WO2004008615A1 - Multi-phase linear motor with short movable elements - Google Patents

Multi-phase linear motor with short movable elements Download PDF

Info

Publication number
WO2004008615A1
WO2004008615A1 PCT/IB2002/002779 IB0202779W WO2004008615A1 WO 2004008615 A1 WO2004008615 A1 WO 2004008615A1 IB 0202779 W IB0202779 W IB 0202779W WO 2004008615 A1 WO2004008615 A1 WO 2004008615A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
magnets
linear motor
coils
phase coils
Prior art date
Application number
PCT/IB2002/002779
Other languages
French (fr)
Inventor
Michael Bartolotti
Original Assignee
Ballado Investments Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ballado Investments Inc. filed Critical Ballado Investments Inc.
Priority to AU2002345300A priority Critical patent/AU2002345300A1/en
Priority to PCT/IB2002/002779 priority patent/WO2004008615A1/en
Publication of WO2004008615A1 publication Critical patent/WO2004008615A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type

Definitions

  • This invention pertains to the field of multi-phase linear electromagnetic motors.
  • motors are currently made up of a row of magnets if they are of the iron-core type or of two lines of magnets if they are compensated (ironless) motors.
  • Induction coils also called
  • phase coils are arranged face to face with such magnets, in such a way as to be arranged transverse to the flux that is generated by the permanent magnets.
  • the coils that make up the phases typically three coils, but in some cases two
  • the coils are thus arranged on an axis parallel to the motion.
  • the coils that make up the phases are intersected by a current that generates the actual force of the motor.
  • each of the phases has a sinusoidal plot in the direction of motion of the motor itself, in such a way that it generates a force which, again with respect to the direction of motion, is of the sine squared type.
  • the two phases are intersected by a current that is mutually offset by 90°.
  • the three phases are intersected by a current that is mutually offset by 120°.
  • each phase is made up of at least one induction coil
  • each phase is made up of at least one induction coil
  • the inventor of this invention has thought up a new way of arranging the component parts of a linear motor, whereby said arrangement makes it possible to avoid the above-described drawback.
  • the inventor has, in fact, thought up a linear electromagnetic motor in which the coils that comprise the phases of the motor are arranged on a line that is perpendicular to the rows of magnets.
  • Figure 1 shows the known plot of the electro-motive forces in a three-phase linear motor
  • Figure 2 shows the layout of the basic parts of a three-phase linear motor according to the state of the art
  • Figure 3 shows the layout of the basic parts of a three-phase linear motor according to the invention
  • Figure 4 shows the arrangements of the parts of four conventional three-phase linear motors, arranged side by side in such a way as to operate an equal number of stations of an operating unit;
  • Figure 5 shows the arrangements of the parts of four three-phase linear motors according to the invention, arranged side by side in such a way as to operate an equal number of stations of an operating unit;
  • Figure 6 shows a cross-section of an operating unit for high-speed drilling aided by a three-phase linear motor designed according to the invention.
  • Figure 1 shows the plots Fa, Fb, Fc of each of the electro-motive forces as longitudinal position varies, and it is clear that resultant force F remains essentially constant.
  • Figure 2 shows how magnets 12i and phase coils 13i are presently arranged in a linear motor 11 according to the state of the art in order to achieve the effect described in Figure 1: magnets 12i are arranged in one or two parallel rows, and face to face with them are three coils 13A, 13B, and 13C, in each of which there flows an alternating current that is offset by 120° relative to the adjacent coils.
  • magnets 12i are arranged in one or two parallel rows, and face to face with them are three coils 13A, 13B, and 13C, in each of which there flows an alternating current that is offset by 120° relative to the adjacent coils.
  • the desired effect is achieved of an essentially constant force acting on the entire set of magnets 12i, as indicated above, but note should also be taken of the bulk along the direction of motion of motor 11; said bulk is due to the need to align three coils 13A, 13B, and 13C, which are spaced at appropriate intervals.
  • Figure 3 shows the arrangement of the parts in a three-phase linear motor 1 according to this invention; three coils 3i, in which currents flow that are offset by 120°, are arranged along line L, which is perpendicular to the motion. If four lines Mn of magnets 2i are integral with the machine and if three coils 3i are integral with the object to be moved, the resultant of the motive forces is essentially constant, as is achieved with the above-described arrangement and is currently used, but the bulk along the direction of motion is a third as much or less because said bulk is produced by the dimensions only of one of phase coils 3A, 3B, or 3C.
  • phase coils 3i arranged side by side, of four linear motors 1 of the invention, which assist an equal number of stations Ml, M2, M3, M4 of a single operating unit, are arranged side by side in multiple rows of magnets 2i, whereby each row of these series is integral with each of said stations.
  • each linear-motor unit 1 By controlling each linear-motor unit 1, it is possible to manage to advantage the operations of each station in such a way as to coordinate them as required. A single glance clearly shows the difference in transverse bulk for a similar operating unit having four stations Ml, M2, M3, M4 that are assisted by an equal number of linear motors 11 according to the state of the art (the three-phase linear motors are marked in their aggregate).
  • Figure 6 finally, shows linear motor 1 according to the invention which, for reasons of power, has three pairs of phase coils 3i and three double rows of magnets 2i, each arranged among coils 3A, 3B, 3C of each pair, attached to a drilling unit 9, for which linear motor 1 determines the desired amounts of progress in the direction perpendicular to the plane of the figure.
  • the limited bulk of linear motor 1 of the invention is also evident in this case, which is the goal that the inventor set itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

A multi-phase linear motor (1) that comprises a number of magnets (2i) side by side with multiple phase coils (3i) in which alternating currents that are offset bya predetermined value are made to flow, whereby the interaction between said magnets (2i) and said phase coils (3i) causes a relative linear displacement of magnets (2i) with respect to phase coils (3i). In the linear motor in question, said phase coils (3i) lie on an axis (L) that is perpendicular to the direction of motion.

Description

MULTI- PHASE LINEAR MOTOR WITH SHORT MOVABLE ELEMENTS
This invention pertains to the field of multi-phase linear electromagnetic motors. As one skilled in the art is aware, such motors are currently made up of a row of magnets if they are of the iron-core type or of two lines of magnets if they are compensated (ironless) motors. Induction coils (also called
"phase coils") are arranged face to face with such magnets, in such a way as to be arranged transverse to the flux that is generated by the permanent magnets. In typical multi-phase motors, the coils that make up the phases (typically three coils, but in some cases two) are arranged longitudinally, in such a way as to be arranged in line in the direction of the motor's motion. The coils are thus arranged on an axis parallel to the motion.
The coils that make up the phases are intersected by a current that generates the actual force of the motor.
The current that passes through each of the phases has a sinusoidal plot in the direction of motion of the motor itself, in such a way that it generates a force which, again with respect to the direction of motion, is of the sine squared type. In a two-phase motor (having two sets of phase coils), the two phases are intersected by a current that is mutually offset by 90°.
In a three-phase motor (the most common kind), the three phases are intersected by a current that is mutually offset by 120°.
For the sake of simplicity, reference will be made to the operation of the most common motor (the three-phase motor), even though all the statements are also valid for motors having more or less than three phases.
As described above, in order for the three-phase motor to operate properly, it is necessary for the three phases (whereby each phase is made up of at least one induction coil) to be made up along the direction of motion until a line of coils is formed.
Having the phases be distributed in this way means that a significant amount of room is taken up in the direction of motion of the motor itself.
This creates a significant longitudinal bulk for each individual linear motor, and this drawback creates considerable difficulties in cases where machines with multiple operating stations arranged in series are used.
The inventor of this invention has thought up a new way of arranging the component parts of a linear motor, whereby said arrangement makes it possible to avoid the above-described drawback.
The inventor has, in fact, thought up a linear electromagnetic motor in which the coils that comprise the phases of the motor are arranged on a line that is perpendicular to the rows of magnets.
In this way, as will be explained further below, a considerable amount of room is saved in the direction of motion, with less bulk for the operating units that are assisted by one or more linear motors.
The object of this invention is in fact a multi-phase linear motor as described in the preamble to attached Claim 1, characterized by what is stated in the characterizing part of the same claim. A description will now be given of some preferred embodiments of a linear motor according to the invention and, in this connection, reference will also be made to the attached drawings, where:
4 Figure 1 shows the known plot of the electro-motive forces in a three-phase linear motor;
4 Figure 2 shows the layout of the basic parts of a three-phase linear motor according to the state of the art;
4 Figure 3 shows the layout of the basic parts of a three-phase linear motor according to the invention;
4 Figure 4 shows the arrangements of the parts of four conventional three-phase linear motors, arranged side by side in such a way as to operate an equal number of stations of an operating unit;
4 Figure 5 shows the arrangements of the parts of four three-phase linear motors according to the invention, arranged side by side in such a way as to operate an equal number of stations of an operating unit;
4 Figure 6 shows a cross-section of an operating unit for high-speed drilling aided by a three-phase linear motor designed according to the invention.
Figure 1 shows the plots Fa, Fb, Fc of each of the electro-motive forces as longitudinal position varies, and it is clear that resultant force F remains essentially constant.
Figure 2 shows how magnets 12i and phase coils 13i are presently arranged in a linear motor 11 according to the state of the art in order to achieve the effect described in Figure 1: magnets 12i are arranged in one or two parallel rows, and face to face with them are three coils 13A, 13B, and 13C, in each of which there flows an alternating current that is offset by 120° relative to the adjacent coils. In this way the desired effect is achieved of an essentially constant force acting on the entire set of magnets 12i, as indicated above, but note should also be taken of the bulk along the direction of motion of motor 11; said bulk is due to the need to align three coils 13A, 13B, and 13C, which are spaced at appropriate intervals. Figure 3 shows the arrangement of the parts in a three-phase linear motor 1 according to this invention; three coils 3i, in which currents flow that are offset by 120°, are arranged along line L, which is perpendicular to the motion. If four lines Mn of magnets 2i are integral with the machine and if three coils 3i are integral with the object to be moved, the resultant of the motive forces is essentially constant, as is achieved with the above-described arrangement and is currently used, but the bulk along the direction of motion is a third as much or less because said bulk is produced by the dimensions only of one of phase coils 3A, 3B, or 3C.
The effects of the advantages that are obtained in this way are especially evident in Figure 5.
Four series of phase coils 3i, arranged side by side, of four linear motors 1 of the invention, which assist an equal number of stations Ml, M2, M3, M4 of a single operating unit, are arranged side by side in multiple rows of magnets 2i, whereby each row of these series is integral with each of said stations.
By controlling each linear-motor unit 1, it is possible to manage to advantage the operations of each station in such a way as to coordinate them as required. A single glance clearly shows the difference in transverse bulk for a similar operating unit having four stations Ml, M2, M3, M4 that are assisted by an equal number of linear motors 11 according to the state of the art (the three-phase linear motors are marked in their aggregate).
Figure 6, finally, shows linear motor 1 according to the invention which, for reasons of power, has three pairs of phase coils 3i and three double rows of magnets 2i, each arranged among coils 3A, 3B, 3C of each pair, attached to a drilling unit 9, for which linear motor 1 determines the desired amounts of progress in the direction perpendicular to the plane of the figure. The limited bulk of linear motor 1 of the invention is also evident in this case, which is the goal that the inventor set itself.
It is also clear, within the framework of the teachings of the attached claims, that it is possible to design different embodiments of the linear motor of the invention by attaching more parallel series of coils, varying the number of rows of magnets to which the flux of each coil is linked, using pairs of coils instead of single coils, etc..

Claims

Claims
1 Multi-phase linear motor (1) that comprises a number of magnets (2i) arranged side by side with multiple phase coils (3i) in which alternating currents that are offset by a predetermined value are made to flow, whereby the interaction between said magnets (2i) and said phase coils (3i) causes a relative linear displacement of magnets (2i) with respect to phase coils (3i), characterized by the fact that said phase coils (3i) lie on an axis (L) that is perpendicular to the direction of motion.
2. Linear motor according to Claim 1, wherein especially said motor is of the multi-phase type and is designed in such a way that each phase coil (3i) acts on a different magnetic trace (4n) that is not the same as those of other phase coils (3i).
3. Linear motor according to Claim 1, wherein in particular said motor does not have all of phase coils (3i) that interact on the group of magnets (12i).
PCT/IB2002/002779 2002-07-15 2002-07-15 Multi-phase linear motor with short movable elements WO2004008615A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002345300A AU2002345300A1 (en) 2002-07-15 2002-07-15 Multi-phase linear motor with short movable elements
PCT/IB2002/002779 WO2004008615A1 (en) 2002-07-15 2002-07-15 Multi-phase linear motor with short movable elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2002/002779 WO2004008615A1 (en) 2002-07-15 2002-07-15 Multi-phase linear motor with short movable elements

Publications (1)

Publication Number Publication Date
WO2004008615A1 true WO2004008615A1 (en) 2004-01-22

Family

ID=30011699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2002/002779 WO2004008615A1 (en) 2002-07-15 2002-07-15 Multi-phase linear motor with short movable elements

Country Status (2)

Country Link
AU (1) AU2002345300A1 (en)
WO (1) WO2004008615A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19504641A1 (en) * 1995-02-13 1996-08-14 Elektrische Automatisierungs U Linear actuators, useful esp. for moving knitting machines needles
US5854521A (en) * 1995-04-27 1998-12-29 Blum Gmbh Multi-phase transverse magnetic flux machine
EP1178589A1 (en) * 1999-05-07 2002-02-06 Hitachi, Ltd. Linear motor and production method therefor
WO2002013358A1 (en) * 2000-08-09 2002-02-14 Siemens Dematic Ag Linear motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19504641A1 (en) * 1995-02-13 1996-08-14 Elektrische Automatisierungs U Linear actuators, useful esp. for moving knitting machines needles
US5854521A (en) * 1995-04-27 1998-12-29 Blum Gmbh Multi-phase transverse magnetic flux machine
EP1178589A1 (en) * 1999-05-07 2002-02-06 Hitachi, Ltd. Linear motor and production method therefor
WO2002013358A1 (en) * 2000-08-09 2002-02-14 Siemens Dematic Ag Linear motor

Also Published As

Publication number Publication date
AU2002345300A1 (en) 2004-02-02

Similar Documents

Publication Publication Date Title
US7800256B2 (en) Electric machine
EP2611011B1 (en) Linear motor
US6522035B1 (en) Forcer and associated three phase linear motor system
US6670730B2 (en) Multi-phase linear motor with induction coils arranged on an axis perpendicular to the direction of motion
EP1359660B1 (en) Switched reluctance motor
US20090072634A1 (en) Electrical machine
US20020195984A1 (en) XYZ-axes table
US11387728B2 (en) Linear motor and transport system using the same
CN102810923A (en) Electric drive with electronically scalable reconfigurable winding
CN104584403A (en) Linear motor and linear motor drive system
JP5289799B2 (en) Linear motor
CN104335464A (en) Synchronous electric machine
CN105324931A (en) Modular multi-phase electric machine
CN110799376B (en) Magnetic commutator for conveying system
JP3894297B2 (en) Linear actuator
WO2004008615A1 (en) Multi-phase linear motor with short movable elements
Chan et al. Permanent magnet brushless drives
JP2002101636A (en) Linear motor
TWI474582B (en) Linear motor system
JP4352483B2 (en) Three-phase pulse motor
KR100618441B1 (en) The Integrated System of Linear Motion Guide and Reluctance-type Linear Motor
JP2004140899A (en) Linear actuator
JP2005210794A (en) Linear electromagnetic actuator
CN104578681B (en) Composition of trigger type brushless direct-current linear motor and drive method
CN112260425B (en) Linear flat motor stator, linear flat motor, linear cylinder motor stator and linear cylinder motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (EPO FORM 1205A OF 18.07.05)

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase