metal film layer 22 of vacuum metalized indium metal islands.
  • the film layer 22 can be formed from an indium alloy.
  • the process for forming the multi-layer coating 14 is often referred to as a metalization process and is more fully described in U.S. Patent No. 5,290,625, which is incorporated herein by reference.
  • This invention relates to a bright surface coating for vehicle wheels and a process for forming the bright surface coating.
  • the present invention is directed toward a bright multi-layer surface coating for a vehicle wheel.
  • the multi-layer coating includes an undercoat layer covering at least a portion of the wheel surface with the undercoat layer filling any surface imperfections to provide a smooth surface.
  • the undercoat layer is formed from an acrylic material.
  • the undercoat layer can be formed from a polyester material instead of an acrylic material.
  • the multi-layer coating also includes a layer of primer material that covers the undercoat layer.
  • the multi-layer coating further includes a layer of base coat material that covers the primer layer. A vacuum deposited metal film covers the base coat layer so that the wheel surface has a bright appearance.
  • the multi-layer coating includes a protective layer of clear coat material that covers the metal film as a top coat.
  • the present invention also contemplates a process for forming a bright multi-layer surface coating for a vehicle wheel.
  • the process includes providing a vehicle wheel.
  • a layer of undercoat material is applied to at least a portion of a surface of the wheel with the undercoat layer filling any surface imperfections to provide a smooth surface.
  • the undercoat layer is formed from an acrylic material.
  • the undercoat layer can be formed from a polyester material instead of an acrylic material.
  • a layer of primer material is applied over the undercoat layer.
  • a layer of base coat material is then applied over the primer layer and a metal film is vacuum deposited over the base coat layer. Subsequent to depositing the metal film, a protective layer of a clear coat material is deposited over the metal film.
  • FIG. 1 is a enlarged cross sectional view of a wheel surface coating in accordance with the prior art.
  • FIG. 2 is a enlarged cross sectional view of a wheel surface coating in accordance with the present invention.
  • Fig. 3 is an enlarged cross sectional view of an alternate embodiment of the wheel surface coating shown in Fig. 2.
  • Fig. 4 is an enlarged cross sectional view of another alternate embodiment of the wheel surface coating shown in Fig. 2.
  • Fig. 5 is a flow chart for a process for depositing the surface coating shown in Fig. 2 upon a wheel surface.
  • FIG. 2 an improved multi-layered coating 26 for a wheel surface in accordance with the present invention.
  • Components shown in Fig. 2 that are similar to components shown in Fig. 1 have the same numerical identifiers.
  • a portion of an aluminum wheel 10 having an outer surface 12 is covered by a multi-layer coating 26 that includes a vacuum deposited indium layer.
  • the multi-layer coating 26 includes a standard conversion coating layer 16 of a chemical or electrochemical treatment such as a chromate coating.
  • a suitable chromate conversion coating is Parker Amchem Alodine 1200S.
  • the present invention contemplates covering the conversion layer 16 with a coating of a polyester or an acrylic material, which forms an undercoat layer, labeled 28 in Fig. 2, between the conversion layer 16 and the remaining coating layers.
  • an acrylic material is used for the undercoat layer 28.
  • the undercoat layer 28 can have a thickness within a range of from 1.0 to 10.0 mils, with a thickness range of from 1.0 to 5.0 mils being desirable and a thickness range of from 1.0 to.2.0 mils being preferable.
  • a powder form of the undercoat material is sprayed onto the wheel with an electric potential established between the powder spray head and the wheel surface to enhance the adhesion of the powder to the wheel surface.
  • the undercoat material may also have a water or solvent base. Additionally, the invention contemplates that either a clear coat or a pigmented material can be used to form the undercoat layer 28.
  • the polyester or acrylic material used in the undercoat layer 28 is formulated differently than the urethane material used for the prior art primer coat 18 and provides a smoother surface.
  • the inventors have found that the prior art urethane primer coat is not effective to fill, or smooth, variations in wheel surface heights that exceed one mil.
  • an acrylic coating with a glass plate flow rate within the range of 150 to 170 mm is used to form the undercoat layer 28.
  • the acrylic coating flow rate is less than the flow rate of the prior art urethane primer coat material.
  • the alternate polyester material that can be used to form the undercoat layer 28 has similar properties. Accordingly, the acrylic or polyester undercoating layer fills the low areas of the wheel surface to produce a uniformly smooth surface for the subsequently applied layers.
  • the inventors also have found that the acrylic or polyester undercoat layer
  • the present invention provides substantial cost savings. Additionally, the present invention can be readily applied to wheel designs having complex shapes that may preclude polishing portions of the wheel surfaces.
  • the undercoat layer 28 is covered by a layer of primer coat 18 of a urethane resin having a typical thickness of form 0.1 to 2.0 mills.
  • the primer coat layer 18 is, in turn, covered by a base coat layer 20 of a suitable urethane polymer having a typical thickness of from 0.1 to 2.0 mils.
  • the undercoat, primer coat and base coat layers 28, 18 and 30 provide a dielectric or electrically insulative surface for receiving the vacuum deposited metal.
  • the base coat layer 30 is covered by a film layer 22 of vacuum metalized indium metal islands.
  • the film layer 22 can be formed from an indium alloy.
  • the etched vacuum metallized indium islands typically have a thickness of 25 to 2,000 angstrons.
  • Sputtering and thermal evaporation are preferred commercial methods for laying down the metal film layer 22.
  • ion plating, induction heating or electron beam evaporation methods also may be utilized to form the film layer 22. Details of the process are included in U.S. Patent No. 4,431,711, which is incorporated herein by reference.
  • the valleys separating the indium islands in the metal film layer 22 are etched during a 60 to 90 second time period by an etching solution.
  • a 10 percent sodium hydroxide solution is utilized as the etchant. The etching enhances the adhesion of the top coat; however, the invention also can be practiced without etching the film layer 22.
  • a top coat layer 24 formed from a protective dielectric material, such as a clear urethane or an acrylic polymer, covers the metal film layer 22.
  • the top coat layer 24 has a typical thickness of from 0.1 to 2.0 mils.
  • the top coat 24 layer encapsulates the islands of the metal film 22 to "fix" the electrical conductivity of the metal film 22 and thereby substantially increases the corrosion resistance of the metal film 22.
  • the top coat layer 24 also provides protection against mechanical damage to the surface finish of the multi-layer coating 26.
  • a first alternate embodiment of the invention is illustrated generally at 30 in Fig. 3, where components that are similar to components shown in Fig. 2 have the same numerical identifiers.
  • the undercoat 28 is a first layer of undercoat.
  • a second undercoat layer 32 formed from an acrylic coating material, is deposited upon the wheel surface between the first undercoat 28 and the urethane primer coat 18.
  • the two undercoats 28 and 32 provide a smoother wheel surface that results in a glossier wheel finish than the finish obtained with a single undercoat layer. While the preferred embodiment has been described with the second undercoat 32 being formed from an acrylic coating material, it will be appreciated that the second undercoat also may be formed from a polyester coating material.
  • a second alternate embodiment of the invention is illustrated generally at 34 in Fig. 4, where components that are similar to components shown in Fig. 3 have the same numerical identifiers.
  • a third undercoat layer 36 formed from an acrylic coating material is deposited upon the wheel surface between the second undercoat 32 and the urethane primer coat 18 to achieve the desired surface appearance and to control the surface texture.
  • the three undercoats 28, 32 and 36 provide an even smoother wheel surface that results in an even glossier wheel finish than the finish obtained with two undercoat layers. While the preferred embodiment has been described with the third undercoat 36 being formed from an acrylic coating material, it will be appreciated that the third undercoat also may be formed from a polyester coating material.
  • the present invention also contemplates a process for forming an improved multi-layer coating that is illustrated by the flow chart shown in Fig. 5.
  • a wheel formed from an aluminum alloy is provided in functional block 42.
  • the wheel surface is cleaned of oil and grease in functional block 44.
  • the cleaning typically includes immersion of the wheel in a solvent bath that removes any oil and grease that would inhibit adhesion of the coating layers to the wheel surface.
  • the wheel is then rinsed by immersion in a water bath or by spraying with a high pressure jet.
  • a conversion coating layer is chemically or electro-chemically deposited upon the wheel surface in functional block 46, as described in the above referenced U.S. Patent No. 5,290,624.
  • an undercoat layer is applied to the wheel surface over the conversion coating layer in functional block 48.
  • the wheel is rotated while an acrylic material is sprayed onto the wheel surface to form the undercoat layer.
  • the wheel is then placed in a curing oven to fully cure the coating.
  • an acrylic material for the undercoat layer
  • a polyester material also may be utilized for the undercoat layer.
  • additional layers of undercoat may be applied (not shown) to provide a smoother surface and corresponding glossier finish; however, such additional undercoat layers are optional.
  • the additional undercoat layers can be formed from either acrylic or polyester materials.
  • a layer of primer coat formed from an urethane resin is applied over the undercoat layer in functional block 50.
  • the wheel is rotated while the primer materail is sprayed onto the wheel surface.
  • the wheel surface is air flashed at room temperature to remove solvents and then cured for a time period as recommended by the manufacturer at a temperature also recommended by the manufacturer.
  • a layer of base coat formed from an urethane polymer material such as, for example, an urethane enamel, is applied to the wheel surface over the primer coat layer in functional block 52.
  • the applied base coat layer is air flashed to allow the solvents to evaporate and then the wheel is again cured for a time period as recommended by the manufacturer at a temperature also recommended by the manufacturer.
  • a layer of metal film is applied to the wheel surface over the base coat layer in functional block 54.
  • the surface of the wheel is vacuum metalized with thermally evaporated indium or an alloy thereof.
  • the wheel is placed in a vacuum chamber that is pumped down to 5 x 10 "5 Torr and then backfilled with argon to 7 x 10 "4 Torr.
  • the wheel is rotated within the vacuum chamber while indium or an alloy of indium is sputtered or thermally evaporated onto the wheel surface.
  • ion plating, induction heating or electron beam evaporation methods may be utilized to form the metal film layer. Details of the process are included in the above referenced U.S. Patent No. 4,431,711.
  • the metalizing also can be completed at other vacuum levels, such as, for example, up to 5 x 10 "3 . Also, the backfilling of the vacuum chamber with argon can be omitted.
  • the metal film surface is etched to improve the adhesion of the top coat; however, this step is optional and can be omitted.
  • etching involves rinsing the metal film surface with a ten percent sodium hydroxide solution for 60 to 90 seconds in a temperature range of 150° to 160° F. The metal film surface is then rinsed twice with water and finally with deionized water. The etching process is more fully described in U.S. Patent No. 5,284,679, which is incorporated herein by reference.
  • a top coat layer of clear plastic is applied over the metal film in functional block 58.
  • Clear acrylics and urethanes are preferred for forming the top coat layer.
  • the top coat layer can be applied by spraying the coating material onto the metal film surface as the wheel is rotated. After being applied, the top coat layer is cured in a curing oven.

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

L'invention concerne une revêtement multicouche pour une roue de véhicule. Ce revêtement comprend une couche de matière de couche de fond adjacente à la surface de la roue qui couvre toutes les imperfections de surface. Des couches intermédiaires en uréthane sont déposées sur la couche de fond. Un film métallique est déposé par évaporation sous vide sur les couches intermédiaires de façon à donner un aspect lisse et brillant à la roue.
PCT/US2003/023949 2002-08-07 2003-07-31 Revetement brillant de surface pour roue d'automobile WO2004014646A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003257077A AU2003257077A1 (en) 2002-08-07 2003-07-31 Bright surface coating for a vehicle wheel
BR0305763-1A BR0305763A (pt) 2002-08-07 2003-07-31 Revistimento superficial decorativo para roda de veìculo e processo para formação de revestimento decorativo sobre a superfìcie de roda de veìculo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21407002A 2002-08-07 2002-08-07
US10/214,070 2002-08-07

Publications (1)

Publication Number Publication Date
WO2004014646A1 true WO2004014646A1 (fr) 2004-02-19

Family

ID=31714238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/023949 WO2004014646A1 (fr) 2002-08-07 2003-07-31 Revetement brillant de surface pour roue d'automobile

Country Status (3)

Country Link
AU (1) AU2003257077A1 (fr)
BR (1) BR0305763A (fr)
WO (1) WO2004014646A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1870489A1 (fr) 2006-04-19 2007-12-26 Ropal AG méthode d'obtention d'un substrat brillant et anti-corrosion
DE102007046925A1 (de) 2007-09-28 2009-04-09 Ropal Ag Verfahren zur Herstellung von Kunststoff- und Metallformkörpern
EP2123366A1 (fr) 2008-05-23 2009-11-25 Mattthias Koch Substrats revêtus et leur procédé de fabrication
EP2752504A1 (fr) 2013-01-08 2014-07-09 ROPAL Europe AG Procédé de fabrication d'un substrat à revêtement métallique, résistant à la corrosion, brillant, le substrat à revêtement métallique, et son utilisation
DE202014009707U1 (de) 2014-12-10 2015-02-05 Slk Spezial-Lackierung Koch Gmbh Beschichtete Substrate
EP2985363A1 (fr) 2014-08-13 2016-02-17 Matthias Koch Substrat revêtu

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431711A (en) * 1980-03-25 1984-02-14 Ex-Cell-O Corporation Vacuum metallizing a dielectric substrate with indium and products thereof
US5290625A (en) * 1992-05-22 1994-03-01 Davidson Textron Inc. System for making bright aluminum parts
EP0599487A1 (fr) * 1992-11-16 1994-06-01 Davidson Textron Inc. Procédé pour faire des pièces de garnitures brillantes
EP1088597A2 (fr) * 1995-04-21 2001-04-04 Textron Automotive Interiors Inc. Système de revêtement en ílots à cuisson électronique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431711A (en) * 1980-03-25 1984-02-14 Ex-Cell-O Corporation Vacuum metallizing a dielectric substrate with indium and products thereof
US5290625A (en) * 1992-05-22 1994-03-01 Davidson Textron Inc. System for making bright aluminum parts
EP0599487A1 (fr) * 1992-11-16 1994-06-01 Davidson Textron Inc. Procédé pour faire des pièces de garnitures brillantes
EP1088597A2 (fr) * 1995-04-21 2001-04-04 Textron Automotive Interiors Inc. Système de revêtement en ílots à cuisson électronique

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1870489A1 (fr) 2006-04-19 2007-12-26 Ropal AG méthode d'obtention d'un substrat brillant et anti-corrosion
US8993119B2 (en) 2006-04-19 2015-03-31 Ropal Europe Ag Process for producing a corrosion-protected and high-gloss substrate
DE102007046925A1 (de) 2007-09-28 2009-04-09 Ropal Ag Verfahren zur Herstellung von Kunststoff- und Metallformkörpern
EP2123366A1 (fr) 2008-05-23 2009-11-25 Mattthias Koch Substrats revêtus et leur procédé de fabrication
EP2752504A1 (fr) 2013-01-08 2014-07-09 ROPAL Europe AG Procédé de fabrication d'un substrat à revêtement métallique, résistant à la corrosion, brillant, le substrat à revêtement métallique, et son utilisation
EP2985363A1 (fr) 2014-08-13 2016-02-17 Matthias Koch Substrat revêtu
DE202014009707U1 (de) 2014-12-10 2015-02-05 Slk Spezial-Lackierung Koch Gmbh Beschichtete Substrate

Also Published As

Publication number Publication date
BR0305763A (pt) 2004-09-28
AU2003257077A1 (en) 2004-02-25

Similar Documents

Publication Publication Date Title
JP4584366B2 (ja) 部材の、好ましくは車両用部材、特に車輪の光沢被覆方法およびそれによって被覆された部材
US6896970B2 (en) Corrosion resistant coating giving polished effect
US5384161A (en) System for making bright aluminum parts
EP2744928B1 (fr) Traitements de surface par anodisation et par placage
US7132130B1 (en) Method for providing a chrome finish on a substrate
AU2002214620B2 (en) Vacuum metalization process for chroming substrates
US7235167B2 (en) Method for the manufacture of corrosion resistant and decorative coatings and laminated systems for metal substrates
US20080156638A1 (en) Process for sputtering aluminum or copper onto aluminum or magnalium alloy substrates
AU2002214620A1 (en) Vacuum metalization process for chroming substrates
US7150923B2 (en) Chrome coating composition
WO2004014646A1 (fr) Revetement brillant de surface pour roue d'automobile
JPH06212399A (ja) 光沢のある装備品を製造する方法
US6623614B2 (en) Cover structure for electronic device and method of manufacturing same
JPH0673937B2 (ja) 金属表面処理方法
US6703135B1 (en) Method for producing a corrosion protective coating and a coating system for substrates made of light metal
US6817679B1 (en) Corrosion resistant bright finish for light weight vehicle wheels
JP2003328112A (ja) 金色光輝材料およびその製造方法
US20040238371A1 (en) Coated method for light metal alloys
JP2002146590A (ja) メッキ方法
JPH1034080A (ja) 金属材表面被膜構造とその形成方法
JPH0133560B2 (fr)
JPH1034813A (ja) 金属材表面被膜構造とその形成方法
JPS63190153A (ja) 金属溶射製品
JPH06297901A (ja) アルミホイール
CN111330821A (zh) 一种金属磨砂封釉板卷

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP