WO2004011777A1 - Rankine cycle system - Google Patents

Rankine cycle system Download PDF

Info

Publication number
WO2004011777A1
WO2004011777A1 PCT/JP2003/009222 JP0309222W WO2004011777A1 WO 2004011777 A1 WO2004011777 A1 WO 2004011777A1 JP 0309222 W JP0309222 W JP 0309222W WO 2004011777 A1 WO2004011777 A1 WO 2004011777A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
expander
pressure
flow rate
working medium
Prior art date
Application number
PCT/JP2003/009222
Other languages
French (fr)
Japanese (ja)
Inventor
Akihisa Sato
Shigeru Ibaraki
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to EP03771275A priority Critical patent/EP1536105A4/en
Priority to AU2003248085A priority patent/AU2003248085A1/en
Priority to US10/522,063 priority patent/US20060101821A1/en
Publication of WO2004011777A1 publication Critical patent/WO2004011777A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor

Definitions

  • the present invention relates to an evaporator that generates a gas-phase working medium by heating a liquid-phase working medium with exhaust gas of an engine, and a positive displacement type that converts heat energy of the gas-phase working medium generated by the evaporator into mechanical energy.
  • a Rankine cycle device comprising the expander.
  • Japanese Unexamined Patent Publication No. 2000-3344585 describes that in a waste heat recovery device that drives a turbine by heating refrigerant vapor of an engine cooling system by waste heat of the engine, the pressure of the cooling path or It describes that the thermal efficiency is improved by optimally controlling the temperature according to the operating state of the engine. Specifically, as the engine speed and the engine load increase, the target value of the cooling path pressure is set lower, and the discharge amount of the refrigerant circulation pump is controlled so that the actual pressure matches the target pressure. I have. In a Rankine cycle device equipped with a positive displacement expander, if the steam pressure at the inlet of the expander matches the target steam pressure (optimum steam pressure), as shown in Fig.
  • the steam pressure at the outlet of the expander Becomes a pressure commensurate with the expansion ratio of the expander, but if the steam pressure at the inlet is too high, excess energy is left in the steam discharged from the outlet of the expander, and energy is wasted. There is. Conversely, if the steam pressure at the inlet is too low, the steam discharged from the outlet of the expander will have a negative pressure. ⁇ There is a problem that the expander performs negative work and reduces efficiency.
  • the present invention has been made in view of the above circumstances, and in a Rankine cycle device, a target pressure of a gas phase working medium at an inlet of an expander is set without changing a supply amount of a liquid phase working medium to an evaporator.
  • the purpose is to precisely control the pressure.
  • an evaporator for heating a liquid-phase working medium with exhaust gas of an engine to generate a gas-phase working medium, and a heat energy of the gas-phase working medium generated by the evaporator
  • the pressure of the gas phase working medium at the inlet of the expander should be matched with the target pressure.
  • the feedforward value was calculated based on the flow rate of the phase working medium and the target pressure, and the difference between the pressure and the target pressure of the gas phase working medium at the inlet of the expander was calculated based on the flow rate of the gas phase working medium.
  • Control means is provided to calculate the feedback value by multiplying the feedback gain, and to control the rotation speed of the expander based on the feedforward value and the addition / subtraction value of the feedback value.
  • Rankine cycle system is proposed which is characterized in that the.
  • the feedforward value is calculated based on the flow rate of the gas-phase working medium at the outlet of the evaporator and the target pressure of the gas-phase working medium at the inlet of the expander, and the feedforward value at the inlet of the expander is calculated.
  • the feedback value is calculated by multiplying the deviation between the pressure of the gas phase working medium and the target pressure by the feedback gain calculated based on the flow rate of the gas phase working medium, and the expansion is performed based on the feedforward value and the addition / subtraction value of the feedback value.
  • Control the rotation speed of the expander compensating that the change characteristics of the pressure of the gas-phase working medium when the rotation speed of the expander changes vary depending on the flow rate of the gas-phase working medium.
  • the pressure of the gas phase working medium at the inlet of the expander can be made to match the target pressure with good responsiveness and high accuracy without changing the supply amount of the liquid phase working medium.
  • the controller 20 in the embodiment corresponds to the control means of the present invention.
  • Fig. 1 is a block diagram of a Rankine cycle device and its control system.
  • Fig. 2 searches for a target steam pressure from steam energy and a target steam temperature.
  • Fig. 3 is a graph showing the relationship between the optimum steam temperature and the maximum overall efficiency of the evaporator and the expander.
  • Fig. 4 is a graph showing the relationship between the inlet pressure and the outlet pressure of the expander.
  • 5A and 5B are graphs showing changes in steam pressure when the rotational speed of the expander is changed in steps, and
  • Figs. 6A and 6B are when the feedback gain is fixed.
  • 7A and 7B are diagrams showing the convergence state of the steam pressure when the feedback gain is variable, and FIG.
  • FIG. 8 is a flowchart of the main routine of the steam pressure control.
  • 9 is a flowchart of the subroutine of step S3 of the main routine
  • FIG. 10 is a flowchart of the subroutine of step S4 of the main routine
  • Figure 12 is a table for retrieving the feedback gain kp from the steam flow Q.
  • Figs. 13 to 16 show a second embodiment of the present invention.
  • Fig. 13 is a block diagram of a Rankine cycle device and its control system.
  • Fig. 14 is a flowchart of a main routine of steam pressure control.
  • 15 is a flowchart of a subroutine of step S34 of the main routine, and FIG.
  • FIG. 16 is a map for retrieving a specific volume V of steam from a steam pressure P and a steam temperature.
  • FIGS. 17 to 20 show a third embodiment of the present invention.
  • FIG. 17 is a block diagram of a Rankine cycle device and its control system.
  • FIG. 18 is a front view of a main routine of steam pressure control.
  • FIG. 19 is a flowchart of a subroutine of step S53 of the main routine
  • FIG. 20 is a flowchart of a subroutine of step S54 of the main routine.
  • FIGS. 21 to 25 show a fourth embodiment of the present invention.
  • FIG. 21 is a block diagram of a Rankine cycle ⁇ / device and its control system
  • FIG. 22 is a flow chart of a main routine of steam pressure control.
  • FIG. 23 is a flowchart of the subroutine of step S72 of the main routine.
  • FIG. 24 is a flowchart of a subroutine of step S73 of the main routine.
  • FIG. 25 is a flowchart of the subroutine of step S73.
  • 15 is a flowchart of a subroutine of step S74.
  • 1 to 12 show a first embodiment of the present invention.
  • the Rankine cycle device for recovering the thermal energy of the exhaust gas from the engine 11 of the vehicle uses a high-temperature and high-pressure gas by heating the liquid-phase working medium (water) with the exhaust gas from the engine 11.
  • An evaporator 1 2 that generates a phase working medium (steam), and a volume that converts the thermal energy of the high-temperature, high-pressure steam generated by the evaporator 1 2 into mechanical energy
  • Type expander 13 condenser 14 that cools steam discharged from expander 13 and condenses it into water
  • tank 15 that stores water discharged from condenser 14, tank
  • a water supply pump 16 for sucking water in 15 and an injector 17 for injecting water sucked by the water supply pump 16 into the evaporator 12 are arranged on a closed circuit.
  • the motor generator 18 connected to the expander 13 is arranged between the engine 11 and the driving wheels, and the motor generator 18 functions as the motor and the output of the engine 11 In addition to assisting the vehicle, when the vehicle decelerates, the motor generator 18 can function as a generator to recover the kinetic energy of the vehicle as electric energy.
  • the motor generator 18 may be connected to the expander 13 as a single unit and have only the function of generating electric energy.
  • the load applied to the expander 13 from the motor generator 18 is adjusted by adjusting the load (power generation amount) of the motor generator 18 to rotate the expander 13. Control the number.
  • the controller 20 has a signal from a steam flow sensor 21 for detecting the steam flow at the outlet of the evaporator 12 and a signal from a steam pressure sensor 22 for detecting the steam pressure at the inlet of the expander 13. And a signal.
  • the controller 20 includes target steam pressure setting means 23 for setting a target steam pressure that is a target value of the steam pressure at the inlet of the expander 13.
  • the target steam pressure setting means 23 retrieves the target steam pressure based on the target steam temperature and the steam energy (steam flow rate).
  • the steam temperature at the outlet of the evaporator 12 is adjusted so that the total efficiency of the evaporator 12 and the expander 13 is maximized (that is, the optimum steam temperature). It is controlled by adjusting the amount of water supplied from 6 to the evaporator 12. That is, as shown in FIG. 3, the efficiency of the evaporator 12 and the efficiency of the expander 13 change depending on the steam temperature.
  • the steam pressure at the inlet of the expander 13 is controlled to the target steam pressure for the following reasons. That is, as shown in FIG. 4, the steam pressure at the inlet of the expander 13 is If the steam pressure matches the target steam pressure, the steam pressure at the outlet of the expander 13 becomes a pressure corresponding to the expansion ratio of the expander 13, but if the inlet steam pressure is too high, the steam from the outlet of the expander 13 will There is a problem that excess energy is left in the discharged steam and energy is wasted. Conversely, if the inlet steam pressure is too low, the steam discharged from the outlet of the expander 13 will have a negative pressure, and there will be a problem that the expander 13 will perform negative work and reduce efficiency. .
  • the load applied to the expander 13 from the motor generator 18 may be adjusted to control the number of revolutions of the expander 13.
  • the steam pressure increases when the rotation speed of the expander 13 is reduced, and conversely, the steam pressure decreases when the rotation speed of the expander 13 is increased.
  • the response of the change in steam pressure changes depending on the steam flow rate, and when the steam flow rate is low, the response is low, and it takes more than 100 seconds for the steam pressure to reach a steady state.
  • the steam flow rate is high, the response becomes high, and it takes less than 10 seconds for the steam pressure to reach a steady state.
  • the pressure difference before and after the injector 17 is detected and the Ti value is controlled so as to match the target water supply amount, or the discharge pressure of the water supply pump 16 is detected, and the rotation speed of the water supply pump 16 is determined. If controlled, the amount of water supplied to the evaporator 12 is kept constant even if the number of revolutions of the expander 13 changes, and the steam temperature at the outlet of the evaporator 11 can be kept at the optimum steam temperature. it can.
  • the gist of the present invention is that the steam pressure at the inlet of the expander 13 is equal to the target steam pressure.
  • the feedback gain In performing feedback control of the number of revolutions of the expander 13 in order to match the feedback gain, the feedback gain must be changed according to the steam flow rate.
  • step S1 of the flowchart of FIG. 8 the steam flow rate Q at the outlet of the evaporator 12 is detected by the steam flow rate sensor 21 in step S1, and in step S2, the inlet of the expander 13 is detected by the steam pressure sensor 22.
  • the feedforward value N FF is set so as to decrease as the steam flow rate Q decreases and the target steam pressure P o increases, and to increase as the steam flow rate Q increases and the target steam pressure P o decreases. ing.
  • step S4 a feedback value N FB of the rotation speed of the expander 13 is calculated. That is, the steam pressure P at the inlet of the expander 13 detected by the steam pressure sensor 22 in step S 21 of the flowchart of FIG. 10 and the target steam pressure P o set by the target steam pressure setting means 23
  • step S23 the gain kp is multiplied by the deviation ⁇ to calculate a feedback value N FB of the rotational speed of the expander 13.
  • step S 5 if the vapor pressure P is a target steam pressure P 0 or more in step S 5, by adding the feedback value N FB to the rotational speed of the feed-forward value N FF of the expander 1 3 Step S 6 To calculate the rotation speed command value N of the expander 13, and if the steam pressure P is lower than the target steam pressure P o in step S5, the feed speed of the rotation speed of the expander 13 is determined in step S7. By subtracting the feedback value N FB from the command value N FF, the rotation speed command value N of the expander 13 is calculated.
  • the steam pressure P at the inlet of the expander 13 is set to the target steam pressure.
  • Good response to P 0 And converges with high accuracy, and as a result, excessive energy remains in the steam discharged from the outlet of the expander 13 or the steam discharged from the outlet of the expander 13 becomes negative pressure.
  • the problem that the expander 13 performs a negative work and the efficiency is reduced can be solved.
  • FIGS. 13 to 16 show a second embodiment of the present invention.
  • the second embodiment does not include the steam flow sensor 21 of the first embodiment (see FIG. 1), and instead has a water supply amount sensor 24 at the inlet side of the evaporator 12. And a steam temperature sensor 25 on the inlet side of the expander 13.
  • the steam flow rate Q is directly detected by the steam flow sensor 21, whereas in the second embodiment, the steam flow rate Q is detected by the steam pressure P detected by the steam pressure sensor 22, and the water supply amount sensor 24.
  • the calculation is performed using the detected feedwater mass flow rate Gw and the steam temperature detected by the steam temperature sensor 25, and other configurations and operations are the same as those of the first embodiment.
  • the operation of the second embodiment will be described with reference to a flowchart. First, in step S31 of the flowchart in FIG.
  • the steam temperature sensor 25 detects the steam temperature T at the inlet of the expander 13 in step S31.
  • the steam pressure P at the inlet of the expander 13 is detected by the steam pressure sensor 22 in step S32, and the mass flow rate Gw of water supply to the evaporator 12 is detected by the water supply amount sensor 24 in step S33. To detect.
  • step S34 the steam flow Q to the expander 13 is calculated without using the steam flow sensor 21. That is, in step S41 of the flow chart of FIG. 15, the specific volume V of steam is searched from the map of FIG. 16 using the steam temperature T and the steam pressure P as parameters. As is evident from Fig. 16, the specific volume V of the steam is set so as to increase as the steam pressure P decreases and the steam temperature T increases. In the following step S42, the steam flow rate Q is calculated by multiplying the specific volume V by the feedwater mass flow rate Gw detected by the feedwater sensor 24.
  • FIG. 17 to FIG. 20 show a third embodiment of the present invention.
  • the third embodiment uses the water supply amount sensor of the second embodiment (see Fig. 13).
  • the temperature controller 26 is provided in the controller 20 instead of the controller 24.
  • the water supply mass flow rate Gw is detected by the water supply amount sensor 24, whereas in the third embodiment, the command water supply mass flow rate G output by the temperature control unit 26 is used.
  • the steam mass flow rate Gs corresponding to the feedwater mass flow rate Gw is calculated, and other configurations and operations are the same as in the second embodiment.
  • step S51 of the flow chart of FIG. 18 the steam temperature T at the inlet of the expander 13 is determined by the steam temperature sensor 25 in step S51. Is detected, the steam pressure P at the inlet of the expander 13 is detected by the steam pressure sensor 22 in step S52, and the steam mass flow rate Gs is calculated in step S53.
  • the temperature control unit 26 sets the commanded feedwater mass flow rate G. This is for compensating for the time delay from when is output to when the evaporator 12 actually generates steam.
  • the steam flow rate Q is calculated in step S54 of the flowchart of FIG.
  • the subroutine of this step S54 is shown in FIG. 20, but the flowchart of FIG. 20 is substantially the same as the flowchart of FIG. 15 of the second embodiment.
  • the example feedwater mass flow Gw has only changed to the steam mass flow Gs, which is substantially the same.
  • FIGS. 21 to 25 show a fourth embodiment of the present invention.
  • the fourth embodiment does not include the steam temperature sensor 25 of the third embodiment (see FIG. 13), and instead, the temperature control unit 26 of the controller 20 issues a command. Feedwater mass flow G. And the command steam temperature T 0 is output.
  • the specific volume map contains the steam temperature T obtained by delaying the command steam temperature ⁇ 0 by the delay filter 2, and the target steam pressure P. Is input, and the specific steam volume V found there is multiplied by the steam mass flow rate G s to calculate the steam flow rate Q.
  • step S71 of the flow chart of FIG. 22 the steam pressure sensor 22 detects the flow at the inlet of the expander 13 at step S71.
  • the steam pressure P is detected, and the steam mass flow rate Gs is calculated in step S72.
  • the flowchart of FIG. 23, which is a subroutine of step S72, is substantially the same as the flowchart of FIG. 19 of the third embodiment, but distinguishes a time constant r from a second time constant 2 described later. The only difference is that the first time constant is set to 1.
  • step S73 the steam flow rate Q is calculated in step S73 of the flowchart of FIG.
  • the subroutine of this step S73 is shown in FIG. 24, and the command steam temperature T output by the temperature control unit 26 in step S91 of the flowchart of FIG. 24. Is delayed in a delay filter 2 to calculate the steam temperature T.
  • step S92 the steam temperature T and the target steam pressure P output by the target steam pressure setting means 23 are calculated. Is applied to the specific volume map to find the specific volume V of steam.
  • step S93 the steam mass flow rate Gs output from the delay filter 1 is multiplied by the steam specific volume V to calculate the steam flow rate Q.
  • the steam flow rate Q is applied to the expander rotational speed table to apply the rotational speed of the expander 13 to the rotational speed of the expander 13.
  • This expander speed table is different from the first to third embodiments in that the target steam pressure P o is not set as a parameter. However, since the target steam pressure P o is applied to the specific volume map in the process of calculating the steam flow rate Q, the target steam pressure ⁇ 0 is consequently taken into account.
  • the feedforward value N FF of the rotation speed of the expander 13 retrieved from the steam flow rate Q is proportional to the steam flow rate Q regardless of the steam temperature and the steam pressure.
  • the working medium is not limited to water (steam), and any other suitable working medium can be employed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

A Rankine cycle system, wherein a feed-forward value (NFF) is calculated based on the flow rate (Q) of a vapor-phase acting medium at the outlet of a evaporator (12) and a target pressure (PO) so that the pressure (P) of a vapor-phase acting medium at the inlet of an expander (13) agrees with a target pressure (PO), a feed-back value (NFB) is calculated by multiplying a deviation between the pressure (P) of a vapor-phase acting medium at the inlet of the expander (13) and a target pressure (PO) by feed-back gain (kp) calculated based on the flow rate (Q) of the above vapor-phase acting medium, and the rotation speed of the expander (13) is controlled based on the added/subtracted value of the feed-forward value (NFF) and the feed-back value (NFB). Accordingly, the pressure of a vapor-phase acting medium at the inlet of an expander can be controlled to a target pressure accurately without changing the supply amount of a liquid-phase acting medium to an evaporator.

Description

明 細 書  Specification
発明の分野 Field of the invention
本発明は、 エンジンの排気ガスで液相作動媒体を加熱して気相作動媒体を発生 させる蒸発器と、 蒸発器で発生した気相作動媒体の熱エネルギーを機械工ネルギ 一に変換する容積型の膨張機とを備えたランキンサイクル装置に関する。  The present invention relates to an evaporator that generates a gas-phase working medium by heating a liquid-phase working medium with exhaust gas of an engine, and a positive displacement type that converts heat energy of the gas-phase working medium generated by the evaporator into mechanical energy. And a Rankine cycle device comprising the expander.
背景技術 Background art
日本特開 2 0 0 0— 3 4 5 8 3 5号公報には、 エンジンの冷却系の冷媒蒸気を エンジンの廃熱により加熱してタービンを駆動する廃熱回収装置において、 冷却 経路の圧力あるいは温度をェンジンの運転状態に応じて最適制御することにより 熱効率を向上させるものが記載されている。 具体的には、 エンジン回転数および エンジン負荷が増加するほど冷却経路の圧力の目標値を低く設定し、 実際の圧力 が目標圧力に一致するように冷媒循環用ポンプの吐出量等を制御している。 容積型の膨張機を備えたランキンサイクル装置において、 図 4に示すように、 膨張機の入口における蒸気圧力が目標蒸気圧力 (最適蒸気圧力) に一致していれ ば、 膨張機の出口における蒸気圧力が膨張機の膨張比に見合つた圧力になるが、 入口の蒸気圧力が高すぎると膨張機の出口から排出される蒸気に余剰のエネルギ 一が残ってしまい、 エネルギーが無駄に捨てられてしまう問題がある。 逆に、 入 口の蒸気圧力が低すぎると膨張機の出口から排出される蒸気が負圧になってしま レ ^、 膨張機が負の仕事をして効率が低下してしまう問題がある。  Japanese Unexamined Patent Publication No. 2000-3344585 describes that in a waste heat recovery device that drives a turbine by heating refrigerant vapor of an engine cooling system by waste heat of the engine, the pressure of the cooling path or It describes that the thermal efficiency is improved by optimally controlling the temperature according to the operating state of the engine. Specifically, as the engine speed and the engine load increase, the target value of the cooling path pressure is set lower, and the discharge amount of the refrigerant circulation pump is controlled so that the actual pressure matches the target pressure. I have. In a Rankine cycle device equipped with a positive displacement expander, if the steam pressure at the inlet of the expander matches the target steam pressure (optimum steam pressure), as shown in Fig. 4, the steam pressure at the outlet of the expander Becomes a pressure commensurate with the expansion ratio of the expander, but if the steam pressure at the inlet is too high, excess energy is left in the steam discharged from the outlet of the expander, and energy is wasted. There is. Conversely, if the steam pressure at the inlet is too low, the steam discharged from the outlet of the expander will have a negative pressure. ^ There is a problem that the expander performs negative work and reduces efficiency.
このように、 膨張機に供給される蒸気圧力を目標蒸気圧力に一致させることは 重要であるが、 蒸発器への給水量を変化させて蒸気圧力を目標蒸気圧力に一致さ せようとすると、 それに伴って蒸気温度が変化してしまう問題がある。 即ち、 図 3に示すように、 ランキンサイクル装置の蒸発器の効率および膨張機の効率は蒸 気温度によって変化し、 両者の効率を合わせた総合効率を最大にするには、 蒸気 温度を最適蒸気温度に制御する必要があり、 蒸気圧力を目標蒸気圧力に一致させ るべく給水量を変化させたことで蒸気温度が最適蒸気温度から外れてしまうと、 蒸発器および膨張機の総合効率が低下してしまう問題がある。 発明の開示 Thus, it is important to match the steam pressure supplied to the expander to the target steam pressure.However, if the water pressure to the evaporator is changed to make the steam pressure match the target steam pressure, There is a problem that the steam temperature changes accordingly. In other words, as shown in Fig. 3, the efficiency of the evaporator and expander of the Rankine cycle device varies with the steam temperature.To maximize the combined efficiency of the two, the steam temperature must be optimized. If the steam temperature deviates from the optimal steam temperature by changing the amount of water supply so that the steam pressure matches the target steam pressure, the overall efficiency of the evaporator and expander will decrease. There is a problem. Disclosure of the invention
本発明は前述の事情に鑑みてなされたもので、 ランキンサイクル装置において、 蒸発器への液相作動媒体の供給量を変化させることなく、 膨張機の入口での気相 作動媒体の圧力を目標圧力に精度良く制御することを目的とする。  The present invention has been made in view of the above circumstances, and in a Rankine cycle device, a target pressure of a gas phase working medium at an inlet of an expander is set without changing a supply amount of a liquid phase working medium to an evaporator. The purpose is to precisely control the pressure.
上記目的を達成するために、 本発明によれば、 エンジンの排気ガスで液相作動 媒体を加熱して気相作動媒体を発生させる蒸発器と、 蒸発器で発生した気相作動 媒体の熱エネルギ一を機械エネルギーに変換する容積型の膨張機とを備えたラン キンサイクル装置において、 膨張機の入口での気相作動媒体の圧力を目標圧力に 一致させるベく、 蒸発器の出口での気相作動媒体の流量および目標圧力に基づい てフィードフォワード値を算出するとともに、 膨張機の入口での気相作動媒体の 圧力および目標圧力の偏差に、 前記気相作動媒体の流量に基づいて算出したフィ ―ドバックゲインを乗算してフィードバック値を算出し、 フィードフォヮ一ド値 およびフィードバック値の加 ·減算値に基づいて膨張機の回転数を制御する制御 手段を備えたことを特徴とするランキンサイクル装置が提案される。  To achieve the above object, according to the present invention, an evaporator for heating a liquid-phase working medium with exhaust gas of an engine to generate a gas-phase working medium, and a heat energy of the gas-phase working medium generated by the evaporator, In a Rankine cycle device equipped with a positive displacement expander that converts oil into mechanical energy, the pressure of the gas phase working medium at the inlet of the expander should be matched with the target pressure. The feedforward value was calculated based on the flow rate of the phase working medium and the target pressure, and the difference between the pressure and the target pressure of the gas phase working medium at the inlet of the expander was calculated based on the flow rate of the gas phase working medium. Control means is provided to calculate the feedback value by multiplying the feedback gain, and to control the rotation speed of the expander based on the feedforward value and the addition / subtraction value of the feedback value. Rankine cycle system is proposed which is characterized in that the.
上記構成によれば、 蒸発器の出口での気相作動媒体の流量および膨張機の入口 での気相作動媒体の目標圧力に基づいてフィードフォワード値を算出するととも に、 膨張機の入口での気相作動媒体の圧力および目標圧力の偏差に気相作動媒体 の流量に基づいて算出したフィードバックゲインを乗算してフィードバック値を 算出し、 フィードフォワード値およびフィードバック値の加 ·減算値に基づいて 膨張機の回転数を制御するので、 膨張機の回転数が変化したときの気相作動媒体 の圧力の変化特性が気相作動媒体の流量の大小に応じて異なるのを補償し、 蒸発 器への液相作動媒体の供給量を変化させることなく、 膨張機の入口での気相作動 媒体の圧力を目標圧力に応答性良く、 かつ精度良く一致させることができる。 . 尚、 実施例のコントロ一ラ 2 0は本発明の制御手段に対応する。  According to the above configuration, the feedforward value is calculated based on the flow rate of the gas-phase working medium at the outlet of the evaporator and the target pressure of the gas-phase working medium at the inlet of the expander, and the feedforward value at the inlet of the expander is calculated. The feedback value is calculated by multiplying the deviation between the pressure of the gas phase working medium and the target pressure by the feedback gain calculated based on the flow rate of the gas phase working medium, and the expansion is performed based on the feedforward value and the addition / subtraction value of the feedback value. Control the rotation speed of the expander, compensating that the change characteristics of the pressure of the gas-phase working medium when the rotation speed of the expander changes vary depending on the flow rate of the gas-phase working medium. The pressure of the gas phase working medium at the inlet of the expander can be made to match the target pressure with good responsiveness and high accuracy without changing the supply amount of the liquid phase working medium. The controller 20 in the embodiment corresponds to the control means of the present invention.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1〜図 1 2は本発明の第 1実施例を示すもので、 図 1はランキンサイクル装 置およびその制御系のプロック図、 図 2は蒸気エネルギーおよび目標蒸気温度か ら目標蒸気圧力を検索するマップ、 図 3は最適蒸気温度と蒸発器および膨張機の 最高総合効率との関係を示すグラフ、 図 4は膨張機の入口圧力と出口圧力との関 係を示すグラフ、 図 5 A、 図 5 Bは膨張機の回転数をステップ状に変化させたと きの蒸気圧力の変化を示すグラフ、 図 6 A、 図 6 Bはフィードバックゲインを固 定した場合の蒸気圧力の収束状態を示す図、 図 7 A、 図 7 Bはフィードバックゲ インを可変にした場合の蒸気圧力の収束状態を示す図、 図 8は蒸気圧力制御のメ インルーチンのフローチャート、 図 9はメインル一チンのステップ S 3のサプル 一チンのフローチャート、 図 1 0はメインルーチンのステップ S 4のサプルーチ ンのフローチャート、 図 1 1は蒸気流量 Qおよび目標蒸気圧力 P o から膨張機 の回転数のフィードフォワード値 NFFを検索するマップ、 図 1 2は蒸気流量 Qか らフィードバックゲイン k pを検索するテーブルである。 図 1 3〜図 1 6は本発 明の第 2実施例を示すもので、 図 1 3はランキンサイクル装置およびその制御系 のブロック図、 図 1 4は蒸気圧力制御のメインルーチンのフローチャート、 図 1 5はメインルーチンのステップ S 3 4のサブルーチンのフローチャート、 図 1 6 は蒸気圧力 Pおよび蒸気温度丁から蒸気の比容積 Vを検索するマップである。 図 1 7〜図 2 0は本発明の第 3実施例を示すもので、 図 1 7はランキンサイクル装 置およびその制御系のブロック図、 図 1 8は蒸気圧力制御のメインルーチンのフ 口—チャート、 図 1 9はメインル一チンのステップ S 5 3のサブルーチンのフロ 一チヤ一卜、 図 2 0はメインル一チンのステップ S 5 4のサブルーチンのフロー チャートである。 図 2 1〜図 2 5は本発明の第 4実施例を示すもので、 図 2 1は ランキンサイク^/装置およびその制御系のブロック図、 図 2 2は蒸気圧力制御の メインルーチンのフロ一チヤ一ト、 図 2 3はメインルーチンのステップ S 7 2の サブルーチンのフローチヤ一ト、 図 2 4はメインル^ "チンのステップ S 7 3のサ ブルーチンのフローチヤ一ト、 図 2 5はメインルーチンのステップ S 7 4のサブ ルーチンのフローチャートである。 1 to 12 show a first embodiment of the present invention. Fig. 1 is a block diagram of a Rankine cycle device and its control system. Fig. 2 searches for a target steam pressure from steam energy and a target steam temperature. Fig. 3 is a graph showing the relationship between the optimum steam temperature and the maximum overall efficiency of the evaporator and the expander. Fig. 4 is a graph showing the relationship between the inlet pressure and the outlet pressure of the expander. 5A and 5B are graphs showing changes in steam pressure when the rotational speed of the expander is changed in steps, and Figs. 6A and 6B are when the feedback gain is fixed. 7A and 7B are diagrams showing the convergence state of the steam pressure when the feedback gain is variable, and FIG. 8 is a flowchart of the main routine of the steam pressure control. 9 is a flowchart of the subroutine of step S3 of the main routine, FIG. 10 is a flowchart of the subroutine of step S4 of the main routine, and FIG. A map for retrieving the feedforward value N FF of the number. Figure 12 is a table for retrieving the feedback gain kp from the steam flow Q. Figs. 13 to 16 show a second embodiment of the present invention. Fig. 13 is a block diagram of a Rankine cycle device and its control system. Fig. 14 is a flowchart of a main routine of steam pressure control. 15 is a flowchart of a subroutine of step S34 of the main routine, and FIG. 16 is a map for retrieving a specific volume V of steam from a steam pressure P and a steam temperature. FIGS. 17 to 20 show a third embodiment of the present invention. FIG. 17 is a block diagram of a Rankine cycle device and its control system. FIG. 18 is a front view of a main routine of steam pressure control. FIG. 19 is a flowchart of a subroutine of step S53 of the main routine, and FIG. 20 is a flowchart of a subroutine of step S54 of the main routine. FIGS. 21 to 25 show a fourth embodiment of the present invention. FIG. 21 is a block diagram of a Rankine cycle ^ / device and its control system, and FIG. 22 is a flow chart of a main routine of steam pressure control. FIG. 23 is a flowchart of the subroutine of step S72 of the main routine. FIG. 24 is a flowchart of a subroutine of step S73 of the main routine. FIG. 25 is a flowchart of the subroutine of step S73. 15 is a flowchart of a subroutine of step S74.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
図 1〜図 1 2は本発明の第 1実施例を示すものである。  1 to 12 show a first embodiment of the present invention.
図 1に示すように、 車両のエンジン 1 1の排気ガスの熱エネルギーを回収する ためのランキンサイクル装置は、 エンジン 1 1の排気ガスで液相作動媒体 (水) を加熱して高温高圧の気相作動媒体 (蒸気) を発生させる蒸発器 1 2と、 蒸発器 1 2で発生した高温高圧の蒸気の熱エネルギーを機械エネルギーに変換する容積 型の膨張機 1 3と、 膨張機 1 3から排出された蒸気を冷却して水に凝縮させる凝 縮器 1 4と、 凝縮器 1 4から排出された水を貯留するタンク 1 5と、 タンク 1 5 内の水を吸引する給水ポンプ 1 6と、 給水ポンプ 1 6で吸引した水を蒸発器 1 2 に噴射するインジェク夕 1 7とを閉回路上に配置してなる。 As shown in Fig. 1, the Rankine cycle device for recovering the thermal energy of the exhaust gas from the engine 11 of the vehicle uses a high-temperature and high-pressure gas by heating the liquid-phase working medium (water) with the exhaust gas from the engine 11. An evaporator 1 2 that generates a phase working medium (steam), and a volume that converts the thermal energy of the high-temperature, high-pressure steam generated by the evaporator 1 2 into mechanical energy Type expander 13, condenser 14 that cools steam discharged from expander 13 and condenses it into water, tank 15 that stores water discharged from condenser 14, tank A water supply pump 16 for sucking water in 15 and an injector 17 for injecting water sucked by the water supply pump 16 into the evaporator 12 are arranged on a closed circuit.
膨張機 1 3に接続されたモ一夕 ·ジェネレータ 1 8はエンジン 1 1と駆動輪と の間に配置されており、 モータ ·ジェネレータ 1 8をモー夕として機能させて,ェ ンジン 1 1の出力をアシストするとともに、 車両の減速時にモータ ·ジエネレー 夕 1 8をジェネレータとして機能させて車両の運動エネルギーを電気エネルギー として回収することができる。 尚、 モ一タ ·ジェネレータ 1 8は膨張機 1 3に単 体で接続されて電気エネルギーの発生機能のみを有するものでも良い。 そして本 発明では、 モ一夕 'ジェネレータ 1 8の負荷 (発電量) を調整することで、 モー 夕 ·ジェネレータ 1 8から膨張機 1 3に加わる負荷を調整して該膨張機 1 3の回 転数を制御する。 コントローラ 2 0には、 蒸発器 1 2の出口での蒸気流量を検出 する蒸気流量センサ 2 1からの信号と、 膨張機 1 3の入口での蒸気圧力を検出す る蒸気圧力センサ 2 2からの信号とが入力される。  The motor generator 18 connected to the expander 13 is arranged between the engine 11 and the driving wheels, and the motor generator 18 functions as the motor and the output of the engine 11 In addition to assisting the vehicle, when the vehicle decelerates, the motor generator 18 can function as a generator to recover the kinetic energy of the vehicle as electric energy. Note that the motor generator 18 may be connected to the expander 13 as a single unit and have only the function of generating electric energy. In the present invention, the load applied to the expander 13 from the motor generator 18 is adjusted by adjusting the load (power generation amount) of the motor generator 18 to rotate the expander 13. Control the number. The controller 20 has a signal from a steam flow sensor 21 for detecting the steam flow at the outlet of the evaporator 12 and a signal from a steam pressure sensor 22 for detecting the steam pressure at the inlet of the expander 13. And a signal.
コントローラ 2 0は、 膨張機 1 3の入口での蒸気圧力の目標値である目標蒸気 圧力を設定する目標蒸気圧力設定手段 2 3を備える。 図 2に示すように、 目標蒸 気圧力設定手段 2 3は目標蒸気温度および蒸気エネルギー (蒸気流量) に基づい て目標蒸気圧力を検索する。 蒸発器 1 2の出口での蒸気温度は、 蒸発器 1 2およ び膨張機 1 3の総合効率が最大になる温度 (つまり最適蒸気温度) に一致するよ うに、 インジェクタ 1 7あるいは給水ポンプ 1 6から蒸発器 1 2への給水量を調 整することにより制御されている。 即ち、 図 3に示すように、 蒸発器 1 2の効率 および膨張機 1 3の効率は蒸気温度によって変化し、 蒸気温度が増加すると蒸発 器 1 2の効率が減少して膨張機 1 3の効率が増加し、 逆に蒸気温度が減少すると 蒸発器 1 2の効率が増加して膨張機 1 3の効率が減少することから、 両者の効率 を合わせた総合効率を最大になる最適蒸気温度が存在し、 蒸発器 1 2の出口での 蒸気温度は前記最適蒸気温度に制御されている。  The controller 20 includes target steam pressure setting means 23 for setting a target steam pressure that is a target value of the steam pressure at the inlet of the expander 13. As shown in FIG. 2, the target steam pressure setting means 23 retrieves the target steam pressure based on the target steam temperature and the steam energy (steam flow rate). The steam temperature at the outlet of the evaporator 12 is adjusted so that the total efficiency of the evaporator 12 and the expander 13 is maximized (that is, the optimum steam temperature). It is controlled by adjusting the amount of water supplied from 6 to the evaporator 12. That is, as shown in FIG. 3, the efficiency of the evaporator 12 and the efficiency of the expander 13 change depending on the steam temperature. When the steam temperature increases, the efficiency of the evaporator 12 decreases and the efficiency of the expander 13 increases. When the steam temperature decreases and the steam temperature decreases, the efficiency of the evaporator 12 increases and the efficiency of the expander 13 decreases.Therefore, there is an optimum steam temperature that maximizes the combined efficiency of the two. The steam temperature at the outlet of the evaporator 12 is controlled to the optimum steam temperature.
膨張機 1 3の入口での蒸気圧力を目標蒸気圧力に制御するのは、 次のような理 由からである。 即ち、 図 4に示すように、 膨張機 1 3の入口における蒸気圧力が 目標蒸気圧力に一致していれば、 膨張機 1 3の出口における蒸気圧力が膨張機 1 3の膨張比に見合った圧力になるが、 入口蒸気圧力が高すぎると膨張機 1 3の出 口から排出される蒸気に余剰のエネルギーが残ってしまい、 エネルギーが無駄に 捨てられてしまう問題がある。 逆に、 入口蒸気圧力が低すぎると膨張機 1 3の出 口から排出される蒸気が負圧になってしまい、 膨張機 1 3が負の仕事をして効率 が低下してしまう問題がある。 The steam pressure at the inlet of the expander 13 is controlled to the target steam pressure for the following reasons. That is, as shown in FIG. 4, the steam pressure at the inlet of the expander 13 is If the steam pressure matches the target steam pressure, the steam pressure at the outlet of the expander 13 becomes a pressure corresponding to the expansion ratio of the expander 13, but if the inlet steam pressure is too high, the steam from the outlet of the expander 13 will There is a problem that excess energy is left in the discharged steam and energy is wasted. Conversely, if the inlet steam pressure is too low, the steam discharged from the outlet of the expander 13 will have a negative pressure, and there will be a problem that the expander 13 will perform negative work and reduce efficiency. .
蒸発器 1 2の出口での蒸気温度を最適蒸気温度に保ったまま、 つまり蒸発器 1 2への給水量を変化させずに、 膨張機 1 3の入口での蒸気圧力を目標蒸気圧力に 制御するには、 モータ ·ジェネレータ 1 8から膨張機 1 3に加わる負荷を調整し て該膨張機 1 3の回転数を制御すれば良い。 図 5 A、 図 5 Bに示すように、 膨張 機 1 3の回転数を減少させると蒸気圧力は増加し、 逆に膨張機 1 3の回転数を増 加させると蒸気圧力は減少する。 但し、 蒸気圧力の変化の応答性は蒸気流量によ つて変化し、 蒸気流量が小さいときには応答性が低くなり、 蒸気圧力が定常状態 に達するのに 1 0 0秒以上が必要であるのに対し、 蒸気流量が大きいときには応 答性が高くなり、 蒸気圧力が定常状態に達するのに 1 0秒以下で済む。  Control the steam pressure at the inlet of the expander 13 to the target steam pressure while maintaining the steam temperature at the outlet of the evaporator 12 at the optimum steam temperature, that is, without changing the amount of water supplied to the evaporator 12 To do so, the load applied to the expander 13 from the motor generator 18 may be adjusted to control the number of revolutions of the expander 13. As shown in FIGS. 5A and 5B, the steam pressure increases when the rotation speed of the expander 13 is reduced, and conversely, the steam pressure decreases when the rotation speed of the expander 13 is increased. However, the response of the change in steam pressure changes depending on the steam flow rate, and when the steam flow rate is low, the response is low, and it takes more than 100 seconds for the steam pressure to reach a steady state. However, when the steam flow rate is high, the response becomes high, and it takes less than 10 seconds for the steam pressure to reach a steady state.
尚、 インジェクタ 1 7の前後差圧を検出し、 目標給水量に一致するように T i 値を制御するか、 あるいは給水ポンプ 1 6の吐出圧を検出し、 該給水ポンプ 1 6 の回転数を制御すれば、 膨張機 1 3の回転数が変化しても蒸発器 1 2への給水量 が一定に保持され、 蒸発器 1 1の出口での蒸気温度を最適蒸気温度に保持するこ とができる。  It should be noted that the pressure difference before and after the injector 17 is detected and the Ti value is controlled so as to match the target water supply amount, or the discharge pressure of the water supply pump 16 is detected, and the rotation speed of the water supply pump 16 is determined. If controlled, the amount of water supplied to the evaporator 12 is kept constant even if the number of revolutions of the expander 13 changes, and the steam temperature at the outlet of the evaporator 11 can be kept at the optimum steam temperature. it can.
蒸気圧力を目標蒸気圧力にフィードバック制御する際に、 図 6 Aに示すように フィードバックゲイン k p (比例項) を一定値とすると、 図 6 Bに示すように、 蒸気流量が大きいときに適切な応答性が得られるように前記フィードパックゲイ ン k pを設定すると、 蒸気流量が小さいときに充分な応答性が得られなくなって しまう。 それに対して、 図 7 Aに示すように蒸気流量をパラメ一夕とするゲイン テーブルから検索したフィ―ドパックゲイン k pを用いることにより、 図 7 Bに 示すように、 蒸気流量が大きいときにも小さいときにも適切な応答性が得られる ようになる。  When the steam pressure is feedback-controlled to the target steam pressure, assuming that the feedback gain kp (proportional term) is a constant value as shown in Fig. 6A, an appropriate response when the steam flow rate is large as shown in Fig. 6B If the feed pack gain kp is set so as to obtain high responsiveness, sufficient responsiveness cannot be obtained when the steam flow rate is small. On the other hand, as shown in Figure 7A, by using the feedpack gain kp retrieved from the gain table with the steam flow as a parameter, even when the steam flow is large as shown in Figure 7B. Appropriate responsiveness can be obtained even when it is small.
つまり、 本発明の要点は、 膨張機 1 3の入口での蒸気圧力を目標蒸気圧力に一 致させるべく膨張機 1 3の回転数をフィードバック制御する際に、 フィードバッ クゲインを蒸気流量に応じて変更することにある。 以下、 その具体的な内容を、 図 1のプロック図および図 8〜図 1 0のフローチャートに基づいて説明する。 先ず、 図 8のフローチャートのステップ S 1で蒸気流量センサ 2 1により蒸発 器 1 2の出口での蒸気流量 Qを検出し、 ステップ S 2で蒸気圧力センサ 2 2によ り膨張機 1 3の入口での蒸気圧力 Pを検出した後に、 ステップ S 3で膨張機 1 3 の回転数のフィードフォワード値 NFFを算出する。 即ち、 図 9のフローチャート のステップ S 1 1で図 1 1のマップから蒸気流量 Qおよび目標蒸気圧力 P o を パラメ一夕として膨張機 1 3の回転数のフィ一ドフォヮード値 NFFを検索する。 図 1 1から明らかなように、 フィードフォワード値 NFFは、 蒸気流量 Qが小さく 目標蒸気圧力 P o が大きいほど小さく、 蒸気流量 Qが大きく目標蒸気圧力 P o が小さいほど大きくなるように設定されている。 That is, the gist of the present invention is that the steam pressure at the inlet of the expander 13 is equal to the target steam pressure. In performing feedback control of the number of revolutions of the expander 13 in order to match the feedback gain, the feedback gain must be changed according to the steam flow rate. Hereinafter, the specific contents will be described based on the block diagram of FIG. 1 and the flowcharts of FIG. 8 to FIG. First, in step S1 of the flowchart of FIG. 8, the steam flow rate Q at the outlet of the evaporator 12 is detected by the steam flow rate sensor 21 in step S1, and in step S2, the inlet of the expander 13 is detected by the steam pressure sensor 22. after detecting the steam pressure P in, calculating the rotational speed of the feed-forward value N FF of the expander 1 3 step S 3. That is, searches Ficoll one Dofowado value N FF step S 1 rotational speed of the expander 1 3 1 from the map of FIG 1 the steam flow rate Q and the target steam pressure P o as parameters Isseki of the flowchart of FIG. As is evident from FIG. 11, the feedforward value N FF is set so as to decrease as the steam flow rate Q decreases and the target steam pressure P o increases, and to increase as the steam flow rate Q increases and the target steam pressure P o decreases. ing.
図 8のフローチャートに戻り、 ステップ S 4で膨張機 1 3の回転数のフィード バック値 NFBを算出する。 即ち、 図 1 0のフローチャートのステップ S 2 1で蒸 気圧力センサ 2 2により検出した膨張機 1 3の入口での蒸気圧力 Pと、 目標蒸気 圧力設定手段 2 3で設定した目標蒸気圧力 P o との偏差 Δ Ρ = I Ρ - Ρ ο I を算出し、 続くステップ S 2 2で蒸気流量センサ 2 1により検出した蒸気流量 Q を図 1 2のテーブルに適用してゲイン k pを検索する。 図 1 2のテーブルから明 らかなように、 ゲイン k pは蒸気流量 Qの増加に伴って減少する。 そしてステツ プ S 2 3でゲイン k pに偏差 Δ Ρを乗算して膨張機 1 3の回転数のフィードバッ ク値 NFBを算出する。 Returning to the flowchart of FIG. 8, in step S4, a feedback value N FB of the rotation speed of the expander 13 is calculated. That is, the steam pressure P at the inlet of the expander 13 detected by the steam pressure sensor 22 in step S 21 of the flowchart of FIG. 10 and the target steam pressure P o set by the target steam pressure setting means 23 The deviation Δ Δ = I Ρ-の ο I is calculated, and the gain kp is searched by applying the steam flow rate Q detected by the steam flow rate sensor 21 in the following step S22 to the table of FIG. As is evident from the table in FIG. 12, the gain kp decreases as the steam flow rate Q increases. Then, in step S23, the gain kp is multiplied by the deviation ΔΡ to calculate a feedback value N FB of the rotational speed of the expander 13.
図 8のフローチャートに戻り、 ステップ S 5で蒸気圧力 Pが目標蒸気圧力 P 0 以上であれば、 ステップ S 6で膨張機 1 3の回転数のフィードフォワード値 N FFにフィードバック値 NFBを加算して膨張機 1 3の回転数指令値 Nを算出し、 ま たステップ S 5で蒸気圧力 Pが目標蒸気圧力 P o 未満であれば、 ステップ S 7 で膨張機 1 3の回転数のフィードフォヮード値 NFFからフィードバック値 NFBを 減算して膨張機 1 3の回転数指令値 Nを算出する。 しかして、 回転数指令値 Nに 基づいてモー夕 ·ジェネレータ 1 8の回転数、 つまり膨張機 1 3の回転数を制御 することで、 膨張機 1 3の入口での蒸気圧力 Pを目標蒸気圧力 P 0 に応答性良 く、 かつ精度良く収束させることができ、 これにより、 膨張機 1 3の出口から排 出される蒸気に余剰のエネルギーが残ったり、 膨張機 1 3の出口から排出される 蒸気が負圧になつて膨張機 1 3が負の仕事をして効率が低下したりする問題を解 消することができる。 Returning to the flowchart of FIG. 8, if the vapor pressure P is a target steam pressure P 0 or more in step S 5, by adding the feedback value N FB to the rotational speed of the feed-forward value N FF of the expander 1 3 Step S 6 To calculate the rotation speed command value N of the expander 13, and if the steam pressure P is lower than the target steam pressure P o in step S5, the feed speed of the rotation speed of the expander 13 is determined in step S7. By subtracting the feedback value N FB from the command value N FF, the rotation speed command value N of the expander 13 is calculated. Then, by controlling the rotation speed of the motor generator 18 based on the rotation speed command value N, that is, the rotation speed of the expander 13, the steam pressure P at the inlet of the expander 13 is set to the target steam pressure. Good response to P 0 And converges with high accuracy, and as a result, excessive energy remains in the steam discharged from the outlet of the expander 13 or the steam discharged from the outlet of the expander 13 becomes negative pressure. The problem that the expander 13 performs a negative work and the efficiency is reduced can be solved.
図 1 3〜図 1 6は本発明の第 2実施例を示すものである。  FIGS. 13 to 16 show a second embodiment of the present invention.
図 1 3に示すように、 第 2実施例は第 1実施例 (図 1参照) の蒸気流量センサ 2 1を備えておらず、 その代わりに蒸発器 1 2の入口側に給水量センサ 2 4を備 えるとともに、 膨張機 1 3の入口側に蒸気温度センサ 2 5を備える。 第 1実施例 が蒸気流量 Qを蒸気流量センサ 2 1によって直接検出するのに対し、 第 2実施例 では蒸気流量 Qを蒸気圧力センサ 2 2で検出した蒸気圧力 Pと、 給水量センサ 2 4で検出した給水質量流量 Gwと、 蒸気温度センサ 2 5で検出した蒸気温度丁と を用いて算出しており、 その他の構成および作用は第 1実施例と同様である。 第 2実施例の作用をフローチャートを参照して説明すると、 先ず、 図 1 4のフ ローチャートのステップ S 3 1で蒸気温度センサ 2 5により膨張機 1 3の入口で の蒸気温度 Tを検出し、 ステップ S 3 2で蒸気圧力センサ 2 2により膨張機 1 3 の入口での蒸気圧力 Pを検出し、 更にステップ S 3 3で給水量センサ 2 4で蒸発 器 1 2への給水質量流量 Gwを検出する。  As shown in FIG. 13, the second embodiment does not include the steam flow sensor 21 of the first embodiment (see FIG. 1), and instead has a water supply amount sensor 24 at the inlet side of the evaporator 12. And a steam temperature sensor 25 on the inlet side of the expander 13. In the first embodiment, the steam flow rate Q is directly detected by the steam flow sensor 21, whereas in the second embodiment, the steam flow rate Q is detected by the steam pressure P detected by the steam pressure sensor 22, and the water supply amount sensor 24. The calculation is performed using the detected feedwater mass flow rate Gw and the steam temperature detected by the steam temperature sensor 25, and other configurations and operations are the same as those of the first embodiment. The operation of the second embodiment will be described with reference to a flowchart. First, in step S31 of the flowchart in FIG. 14, the steam temperature sensor 25 detects the steam temperature T at the inlet of the expander 13 in step S31. In step S32, the steam pressure P at the inlet of the expander 13 is detected by the steam pressure sensor 22 in step S32, and the mass flow rate Gw of water supply to the evaporator 12 is detected by the water supply amount sensor 24 in step S33. To detect.
続くステップ S 3 4で蒸気流量センサ 2 1を用いずに膨張機 1 3への蒸気流量 Qを算出する。 即ち、 図 1 5のフ口一チャートのステップ S 4 1で図 1 6のマツ プから蒸気温度 Tおよび蒸気圧力 Pをパラメ一夕として蒸気の比容積 Vを検索す る。 図 1 6から明らかなように、 蒸気の比容積 Vは、 蒸気圧力 Pが小さく、 かつ 蒸気温度 Tが高いほど大きくなるように設定されている。 続くステップ S 4 2で 蒸気流量 Qを、 比容積 Vに給水量センサ 2 4で検出した給水質量流量 Gwを乗算 することにより算出する。  In the following step S34, the steam flow Q to the expander 13 is calculated without using the steam flow sensor 21. That is, in step S41 of the flow chart of FIG. 15, the specific volume V of steam is searched from the map of FIG. 16 using the steam temperature T and the steam pressure P as parameters. As is evident from Fig. 16, the specific volume V of the steam is set so as to increase as the steam pressure P decreases and the steam temperature T increases. In the following step S42, the steam flow rate Q is calculated by multiplying the specific volume V by the feedwater mass flow rate Gw detected by the feedwater sensor 24.
以上のようにして蒸気流量 Qが算出されると、 図 1 4のフローチャートのステ ップ S 3 5 ~ S 3 9に移行する。 これらのステップは図 8のフローチャート (第 1実施例) のステップ S 3〜S 7と全く同一であるため、 その重複する説明を省 略する。 しかして、 この第 2実施例によれば、 蒸気流量センサ 2 1を廃止するこ とができる。 図 1 7〜図 2 0は本発明の第 3実施例を示すものである。 When the steam flow rate Q is calculated as described above, the process proceeds to steps S35 to S39 in the flowchart of FIG. These steps are exactly the same as steps S3 to S7 in the flowchart of FIG. 8 (first embodiment), and thus redundant description will be omitted. Thus, according to the second embodiment, the steam flow sensor 21 can be eliminated. FIG. 17 to FIG. 20 show a third embodiment of the present invention.
図 1 7に示すように、 第 3実施例は第 2実施例 (図 1 3参照) の給水量センサ As shown in Fig. 17, the third embodiment uses the water supply amount sensor of the second embodiment (see Fig. 13).
2 4を備えておらず、 その代わりにコントローラ 2 0に温度制御部 2 6が設けら れる。 第 2実施例が給水質量流量 Gwを給水量センサ 2 4で検出するのに対し、 第 3実施例では温度制御部 2 6が出力する指令給水質量流量 G。 から前記給水 質量流量 Gwに対応する蒸気質量流量 G sを算出しており、 その他の構成および 作用は第 2実施例と同様である。 The temperature controller 26 is provided in the controller 20 instead of the controller 24. In the second embodiment, the water supply mass flow rate Gw is detected by the water supply amount sensor 24, whereas in the third embodiment, the command water supply mass flow rate G output by the temperature control unit 26 is used. , The steam mass flow rate Gs corresponding to the feedwater mass flow rate Gw is calculated, and other configurations and operations are the same as in the second embodiment.
第 3実施例の作用をフ口一チャートを参照して説明すると、 先ず、 図 1 8のフ ローチャートのステップ S 5 1で蒸気温度センサ 2 5により膨張機 1 3の入口で の蒸気温度 Tを検出し、 ステップ S 5 2で蒸気圧力センサ 2 2により膨張機 1 3 の入口での蒸気圧力 Pを検出し、 更にステップ S 5 3で蒸気質量流量 G sを算出 する。  The operation of the third embodiment will be described with reference to a flow chart. First, in step S51 of the flow chart of FIG. 18, the steam temperature T at the inlet of the expander 13 is determined by the steam temperature sensor 25 in step S51. Is detected, the steam pressure P at the inlet of the expander 13 is detected by the steam pressure sensor 22 in step S52, and the steam mass flow rate Gs is calculated in step S53.
即ち、 図 1 9のフローチャートのステップ S 6 1でインジェクタ 1 7あるいは 給水ポンプ 1 6の給水量を制御することで蒸気温度 Tを制御する温度制御部 2 6 が出力する指令給水質量流量 G。 を読み込み、 ステップ S 6 2で指令給水質量 流量 G。 に遅れフィルタ処理を施すことで蒸気質量流量 G sを算出する。 この 遅れフィルタ処理は、 温度制御部 2 6が指令給水質量流量 G。 を出力してから、 蒸発器 1 2が実際に蒸気を発生するまでの時間遅れを補償するためのものである。 続いて図 1 8のフロ一チャートのステップ S 5 4で蒸気流量 Qを算出する。 こ のステップ S 5 4のサブルーチンが図 2 0に示されているが、 図 2 0のフ口一チ ヤートは第 2実施例の図 1 5のフローチャートと実質的に同じであり、 第 2実施 例の給水質量流量 Gwが、 それと実質的に同じものである蒸気質量流量 G sに変 わっただけである。  That is, the command water supply mass flow rate G output by the temperature control unit 26 which controls the steam temperature T by controlling the water supply amount of the injector 17 or the water supply pump 16 in step S61 of the flowchart of FIG. Is read, and in step S62, the commanded water supply flow rate G. Lag filter processing to calculate the steam mass flow rate G s. In this delay filter processing, the temperature control unit 26 sets the commanded feedwater mass flow rate G. This is for compensating for the time delay from when is output to when the evaporator 12 actually generates steam. Subsequently, the steam flow rate Q is calculated in step S54 of the flowchart of FIG. The subroutine of this step S54 is shown in FIG. 20, but the flowchart of FIG. 20 is substantially the same as the flowchart of FIG. 15 of the second embodiment. The example feedwater mass flow Gw has only changed to the steam mass flow Gs, which is substantially the same.
以上のようにして蒸気流量 Qが算出されると、 図 1 8のフローチャートのステ ップ S 5 5〜S 5 9に移行する。 これらのステップは図 8のフローチャート (第 1実施例) のステップ S 3 ~ S 7と全く同一であるため、 その重複する説明を省 略する。 しかして、 この第 3実施例によれば、 給水量センサ 2 4を廃止すること ができる。  When the steam flow rate Q is calculated as described above, the process proceeds to steps S55 to S59 in the flowchart of FIG. These steps are exactly the same as steps S3 to S7 in the flowchart of FIG. 8 (first embodiment), and thus redundant description will be omitted. Thus, according to the third embodiment, the water supply amount sensor 24 can be eliminated.
図 2 1〜図 2 5は本発明の第 4実施例を示すものである。 図 2 1に示すように、 第 4実施例は第 3実施例 (図 1 3参照) の蒸気温度セン サ 2 5を備えておらず、 その代わりにコントローラ 2 0の温度制御部 2 6が指令 給水質量流量 G。 に加えて指令蒸気温度 T 0 を出力する。 比容積マップには、 指令蒸気温度 Τ 0 を遅れフィルタ 2で遅れ処理した蒸気温度 Tと、 目標蒸気圧 力 P。 とが入力され、 そこで検索された蒸気の比容積 Vが蒸気質量流量 G sに 乗算されて蒸気流量 Qが算出される。 また第 1〜第 3実施例の蒸気流量 Qおよび 目標蒸気圧力 P o をパラメータとして膨張機 1 3の回転数のフィードフォヮ一 ド値 NFFを検索するマップに代えて、 蒸気流量 Qだけをパラメ一夕として膨張機 1 3の回転数のフィードフォワード値 NFFを検索するテ一ブルを備えており、 そ の他の構成および作用は第 3実施例と同様である。 FIGS. 21 to 25 show a fourth embodiment of the present invention. As shown in FIG. 21, the fourth embodiment does not include the steam temperature sensor 25 of the third embodiment (see FIG. 13), and instead, the temperature control unit 26 of the controller 20 issues a command. Feedwater mass flow G. And the command steam temperature T 0 is output. The specific volume map contains the steam temperature T obtained by delaying the command steam temperature Τ 0 by the delay filter 2, and the target steam pressure P. Is input, and the specific steam volume V found there is multiplied by the steam mass flow rate G s to calculate the steam flow rate Q. Further, instead of the map for searching the feedforward value N FF of the rotation speed of the expander 13 using the steam flow rate Q and the target steam pressure P o of the first to third embodiments as parameters, only the steam flow rate Q is used as a parameter. In the evening, a table for retrieving the feedforward value NFF of the rotation speed of the expander 13 is provided, and the other configuration and operation are the same as those of the third embodiment.
尚、 蒸気の比容積 Vは、 図 1 6の横軸を 「蒸気圧力 P」 から 「目標蒸気圧力 P o 」 に読み換えて示す。  The specific volume V of steam is shown by replacing the "steam pressure P" with the "target steam pressure P o" on the horizontal axis in Fig. 16.
第 4実施例の作用をフ口一チャートを参照して説明すると、 先ず、 図 2 2のフ 口一チヤ一トのステップ S 7 1で蒸気圧力センサ 2 2により膨張機 1 3の入口で の蒸気圧力 Pを検出し、 更にステップ S 7 2で蒸気質量流量 G sを算出する。 ス テツプ S 7 2のサブルーチンである図 2 3のフローチャートは、 第 3実施例の図 1 9のフローチャートと実質的に同一であるが、 時定数 rを後述する第 2時定数 て 2と区別するための第 1時定数て 1としている点でのみ異なっている。  The operation of the fourth embodiment will be described with reference to a flow chart. First, in step S71 of the flow chart of FIG. 22, the steam pressure sensor 22 detects the flow at the inlet of the expander 13 at step S71. The steam pressure P is detected, and the steam mass flow rate Gs is calculated in step S72. The flowchart of FIG. 23, which is a subroutine of step S72, is substantially the same as the flowchart of FIG. 19 of the third embodiment, but distinguishes a time constant r from a second time constant 2 described later. The only difference is that the first time constant is set to 1.
続いて図 2 2のフローチャートのステップ S 7 3で蒸気流量 Qを算出する。 こ のステップ S 7 3のサブルーチンが図 2 4に示されており、 図 2 4のフローチヤ 一トのステツプ S 9 1で温度制御部 2 6が出力する指令蒸気温度 T。 を遅れフ ィル夕 2で遅れ処理して蒸気温度 Tを算出し、 ステップ S 9 2で前記蒸気温度 T と、 目標蒸気圧力設定手段 2 3が出力する目標蒸気圧力 P。 とを比容積マップ に適用して蒸気の比容積 Vを検索する。 そしてステップ S 9 3で遅れフィルタ 1 が出力する蒸気質量流量 G sに蒸気の比容積 Vを乗算して蒸気流量 Qを算出する。 続いて、 図 2 2のフローチャートのステップ S 7 4、 つまり図 2 5のフローチ ヤートのステップ S 1 0 1で蒸気流量 Qを膨張機回転数テ一ブルに適用して膨張 機 1 3の回転数のフィードフォワード値 NFFを検索する。 この膨張機回転数テー ブルは第 1〜第 3実施例と異なって目標蒸気圧力 P o をパラメ一夕としていな いが、 蒸気流量 Qを算出する過程で比容積マップに目標蒸気圧力 P o を適用し ているので、 結果的に目標蒸気圧力 Ρ 0 が考慮されていることになる。 このよ うにして蒸気流量 Qから検索された算出された膨張機 1 3の回転数のフィードフ ォヮード値 NFFは、 蒸気温度や蒸気圧力に関わらずに蒸気流量 Qに比例するもの であるが、 実際には蒸気のリーク等の影響で蒸気流量 Qに正確に比例しない場合 があり、 その誤差は膨張機 1 3の回転数のフィードパック制御により補償される。 図 2 2のフローチャートの最後のステップ S 7 5〜S 7 8は、 図 8のフローチ ヤート (第 1実施例) のステップ S 4〜S 7と全く同一であるため、 その重複す る説明を省略する。 しかして、 この第 4実施例によれば、 蒸気温度センサ 2 5を 廃止することができる。 ' Subsequently, the steam flow rate Q is calculated in step S73 of the flowchart of FIG. The subroutine of this step S73 is shown in FIG. 24, and the command steam temperature T output by the temperature control unit 26 in step S91 of the flowchart of FIG. 24. Is delayed in a delay filter 2 to calculate the steam temperature T. In step S92, the steam temperature T and the target steam pressure P output by the target steam pressure setting means 23 are calculated. Is applied to the specific volume map to find the specific volume V of steam. In step S93, the steam mass flow rate Gs output from the delay filter 1 is multiplied by the steam specific volume V to calculate the steam flow rate Q. Subsequently, in step S74 of the flowchart of FIG. 22, that is, in step S101 of the flowchart of FIG. 25, the steam flow rate Q is applied to the expander rotational speed table to apply the rotational speed of the expander 13 to the rotational speed of the expander 13. Search of the feedforward value N FF. This expander speed table is different from the first to third embodiments in that the target steam pressure P o is not set as a parameter. However, since the target steam pressure P o is applied to the specific volume map in the process of calculating the steam flow rate Q, the target steam pressure Ρ 0 is consequently taken into account. Thus, the feedforward value N FF of the rotation speed of the expander 13 retrieved from the steam flow rate Q is proportional to the steam flow rate Q regardless of the steam temperature and the steam pressure. Actually, there is a case where it is not exactly proportional to the steam flow rate Q due to the influence of steam leak or the like, and the error is compensated by the feed pack control of the rotation speed of the expander 13. The last steps S75 to S78 of the flowchart of FIG. 22 are exactly the same as steps S4 to S7 of the flowchart (first embodiment) of FIG. I do. Thus, according to the fourth embodiment, the steam temperature sensor 25 can be eliminated. '
以上、 本発明の実施例を詳述したが、 本発明はその要旨を逸脱しない範囲で 種々の設計変更を行うことが可能である。  Although the embodiments of the present invention have been described in detail, various design changes can be made in the present invention without departing from the gist thereof.
例えば、 作動媒体は水 (蒸気) に限定されず、 他の適宜の作動媒体を採用する ことができる。  For example, the working medium is not limited to water (steam), and any other suitable working medium can be employed.

Claims

請求の範囲 The scope of the claims
1. エンジン (1 1) の排気ガスで液相作動媒体を加熱して気相作動媒体を発生 させる蒸発器 (12) と、 蒸発器 (12) で発生した気相作動媒体の熱エネルギ 一を機械エネルギーに変換する容積型の膨張機 (13) とを備えたランキンサイ クル装置において、 1. The evaporator (12), which heats the liquid-phase working medium with the exhaust gas of the engine (11) to generate a gas-phase working medium; In a Rankine cycle device equipped with a positive displacement expander (13) for converting mechanical energy,
膨張機 (13) の入口での気相作動媒体の圧力を目標圧力に一致させるベく、 蒸発器 (12) の出口での気相作動媒体の流量および目標圧力に基づいてフィ一 ドフォワード値 (NFF) を算出するとともに、 膨張機 (13) の入口での気相作 動媒体の圧力および目標圧力の偏差に、 前記気相作動媒体の流量に基づいて算出 したフィードバックゲイン (kp) を乗算してフィードバック値 (NFB) を算出 し、 フィードフォワード値 (NFF) およびフィードパック値 (NFB) の加 '減算 値に基づいて膨張機 (13) の回転数を制御する制御手段 (20) を備えたこと を特徴とするランキンサイクル装置。 In order to match the pressure of the gas phase working medium at the inlet of the expander (13) to the target pressure, the feedforward value is determined based on the flow rate of the gas phase working medium at the outlet of the evaporator (12) and the target pressure. (N FF ) is calculated, and the feedback gain (kp) calculated based on the flow rate of the gas phase working medium is added to the deviation between the pressure of the gas phase working medium and the target pressure at the inlet of the expander (13). The multiplication is performed to calculate a feedback value (N FB ), and the control means (for controlling the rotation speed of the expander (13) based on the addition and subtraction values of the feed forward value (N FF ) and the feed pack value (N FB )) 20) A Rankine cycle device comprising:
PCT/JP2003/009222 2002-07-25 2003-07-22 Rankine cycle system WO2004011777A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03771275A EP1536105A4 (en) 2002-07-25 2003-07-22 Rankine cycle system
AU2003248085A AU2003248085A1 (en) 2002-07-25 2003-07-22 Rankine cycle system
US10/522,063 US20060101821A1 (en) 2002-07-25 2003-07-22 Rankine cycle system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002216425A JP3901609B2 (en) 2002-07-25 2002-07-25 Rankine cycle equipment
JP2002-216425 2002-07-25

Publications (1)

Publication Number Publication Date
WO2004011777A1 true WO2004011777A1 (en) 2004-02-05

Family

ID=31184577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009222 WO2004011777A1 (en) 2002-07-25 2003-07-22 Rankine cycle system

Country Status (5)

Country Link
US (1) US20060101821A1 (en)
EP (1) EP1536105A4 (en)
JP (1) JP3901609B2 (en)
AU (1) AU2003248085A1 (en)
WO (1) WO2004011777A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124386B (en) * 2005-02-21 2011-11-16 西门子公司 Method and device for calculating energy and technical processes
CN102748080A (en) * 2012-07-03 2012-10-24 山东电力研究院 Main steam pressure change-based thermal power generating unit load control method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4801810B2 (en) * 2006-05-30 2011-10-26 株式会社デンソー Refrigeration equipment with waste heat utilization device
US7950230B2 (en) * 2007-09-14 2011-05-31 Denso Corporation Waste heat recovery apparatus
DE102007062580A1 (en) * 2007-12-22 2009-06-25 Daimler Ag Method for recovering a heat loss of an internal combustion engine
US9441576B2 (en) * 2008-02-14 2016-09-13 Sanden Holdings Corporation Waste heat utilization device for internal combustion engine
JP5118578B2 (en) * 2008-08-20 2013-01-16 サンデン株式会社 Waste heat utilization device for internal combustion engine
DE102010056272A1 (en) * 2010-12-24 2012-06-28 Robert Bosch Gmbh Waste heat utilization system
JP5609707B2 (en) * 2011-02-22 2014-10-22 トヨタ自動車株式会社 Rankine cycle system controller
JP5621721B2 (en) * 2011-06-30 2014-11-12 株式会社豊田自動織機 Rankine cycle
WO2013160993A1 (en) * 2012-04-23 2013-10-31 トヨタ自動車株式会社 Heat transport device
JP6021637B2 (en) * 2012-12-28 2016-11-09 三菱重工業株式会社 Power generation system and power generation method
SE541953C2 (en) * 2016-07-12 2020-01-14 Scania Cv Ab A method for controlling a waste heat recovery system and such a waste heat recovery system
JP2019019797A (en) * 2017-07-20 2019-02-07 パナソニック株式会社 Cogeneration system and operation method of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345835A (en) * 1999-06-07 2000-12-12 Nissan Motor Co Ltd Internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942327A (en) * 1972-05-05 1976-03-09 Thermo Electron Corporation Control system for external combustion engine
US3906731A (en) * 1973-01-24 1975-09-23 Lear Motors Corp Control system for vapor engines
US4358929A (en) * 1974-04-02 1982-11-16 Stephen Molivadas Solar power system
US4039846A (en) * 1975-08-18 1977-08-02 Allied Chemical Corporation Control of a steam-heating power plant
US4117344A (en) * 1976-01-02 1978-09-26 General Electric Company Control system for a rankine cycle power unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345835A (en) * 1999-06-07 2000-12-12 Nissan Motor Co Ltd Internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124386B (en) * 2005-02-21 2011-11-16 西门子公司 Method and device for calculating energy and technical processes
CN102748080A (en) * 2012-07-03 2012-10-24 山东电力研究院 Main steam pressure change-based thermal power generating unit load control method
CN102748080B (en) * 2012-07-03 2014-12-10 山东电力研究院 Main steam pressure change-based thermal power generating unit load control method

Also Published As

Publication number Publication date
EP1536105A1 (en) 2005-06-01
US20060101821A1 (en) 2006-05-18
EP1536105A4 (en) 2005-11-23
JP3901609B2 (en) 2007-04-04
JP2004060462A (en) 2004-02-26
AU2003248085A1 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
JP3901609B2 (en) Rankine cycle equipment
EP2998524B1 (en) Energy recovery device and compression device, and energy recovery method
JP2006250075A (en) Rankine cycle device
RU2006142350A (en) METHOD OF STARTING AND CONTROL OF POWER INSTALLATION OPERATING ON THE BASIS OF ORC-CYCLE
KR101862893B1 (en) Method for operating a combined gas and steam turbine system, gas and steam turbine system for carrying out said method, and corresponding control device
KR20130031837A (en) Control of a thermal cyclic process
JP3901608B2 (en) Rankine cycle equipment
CN103573468A (en) Method for regulating heat recovery system in motor vehicle
JP2008128086A (en) Suction air heating control device for gas turbine
JP2013181398A (en) Control method of binary power generator, and binary power generator
JP2006200493A (en) Rankine cycle device
JP2006250074A (en) Rankine cycle device
JP2006250073A (en) Rankine cycle device
JP6394472B2 (en) Heat pump type steam generator and operation method of heat pump type steam generator
JP4949977B2 (en) Intake heating control device for gas turbine
JPH0333495A (en) Control device for condensate pump
KR101972243B1 (en) Control method for operating a once-through steam generator
JP4939612B2 (en) Compressor control device and control method
JP2014118908A (en) Power generation device
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JP2006207396A (en) Rankine cycle device
JP3660757B2 (en) Control device for combined cycle power plant
JP7051466B2 (en) Systems and methods for controlling mechanical stresses over temperature trajectories
JP2918743B2 (en) Steam cycle controller
CN113513376B (en) Back press motor coaxial double-drive control system and control method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003771275

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003771275

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006101821

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10522063

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10522063

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003771275

Country of ref document: EP