WO2004013580A1 - 絞り流量計 - Google Patents

絞り流量計 Download PDF

Info

Publication number
WO2004013580A1
WO2004013580A1 PCT/JP2002/007863 JP0207863W WO2004013580A1 WO 2004013580 A1 WO2004013580 A1 WO 2004013580A1 JP 0207863 W JP0207863 W JP 0207863W WO 2004013580 A1 WO2004013580 A1 WO 2004013580A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
pressure measurement
pressure
throttle
pipe
Prior art date
Application number
PCT/JP2002/007863
Other languages
English (en)
French (fr)
Inventor
Yoshijiro Shiba
Masakazu Saito
Shigehito Yamada
Original Assignee
Wetmaster Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wetmaster Co., Ltd. filed Critical Wetmaster Co., Ltd.
Priority to PCT/JP2002/007863 priority Critical patent/WO2004013580A1/ja
Priority to AU2002325496A priority patent/AU2002325496A1/en
Priority to DE10297234T priority patent/DE10297234T5/de
Priority to CNB02815357XA priority patent/CN1300556C/zh
Priority to CA002456457A priority patent/CA2456457A1/en
Priority to US10/485,154 priority patent/US6912919B2/en
Priority to JP2004525754A priority patent/JP4159544B2/ja
Publication of WO2004013580A1 publication Critical patent/WO2004013580A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/46Pitot tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices

Definitions

  • the present invention relates to a throttle flowmeter for measuring a flow rate and a flow rate of a fluid in a pipe.
  • a differential pressure detector has been used as one of the measuring instruments for measuring the flow rate in a pipe.
  • This differential pressure detector measures a static pressure difference at an orifice having a throttle portion, a bench lily pipe, or the like. It is a throttle flowmeter that can measure the flow rate and the flow rate.
  • differential pressure detector requires a precise mechanical filter as described in the JIS standard, and the measurement accuracy decreases when the flow is turbulent. It is necessary to provide sufficient straight pipes in the upstream and downstream areas. Furthermore, the differential pressure generated from the differential pressure detector is represented by the only carp as the square of the flow velocity and flow rate flowing in the pipe.
  • the orifice wears the edge due to erosion due to long-term use, or sludge accumulates before and after the constricted portion, resulting in a decrease in measurement accuracy.
  • the generated differential pressure and the flow velocity of the flowing fluid Since the relationship with the flow rate is represented by a square curve, when measuring from a low flow velocity range to a high flow velocity range with a single manometer, the range of the generated differential pressure is large, and depending on the performance of the manometer, the range of the differential pressure is large. Measurement error increases. In addition, there has been a problem that the edge portion is worn or sludge is deposited with long-term use, resulting in a decrease in measurement accuracy.
  • a tube through which a fluid flows is provided with a cylinder for total pressure detection that penetrates perpendicularly to the axis thereof.
  • a total pressure detection hole that is opened in the cylinder for use in the flow direction of fluid, and an opening is provided in the wall of the pipe on the upstream side to detect static pressure. is there.
  • this differential pressure detector can detect at multiple points in the same cross section, but cannot detect a large differential pressure in the low flow velocity region.
  • the present invention has been made in view of the above problems, and is an inexpensive product that does not require precise machining, is capable of high-precision measurement even under turbulent flow conditions, and has a differential pressure.
  • the purpose of the present invention is to provide a throttle flow meter that can maintain a stable measurement accuracy over a long period of time by expressing the relationship between the differential pressure generated from the detector and the flow velocity and flow rate as a plurality of square curves. It is.
  • a throttle flow meter includes a cylinder through which a fluid to be measured flows, and a pipe for forming a throttle mechanism penetrating through the cylinder so as to be orthogonal to a central axis of the cylinder.
  • a throttle pressure meter wherein the pipe has a diameter smaller than the inner diameter of the cylinder; a first pressure measurement hole formed at a location on the cross section where the cross section perpendicular to the flow direction is most narrowed; And a second pressure measurement hole formed in the wall of the upstream cylinder separated from the most narrowed cross section by at least 12 cylinder inner diameters.
  • the throttle flowmeter is characterized in that the first pressure measurement hole is formed on the wall of the cylinder on the cross section where the throttle is most narrowed.
  • a first pressure measurement hole is formed in a wall surface of the pipe on a cross section most narrowed.
  • the first pressure measurement hole is formed on a wall surface downstream from a most narrowed cross section of the pipe wall surface.
  • Such a throttle flowmeter is characterized in that a rectifying plate is provided inside the cylinder, which is installed upstream of the second pressure measuring hole at least 1/2 of the inner diameter of the cylinder.
  • a flat hollow body having a shell-shaped cut surface is installed at a position upstream of the most throttled cross section perpendicular to the fluid flow direction in the cylinder, and A first pressure measurement hole formed at a location on the cross section most narrowed, a second pressure measurement hole formed in a wall of the cylinder upstream of the hollow body, and a counter pressure direction in the hollow body. It is specially characterized by having a third pressure measurement hole provided by opening.
  • the throttle flowmeter is characterized in that a first pressure measurement hole is formed in a wall of the cylinder on the most narrowed cross section.
  • the first pressure measurement hole is formed on the wall surface of the pipe on the cross-section where the throttle is most narrowed, or on the wall surface of the pipe downstream of the first pressure measurement hole. It is characterized by.
  • any one of the first, second, and third pressure measurement holes is selected, and a differential pressure between the selected pressure measurement holes is detected.
  • a differential pressure suitable for a manometer can be obtained in a wide flow velocity range.
  • the differential pressure detector in the throttle flow meter of the present invention has a structure in which a pipe is installed to penetrate a cylinder so as to be orthogonal to a central axis thereof, and a cross section of a flow path is partially narrowed. In this narrowed cross section, the flow velocity increases, resulting in that cross section. Static pressure P! At the first pressure measurement hole provided in the pipe wall Will decrease.
  • V K * (2 / * ⁇ ⁇ ) °
  • flow coefficient
  • density of fluid
  • generated differential pressure (static pressure drop).
  • the throttle ratio of the flow path can be appropriately changed depending on the diameter of the pipe provided therethrough, and the flow coefficient ⁇ can be adjusted as in the case of using the orifice.
  • a large-diameter pipe can be penetrated to increase the throttle and increase the generated differential pressure.
  • the piping for installing such a throttle flow meter is a complicated three-dimensional construction due to space problems, and the velocity distribution of the fluid flowing there is undeveloped and unstable. I have. In such a state, in order to measure the flow rate accurately, the conventional differential pressure detector needed to provide a sufficient straight pipe section in the upstream and downstream regions.
  • the measurement error rate of a manometer decreases as the differential pressure increases, so increasing the pressure detected from the fluid reduces the overall error rate including the differential pressure detector and the manometer. be able to.
  • the throttle mechanism When the throttle mechanism is formed of a round pipe, square pipe, or the like, the velocity distribution on the cross section tends to increase near the part forming the throttle and decelerate as it approaches the cylinder wall.
  • a large differential pressure from the pressure P 2 in the second pressure measurement hole can be obtained. For this reason, as a means to reduce the above-mentioned total error rate, forming a throttle like a pipe It is appropriate to provide a pressure measuring hole in the wall of the part.
  • a perforated tube with a rectifying function is used by forming a flat shape in the upstream area from the throttle forming part, the differential pressure from other pressures can be detected by detecting the pressure P 4 (total pressure) of the fluid. More appropriate measurement is possible by selecting and adopting pressure measurement holes so as to obtain a differential pressure corresponding to the flow velocity in consideration of manometer errors. For this reason, a flat hollow body with a cut-out shape of a shell is suitable as a perforated tube with a rectifying function, and as a result, straight pipes in the upstream and downstream areas of the differential pressure detector in the above-mentioned piping construction are suitable. The part can be shortened, and the effect of reducing such a restriction is also produced.
  • V K1 * (2 / ⁇ * ( ⁇ 4 -P l)) ° "°
  • V K2 * (2 / p * (P 4 -P 2 )) ° °
  • V K3 * (2 / p * (P 4 -P 3)) ° - 5
  • Kl, K2, K3, ... are flow coefficients and are constants determined by the combination of detected pressures.
  • the manometer can measure in a high pressure / differential pressure region where accuracy is maintained, resulting in an overall measurement error rate. Can be reduced.
  • a temperature sensor is provided inside the pipe installed through it, it can be used as a calorimeter, and the temperature sensor is built in the pipe to avoid damage to the temperature sensor due to vortex vibration etc. There are also advantages that can be.
  • FIG. 1 is a perspective view of a throttle flow meter according to an embodiment of the present invention
  • FIG. 2 is a partially broken top view of the flow meter shown in FIG. 1
  • FIG. 3 is a perspective view of a throttle flow meter according to an embodiment of the present invention provided with a rectifying plate,
  • FIG. 4 is a partially broken top view of the restrictor flow meter shown in FIG. 3,
  • FIG. 5 is a perspective view of the throttle flow meter provided with a rectifying plate of another embodiment
  • FIG. 6 is a partially broken top view of the throttle flow meter shown in FIG. 5,
  • FIG. 7 is a perspective view of a throttle flow meter according to another embodiment of the present invention.
  • FIG. 8 is a partially broken top view of the restrictor flow meter shown in FIG. 7,
  • Fig. 9 is a sectional view showing the velocity distribution of the throttle part in the throttle flow meter.
  • FIG. 10 is a perspective view of a throttle flow meter according to still another embodiment of the present invention
  • FIG. 11 is a partially cutaway sectional view of the throttle flow meter shown in FIG.
  • FIG. 12 is a perspective view of a throttle flow meter according to still another embodiment of the present invention
  • FIG. 13 is a partially broken top view of the throttle flow meter shown in FIG. 12,
  • FIG. 14 is a schematic diagram showing an example of a piping system to which the throttle flow meter according to the present invention is applied.
  • FIG. 15 is a diagram showing the relationship between the differential pressure and the flow velocity obtained in the throttle flow meter according to the present invention.
  • FIG. 1 is a perspective view of a throttle flow meter according to an embodiment of the present invention, in which a cylinder 1 having a predetermined length through which a fluid to be measured flows in the direction of an arrow and a center axis of the cylinder 1 are shown.
  • a pipe 2 which is installed so as to penetrate the wall 2 so that its end protrudes from its wall so as to be orthogonal to the wall 2.
  • the pipe 2 forms a throttle mechanism.
  • the pipe 2 has a first pressure measurement hole 4 formed in the wall of the cylinder 1 in the cross section of the cylinder 1 forming the most narrowed portion.
  • a second pressure measuring hole 5 is formed in the wall of the cylinder 1 upstream of the inner diameter of the cylinder 1 by 1 Z 2 or more away from the measuring hole 4. These pressure measuring holes 4 and 5 have a pressure extraction port.
  • the fittings 3, 3 are installed at the two ends of the cylinder 1. Further, both ends of the cylinder 1 are provided with flanges 6 for attachment to a piping system as shown in FIG.
  • the cylinder 1 and pipe 2 of these pressure detectors are made of any material, such as iron, other steel, metal such as brass, or resin, etc. However, the surface of an ordinary material may be used, and a high-accuracy finished surface is not particularly required.
  • the piping system shown in Fig. 14 is a pipe system that is connected between the pump 50 and the water intake part 58 and the water discharge part 59 of the water storage tank 51 via valves 55, 56 and 57. It has 2, 53, 54, etc., and the cylinder 1 of the throttle flow meter is mounted between the straight pipe sections 52, 53 by the flange 6, and can measure flow velocity and flow rate It is.
  • the pressure P; L of the fluid flowing through the throttle portion can be taken out via the joint 3 and detected as static pressure from the first pressure measurement hole 4 on the wall of the cylinder 1. Then, in the second pressure measurement hole 5, the pressure P 2 can be taken out and detected as the static pressure via the joint 3, the pressure upstream of the fluid throttle portion through the joint 3.
  • the throttle flow meter according to the embodiment of the present invention shown in FIGS. 3 to 6 has one rectifying plate 7 provided further upstream of the second pressure measurement hole 5 in the cylinder 1.
  • the bias of the velocity distribution is eliminated.
  • the inside of the cylinder 1 is rectified so that the detected pressure in each of the measurement holes 4 and 5 eliminates the influence of the disturbance of the fluid flow.
  • the length of the straight pipe sections 52 and 53 for eliminating the deviation of the velocity distribution in the pipes upstream and downstream of the flow meter can be shortened.
  • the rectifying plate 7 shown in FIGS. 3 and 4 is arranged so as to be parallel to the pipe 2 installed therethrough.
  • a rectifying plate 7 ′ crossing two plates is provided in the cylinder 1, and is shown in FIGS. 3 and 4.
  • This rectifying plate may have a mesh structure / honeycomb structure.
  • the velocity distribution of the fluid at the narrowed cross section is as shown in Fig. 9, and the pressure in the higher velocity range is higher than when the first pressure measurement hole is provided in the wall of cylinder 1. Indicates that it can be measured.
  • the first pressure measurement hole is the wall of the pipe 2 'and the detection hole 8a is located at the cross section where the flow path is most narrowed, or the most narrowed as shown by the dotted line in FIG.
  • the detection hole 8b may be provided as a detection hole 8b in a region downstream of the section provided, or similarly as a detection hole 8c in a most downstream portion as indicated by a dotted line in FIG.
  • the detection holes 8a and 8b are positioned symmetrically with respect to the center line of the pipe 2 'in the flow line direction in FIG. To form pressure measurement holes 8a-8a, or pressure measurement holes 8b-8b ', respectively.
  • these pressure measurement holes 8a—8a ′, 8b_8b ′, and 8c are respectively provided in the downstream region of the most constricted section of the pipe 2 ′.
  • 8a, 8b (8b ') and 8c two or more places may be provided at the wall surface of the pipe 2' along the axis of the pipe 2 '.
  • These detection holes 8 a (8 a ') pressure from, 8 b (8 b') 8 c is extracted as the pressure P 3 from the pipe 2, fittings 3 end '.
  • the detected pressure P 3 has a relation of P 3 ⁇ P 2, is detected from the joint 3 '.
  • rectifying plates 7, 7 'as shown in FIGS. 3 to 6 may be provided. Rectification, so that the deviation of the velocity distribution can be corrected.
  • a throttle flow meter according to still another embodiment of the present invention will be described with reference to a throttle flow meter shown in FIGS. 10 to 13.
  • the difference between the throttle flow meter according to this embodiment and the throttle flow meter shown in FIGS. 1 to 7 is that a cross-sectional shell is provided between the pipes 2 and 2 ′ and the second pressure measurement hole 5 inside the cylinder 1.
  • a flat hollow body 10 is provided in parallel with the pipes 2 and 2 '.
  • the body 10 has a rectifying function.
  • the hollow body 10 has a plurality of pressure measurement holes 11 at an appropriate distance along the wall surface of the hollow body 10 perpendicular to the axis of the cylinder 1 at a tip portion facing the flow of the fluid.
  • Te a third pressure which is detected by the pressure measuring hole 1 1 is taken as a pressure P 4 from the upper end portion projecting outwardly of the cylinder 1, it is detected as the total pressure.
  • the throttle flowmeters shown in Figs. 12 and 13 are the same as the throttle flowmeters shown in Figs. 7 and 8 except that a flat hollow body 10 with a shell-shaped cross section shown in Figs. 10 and 11 is provided. Things.
  • This hollow body 10 also has a rectifying function, and as the third pressure measurement hole 11, the pressure measurement hole 11 is opened at the front end in opposition to the flow, and is perpendicular to the axis of the cylinder 1.
  • the hollow body 10 is provided with a plurality of them at appropriate intervals.
  • the third pressure measurement hole 11 can detect the pressure ⁇ 4 as the total pressure.
  • This pressure [rho 4 and the second pressure [rho 2 detects the pressure measuring hole 5 or a pressure detecting hole penetrating the installed wall of the pipe 2 in the cylinder 1 8, a of the upper wall surface of the cylinder 1 basin (8 a ' ), 8 b (8 b ' ), 8 pressure is detected from one of the c P 3 ( ⁇ measures the differential pressure obtained by P x) and a combination of, be obtained by the flow velocity, the flow rate calculation it can.
  • FIG. 15 shows an example showing the relationship between the differential pressure and the fluid velocity by selecting and combining pressures of 11 pressure holes.
  • Curves I, II, and III shown in Fig. 15 show the relationship between the differential pressure between each pressure measurement hole and the flow velocity as follows.
  • Curve I shows the static pressure from the first pressure measurement hole which is one of the pressure detection holes 8a (8a '), 8b (8b'), and 8c of pipes 2 and 2 '. The entirety taken out from the third pressure measurement hole 11 of the flat hollow body 10 The relationship between the pressure difference and the fluid flow rate is shown.
  • the curve II is provided with the static pressure from the first pressure measurement hole 4 provided on the most narrowed cross section of the wall of the cylinder 1 and the upstream of the flat hollow body 10 of the cylinder 1.
  • 4 shows the relationship between the differential pressure from the static pressure from the second pressure measurement hole 5 and the flow velocity of the fluid.
  • the carp 1 II has a flow velocity relative to the differential pressure between the static pressure from the second pressure measurement hole 5 of the cylinder 1 and the total pressure from the third pressure measurement hole 11 of the flat hollow body 10. The relationship is shown below. The pressure measured in these pressure measurement holes is the highest since the pressure from the third pressure measurement hole 11 of the flat hollow body 10 is measured as the total pressure, and the other pressure measurement holes 4, 5, 8 a
  • the flow velocity of curve I is 2 m
  • Curve II is effective for measuring fluids with a flow velocity of 2 mZs to 4 m / s
  • Curve III is effective for measuring fluids with a flow velocity of 4 mZs or more. is there.
  • the flow velocity can be calculated with high accuracy. Note that the curve II in FIG. 15 shows the flow velocity only up to 4 m / s, but the differential pressure can be obtained with almost the same curve.
  • the cylinder 1 shown in FIGS.
  • Fluids that can be applied to the throttle flow meter as described above are not specified, but it is naturally applicable to liquids such as water and gases such as air, but contamination of impurities such as sand and mud. It can also be used in fluids that have been used.
  • the throttle flow meter according to the present invention as described above has the following effects.
  • the throttle flow meter can be formed by using cylinders and pipes made of general-purpose materials and does not require precise machining, so that it can be provided as an inexpensive flow meter.
  • the rectifying plate is provided at the most upstream part of the cylinder, so that the deviation of the speed distribution can be eliminated, and the straight pipe part that eliminates the deviation of the velocity distribution in the upstream and downstream areas of the cylinder is reduced. This makes it possible to perform highly accurate measurement even in an environment with little space.
  • the relationship between the generated differential pressure and the flow velocity and flow rate of the flowing fluid is expressed by a single square force force.
  • the range of the differential pressure generated is large, and the measurement error in the low flow velocity region as a performance of the manometer is large.
  • the throttle flow meter measures fluid pressure without requiring high-precision machining.
  • the equipment is provided, and the flow velocity and flow rate can be measured over a wide range by measuring the pressure over a wide range with high accuracy to obtain the differential pressure.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 内部を被測定流体が流れるシリンダ、および、このシリンダにその中心軸と直交するように貫通設置された絞り機構をなすためのパイプを有し、このパイプがシリンダの内径よりも小さい直径を有することから成る絞り流量計において、流れ方向に垂直な断面が最も絞られる断面上の箇所に形成された第1の圧力測定孔、および前記最も絞られた断面からシリンダ内径の1/2以上離れた上流の前記シリンダの壁部に形成された第2の圧力測定孔を有することを特徴とする。

Description

明 細 書 絞り流量計 技術分野
本発明は、 配管内の流体の流量や流速を測定するための絞り流量計に関する。 背景技術
従来、 配管内を流れる流量を測定する計測機器の一つとして、 差圧検出器が使 用されており、 この差圧検出器は、 絞り部を有するオリフィス、 ベンチユリ一管 等において静圧差をマノメータにより計測することができるようにした絞り流量 計をなすものであり、 流速、 流量の測定を可能にしている。
このような従来の差圧検出器は、 J I S規格にあるように精密な機械カ卩ェが必 要であり、 また、 流れが乱れた状態では測定精度が低下するため、 設置された機 器の上 ·下流域には十分な直管を設けることが必要である。 さらに、 差圧検出器 からの発生差圧は、 管内を流れる流速、 流量の自乗式として唯一のカープで表わ されるものである。
また、 被測流体が液体である場合、 オリフィスにおいては、 長期間の使用に伴 いエロージョンによるエツジ部の磨耗、 あるいは絞り部の前後にスラッジが堆積 することにより測定精度の低下を招く。
しかしながら、 上記の背景技術によれば、 精密な機械力卩ェを伴うことで、 高価 となり、 流量測定の必要性があるにも拘わらず設置を 送るケースがあった。 特 に、 昨今の注目を集めている環境問題で C O 2削減が最も遅れてレ、る民生用ビル は、 冷熱源に対して省エネルギー管理を行う必要性があるにも係わらず、 ィニシ ャルコストの面からほとんどが設置されていない。
また、 従来の技術による差圧検出器では、 測定精度を維持するために管内の流 体の流れが整流状態にある箇所に設置する必要性があり、 例えば、 Rエルボ等の 局部抵抗部の後に設置する場合には、 相当長い直管を設けることになり、 実際に 使用する現場では、 設置箇所に制約があり、 使用しずらいものであった。
さらに、 従来の技術による差圧検出器では、 発生する差圧と流れる流体の流速、 流量との関係が自乗カーブで表わされるために、 低流速域から高流速域までを単 一のマノメータで計測する場合、 発生する差圧の範囲が大きく、 マノメータの性 能によっては低流速域で測定誤差が大きくなる。 また、 長期間の使用に伴いエツ ジ部の磨耗、 あるいはスラッジの堆積を生じ、 測定精度の低下を招くという問題 があった。
さらに、 従来の差圧検出器として、 ピトー管を用いた場合、 全圧と静圧とを取 り出して、 それらの差圧を得るようにしたものであるが、 測定点における局所的 な速度しか得られず、 平均速度を算出するには、 同一断面内の幾つかの点におけ る速度を測定する必要がある。
また、 特開平 8— 2 1 0 8 8 7号公報に開示されているように、 流体が流れる 管体にその軸線に垂直に貫通して総圧検出用筒体が設けられ、 この総圧検出用筒 体に流体の流通方向に対向して開口された総圧検出用孔を備え、 その上流側にお ける管体の壁部に開口部を設けて静圧検出を行うようにしたものがある。
しかしながら、 この差圧検出器においては、 同一断面における複数の点におけ る検知が可能であるが、 低流速域においては大きな差圧を検出することができな レ、。
本発明は、 上記問題点に鑑みてなされたものであり、 精密な機械加工を必要と しない安価な製品で、 乱れた流れの状態下でも高精度の測定が可能であり、 さら に、 差圧検出器からの発生差圧と流速、 流量との関係が複数の自乗カーブとして 表わされ、 長期間にわたり、 安定した測定精度を維持することができる絞り流量 計を提供することを目的とするものである。
発明の開示
上記目的を達成するために、 本発明による絞り流量計は、 内部を被測定流体が 流れるシリンダ、 および該シリンダにその中心軸と直交するように貫通設置され た絞り機構をなすためのパイプ、 を有し、 このパイプがシリンダの内径よりも小 さい直径を有することから成る絞り流量計において、 流れ方向に垂直な断面が最 も絞られる断面上の箇所に形成された第 1の圧力測定孔、 および最も絞られた断 面からシリンダ内径の 1 2以上離れた上流のシリンダの壁部に形成された第 2 の圧力測定孔を有することを特徴とする。 また、 上記絞り流量計においては、 第 1の圧力測定孔が最も絞られる断面上の シリンダの壁部に形成されていることを特徴とする。
また、 上記絞り流量計において、 第 1の圧力測定孔が、 最も絞られる断面上の 前記パイプの壁面に形成されていることを特徴とする。
また、 上記絞り流量計において、 第 1の圧力測定孔が、 パイプの壁面における 最も絞られる断面から下流の壁面に形成されていることを特徴とする。
このような絞り流量計において、 シリンダの内部に、 第 2の圧力測定孔からシ リンダ内径の 1 / 2以上離れた上流に設置された整流用プレートを設けたことを 特徴とする。
上記のような絞り流量計においては、 シリンダにおける流体の流れ方向に垂直 な最も絞られた断面箇所よりも上流の位置に、 砲弾型の切断面を有する扁平形状 の中空体が設置され、 そして、 最も絞られる断面上の箇所に形成された第 1の圧 力測定孔、 中空体の上流の前記シリンダの壁部に形成された第 2の圧力測定孔、 および、 中空体にその向流方向に開孔して設けられた第 3の圧力測定孔を有する ことを特敷とする。
さらに、 この絞り流量計において、 第 1の圧力測定孔が前記最も絞られた断面 上の前記シリンダの壁部に形成されていることを特徴とする。
また、 この絞り流量計においては、 第 1の圧力測定孔が前記最も絞られる断面 上のパイプの壁面、 または、 第 1の圧力測定孔ょり下流域の前記パイプの壁面に 形成されていることを特徴とする。
また、 絞り流量計において、 第 1、 第 2、 第 3の圧力測定孔のいずれか 2つの 圧力測定孔を選択して、 これらの選択された圧力測定孔の間の差圧を検出するこ とにより、 広範囲の流速域においてマノメータに適した差圧を得ることができる ことを特徴とする。
本発明の上記のような絞り流量計において、 各圧力測定孔により検出される圧 力と、 差圧と流速との関係を説明する。
本発明の絞り流量計における差圧検出器は、 シリンダにその中心軸と直交する ようにパイプが貫通して設置され、 流路断面が一部絞らた構造を有している。 こ の絞られた断面においては、 流速が上昇するために、 結果的にその断面における 配管壁に設けられた第 1の圧力測定孔における静圧 P!は低下することになる。 この絞られた断面よりもシリンダの内径の 1 Z 2以上上流のシリンダ壁に設けら れた第 2の圧力測定孔において検出される静圧を P 2としたとき、 このような圧 力の低下分、 即ち、 差圧 Δ Ρ (= Ρ 2 - Ρ ι ) をマノメータで測定することによ りシリダ一内の流速を次の関数によって求めることができる。
V=K * ( 2 / * Δ Ρ ) ° · °
ここで、 Κ :流量係数、 ρ :流体の密度、 Δ Ρ :発生差圧 (静圧の低下分) 。 上記関数においては、 貫通して設けたパイプの径によって流路の絞り比を適宜 変えることができ、 オリフィスを使用した場合と同様に、 流量係数 Κを調整する ことができる。
例えば、 流速が低い場合は、 径の大きなパイプを貫通設置して、 絞りを大きく し、 発生する差圧を高めることができる。
一方、 流速が高い場合は、 径の小さなパイプを用いて、 絞りを小さくし、 発生 差圧を下げることができ、 また、 圧力損失を抑えることも可能となる。
一般的に、 このような絞り流量計を設置する配管は、 スペース上の問題から複 雑な 3次元的施工となるため、 そこを流れる流体の速度分布は未発達で不安定な 流れを呈している。 このような状態で、 精度よく流量を測定するために、 従来の 差圧検出器は、 その上下流域に十分な直管部を設けることを必要とした。
そこで、 本発明による流量計においては、 差圧検出器内部に整流機能を付加す ることで、 速度分布の偏りを是正させ配管施工上の制約を大幅に軽減させること ができるようにされている。
一般的には、 マノメータの測定誤差率は、 差圧が大きくなるにつれ小さくなる ことから、 流体からの検出圧力を高めることにより差圧検出器とマノメータを含 めた総合的な誤差率は少なくすることができる。
絞り機構を丸パイプや角パイプ等で形成した場合、 その断面上での速度分布は、 絞りを形成する部分の近傍において速くなり、 シリンダ壁に近づくにつれて減速 する傾向を示すことから、 絞り形成部分のパイプの壁面で圧力 Ρ 3 « Ρ i ) を 検出することで第 2の圧力測定孔における圧力 P 2との差圧が大きくとれる。 こ のことから上述の総合的誤差率を低減する手段として、 パイプのような絞り形成 部分の壁面に圧力測定孔を設けることが適当である。
また、 絞り形成部分よりも上流域に、 偏平形状をなすことで整流機能を備えた 多孔管を用いれば、 流体の圧力 P4 (全圧) を検出することにより他の圧力との 差圧を一層高めることができ、 マノメータの誤差を考慮して流速に応じた差圧を 得るように圧力測定孔を選択して採用することで、 より適切な測定が可能になる。 このために、 整流機能付の多孔管としては切断面が砲弾型をした偏平形状の中 空体が適当であり、 これにより上述の配管施工上の差圧検出器の上 ·下流域の直 管部分を短くすることができ、 このような制約が軽減できる効果も生まれる。 この多孔管からの圧力 P 4、 多孔管及び貫通設置されるパイプの上流域のシリ ンダ壁に設けた圧力測定孔からの圧力 P 2、 パイプを貫通設置した絞り形成部分 の断面におけるシリンダの壁面における圧力 Pい あるいは絞り形成部分のパイ プの壁面に設けた圧力測定孔からの圧力 P 3のような圧力を適宜組合わせること で発生差圧と流速に関した次式にて表される種々関係式が得られる。
V=K1 * (2/ρ * (Ρ4 - P l) ) °" °
V=K2 * (2/p * (P4 - P2) ) °· °
V=K3 * (2/p * (P4-P 3) ) °- 5
ここに Kl, K2, K3, ...は、 流量係数とし、 検出圧力の組合わせにより決 定される定数である。
上述の通り、 3箇所以上の圧力測定孔からの圧力を適宜組合わせることで、 マ ノメータは、 高!/、精度を保つ差圧領域での測定が可能となり、 結果として総合的 な測定誤差率の軽減を図ることができる。
また、 貫通設置されたパイプは、 その内部に温度センサを設ければ、 熱量計と することも可能となり、 温度センサがパイプ内部に内蔵されることにより渦振動 等による温度センサの破損も回避することができる利点もある。
本発明の他の目的、 特徴及び利点は添付図面に関する以下の本発明の実施の形 態の記載から明らかになるであろう。
図面の簡単な説明
図 1は、 本発明の一実施の形態による絞り流量計の斜視図、
図 2は、 図 1に示す流量計の部分破断上面図、 図 3は、 本発明の一実施の形態による絞り流量計に整流用プレートを備えたも のの斜視図、
図 4は、 図 3に示す絞り流量計の部分破断上面図、
図 5は、 同絞り流量計に他の実施例の整流プレートを備えたものの斜視図、 図 6は、 図 5に示す絞り流量計の部分破断上面図、
図 7は、 本発明の他の実施の形態による絞り流量計の斜視図、
図 8は、 図 7に示す絞り流量計の部分破断上面図、
図 9は、 同絞り流量計における絞り部分の速度分布を示す断面図、
図 1 0は、 本発明のさらに他の実施の形態による絞り流量計の斜視図、 図 1 1は、 図 1 0に示す絞り流量計の部分破断断面図、
図 1 2は、 本発明のその上さらに他の実施の形態による絞り流量計の斜視図、 図 1 3は、 図 1 2に示す絞り流量計の部分破断上面図、
図 1 4は、 本発明による絞り流量計が適用される配管システムの一例を示す概 略図、 および
図 1 5は、 本発明による絞り流量計において得られ差圧と流速との関係を示す 線図である。
発明を実施するための最良の形態
以下、 本発明の実施の形態による絞り流量計を図面を参照して説明する。 図 1は、 本発明の一実施の形態による絞り流量計の斜視図であり、 被測定流体 が内部を矢印方向に流れる所定の長さを有するシリンダ 1と、 このシリンダ 1の 中心軸に対して直交するように端部をその壁部から突出させて貫通して設置され たパイプ 2とを備えて、 このパイプ 2により絞り機構が形成される。 そして、 こ のようなパイプ 2により、 最も絞られる部分を形成するシリンダ 1の断面におい て、 シリンダ 1の壁部に形成された第 1の圧力測定孔 4を備え、 そして、 この第 1の圧力測定孔 4からシリンダ 1の内径の 1 Z 2以上離れた上流のシリンダ 1の 壁部に形成された第 2の圧力測定孔 5を備えていて、 これらの圧力測定孔 4 , 5 には圧力取り出しのための管継手 3, 3が取り付けられ、 さらに、 シリンダ 1の 両端部には、 図 1 4に示されるような配管システムへの取付けのためのフランジ 6を備えている。 これらの圧力検出器のシリンダ 1およびパイプ 2は、 铸鉄、 他の鋼材、 真鍮等 の金属製、 あるいは樹脂製等の材質を問わないものであり、 流体が接触して流れ る面の状態も、 通常の素材の面のままでよく、 特に、 精度の高い仕上面を要求す るものではない。
図 1 4に示される配管システムは、 ポンプ 5 0と貯水タンク 5 1の取水部 5 8 と放水部 5 9との間にバルブ 5 5, 5 6, 5 7を介して配管される管路 5 2, 5 3 , 5 4等を有していて、 直管部 5 2, 5 3の間に絞り流量計のシリンダ 1がフ ランジ 6によって取り付けられ、 流速、 流量の測定を行うことができるものであ る。
上記構成の絞り流量計においては、 シリンダ 1の壁面の第 1の圧力測定孔 4か ら静圧として、 絞り部分に流れる流体の圧力 P ;Lを継手 3を経由して取り出して 検出することができ、 そして、 第 2の圧力測定孔 5において、 流体の絞り部より も上流域の圧力を継手 3を経由し静圧として圧力 P 2を取り出して検出すること ができる。
その際の両圧力は、 P i < P 2の関係を有して検出される。 これらの圧力 Pい P 2の差圧 Δ Ρ = Ρ 2— P 1によって流速、 流量を計算して求めることができる。 次に、 図 3から図 6までに示す本発明の実施の形態による絞り流量計は、 シリ ンダ 1において第 2の圧力測定孔 5のさらに上流に、 1枚の整流用プレート 7を 設けていて、 速度分布の偏りを無くすようにしている。 それぞれの測定孔 4、 5 における検出圧力が流体の流れの乱れによる影響を無くすように、 シリンダ 1内 を整流するようにしたものである。 これにより、 図 1 4に示すような配管システ ムにおいても流量計の上流 ·下流の配管に速度分布の偏りを無くすための直管部 5 2, 5 3の長さを短くすることができる。
図 3および図 4に示す整流用プレート 7は、 貫通設置されたパイプ 2に対して 平行になるように配置されている。 図 5およぴ図 6に示された絞り流量計におい ては、 2枚のプレートを交差した整流プレート 7 'がシリンダ 1内に設けられた ものであり、 図 3および図 4に示されたものと同様に速度分布の偏りを無くすよ うにしたものである。 なお、 この整流プレートはメッシュ構造ゃハニカム構造の ものであっても良い。 次に、 本発明の他の実施の形態による絞り流量計を図 7から図 8までを参照し て説明する。 上記の実施の形態による絞り流量計と相違するのは、 第 1の圧力測 定孔をシリンダ 1の壁部に設ける代わりに、 シリンダ 1に貫通設置されたパイプ 2'の壁面に設けたものである。 この場合の最も絞られた断面における流体の速 度分布は、 図 9に示すとおりであり、 シリンダ 1の壁部に第 1の圧力測定孔を設 けた場合よりも、 高い速度域での圧力を測定することができることを示している。 この速度分布を考慮して、 第 1の圧力測定孔がパイプ 2'の壁面で、 流路が最 も絞られた断面に位置する検出孔 8 a, あるいは図 8に点線で示すような最も絞 られた断面よりも下流域の検出孔 8 b , あるいは同様に図 8に点線で示すような 最も下流部分の検出孔 8 cとして設けられたものであっても良い。 さらに、 これ らの検出孔のうち検出孔 8 a, 8 bに対しては、 図 8における流れ線方向のパイ プ 2'の中心線に対しての対称位置に検出孔 8 a'、 8 b'を形成して、 それぞれ圧 力測定孔 8 a— 8 a,、 あるいは圧力測定孔 8 b— 8 b'として設けてもよい。
さらに、 これらの圧力測定孔 8 a— 8 a'、 8 b _ 8 b '、 8 cは、 図 7に示さ れるように、 パイプ 2'の最も絞られる断面の下流域における、 それぞれの検出 孔 8 a (8 a,) 、 8 b (8 b') 、 8 cの位置において、 パイプ 2'の軸線に沿つ たパイプ 2 'の壁面位置に 2箇所以上設けられてもよい。
これらの検出孔 8 a (8 a') 、 8 b (8 b') 8 cからの圧力は、 パイプ 2, の端部の継手 3'から圧力 P 3として取り出される。 この検出された圧力 P 3は、 P 3< P 2の関係を有し、 継手 3'から検出される。 これらの圧力 P 2, P 3の差 圧 ΔΡ = Ρ 2- Ρ 3から流速、 流量を計算することができる。
このような図 7およぴ図 8に示された絞り流量計においては、 図 3から図 6ま でに示すような整流用プレート 7, 7'を設けてもよく、 設けることにより、 流 体の整流を行うことができるので、 速度分布の偏りを是正することができる。 本発明のその上さらに他の実施の形態による絞り流量計を、 図 1 0から図 1 3 までに示す絞り流量計において説明する。
この実施の形態による絞り流量計が上記の図 1乃至図 7に示すものと相違する のは、 シリンダ 1の内部にパイプ 2、 2'と第 2の圧力測定孔 5との間に断面砲 弾型をした扁平状の中空体 1 0をパイプ 2、 2'に平行に設けていて、 この中空 体 10が整流機能を有するものである。 この中空体 10には、 流体の流れに対向 して先端部には、 シリンダ 1の軸線に対して垂直な中空体 10の壁面に沿って複 数の圧力測定孔 1 1が適当な間隔を置いて設けられ、 第 3の圧力測定孔 1 1で検 出された圧力がシリンダ 1の外側に突出する上端部から圧力 P4として取り出さ れ、 全圧として検出される。
この圧力 P 4とその上流域のシリンダ 1の壁面の第 2の圧力測定孔 5から検出 する圧力 P 2、 または流路が最も絞られた断面上でのシリンダ 1の壁面に設けた 第 1の圧力測定孔 4からの圧力 Pi «P2) の組合わせから差圧 ΔΡ = Ρ4- Ρ! (または ΔΡ = Ρ4- Ρ 2) を計測して、 流速、 流量を計算で求めることがで さる。
図 12およぴ図 13に示される絞り流量計は、 図 7および図 8に示される絞り 流量計に、 図 10および図 1 1に示される断面砲弾型の扁平状の中空体 10を設 けたものである。 この中空体 1 0は、 同様に整流機能を有するとともに、 第 3の 圧力測定孔 1 1として、 圧力測定孔 1 1が流れに対向して先端部に開孔され、 シ リンダ 1の軸線に垂直に複数個適当な間隔を置いて中空体 10に設けられている。 第 3の圧力測定孔 1 1は、 全圧として圧力 Ρ 4を検出することができる。
この圧力 Ρ 4とその上流域のシリンダ 1の壁面の第 2の圧力測定孔 5から検出 する圧力 Ρ 2、 またはシリンダ 1に貫通設置されたパイプ 2の壁面の圧力検出孔 8 a ( 8 a ') , 8 b (8 b') , 8 cの何れかから検出された圧力 P 3 (<P x) とを組合わせて得られる差圧を計測して、 流速、 流量を計算により得ることがで きる。
このように圧力測定孔を、 第 2の圧力測定孔 5と、 第 1の圧力測定孔 4、 パイ プ 2の検出孔 8 a, 8 b, 8 c、 あるいは扁平状の中空体 10の第 3の圧力測定 孔 1 1カゝらの圧力を選択して組合わせ、 差圧と流体の速度との関係を示した一例 が図 15に示されている。
図 15に示されたカーブ I、 I I、 I I Iはそれぞれ各圧力測定孔間の差圧対 流速との関係を以下のように示している。 カーブ Iは、 パイプ 2, 2'の圧力検 出孔 8 a (8 a') , 8 b (8 b') , 8 cのいずれかである第 1の圧力測定孔か らの静圧と、 扁平状の中空体 10の第 3の圧力測定孔 1 1とから取り出された全 圧との差圧と、 流体の流速との関係を示す。 また、 カーブ I Iは、 シリンダ 1の 壁部の最も絞られた断面に設けた第 1の圧力測定孔 4からの静圧と、 同じくシリ ンダ 1の扁平状の中空体 10よりも上流に設けられた第 2の圧力測定孔 5からの 静圧との差圧に対する流体の流速の関係を示す。 さらに、 カープ 1 I Iは、 シリ ンダ 1の第 2の圧力測定孔 5からの静圧と、 扁平状の中空体 10の第 3の圧力測 定孔 1 1からの全圧との差圧に対する流速との関係を示す。 これらの圧力測定孔 において測定される圧力は、 扁平状の中空体 10の第 3の圧力測定孔 1 1からの 圧力が全圧として測定されるので最も高く、 他の圧力測定孔 4, 5, 8 a
(8 a') , 8 b ( 8 b ') , 8 cのそれぞれにおいて測定されるのは静圧であり、 第 2の圧力測定孔 5、 第 1の圧力測定孔 4、 そしてパイプ 2, 2'における測定 孔 8 a (8 a') , 8 b (8 b') , 8 cにおいて検出される静圧の順に低い静圧 が検出されるので、 これらの圧力測定孔を 2つ選択することにより、 測定される 流体の流速に適した差圧を選択して取り出すことができる。 この差圧を使用して、 上記式を用いれば、 流速、 流量が計算によって得られる。
具体的には、 この図 1 5から明らかなように、 マノメータ等の測定範囲と誤差 を考慮し、 例えば、 マノメータの最大測定レンジが 1 OKp aである場合、 カー ブ Iは、 流速が 2 m/ s以下の流体の測定において有効であり、 カーブ I Iは、 流速が 2mZs〜4m/sの流体の測定において有効であり、 そして、 カーブ I I Iは、 流速が 4 mZs以上の流体の測定に有効である。 このように、 マノメー タ等の測定誤差を考慮して、 測定対象ととなる流速範囲で大きな差圧が得られる カーブを選択すれば、 精度の高い流速の計算が可能となる。 なお、 図 15に示さ れるカーブ I I Iは、 流速が 4m/ sまでしか示されていないが、 ほぼ同じカー ブで差圧を得ることができるものである。
このような、 カーブ I , 1 1, 1 1 Iに基づき、 マノメータの測定誤差の影響 の少ない差圧と速度の関係を考慮して、 図 10から図 13までに示されたシリン ダ 1の最も絞られた断面における第 1の圧力測定孔 4, パイプ 2に設けられ圧力 測定孔 8 a (8 a') , 8 b (8 b') , 8 cのおのおの、 そして、 扁平状の中空 体 10の第 3の圧力測定孔 1 1のいずれかの 2つの圧力測定孔を選択して、 両測 定孔からの圧力を検出して差圧を得れば、 その差圧によって流体の流速、 流量を 計算により求めることができる。
上記のような絞り流量計に適用できる流体については、 特定していないが、 水 のような液体、 空気等のガスに適用することができることは当然であるが、 砂、 泥等の不純物の混入した流体においても使用することができる。
以上述べたような本発明による絞り流量計は、 以下のような効果を奏するもの である。
絞り流量計は、 汎用の材質を問わないシリンダ、 パイプを用いることにより形 成することができ、 精密な機械加工を必要としないので、 安価な流量計として提 供することができる。
このような絞り流量計においては、 整流プレートをシリンダの最上流部に設け たので、 速度分布の偏りをなくすことができ、 シリンダの上下流域の速度分布の 偏りを無くす直管部を少なくすることができ、 スペースの少ない環境においても 高い精度の測定を行うことができる。
また、 流体が液体の場合、 構造上エッジ"部や淀みを生じる箇所が少ないこと から、 エロージョンによる摩耗ゃスラッジの堆積が少なく、 長期間に亘り高い精 度での測定を維持することができる。
そして、 従来の技術による差圧検出器では、 発生する差圧と流れる流体の流速、 流量との両者の関係が唯一の自乗力ーブで表わされるために、 低流速域から高流 速域までを単一のマノメータで計測する場合、 発生する差圧の範囲が大きく、 マ ノメータの性能として低流速域で測定誤差が大きくなるという課題に対し、 本発 明は、 3力所以上の圧力検出部を有する構造を提供することができるので、 差圧 を得るための圧力測定孔の組合せが複数得られるので、 マノメータを含めた総合 的誤差率を低減することができ、 広範囲に亘る流速、 流量域で高精度の測定を行 うことができる。
上記記載は実施例についてなされたが、 本発明はそれに限らず、 本発明の精神 と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは 当業者に明らかである。
産業上の利用の可能性
本発明による絞り流量計は、 精度の高い機械加工を必要としない流体圧力測定 装置が提供され、 差圧を得るために広範囲の圧力測定を高精度に行うことにより 流速、 流量の広範囲の測定が可能である。

Claims

請求の範囲
1 . 内部を被測定流体が流れるシリンダ、 およぴ該シリンダにその中心軸と 直交するように貫通設置された絞り機構をなすためのパイプ、 を有し、 該パイプ が前記シリンダの内径よりも小さい直径を有することから成る絞り流量計におい て、 流れ方向に垂直な断面が最も絞られる断面上の箇所に形成された第 1の圧力 測定孔、 および前記最も絞られた断面からシリンダ内径の 1 Z 2以上離れた上流 の前記シリンダの壁部に形成された第 2の圧力測定孔を有することを特徴とする 絞り流量計。
2 . 請求項 1に記載された絞り流量計において、 前記第 1の圧力測定孔が前 記最も絞られる断面上の前記シリンダの壁部に形成されていることを特徴とする 絞り流量計。
3 . 請求項 1または請求項 2のいずれか 1項に記載された絞り流量計におい て、 前記第 1の圧力測定孔が、 前記最も絞られる断面上の前記パイプの壁面に形 成されていることを特徴とする絞り流量計。
4 . 請求項 3に記載された絞り流量計において、 第 1の圧力測定孔が、 前記 パイプの壁面における前記最も絞られる断面から下流の壁面に形成されているこ とを特徴とする絞り流量計。
5 . 請求項 1から請求項 4までのいずれか 1項に記載された絞り流量計にお いて、 前記シリンダの內部に、 前記第 2の圧力測定孔からシリンダ内径の 1 Z 2 以上離れた上流に設置された整流用プレートを設けたことを特徴とする絞り流量 計。
6 . 内部を被測定流体が流れるシリンダ、 およぴ該シリンダの中心軸と直交 するように貫通設置したパイプ、 を有し、 該パイプが前記シリンダの内径よりも 小さな直径を有することからなる絞り流量計において、 前記シリンダにおける流 体の流れ方向に垂直な最も絞られた断面箇所よりも上流の位置に、 砲弾型の切断 面を有する扁平形状の中空体が設置され、 そして、 前記最も絞られる断面上の箇 所に形成された第 1の圧力測定孔、 前記中空体の上流の前記シリンダの壁部に形 成された第 2の圧力測定孔、 および、 前記中空体にその向流方向に開孔して設け られた第 3の圧力測定孔を有することを特徴とする絞り流量計。
7 . 請求項 6に記載された絞り流量計において、 前記第 1の圧力測定孔が前 記最も絞られた断面上の前記シリンダの壁部に形成されていることを特徴とする 絞り流量計。
8 . 請求項 6に記載された絞り流量計に いて、 前記第 1の圧力測定孔が前 記最も絞られる断面上の前記パイプの壁面、 または、 前記第 1の圧力測定孔より 下流域の前記パイプの壁面に形成されていることを特徴とする絞り流量計。
9 . 請求項 6から請求項 8までのいずれか 1項に記載された絞り流量計にお いて、 前記第 1、 第 2、 第 3の圧力測定孔のいずれか 2つの圧力測定孔を選択し て、 該選択された圧力測定孔の間の差圧を検出することにより、 広範囲の流速域 においてマノメータに適した差圧を得ることができることを特徴とする絞り流量 計。
PCT/JP2002/007863 2002-08-01 2002-08-01 絞り流量計 WO2004013580A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2002/007863 WO2004013580A1 (ja) 2002-08-01 2002-08-01 絞り流量計
AU2002325496A AU2002325496A1 (en) 2002-08-01 2002-08-01 Restriction flowmeter
DE10297234T DE10297234T5 (de) 2002-08-01 2002-08-01 Restriktions-Durchflussmesser
CNB02815357XA CN1300556C (zh) 2002-08-01 2002-08-01 节流式流量计
CA002456457A CA2456457A1 (en) 2002-08-01 2002-08-01 Restriction flowmeter
US10/485,154 US6912919B2 (en) 2002-08-01 2002-08-01 Restriction flowmeter
JP2004525754A JP4159544B2 (ja) 2002-08-01 2002-08-01 絞り流量計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/007863 WO2004013580A1 (ja) 2002-08-01 2002-08-01 絞り流量計

Publications (1)

Publication Number Publication Date
WO2004013580A1 true WO2004013580A1 (ja) 2004-02-12

Family

ID=31217250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007863 WO2004013580A1 (ja) 2002-08-01 2002-08-01 絞り流量計

Country Status (7)

Country Link
US (1) US6912919B2 (ja)
JP (1) JP4159544B2 (ja)
CN (1) CN1300556C (ja)
AU (1) AU2002325496A1 (ja)
CA (1) CA2456457A1 (ja)
DE (1) DE10297234T5 (ja)
WO (1) WO2004013580A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243789A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp 換気装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO324571B1 (no) * 2005-04-20 2007-11-26 Roxar Flow Measurement As Fôring for trykkmaler.
US7278320B1 (en) * 2006-03-27 2007-10-09 Honeywell International, Inc. Omni-directional pressure pickup probe
US20080184812A1 (en) * 2007-02-05 2008-08-07 Apex Medical Corp. Air flow measurement device
JP2009168688A (ja) * 2008-01-17 2009-07-30 Mitsubishi Heavy Ind Ltd 流体計測装置
CH701755B1 (de) * 2009-09-07 2014-03-14 Hamilton Medical Ag Durchflussmessfühler.
CN101871800A (zh) * 2010-06-28 2010-10-27 江阴市节流装置厂有限公司 整体机加工式文丘里管及其使用方法
CN102213605A (zh) * 2011-06-03 2011-10-12 徐蠡 带引压槽的脉动式流量计
CN102322903A (zh) * 2011-06-03 2012-01-18 徐蠡 带引压管的脉动式流量计
US9903200B2 (en) * 2011-07-19 2018-02-27 Baker Hughes, A Ge Company, Llc Viscosity measurement in a fluid analyzer sampling tool
US9250108B2 (en) * 2013-09-27 2016-02-02 Rosemount Inc. Differential pressure based flow measurement device having improved pitot tube configuration
DK3012705T3 (en) * 2014-10-22 2017-03-27 Danfoss As Heat exchanger arrangement, heating system and method for operating a heating system
CN105698879A (zh) * 2016-04-08 2016-06-22 大唐彬长发电有限责任公司 一种多测点流量测量装置
CN106500780B (zh) * 2016-12-28 2019-10-25 河北大学 一种内外管式液体流量计及流量检测方法
US11311689B2 (en) * 2017-02-20 2022-04-26 Weinmann Emergency Medical Technology Gmbh & Co. Kg Breathing apparatus comprising a differential pressure sensor
US10768031B2 (en) * 2018-01-17 2020-09-08 Johnson Controls, Inc. Air duct airflow sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210887A (ja) * 1995-02-03 1996-08-20 Ryohei Ishii 差圧式流量計
JPH10253409A (ja) * 1997-03-14 1998-09-25 Yamatake:Kk 絞り流量計の絞り機構

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802265A (en) * 1972-09-07 1974-04-09 Allied Chem Apparatus for use in measuring the flow velocity of fluid within a conduit
JPH076282B2 (ja) 1992-06-30 1995-01-30 有限会社黒田建設 傾斜スラブ用金物
US5379650A (en) * 1992-09-23 1995-01-10 Korr Medical Technologies Inc. Differential pressure sensor for respiratory monitoring
US5365795A (en) * 1993-05-20 1994-11-22 Brower Jr William B Improved method for determining flow rates in venturis, orifices and flow nozzles involving total pressure and static pressure measurements
US5789660A (en) * 1996-07-15 1998-08-04 Novametrix Medical Systems, Inc. Multiple function airway adapter
US6164142A (en) * 1997-10-31 2000-12-26 Dimeff; John Air flow measurement device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210887A (ja) * 1995-02-03 1996-08-20 Ryohei Ishii 差圧式流量計
JPH10253409A (ja) * 1997-03-14 1998-09-25 Yamatake:Kk 絞り流量計の絞り機構

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243789A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp 換気装置

Also Published As

Publication number Publication date
AU2002325496A1 (en) 2004-02-23
CA2456457A1 (en) 2004-02-12
JP4159544B2 (ja) 2008-10-01
CN1300556C (zh) 2007-02-14
CN1539076A (zh) 2004-10-20
DE10297234T5 (de) 2005-09-29
JPWO2004013580A1 (ja) 2006-09-21
US6912919B2 (en) 2005-07-05
US20040187598A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
WO2004013580A1 (ja) 絞り流量計
US6463810B1 (en) Method and device for bi-directional low-velocity flow measurement
US7047822B2 (en) Devices, installations and methods for improved fluid flow measurement in a conduit
RU2491513C2 (ru) Усредняющая диафрагма с отверстиями, расположенными рядом с внутренней стенкой трубы
KR20100013325A (ko) 압력차 유량계
CA2895864A1 (en) Method for generating a diagnostic from a deviation of a flow meter parameter
US7533579B2 (en) Reduced bore vortex flowmeter having a stepped intake
EP0277121A1 (en) FLOWMETER FOR FLUID.
US6923074B2 (en) Ball valve with flow-rate gauge incorporated directly in the ball
EP3112878B1 (en) Device for measuring total pressure of fluid flow
JP7085027B2 (ja) ガス用の小型超音波流量計
AU600409B2 (en) Trapped-vortex pair flowmeter
Howe et al. Venturi Tubes, Flow Tubes, and Flow Nozzles
KR100798211B1 (ko) 유체 제한식 유량계
Jackson et al. A three-path ultrasonic flow meter with fluid velocity profile identification
US10345182B2 (en) Sensor element for recording at least one property of a fluid medium
Howe et al. Orifices
CN205861133U (zh) 文丘里双差压超声流量测量装置
RU2157974C2 (ru) Датчик давления для расходомера
JP2602148Y2 (ja) オリフィス流量検出端
Krishna et al. Experimental Analysis of Multiport Averaging Device and Effect of Body Shape on Flow Coefficient.
JPH06180243A (ja) 渦流量計
Symbol et al. WH HOWE (1969) JB ARANT (1982) LD DINAPOLI (1993)
JP4411917B2 (ja) 渦流量計
KR20060105072A (ko) 교란이 있는 원관내 평균속도 측정방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004525754

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047000549

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10485154

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002815357X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2456457

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase