WO2004014594A1 - Laserschweissverfahren zum herstellen einer karosserie - Google Patents

Laserschweissverfahren zum herstellen einer karosserie Download PDF

Info

Publication number
WO2004014594A1
WO2004014594A1 PCT/EP2003/008539 EP0308539W WO2004014594A1 WO 2004014594 A1 WO2004014594 A1 WO 2004014594A1 EP 0308539 W EP0308539 W EP 0308539W WO 2004014594 A1 WO2004014594 A1 WO 2004014594A1
Authority
WO
WIPO (PCT)
Prior art keywords
robots
robot
pair
welding
weld seams
Prior art date
Application number
PCT/EP2003/008539
Other languages
English (en)
French (fr)
Inventor
Roland Oesterlein
Sönke KOCK
Original Assignee
Abb Research Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Research Ltd. filed Critical Abb Research Ltd.
Publication of WO2004014594A1 publication Critical patent/WO2004014594A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0673Dividing the beam into multiple beams, e.g. multifocusing into independently operating sub-beams, e.g. beam multiplexing to provide laser beams for several stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D65/00Designing, manufacturing, e.g. assembling, facilitating disassembly, or structurally modifying motor vehicles or trailers, not otherwise provided for
    • B62D65/02Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components
    • B62D65/04Joining preassembled modular units composed of sub-units performing diverse functions, e.g. engine and bonnet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles

Definitions

  • the invention relates to a method for producing a body according to the preamble of patent claim 1.
  • Such a method is used in the manufacture of bodies of road vehicles, in particular passenger and truck vehicles. These are made from preformed components, for the manufacture of which a meltable material alloy or plastic is used.
  • a step weld seam consists of a series of short, linear seam elements, which are strung together at a predeterminable distance.
  • Step weld seams can be generated by the beam of an alternately switched on and off laser source.
  • the beam from the laser source is focused on the surface of the components to be connected.
  • a suitable optical device for guiding the beam is required for this.
  • This device can consist, for example, of mirrors, glass fibers, optical lenses or lens groups and is accommodated in a welding head which is guided by a robot. This moves the welding head in a continuous or interrupted movement along the route along which the components are to be connected.
  • the material of the components to be connected is locally welded by the beam from the laser source.
  • the components to be connected are pressed against one another with a defined pressure, so that there is no or only a small gap between the components in the welding area.
  • pressure rollers or roller pairs working as clamps are provided, between which the components to be connected are locally clamped during the formation of a step weld seam.
  • the roller arrangement is mounted on the robot end effector in such a way that the workpieces are pressed together close to the weld.
  • two robots, each equipped with a laser welding device are operated with a common laser source.
  • the beam from the laser source is via an optical beam splitter alternately directed to one or the other robot. Because of the high power density of the laser beam used, the achievable welding speed is high compared to other welding processes, whereby the components only experience a low heat load. Depending on the laser source used, the materials from which the components to be connected are made and their thickness, welding speeds between 10mm / s and 200mm / s can be achieved. The robot end effector is moved further during the welding process, which is preferably done at an almost constant speed. Frequent acceleration and deceleration processes are largely avoided during welding, which shortens the total time required to connect the components.
  • Bodies of the type mentioned at the outset were also manufactured using resistance spot welding in the past.
  • an electrical current causes local heating of the components to be connected, which are pressed together with a welding gun during the process. The components are melted locally.
  • the welding gun it is usually mounted on a programmable robot.
  • resistance spot welding between the individual welding processes there must be a positioning movement of the robot to the next welding point as well as a clamping movement of the gun. The robot must stand still during the welding process. Together with the time required for the spot welding process, cycle times of, for example, 1.5 s to 3 s per welding spot result.
  • a total time in the order of 450s to 1800s per body is required for the generation of 300 to 600 welding spots, as they often have to be created in the area of door and window openings of a body.
  • For a frequently desired cycle time of a maximum of 60 seconds per body 10 to 30 robots with welding guns and power sources are usually required.
  • the robots are usually divided into three to ten welding cells, which requires a considerable amount of space in the production environment.
  • the invention has for its object to provide a method with which the number of robots, the space required and the time and costs for the formation of bodies of the type mentioned can be further minimized. This object is achieved by the features of patent claim 1.
  • FIG. 1 shows a device for welding components of a body
  • Fig. 3 shows the workflow of two welding robots that can be connected to a common laser source.
  • FIG. 1 shows a device 1 with four robots 2, 3, 4, 5, two laser sources 6 and 7 and a control unit 8.
  • the four robots 2, 3, 4 and 5 are provided for the assembly of a body 20.
  • the exemplary embodiment shown here is the body 20 of a passenger car.
  • Two robots 2, 3 and 4, 5 are combined to form a pair of robots 2P and 4P.
  • FIG. 2 shows a side view of this body 20.
  • the four robots 2, 3, 4 and 5 are used in the exemplary embodiment shown here to connect components of the body 20 which limit the openings of the body 20.
  • the components of the body 20 are provided with smooth overlap flanges 21, 22, 24, 26 for this purpose.
  • the components are connected via the overlap flanges 21, 22, 24 and 26.
  • Each step weld seam 30 consists of a series of short, linear seam elements 31, which in this case have a length of 10 mm to 30 mm.
  • a free space 50 is provided between each two successive seam elements 31, as can be seen in FIGS. 2 and 3.
  • Each of the four robots 2, 3, 4, 5 is assigned a device for laser welding (not shown here).
  • the number of weld seams 30 to be formed and / or the number of seam elements 31 to be formed is, as far as possible, divided equally between the four robots 2, 3, 4 and 5. This is achieved in that each of the robots 2, 3, 4, 5 is assigned an approximately equally long section of the flanges 21, 22, 24, 26 to be welded as a welding task.
  • the two robots 2 and 3 or 4 and 5 are arranged opposite one another at a distance so that the body 20 can be arranged.
  • Two of the robots 2 and 4 or 3 and 5 are arranged on both sides of the body 20.
  • the devices for laser welding which are assigned to the two robots 2 and 3 positioned in the rear region of the body 20, are supplied alternately from the common laser source 6.
  • the two laser welding devices which are assigned to the robots 4 and 5 in the front region of the body 20, are connected alternately to the laser source 7.
  • each seam element 31 the beam of each laser source 6, 7 is applied via a welding head, which is equipped with optics suitable for this purpose (not shown here) and which is installed at the free end of each robot arm 2A, 3A, 4A, 5A , directed at a defined area on the surface of a flange 21, 22, 24, 26 only for a certain time. This is exactly the time required to form a seam element 31.
  • the laser sources 6, 7 are equipped with optical beam switches (not shown here). The control of the beam switches and the path control of the robots 2, 3, 4 and 5 takes place from the control unit 8.
  • the control unit 8 can be designed, for example, as a processor.
  • All control programs required for this are stored in the control unit 8. They can also be expanded if necessary. This also applies to the number of four robots 2, 3, 4, 5 in the device 1. This is not limited to this. Rather, it can also be increased in pairs. In this case, the number of laser sources should also be increased so that a laser source is again available for two robots.
  • the device 1 shown in FIG. 1 is dimensioned such that the four robots 2, 3, 4 and 5 and the body 20 can be arranged together in one welding cell (not shown here).
  • the Laser sources 6 and 7 and the control unit 8 are preferably arranged outside the welding cell.
  • the workflow of the two robots 2, 3 is shown schematically.
  • the beam from the laser source 6 is first supplied to the robot 3. It is moved along components of a body (not shown here) that are to be connected to one another.
  • the speed of the robot 3 is in the embodiment shown here 30mm / s to 200mm / s.
  • a first short linear seam element 31 with a length between 10 mm and 30 mm is formed.
  • the beam from the laser source 6 is then fed to the robot 2.
  • the robot 2 is now also moved at a speed between 30 mm / s and 200 mm / s along components of the body (not shown here).
  • a seam element 31 is also formed, which is between 10 and 30 mm long.
  • a space 50 remains between each two successive seam elements 31, which is somewhat longer than the length of a seam element 31.
  • the length of the free spaces 50 can also be chosen to be larger if required.
  • a clamping or pressing device (not shown here) is installed at the free end of each robot arm 2A, 3A, 4A and 5A. This has, for example, two or more rollers, between which the components to be connected are held in the area of the seam elements 31 to be formed without a gap or with a small gap.
  • the robot 2, 3 is moved to the point at which the next seam element 31 begins.
  • the positioning of the robot 2, 3 must not take longer than the formation of the seam element 31. This means that the robot 2, 3 must be moved across the free space 50 at a speed that is greater than the welding speed.
  • connection of components of the body 20 via their flanges 21, 22, 24, 26 is carried out using the entire device 1 in the same way as explained for the robots 2 and 3 and shown in FIG. 3. All flanges 21, 22, 24, 26 are connected to one another via step weld seams 30, which have a multiplicity of seam elements 31.
  • robots 2 and 3 are used to connect flanges 21 and 22 are used, while robots 4 and 5 are used to connect flanges 24 and 26.
  • the laser radiation for the welding devices of the robots 2 and 3 comes from the laser source 6, while the welding devices of the robots 4 and 5 are also supplied alternately by the laser source 7.
  • each of the flanges 21, 22, 24, 26 has a length of 5380 mm.
  • Each seam element 31 has a length of 15 mm.
  • a space 50 of 20 mm is provided between each two successive seam elements 31, and each robot 2, 3, 4, 5 moves further at a speed of 100 mm / sec when each seam element 31 is formed. It follows that approximately 153 seam elements 31 are to be formed to connect the flanges 21, 22, 24, 26. At a robot speed 2, 3, 4, 5 of 100mm / s during welding, this means that all flanges 21, 22, 24 and 26 are permanently connected in less than 60 seconds.
  • the invention is not limited to the exemplary embodiment described here. Rather, it encompasses all variations of the method that can be assigned to the essence of the invention.

Abstract

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer Karosserie (20) für ein Fahrzeug. Der Zusammenbau solcher Karosserien (20) erfolgt aus vorgeformten Bauteilen, die hierfür mit Flanschen (21, 22, 24, 26) versehen sind. Diese werden mit Hilfe von Vorrichtung zum Laserschweissen (2, 3, 4 und 5) über Steppschweissnähte (30) dauerhaft miteinander verbunden. Jede Steppschweissnaht (30) wird durch kurze, lineare Nahtelemente (31) gebildet. Mit dem erfindungsgemässen Verfahren wird der Zeitaufwand für die Ausbildung einer solcher Karosserie (20) dadurch reduziert, dass die Anzahl der auszubildenden Steppschweissnähte (30) und/oder deren Nahtelemente (31) unter Berücksichtigung der Symmetrie der Karosserie (20) gleichmässig auf alle eingesetzten Vorrichtungen zum Laserschweissen (2, 3, 4, 5) aufgeteilt wird.

Description

LASERSCH EISSVERFAHREN ZUM HERSTELLEN EINER KAROSSERIE
Beschreibung
Die Erfindung betrifft ein Verfahren zum Herstellen einer Karosserie gemäß dem Oberbegriff des Patentanspruchs 1.
Ein solches Verfahren kommt bei der Fertigung von Karosserien von Straßenfahrzeugen, insbesondere von Personen- und Lastkraftwagen zur Anwendung. Diese werden aus vorgeformten Bauteilen gefertigt, für deren Herstellung eine aufschmelzbare Materiallegierung oder Kunststoff verwendet wird.
Die Bauteile werden beispielsweise mit Hilfe von Laserschweißvorrichtungen dauerhaft zusammengefügt, mit denen Stepp- oder Linienschweißnähte ausgebildet werden können. Eine Steppschweißnaht besteht aus einer Reihe kurzer, linearer Nahtelemente, die in einem vorgebaren Abstand aneinandergereiht werden. Steppschweißnähte können durch den Strahl einer abwechselnd an- und abgeschalteten Laserquelle erzeugt werden. Der Strahl der Laserquelle wird auf die Oberfläche der zu verbindenden Bauteile fokussiert. Hierzu ist eine geeignete optische Einrichtung zum Führen des Strahls erforderlich. Diese Einrichtung kann beispielsweise aus Spiegeln, Glasfasern, optischen Linsen oder Linsengruppen bestehen, und wird in einem Schweißkopf untergebracht, der von einem Roboter geführt wird. Dieser bewegt den Schweißkopf in kontinuierlicher oder unterbrochener Bewegung entlang der Strecke, entlang derer die Bauteile zu verbinden sind. Durch den Strahl der Laserquelle wird das Material der zu verbindenden Bauteile lokal verschweißt. Um dauerhaft feste Steppschweißnähte zu erhalten, ist es erforderlich, dass die zu verbindenden Bauelemente mit einem definierten Druck gegeneinander gepresst werden, so dass im Schweißbereich kein oder nur ein kleiner Spalt zwischen den Bauteilen besteht. Hierfür sind Andruckrollen oder als Klemmen arbeitende Rollenpaare vorgesehen, zwischen den die zu verbindenden Bauteile während der Ausbildung einer Steppschweißnaht lokal geklemmt werden. Die Rollenanordnung wird so am Roboterendeffektor montiert, dass das Aufeinanderpressen der Werkstücke jeweils nahe an der Schweißung stattfindet. Um Kosten zu sparen, werden gelegentlich zwei mit jeweils einer Laserschweißvorrichtung ausgerüstete Roboter mit einer gemeinsamen Laserquelle betrieben. Der Strahl der Laserquelle wird dabei über eine optische Strahlweiche alternierend an den einen bzw. den anderen Roboter geleitet. Wegen der hohen Leistungsdichte des verwendeten Laserstrahls ist die erzielbare Schweißgeschwindigkeit im Vergleich zu anderen Schweißverfahren groß, wobei die Bauteile nur eine geringe Wärmebelastung erfahren. In Abhängigkeit von der verwendeten Laserquelle, den Materialien aus denen die zu verbindenden Bauteile hergestellt sind, und deren Dicke, können Schweißgeschwindigkeiten zwischen 10mm/s und 200mm/s erreicht werden. Während des Schweißvorgangs wird der Roboterendeffektor weiterbewegt, was bevorzugt mit nahezu konstanter Geschwindigkeit erfolgt. Häufige Beschleunigungs- und Abbremsvorgänge werden beim Schweißen weitgehend vermieden, wodurch die gesamte Zeit, die zum Verbinden der Bauteile erforderlich ist, verkürzt wird.
Karosserien der eingangs genannten Art wurden in der Vergangenheit auch mit Hilfe des Widerstandspunktschweißens gefertigt. Hierbei wird durch einen elektrischen Strom eine lokale Erhitzung der zu verbindenden Bauteile bewirkt, die während des Vorgangs mit einer Schweißzange zusammengepresst werden. Die Bauteile werden dabei örtlich angeschmolzen. Zur automatisierten Positionierung der Schweißzange wird diese üblicherweise an einem programmierbaren Roboter montiert. Beim Widerstandspunktschweißen muss zwischen den einzelnen Schweißvorgängen sowohl eine Positionierbewegung des Roboters zum nächsten Schweißpunkt, als auch eine Klemmbewegung der Zange erfolgen. Während des Schweißvorgangs muss der Roboter still stehen. Zusammen mit der Zeit, die für den Punktschweißvorgang erforderlich ist, ergeben sich Zykluszeiten von beispielsweise 1 ,5s bis 3s pro Schweißpunkt. Zur Erzeugung von 300 bis 600 Schweißpunkten, wie sie häufig im Bereich von Tür- und Fensteröffnungen einer Karosserie erzeugt werden müssen, ist hierfür eine Gesamtzeit in der Größenordnung von 450s bis 1800s pro Karosserie erforderlich. Für eine häufig angestrebte Zykluszeit von maximal 60 Sekunden pro Karosserie sind darum meist 10 bis 30 Roboter mit Schweißzangen und Stromquellen erforderlich. Die Roboter werden üblicherweise auf drei bis zehn Schweißzellen aufgeteilt, wofür ein erheblicher Platzbedarf in der Produktionsumgebung erforderlich ist.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren aufzuzeigen, mit dem die Anzahl der Roboter, der Platzbedarf und der Zeitaufwand sowie die Kosten für die Ausbildung von Karosserien der eingangs genannten Art weiter minimiert werden kann. Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.
Weitere erfinderische Merkmale sind in den abhängigen Ansprüchen gekennzeichnet.
Die Erfindung wird nachfolgend an Hand von schematischen Zeichnungen näher erläutert.
Es zeigen:
Fig. 1 eine Vorrichtung zum Verschweißen von Bauteilen einer Karosserie,
Fig. 2 die Seitenansicht einer Karosserie,
Fig. 3 der Arbeitsablauf von zwei an eine gemeinsame Laserquelle anschließbare Schweißroboter.
Fig.1 zeigt eine Vorrichtung 1 mit vier Robotern 2, 3, 4, 5, zwei Laserquellen 6 und 7 und einer Steuereinheit 8. Die vier Roboter 2, 3, 4 und 5 sind für den Zusammenbau einer Karosserie 20 vorgesehen. Bei dem hier dargestellt Ausführungsbeispiel handelt es sich um die Karosserie 20 eines Personenkraftwagens. Jeweils zwei Roboter 2, 3 bzw. 4, 5 sind zu einem Roboterpaar 2P und 4P zusammengefasst. Fig. 2 zeigt eine Seitenansicht dieser Karosserie 20. Die vier Roboter 2, 3, 4 und 5 werden bei dem hier dargestellten Ausführungsbeispiel dazu verwendet, Bauteile der Karosserie 20 miteinander zu verbinden, welche die Öffnungen der Karosserie 20 begrenzen. Die Bauteile der Karosserie 20 sind hierfür mit glatten Überlappflanschen 21 , 22, 24, 26 versehen. Die Verbindung der Bauteile erfolgt über die Überlappflansche 21 , 22, 24 und 26. Diese werden mit Hilfe von Steppschweißnähten 30 verbunden, wie in Fig. 2 gezeigt. Jede Steppschweißnaht 30 besteht aus der Aneinanderreihung kurzer, linearer Nahtelemente 31, die hierbei eine Länge von 10mm bis 30mm aufweisen. Zwischen jeweils zwei unmittelbar aufeinander folgenden Nahtelementen 31 ist ein Freiraum 50 vorgesehen, wie den Figuren 2 und 3 zu entnehmen ist. Jedem der vier Roboter 2, 3, 4, 5 ist jeweils einer Vorrichtung zum Laserschweißen (hier nicht dargestellt) zugeordnet. Die Anzahl der auszubildenden Schweißnähte 30 und/oder die Anzahl der auszubildenden Nahtelemente 31 wird, so weit das möglich ist, gleichmäßig auf die vier Roboter 2, 3, 4 und 5 aufgeteilt. Dieses wird dadurch erreicht, daß jedem der Roboter 2, 3, 4, 5 ein in etwa gleich langer Abschnitt der zu verschweißenden Flansche 21 , 22, 24, 26 als Schweißaufgabe zugeordnet wird. Daraus folgen gleiche Bewegungszeiten für alle Roboter 2, 3, 4 und 5 bei der Ausbildung der Schweißnähte 30. Wie Fig. 1 zu entnehmen ist, sind die beiden Roboter 2 und 3 bzw. 4 und 5 im Abstand einander gegenüberliegend so angeordnet, dass zwischen ihnen die Karosserie 20 angeordnet werden kann. Jeweils zwei der Roboter 2 und 4 bzw. 3 und 5 sind beidseitig der Karosserie 20 angeordnet. Wie Fig. 1 ferner zeigt, werden die Vorrichtungen zum Laserschweißen, die den beiden im Heckbereich der Karosserie 20 positionierten Robotern 2 und 3 zugeordnet sind, alternierend von der gemeinsamen Laserquelle 6 aus versorgt. Mit der Laserquelle 7 werden die beiden Vorrichtungen zum Laserschweißen alternierend verbunden, die den Robotern 4 und 5 im Frontbereich der Karosserie 20 zugeordnet sind. Zum Ausbilden eines jeden Nahtelements 31 wird der Strahl einer jeden Laserquelle 6, 7 über einen Schweißkopf, der mit einer hierfür geeigneten Optik ausgerüstet ist (hier nicht dargestellt), und der am freien Ende eines jeden Roboterarms 2A, 3A, 4A, 5A installiert ist, immer nur für eine bestimmt Zeit auf einen definierten Bereich auf der Oberfläche eines Flansches 21 , 22, 24, 26 gerichtet. Es handelt sich hierbei genau um die Zeit, die zur Ausbildung eines Nahtelements 31 erforderlich ist. Um die Strahlen der Laserquellen 6, 7 für eine definierte Zeit einer definierten Vorrichtung zum Laserschweißen zuordnen zu können, sind die Laserquellen 6, 7 hiefür mit optischen Strahlweichen (hier nicht dargestellt) ausrüstet. Das Betätigen der Strahlweichen und die Bahnsteuerung der Roboter 2, 3, 4 und 5 erfolgt von der Steuereinheit 8 aus. Die Steuereinheit 8 kann beispielsweise als Prozessor ausgebildet sein. In der Steuereinheit 8 sind alle hierfür erforderlichen Steuerprogramme gespeichert. Sie können bei Bedarf auch erweitert werden. Das gilt auch für die Anzahl von vier Robotern 2, 3, 4, 5 in der Vorrichtung 1. Diese ist nicht hierauf beschränkt. Vielmehr kann sie auch paarweise erhöht werden. In diesem Fall ist auch die Zahl der Laserquellen so zu erhöhen, dass wiederum für zwei Roboter eine Laserquelle zur Verfügung steht. Die in Fig. 1 dargestellte Vorrichtung 1 ist so dimensioniert, dass die vier Roboter 2, 3, 4 und 5 sowie die Karosserie 20 gemeinsam in einer Schweißzelle (hier nicht dargestellt) angeordnet werden können. Die Laserquellen 6 und 7 und die Steuereinheit 8 werden vorzugsweise außerhalb der Schweißzelle angeordnet.
In Fig. 3 ist der Arbeitsablauf der beiden Roboter 2, 3 schematisch dargestellt. Bei dem hier gezeigten Ausführungsbeispiel wird zunächst dem Roboter 3 der Strahl der Laserquelle 6 zugeführt. Er wird entlang von Bauteilen einer Karosserie (hier nicht dargestellt) bewegt, die miteinander zu verbinden sind. Die Geschwindigkeit des Roboters 3 beträgt bei dem hier dargestellten Ausführungsbeispiel 30mm/s bis 200mm/s. Dabei wird ein erstes kurzes lineares Nahtelement 31 mit einer Länge zwischen 10mm und 30mm ausgebildet. Anschließend wird der Strahl der Laserquelle 6 dem Roboter 2 zuführt. Der Roboter 2 wird nun ebenfalls mit einer Geschwindigkeit zwischen 30mm/s und 200mm/s entlang von Bauteilen der Karosserie (hier nicht dargestellt) bewegt. Mit Hilfe des Roboters 2 wird ebenfalls ein Nahtelement 31 ausgebildet, das zwischen 10 und 30 mm lang ist. Zwischen jeweils zwei unmittelbar aufeinander folgenden Nahtelementen 31 verbleibt ein Freiraum 50, der etwas länger ist als die Länge eines Nahtelements 31 ist. Die Länge der Freiräume 50 kann bei Bedarf auch größer gewählt werden. Um die Bauteile während der Ausbildung der Steppschweißnähte 30 mit einer definierten Kraft zusammenpressen zu können, was hierfür unbedingt erforderlich ist, ist am freien Ende eines jeden Roboterarms 2A, 3A, 4A und 5A eine Klemm- oder Anpressvorrichtung (hier nicht dargestellt) installiert. Diese weist beispielsweise zwei oder mehrere Rollen auf, zwischen denen die zu verbindenden Bauteile im Bereich der auszubildenden Nahtelemente 31 spaltfrei oder mit geringem Spalt gehalten werden. Während mit dem Roboter 2, 3 ein Nahtelement 31 ausgebildet wird, wird der Roboter 2, 3 an die Stelle verfahren, an der das nächste Nahtelement 31 beginnt. Das Positionieren des Roboters 2, 3 darf nicht länger dauern als die Ausbildung des Nahtelements 31. Das bedeutet, dass der Roboter 2, 3 mit einer Geschwindigkeit über den Freiraum 50 hinweg bewegt werden muss, die größer ist als die Schweißgeschwindigkeit.
Das Verbinden von Bauteilen der Karosserie 20 über ihre Flansche 21 , 22, 24, 26 erfolgt unter der Verwendung der gesamten Vorrichtung 1 in gleicher Weise wie für die Roboter 2 und 3 erläutert, und in Fig. 3 dargestellt. Alle Flansche 21 , 22, 24, 26 werden über Steppschweißnähte 30 miteinander verbunden, die eine Vielzahl von Nahtelementen 31 aufweisen. Die Roboter 2 und 3 werden in diesem Fall zum Verbinden von Flanschen 21 und 22 eingesetzt, während die Roboter 4 und 5 zum Verbinden von Flanschen 24 und 26 genutzt werden. Die Laserstrahlung für die Schweißvorrichtungen der Roboter 2 und 3 kommt von der Laserquelle 6, während die Schweißvorrichtungen der Roboter 4 und 5 ebenfalls alternierend von der Laserquelle 7 versorgt werden.
Bei den Ausführungsbeispielen, die in den Figuren 1 , und 2 dargestellt sind, wird davon ausgegangen, dass jeder der Flansche 21 , 22, 24, 26 eine Länge von 5380mm hat. Jedes Nahtelement 31 weist hierbei eine Länge von 15mm auf. Zwischen jeweils zwei aufeinander folgenden Nahtelementen 31 ist ein Freiraum 50 von 20mm vorgesehen, und jeder Roboter 2, 3, 4,5 bewegt sich beim Ausbilden eines jeden Nahtelements 31 mit einer Geschwindigkeit von 100mm/sec weiter. Daraus folgt, dass zum Verbinden der Flansche 21 , 22, 24, 26 etwa 153 Nahtelemente 31 auszubilden sind. Bei einer Geschwindigkeit der Roboter 2, 3, 4, 5 von 100mm/s beim Schweißen bedeutet das, dass alle Flansche 21 , 22, 24 und 26 in weniger als 60 Sekunden dauerhaft verbunden sind.
Die Erfindung beschränkt sich nicht nur auf das hier beschriebene Ausführungsbeispiel. Vielmehr umfasst sie alle Variationen des Verfahrens, die dem Kern der Erfindung zugeordnet werden können.

Claims

Patentansprüche
1. Verfahren zum Herstellen einer Karosserie (20) für ein Fahrzeug, wobei der Zusammenbau der Karosserie (20) aus vorgeformten Bauteilen mit Flanschen (21 , 22, 24, 26) erfolgt, die über Steppschweißnähte (30) dauerhaft verbunden werden, und jeder zum Schweißen verwendete Strahl einer Laserquelle (6, 7) alternierend jeweils zwei Vorrichtungen zum Laserschweißen (2, 3, 4 und 5) zugeordnet wird, dadurch gekennzeichnet, dass die Anzahl der auszubildenden Steppschweißnähte (30) und/oder deren Nahtelemente (31) unter Berücksichtigung der Symmetrie der Karosserie (20) gleichmäßig auf alle eingesetzten Vorrichtungen zum Laserschweißen (2, 3, 4, 5) aufgeteilt werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Anzahl der auszubildenden Steppschweißnähte (30) und/oder deren Nahtelemente (31) unter Berücksichtigung der Symmetrie der Karosserie (20) gleichmäßig auf wenigstens zwei Paare von Robotern (2P bzw. 4P) aufgeteilt wir, dass jedem Roboter (2, 3, 4, 5) eines Paares von Roboteren (2P, 4P) eine Vorrichtung zum Laserschweißen zugeordnet wird, und dass das erste Paar von Robotern (2P) im Heckbereich der Karosserie (20) und das zweite Paar von Robotern (4P) im Frontbereich der Karosserie (20) angeordnet wird.
3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die Anzahl der Steppschweißnähte (30) und/oder deren Nahtelemente (31) so auf jedes Paar von Robotern (2P bzw 4P) aufgeteilt wird, dass sich die Roboter (2 und 3 bzw. 4 und 5) paarweise mit gleicher Geschwindigkeit bewegen und beide Paare von Robotern (2P bzw. 4P) die Ausbildung der Steppschweißnähte (30) gleichzeitig beginnen und beenden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein Roboter (2, 4) eines jeden Paares (2P, 4P) auf der ersten Seite der Längsachse und der zweite Roboter (3, 5) dieses Paares (2P, 4P) auf der zweiten Seite der Längsachse der Karosserie (20) angeordnet wird, dass jedem Paar von Robotern (2P, P) die gleiche Anzahl von auszubildenden Steppschweißnähten (30) und/oder Nahtelementen (31) zugeordnet wird, und dass diese Anzahl wiederum gleichmäßig auf jeden Roboter (2, 3 bzw. 4, 5) eines jeden Paares (2P, 4P) aufgeteilt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dass zum Ausbilden der Steppschweißnähte (30) für zwei Paare (2P bzw. 4P) von Robotern (2, 3, 4 und 5) zwei Laserquellen (6, 7) verwendet werden, dass jede Vorrichtung zum Laserschweißen eines Roboters (2, 3, 4 und 5) während der Ausbildung der Steppschweißnähte (30) über eine Strahlweiche immer für einen definierten Zeitraum an wenigstens eine der beiden Laserquellen (6, 7) angeschlossen wird.
6. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zum Betätigen der Roboter (2, 3, 4 und 5), der Laserquellen (6 und 7) und der Strahlweichen der Laserquellen (6, 7) eine Steuereinheit (8) verwendet wird, in der alle erforderlichen Steuerprogramme gespeichert werden.
PCT/EP2003/008539 2002-08-05 2003-08-01 Laserschweissverfahren zum herstellen einer karosserie WO2004014594A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10235855.9 2002-08-05
DE10235855A DE10235855A1 (de) 2002-08-05 2002-08-05 Verfahren zum Herstellen einer Karosserie

Publications (1)

Publication Number Publication Date
WO2004014594A1 true WO2004014594A1 (de) 2004-02-19

Family

ID=31501725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/008539 WO2004014594A1 (de) 2002-08-05 2003-08-01 Laserschweissverfahren zum herstellen einer karosserie

Country Status (2)

Country Link
DE (1) DE10235855A1 (de)
WO (1) WO2004014594A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1591189A1 (de) * 2004-04-27 2005-11-02 Fanuc Robotics Europe S.A. Automatisiertes Laserbearbeitungssystem und Verfahren zum Betreiben eines solchen Systems
EP1671740A1 (de) * 2004-12-16 2006-06-21 Nissan Motor Co., Ltd. Laserschweisssystem und -verfahren zum Punktschweissen mit einer ersten Bewegungsgeschwindigkeit für den Robotarm und einer zweiten Rastergeschwindigkeit für den Laserkopf

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008018130A1 (de) * 2008-04-09 2009-10-15 Volkswagen Ag Verfahren zum Herstellen von Fahrzeugkarosserien
DE102014017921B4 (de) 2014-12-04 2017-10-12 Audi Ag Bauteilanordnung sowie Verfahren zur Herstellung der Bauteilanordnung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440002A1 (de) * 1990-01-31 1991-08-07 COMAU S.p.A. Apparat zum Schweissen von Kraftfahrzeugkarosserien
EP0607456A1 (de) * 1992-07-31 1994-07-27 Fanuc Ltd. Laserrobotersystem zu industrieller verwendung
DE19627913A1 (de) * 1995-08-05 1997-02-06 Volkswagen Ag Strahlgeschweißtes Karosseriebauteil zur Aufnahme einer Crash-Belastung
US5616261A (en) * 1995-06-07 1997-04-01 Chrysler Corporation Laser welding system
EP0857536A1 (de) * 1997-02-05 1998-08-12 Honda Giken Kogyo Kabushiki Kaisha Laserstrahlschweissvorrichtung
US6153853A (en) * 1996-12-25 2000-11-28 Honda Giken Kogyo Kabushiki Kaisha Laser beam welding apparatus
US6201211B1 (en) * 1996-08-13 2001-03-13 Rofin-Sinar Laser Gmbh Apparatus for welding together two components
US20010023861A1 (en) * 2000-03-23 2001-09-27 Norio Karube Laser machining apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3910495A1 (de) * 1989-04-01 1990-10-04 Blohm Voss Ag Schweissvorrichtung zur herstellung einer autofelge
DE19534360C2 (de) * 1995-02-06 1999-03-04 Mauser Werke Oberndorf Maschin Verfahren und Einrichtung zum Bruchtrennen von Pleueln
IT1313897B1 (it) * 1999-10-25 2002-09-26 Fata Group S P A Stazione automatica migliorata di assemblaggio e saldatura di scocchedi autoveicoli
DE10007496C1 (de) * 2000-02-18 2001-04-26 Dreistern Werk Maschinenbau Gmbh & Co Kg Profilieranlage mit einer Profiliermaschine und mit einer in deren Verlauf angeordneten Schweißvorrichtung zum Herstellen eines aus metallischem Bandmaterial geformten Profils
DE10134940B4 (de) * 2001-07-23 2004-08-19 Kuka Schweissanlagen Gmbh Entwicklungssystem und Entwicklungsverfahren für ein reales Steuerungssystem

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440002A1 (de) * 1990-01-31 1991-08-07 COMAU S.p.A. Apparat zum Schweissen von Kraftfahrzeugkarosserien
EP0607456A1 (de) * 1992-07-31 1994-07-27 Fanuc Ltd. Laserrobotersystem zu industrieller verwendung
US5616261A (en) * 1995-06-07 1997-04-01 Chrysler Corporation Laser welding system
DE19627913A1 (de) * 1995-08-05 1997-02-06 Volkswagen Ag Strahlgeschweißtes Karosseriebauteil zur Aufnahme einer Crash-Belastung
US6201211B1 (en) * 1996-08-13 2001-03-13 Rofin-Sinar Laser Gmbh Apparatus for welding together two components
US6153853A (en) * 1996-12-25 2000-11-28 Honda Giken Kogyo Kabushiki Kaisha Laser beam welding apparatus
EP0857536A1 (de) * 1997-02-05 1998-08-12 Honda Giken Kogyo Kabushiki Kaisha Laserstrahlschweissvorrichtung
US20010023861A1 (en) * 2000-03-23 2001-09-27 Norio Karube Laser machining apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1591189A1 (de) * 2004-04-27 2005-11-02 Fanuc Robotics Europe S.A. Automatisiertes Laserbearbeitungssystem und Verfahren zum Betreiben eines solchen Systems
EP1671740A1 (de) * 2004-12-16 2006-06-21 Nissan Motor Co., Ltd. Laserschweisssystem und -verfahren zum Punktschweissen mit einer ersten Bewegungsgeschwindigkeit für den Robotarm und einer zweiten Rastergeschwindigkeit für den Laserkopf
US8168918B2 (en) 2004-12-16 2012-05-01 Nissan Motor Co., Ltd. Laser welding system and laser welding control method

Also Published As

Publication number Publication date
DE10235855A1 (de) 2004-03-11

Similar Documents

Publication Publication Date Title
DE60209159T2 (de) Verfahren und Vorrichtung zum Laserschweissen von zwei oder mehr überlappenden Blechen und zum Klemmen der Bleche
EP1525972B1 (de) Verfahren und Vorrichtung zum Erwärmen von Kunststoffen mittels Laserstrahlen
EP1125652B1 (de) Schweissvorrichtung und Verfahren zum Längsverschweissen von aus metallischem Bandmaterial geformten Profilen
EP1575756B1 (de) Verfahren und vorrichtung zum verschweissen thermoplastischer kunststoff-formteile, insbesondere zum konturschweissen dreidimensionaler formteile
DE19739975C2 (de) Verfahren zur Herstellung einer Laminatstruktur
EP3030373B1 (de) Verfahren und vorrichtung zum widerstandsschweissen von sandwichblechen
WO2016096183A1 (de) VERFAHREN UND VORRICHTUNG ZUM VERSCHWEIßEN VON DRAHTSEGMENTPAAREN
EP1714771A2 (de) Verfahren und Vorrichtung zum Verbinden von zwei Werkstücken aus thermoplastischen Kunststoffen durch Laserschweißen
WO1998024569A1 (de) Verfahren zur herstellung eines formteiles sowie nach diesem hergestelltes formteil
DE10309157B4 (de) Verfahren zum Laserschweißen beschichteter Platten
DE3909471A1 (de) Anordnung zum schweissen von beschichteten werkstuecken mittels laserstrahlung
DE3733568A1 (de) Verfahren zur herstellung von schweissverbindungen an karosserieteilen und anderen blechteilen und robotersystem
EP1711303B1 (de) Verfahren zur topographieänderung mit laserstrahl von beschichteten blechen und beschichtetes blech mit einer topographieänderung
EP1534464B1 (de) Verfahren zur laserbearbeitung beschichteter bleche
WO2004014594A1 (de) Laserschweissverfahren zum herstellen einer karosserie
DE102011018653A1 (de) Widerstands-Schweißvorrichtung
DE10131883B4 (de) Verfahren zum Verschweißen von Metallbauteilen
DE10304709B4 (de) Verfahren und Vorrichtung zum Laser-Hybridschweißen
DE102009055876A1 (de) Verfahren zum Verbinden zweier Werkstücke mittels Laser
DE102011118278B4 (de) Laserschweißverfahren
DE10322450B4 (de) Verfahren und Vorrichtung zum Laserschweissen beschichteter Platten
DE102005038099B3 (de) Verfahren zum Stumpfschweißen eines auf Biegung beanspruchten Werkstückes
DE102005035495B4 (de) Verfahren und Vorrichtung zum Laser-Schweißen
WO1999037523A1 (de) Verfahren zum verbinden von fahrzeugteilen, und nach diesem verfahren verbundene fahrzeugteile
DE102004026427B4 (de) Verwendung einer Vorrichtung zur Behandlung eines Substrates mittels Laserstrahlen und Vorrichtung zur Behandlung des Substrates

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP