WO2004007705A1 - Nukleotidsequenzen codierend für deregulierte phosphoglycerat-dehydrogenasen coryneformer bakterien sowie verfahren zur herstellung von l-serin - Google Patents

Nukleotidsequenzen codierend für deregulierte phosphoglycerat-dehydrogenasen coryneformer bakterien sowie verfahren zur herstellung von l-serin Download PDF

Info

Publication number
WO2004007705A1
WO2004007705A1 PCT/DE2003/002290 DE0302290W WO2004007705A1 WO 2004007705 A1 WO2004007705 A1 WO 2004007705A1 DE 0302290 W DE0302290 W DE 0302290W WO 2004007705 A1 WO2004007705 A1 WO 2004007705A1
Authority
WO
WIPO (PCT)
Prior art keywords
deregulated
serine
phosphoglycerate dehydrogenase
gene
microorganism
Prior art date
Application number
PCT/DE2003/002290
Other languages
English (en)
French (fr)
Other versions
WO2004007705A9 (de
Inventor
Lothar Eggeling
Petra Peters-Wendisch
Roman Netzer
Hermann Sahm
Robert Faurie
Birgit Klassen
Original Assignee
Forschungszentrum Jülich GmbH
Amino Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH, Amino Gmbh filed Critical Forschungszentrum Jülich GmbH
Priority to MXPA05000527A priority Critical patent/MXPA05000527A/es
Priority to AT03763598T priority patent/ATE479745T1/de
Priority to EP03763598A priority patent/EP1520013B1/de
Priority to JP2004520314A priority patent/JP2006524032A/ja
Priority to US10/520,999 priority patent/US7732176B2/en
Priority to DK03763598.4T priority patent/DK1520013T3/da
Priority to BR0312374-0A priority patent/BR0312374A/pt
Priority to DE50313042T priority patent/DE50313042D1/de
Publication of WO2004007705A1 publication Critical patent/WO2004007705A1/de
Publication of WO2004007705A9 publication Critical patent/WO2004007705A9/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01095Phosphoglycerate dehydrogenase (1.1.1.95)

Definitions

  • the invention relates to nucleotide sequences of coryneform bacteria coding for proteins involved in the biosynthesis of L-serine and to methods for producing L-serine.
  • the amino acid L-serine is used in the food, feed and pharmaceutical industries, as well as in human medicine. In addition, it serves as a building block for the synthesis of other industrially usable products, such as. B. L-tryptophan from indole and L-serine.
  • L-serine can be produced by fermentation of strains of coryneform bacteria.
  • So z. B. a strain of Corynebacterium glycinophilum able to form L-serine from glycine and carbohydrates (Kubota K, Kageyama K, Shiro T and Okumura S (1971) Journal of General Applications in Microbiology, 17: 167-168; Kubota K, Kageyama K, Maeyashiki I, Yamada K and Okumura S (1972) Journal of General Applications in Microbiology 18: 365).
  • the enzyme L-serine hydroxymethyl transferase is involved in the conversion of glycine to L-serine (Kubota K and Yokozeki K (1989) Journal of Fermentation and Bioengeneering, 67 (6): 387-390).
  • the strains used also show a reduced L-serine breakdown, which indicates a decrease in the activity of the enzyme L-serine dehydratase (Kubota K, Kageyama K, Shiro T and Okumura S (1971) Journal of General Applications in Microbiology, 17: 167-168; Kubota K (1985) Agricultural Biological Chemistry, 49 : 7-12).
  • L-serine is fermented from methanol and glycine with the help of methylotrophic bacteria, such as. B. Hyphomicrobium strains (Izumi Y, Yoshida T, Miyazaki SS, Mitsunaga T, Ohshiro T, Shiamo M, Miyata A and Tanabe T (1993) Applied Microbiology and Biotechnology, 39: 427-432).
  • the amino acid glycine must be used as a precursor for the formation of the amino acid L-serine.
  • coryneform bacteria are known which can produce L-serine directly from carbohydrates without the addition of further precursors.
  • strains which belong to the genus Corynebacterium glutamicum, are characterized by the fact that they are e.g. B. are resistant to the L-serine analogues serine hydroxamate and ⁇ -chloroalanine and were obtained by undirected mutagenesis
  • Brevibacterium flavum strains which have defects in L-serine degradation due to undirected mutagenesis, have an increased activity of the 3-phosphoglycerate dehydrogenase encoded by serA, and overexpress the genes serB and serC originating from Escherichia coli (EP0931833A2) ).
  • the deregulated sexA gene used here was obtained by undirected mutagenesis and differs from the wild type gene only by a single base exchange. The expression of this gene has the disadvantage that it can easily be reverited and thus returned to the regulated state.
  • a disadvantage of previously known 3-phosphoglycerate dehydrogenases is their feedback inhibition by L-serine, which, for example, reduces the productivity of the microbial production of L-serine.
  • the region responsible for this regulation by L-serine is the C-terminus of the protein. From WO 93/12235 a DNA is known which for a
  • 3-phosphoglycerate dehydrogenase from E. coli coded, the C-terminus of which was changed by 25%, completely deleted or into which an insertion was carried out in a specific region, so that there was less inhibition by L-serine.
  • this 3-phosphoglycerate dehydrogenase showed only a low activity. An improved L-serine production was not demonstrated with the deregulated 3-phosphoglycerate dehydrogenase.
  • the wild type serA sequence is generally known and can be found in the databases known to those skilled in the art or in the attached sequence listing according to SEQ ID No. 6 can be removed.
  • 3-phosphoglycerate dehydrogenases a decreased feed back inhibition by L-serine while maintaining activity.
  • Dehydrogenases or microorganisms with a 3-phosphate dehydrogenase phoglycerat have a reduced "feedback inhibition by L-serine while retaining the activity. It is another object of the invention to provide an improved method for the microbial production of L-serine to provide.
  • the object is achieved according to the invention with the features specified in the characterizing part of claim 1, 2, 3, 4 or 5. Furthermore, the object is achieved based on the preamble of claim 9 according to the invention, with the features specified in the characterizing part of claim 9. The object is also achieved according to the invention based on the preamble of claim 10, with the features specified in the characterizing part of claim 10. The object is also achieved based on the preamble of claim 11 according to the invention, with the features specified in the characterizing part of claim 11. The object is further achieved according to the invention on the basis of the preamble of claim 20, with the features specified in the characterizing part of claim 20.
  • the object is also achieved according to the invention by the features specified in the characterizing part of claim 26. Furthermore, the task is based on the preamble of claim 27 solved according to the invention, by the features specified in the characterizing part of claim 27.
  • nucleic acids and polypeptides according to the invention With the nucleic acids and polypeptides according to the invention, it is now possible to provide a 3-phosphoglycerate dehydrognase which has no or a reduced L-serine feedback inhibition compared to naturally occurring or genetically unmodified nucleic acids or enzymes while maintaining the 3-phosphoglycerate Has dehydrogenase activity. This property is summarized below under the name "deregulated”. Furthermore, it is possible to provide microorganisms and processes with which L-serine production is possible with higher yields than previously known microbial processes.
  • the invention relates to the provision of nucleic acids coding for a deregulated 3-phosphoglycerate dehydrogenase, hereinafter referred to as PGD, containing a gene sequence serA according to SEQ ID No 1, 2, 3, 4 or 5 or an allele, homologue or derivative of these nucleotide sequences or hybridizing with these nucleotide sequences.
  • PGD deregulated 3-phosphoglycerate dehydrogenase
  • the nucleic acids according to the invention are distinguished by the fact that they consist of coryneform bacteria, preferably prefers the genus Corynebacterium or Brevibacterium, particularly preferably from Corynebacterium glutamicum, to be isolated.
  • coryneform bacteria preferably prefers the genus Corynebacterium or Brevibacterium, particularly preferably from Corynebacterium glutamicum, to be isolated.
  • Examples of wild types of coryneform bacteria deposited in stock cultures are, Corynebacterium glutamicum ATCC 13032 and Corynebacterium acetoglutamicum ATCC 15806 or also Brevibacterium flavum ATCC 14067.
  • mutants or production strains suitable for the production of L-serine are organisms from the group Arthrobacter, Pseudomonas , Nocardia, Methylobacterium, Hyphomycrobium, Alcaligenes or Klebsiella.
  • the present invention is characterized in more detail by the specification of the bacterial strains mentioned above, which, however, has no limiting effect.
  • a nucleic acid or a nucleic acid fragment is to be understood as a polymer made from RNA or DNA, which can be single or double-stranded and optionally contain natural, chemically synthesized, modified or artificial nucleotides.
  • DNA polymer in this case also includes ge 'nominal specific DNA, cDNA, or mixtures thereof.
  • alleles are to be understood as functional equivalents, ie essentially equivalent nucleotide sequences.
  • Functionally equivalent sequences are those sequences which, despite a different nucleotide sequence, for example due to the degeneracy of the genetic code, still have the desired functions.
  • Functional equivalents thus include naturally occurring variants of the sequences described here, as well as artificial, e.g. B. obtained by chemical synthesis and optionally to the Sequences codon usage of the host organism adapted nucleotide ⁇ .
  • a functional equivalent is also understood to mean, in particular, natural or artificial mutations in an originally isolated sequence which continue to show the desired function. Mutations include substitutions, additions, deletions, exchanges or insertions of one or more nucleotide residues. So-called meaning mutations are also included here, which can lead to the exchange of conserved amino acids at the protein level, but which do not lead to a fundamental change in the activity of the protein and are therefore function-neutral. This also includes changes in the nucleotide sequence which affect the N-terminus of a protein at the protein level, but without significantly impairing the function of the protein.
  • the present invention also makes such a
  • Nucleotide sequences encompassed which are obtained by modification of the nucleotide sequence, resulting in corresponding derivatives.
  • the aim of such a modification can e.g. B. the further limitation of the coding sequence contained therein or z. B. also the insertion of further restriction enzyme interfaces.
  • artificial DNA sequences are the subject of the present invention as long as they impart the desired properties, as described above.
  • Such artificial DNA sequences can be, for example, by back-translating proteins or by computer-aided programs (molecular modeling) can be determined by in vitro selection. Coding DNA sequences obtained by back-translating a polypeptide sequence according to the codon usage specific for the host organism are particularly suitable. The specific codon usage can easily be determined by a person familiar with molecular genetic methods by computer analysis of other, already known genes of the organism to be transformed.
  • homologous sequences are to be understood as those which are complementary to and / or hybridize with the nucleotide sequences according to the invention.
  • hybridizing sequences includes, according to the invention, substantially similar nucleotide sequences from the group of DNA or RNA, which enter into a specific interaction (binding) with the aforementioned nucleotide sequences under stringent conditions known per se. This also includes short nucleotide sequences with a length of, for example, 10 to 30, preferably 12 to 15 nucleotides. According to the invention, this includes also so-called primers or probes.
  • sequence regions preceding the coding regions are also included.
  • sequence regions with a regulatory function are included here. They can be used for transcription and RNA stability or influence RNA processing and translation. Examples of regulatory sequences include
  • the invention furthermore relates to a gene structure comprising at least one of the nucleotide sequences described above coding for a deregulated PDG and also operatively linked regulatory sequences which control the expression of the coding sequences in the host cell.
  • the present invention relates to a vector containing a nucleotide sequence of the type described above coding for a deregulated PDG, to this operatively linked regulatory nucleotide sequences and to additional nucleotide sequences for selecting transformed host cells, for replication within the host cell or for integration into the corresponding host cell genome.
  • the vector according to the invention can contain a gene structure of the aforementioned type.
  • Suitable vectors are those that are replicated in coryneform bacteria such as. B. pZl (Menkel E, Thierbach G, Eggeling L, Sahm H., 1989, Appl Environ
  • probes or primers can be synthesized and used to amplify and isolate, for example, genes from other microorganisms, preferably coryneform bacteria, using the PCR technique.
  • the present invention thus also relates to a probe for identifying and / or isolating genes coding for proteins involved in the biosynthesis of L-serine, this probe being produced starting from the nucleic acid sequences of the type described above and containing a label suitable for detection ,
  • the probe can be a partial section of the sequence according to the invention, for example from a conserved area which, for. B.
  • the present invention furthermore relates to a deregulated PGD or a part thereof, encoded by a nucleic acid sequence according to the invention according to SEQ ID No 1, 2, 3, 4 or 5 or its variations of the type described above.
  • the present invention also relates to a deregulated PGD with a Amino acid sequence according to SEQ ID No 7, 8, 9, 10 or 11 or a modified form of these polypeptide sequences or isoforms thereof or mixtures thereof.
  • a 3-phosphoglycerate dehydrogenase with an amino acid sequence according to SEQ ID No 7 has also proven suitable.
  • Isoforms are to be understood as enzymes with the same or comparable substrate and activity specificity, but which have a different primary structure.
  • modified forms are understood to mean enzymes in which there are changes in the sequence, for example at the N-terminus of the polypeptide or in the region of conserved amino acids, but without impairing the function of the enzyme. These changes can be made in the form of amino acid exchanges using methods known per se.
  • the present invention relates to polypeptides with the function of a deregulated PGD, the amino acid sequence of which is changed in such a way that they are desensitive to feedback-regulating compounds, for example the metabolic end products (L-serine) regulating their activity (feedback-desensitive).
  • a deregulated PGD the amino acid sequence of which is changed in such a way that they are desensitive to feedback-regulating compounds, for example the metabolic end products (L-serine) regulating their activity (feedback-desensitive).
  • the polypeptides according to the invention are distinguished by the fact that they originate from coryneform bacteria, preferably of the genus Corynebacterium or Brevibacterium, particularly preferably of the species Corynebacterium glutamicum or Brevibacterium, particularly preferably from Corynebacterium glutamicum.
  • Examples of wild types of coryneform bacteria deposited in parent cultures are Corynebacterium glutamicum ATCC 13032 and Corynebacterium acetoglutamicum ATCC 15806 or Brevibacterium flavum ATCC 14067.
  • mutants or production strains suitable for the production of L-serine are organisms from the group Arthrobacter, Pseudomonas, Nocardia, Methylobacterium, Hyphomycrobium, Alcaligenes or Klebsiella.
  • the present invention is characterized in more detail by the specification of the bacterial strains mentioned above, which, however, has no limiting effect.
  • the present invention also relates to
  • Transfer of at least one of the nucleic acid sequences according to the invention or a part thereof coding for a deregulated PGD, an allele, homologue or derivative thereof into a host system also includes the transfer of a gene construct or vector according to the invention into a host system.
  • This transfer of DNA into a host cell takes place using genetic engineering methods. The preferred method here is transformation and particularly preferably the transfer of DNA by electroporation.
  • a homologous host system has proven to be particularly suitable.
  • a homologous host system is understood to mean microorganisms which all belong to a related family. According to the invention, this includes coryneform bacteria into which the nucleic acids isolated from coryneform bacteria according to the invention are introduced.
  • a transformed microorganism resulting from a successfully carried out nucleic acid transfer thus differs from the correspondingly not transformed microorganism in that it contains additional nucleic acids of the type according to the invention and accordingly for can emboss.
  • the bacterium Corynebacterium glutamicum and preferably the strain ATCC 13032 are representative of a suitable homologous host system.
  • a complex medium such as e.g. B. LB Medium (T.
  • the bacterial suspension can be harvested for cultivation and used for further investigation, for example for the transformation or for the isolation of nucleic acids by conventional methods. This procedure can also be applied analogously to other coryneform bacterial strains.
  • Bacteria of the genus Corynebacterium or Brevibacterium are preferred as host systems.
  • the species Corynebacterium glutamicum is particularly preferred within the genus Corynebacterium, and the species Brevibacterium flavum is particularly preferred within the genus Brevibacterium.
  • the representatives of these genera include strains that are characterized in their properties as wild type.
  • Corynebacterium glutamicum ATCC 13032 Corynebacterium glutamicum ATCC 14752, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium melassecola ATCC 17965, Corynebacterium thermocaminogenium39ibm Brex 1405 Brex, Breibmibacterium Brex, Breymabacterium 138, Breymabacterium Bref divaricatum ATCC 14020 to name.
  • the present invention also includes bacterial strains as a host system, which are known as Characterize L-serine producing mutants or amino acid production strains. These can e.g. B. starting from wild-type strains by classic (chemical or physical) or genetic engineering methods.
  • strains suitable according to the invention include Corynebacterium glutamicum ATCC 21586, Corynebacterium glutamicum KY 10150, Corynebacterium glutamicum ATCC 13032 ⁇ panBC and Brevibacterium ketoglutamicum ATCC 21222.
  • those production strains which are known to the person skilled in the art are also suitable according to the invention, and are known to those skilled in the art from microbial , B. Enterobacteria, Bacillaceae or yeast species.
  • the present invention is characterized in more detail by the selected examples of microorganisms, but is not limited.
  • the present invention further relates to a genetically modified microorganism containing, in replicable form, a nucleic acid according to the invention of the type described above, which is expressed more intensely than the correspondingly non-genetically modified microorganism and / or whose number of copies is increased.
  • the present invention also includes a genetically modified microorganism containing, in replicable form, a gene structure or a vector of the type described above.
  • the present invention also relates to a genetically modified microorganism containing a polypeptide according to the invention with the function of a deregulated PGD of the previously described Type which has a reduced or no feedback inhibition by L-serine compared to the correspondingly non-genetically modified microorganism while maintaining the PGD activity.
  • a genetically modified microorganism according to the invention is further characterized in that it is a coryneform bacterium, preferably of the genus Corynebacterium or Brevibacterium, particularly preferably of the species Corynebacterium glutamicum or Brevibacterium flavum.
  • genes can be amplified by methods known per se, such as the polymerase chain reaction (PCR) with the aid of short, synthetic nucleotide sequences (primers) and then isolated.
  • PCR polymerase chain reaction
  • primers are generally produced on the basis of known gene sequences based on existing homologies in conserved areas of the genes and / or taking into account the GC content of the DNA of the microorganism to be examined.
  • a further procedure for the isolation of coding nucleotide sequences is the complementation of so-called defect mutants of the organism to be examined, which have at least phenotypically a functional loss in the activity of the gene to be examined or the corresponding protein. Complementation is to be understood as the elimination of the genetic defect of the mutant and extensive restoration of the original appearance before the mutagenesis, which is achieved by introducing functional genes or gene fragments from the microorganism to be examined.
  • a classic mutagenesis method for producing defect mutants is, for example, the treatment of the bacterial cells with chemicals such as. B. N-methyl-N-nitro-N-nitrosoguanidine or UV radiation.
  • Such methods for triggering mutations are generally known and can be found, inter alia, in Miller (A Short Course in Bacterial Genetics, A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria (Cold Spring Harbor Laboratory Press, 1992)) or in the manual “Manual of Methods for General Bacteriology "of the American Society for Bacteriology (Washington DC, USA, 1981).
  • the present invention also relates to a method for the microbial production of L-serine, wherein at least one of the nucleic acids according to the invention, isolated from a coryneform bacterium, is transferred to a host organism and expressed there, the gene expression and / or the activity of the correspondingly encoded polypeptide is increased compared to the correspondingly not genetically modified microorganism, this genetically modified microorganism is used for the microbial production of L-serine and the correspondingly formed L-serine is isolated from the culture medium.
  • the number of copies of the corresponding genes can be increased to achieve increased gene expression (overexpression). Furthermore, the promoter and / or regulatory region and / or the ribosome binding site which is located upstream of the structural gene can be changed accordingly in such a way that expression takes place at an increased rate. Expression cassettes which enter upstream of the structural gene act in the same way. be built. Inducible promoters also make it possible to increase expression in the course of the fermentative L-serine production. Expression is also improved by measures to extend the life of the mRNA.
  • the genes or gene constructs can either be present in plasmids with different copy numbers or can be integrated and amplified in the chromosome. Furthermore, the activity of the enzyme itself can also be increased or increased by preventing the breakdown of the enzyme protein.
  • overexpression of the genes in question can also be achieved by changing the media composition and culture management. Instructions for this can be found by Martin et al. (Bio / Technology 5, 137-146 (1987)), Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya and Morinaga (BioRechnology 6, 428-430 (1988)), at Eikmanns et al. (Gene 102, 93-98 (1991)), in European Patent EPS 0 472 869, in US Patent 4,601,893, by Schwarzer and Pühler (Bio / Technology 9, 84-87 (1991), by Reinscheid et al.
  • the genetically modified microorganisms produced according to the invention can be used continuously or discontinuously. They can be cultured in the batch process (batch cultivation) or in the fed batch (experience feed) or repeated fed batch process (repetitive feed process) for the purpose of producing L-serine.
  • batch cultivation batch cultivation
  • fed batch experience feed
  • repeated fed batch process repetitive feed process
  • a summary of known cultivation methods can be found in the textbook by Chmiel (bioprocess technology 1st introduction to bioprocess engineering (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (bioreactors and peripheral facilities (Vieweg Verlag, Braunschweig / Wiesbaden, 1994)).
  • the culture medium to be used must meet the requirements of the respective strains in a suitable manner. Descriptions of culture media of various microorganisms are contained in the manual "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington DC, USA, 1981).
  • sugar and carbohydrates such as. B. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats such as. B. soybean oil, sunflower oil, peanut oil and coconut oil, fatty acids such as. As palmitic acid, stearic acid and linoleic acid, alcohols such as. B. glycerol and ethanol and organic acids such as. B. acetic acid can be used.
  • Organic nitrogen-containing compounds such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soybean meal and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate can be used as the nitrogen source.
  • the nitrogen sources can be used individually or as a mixture.
  • Phosphoric acid, Potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used.
  • the culture medium must also contain salts of metals such.
  • Suitable precursors can also be added to the culture medium.
  • the feedstocks mentioned can be added to the culture in the form of a one-off batch or added in a suitable manner during the cultivation.
  • Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or ammonia water or acidic compounds such as phosphoric acid or sulfuric acid are used in a suitable manner to control the pH of the culture.
  • anti-foaming agents such as B. fatty acid polyglycol esters.
  • suitable selective agents can be used in the medium
  • Fabrics e.g. B. Antibiotics can be added.
  • oxygen or gas mixtures containing oxygen such as e.g. B. air introduced into the culture.
  • the temperature of the culture is usually 20 ° C to 45 ° C, and preferably
  • L-serine formation can be carried out by anion exchange chromatography with subsequent ninhydrin derivatization, as in Spackman et al. (Analytical Chemistry, 30, (1958), 1190), or it can be done by reversed phase HPLC as in Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174).
  • the microorganisms which are the subject of the present invention can produce L-serine from glucose, sucrose, lactose, mannose, fructose, maltose, molasses, starch, cellulose or from glycerol and ethanol. It can be the representatives of coryneform bacteria already described in more detail above. A selection of results from the fermentation is shown in Table 6.
  • the genetically modified microorganisms according to the invention are distinguished here by a substantially improved L-serine production compared to the correspondingly not transformed microorganisms (wild types) or the microorganisms which only contain the vector without a gene insert. In a special embodiment variant of the present invention, it is shown that the overexpression of the homologous C-terminally shortened serA gene in C. glutamicum ATCC
  • 13032DpanBCpZlserA ⁇ l97 leads to an at least 40% increase in L-serine accumulation in the medium compared to the control strains (Tab. 6). Due to the overexpression of other genes that have a positive effect on the L-serine biosynthetic pathway, an even further increase in L-serine production can be expected.
  • amino acid production strains are to be understood as Corynebacterium glutamicum strains or homologous microorganisms which are modified by classic and / or molecular genetic methods in such a way that their metabolic flow increases in the direction of the biosynthesis of amino acids or their descendants (metabolic engineering).
  • these amino acid production strains one or more genes and / or the corresponding enzymes, which are at crucial and correspondingly complex regulated key positions in the metabolic pathway (bottleneck), are changed or even deregulated.
  • the present invention includes all known amino acid production strains, preferably of the genus Corynebacterium or homologous organisms.
  • those production strains are also included which the person skilled in the art can produce by analogy with knowledge from other microorganisms, for example enterobacteria, bacillaceae or types of yeast, using customary methods.
  • the figures show examples of plasmids used and a comparison of the primary structure of the PGD and alleles of serA constructed by means of PCR.
  • the protein of the hyperthermophilic bacterium T. mari tima is the shortest with a length of 327 amino acids, while the 3-phosphoglycerate dehydrogenase from E. coli with 410 amino acids has an intermediate length.
  • Fig. 2 Overview of the alleles of serA constructed by means of PCR, which code for the deregulated, C-terminally shortened PGD.
  • the serA gene region of the wild type (above) and the deletion constructs according to the invention are shown.
  • the areas marked light, dark and black correspond to the definition as in FIG. 1.
  • the sequence of the serA gene coding for the 3-phosphoglycerate dehydrogenase from C. glutamicum from the patent database was used (Nakagawa, S., Mizoguchi, H., Ando, S., Hayashi, M., Ochiai, K., Yokoi, H., Tateishi, N., Senoh, A., Ikeda, M. And Ozaki, A.
  • glutamicum such as that from Mycobacterium tuberculosis (GenBank accession number AL123456) and some other bacteria such as Bacillus subtilis (Sorokin, A., Azevedo, V., Zumstein, E., Galleron, N., Ehrlich, SD and Serror, P. Microbiology 142 (Pt 8), 2005-2016 (1996)) and Aquifex aeolicus (GenBank accession number AE000657) with 530 amino acids is extraordinarily long.
  • This group of enzymes also includes the 3 -phosphoglycerate dehydrogenases from animals such as rats (Achouri Y., Rider MH, Van Schaftingen E. and Robbi M., 1997, Biochem. J., 323: 365-370) and Human (Cho HM, Jun DY, Bae MA, Ahn JD, Kim YH.,
  • a second, reverse-complementary primer was selected, which was 199 bp behind the stop codon and carries a BamHI restriction site (serA-r: 5'-GGATCCGACTGGTGAGGGTCAAGTCC-3 ').
  • the expected PCR product is 2040 bp in length.
  • Reverse-complementary primers were selected to generate the deletions. They are located in the gene area and all also have an interface for BamEI.
  • the primer serA ⁇ 211-r (5'-GGATCCTTAACCGGAAACGTTCACAGC3 ') lies 956 bp behind the start codon, so that a 1196 bp long PCR product is produced.
  • the deletion lies approximately in the area of the presumable transition from substrate binding to regulatory domain (see Fig. 1 and Fig. 2).
  • the primer serA ⁇ 205-r (5'-GGATCCTTACTCTTCGCCCACGCGACC3 ') is 974 bp behind the start codon and the expected PCR product has a length of 1214 bp.
  • the C-terminal deletion in this case is 205 amino acids and the protein ends behind the amino acid glutamate at position 325. The undirected exchange of this amino acid to lysine leads to a deregulation of the 3-phosphoglycerate dehydrogenase (EP 0 931 833). Both deletions lie in an area in which the deletion ( ⁇ 209 amino acids) of the protein is also present
  • Rat was generated (Achouri Y., Rider MH, Van Schaftingen E. and Robbi M., 1997, Biochem. J., 323: 365- 370).
  • serA ⁇ l88-r lie 998 bp and 1025 bp behind the ATG and are located upstream from the transition from substrate binding domain to regulatory domain in E. coli.
  • GGATCCTTAATCCAGGCCACGGCCATT3 generates and cuts off the region of 79 amino acids that bears the greatest similarity to the regulatory domain of E. coli (Fig. 2).
  • all reverse-complementary primers that are supposed to lead to a truncated protein were placed behind the interface the stop codon TAA inserted.
  • the PCR reaction was carried out in 30 cycles in the presence of 200 ⁇ M deoxynucleotide triphosphates (dATP, dCTP, dGTP, dTTP), 1 ⁇ M each of the corresponding oligonucleotide, 100 ng chromosomal DNA from Corynebacterium glutamicum ATCC13032, 1/10 volume 10-fold reaction buffer and 2.6 units of a heat-stable Taq / Pwo DNA polymerase mixture (Expand High Fidelity PCR System from Röche Diagnostics, Mannheim, Germany) in a thermal cycler (PTC-100, MJ Research, Inc., Watertown, USA) under the following conditions: 94 ° C for 60 seconds, 50 ° C for 90 seconds and 72 ° C for 2 minutes.
  • deoxynucleotide triphosphates dATP, dCTP, dGTP, dTTP
  • a heat-stable Taq / Pwo DNA polymerase mixture Exand High Fide
  • the DNA fragments obtained were extracted using the QIAExII gel extraction kit (Qiagen) according to the manufacturer, isolated from a 0.8% agarose gel, blunt-ended cloned into the Smal site of the vector pUC18 using the Sure Clone Kit (Amersham Pharmacia Biotech). The plasmids were checked for correctness by restriction mapping. This cloning was carried out in the Escherichia coli strain DH5 ⁇ mcr (Grant et al., Proceedings of the National Academy of Sciences of the United States of America USA (1990) 87: 4645-4649).
  • the serA gene and the serA deletion constructs were then inserted into the E. coli / C. glutamicum pendulum vector pZl (Menkel E, Thierbach G, Eggeling L, Sahm H., 1989, Appl Environ Microbiol 55 (3): 684-688).
  • the vector mediates kanamycin resistance.
  • the inserts of the deletion constructs were cut out of the pUC18 vector with the restriction enzymes EcoRI and BamEI.
  • the overhanging DNA ends were filled in using Klenow treatment and the fragments were blunt-ended ligated into the seal-cut vector pZl.
  • the wild type serA gene was also treated with Klenow after EcoRI restriction and blunt-end ligated into the seal-cut vector pZl.
  • the plasmids pZlserA, pZlserA_479, pZlserA_1188 pZlserA_dl97 pZlserA-4205 and pZlserAd211 were carried out by Electroporation introduced individually into C. glutamicum. As a control, the empty plasmid pZl was also electroporated according to C. glutamicum ATCC 13032.
  • strains 13032pZl, 13032pZlser ⁇ , 13032pZlserA ⁇ 79, 13032pZlserA ⁇ l88, 13032pZlserA ⁇ l97, 13032pZlserA ⁇ 205 and 13032pZlserA ⁇ 211 thus obtained were then analyzed for overexpression of the 3-phosphoglycerate dehydrogenase-dehydrogenase-3-enzyme test.
  • the medium was identical to that in Keilhauer et al. described medium CGXII (Journal of Bacteriology (1993) 175: 5593-5603), but additionally contained 25 ⁇ g / ml kanamycin.
  • the composition of the by Keilhauer et al. described medium is shown in Table 1.
  • the cells were harvested in the exponential growth phase at ODsoo from 5 to 8 and twice in 100 mM
  • Tris-HCl, pH 7.5 washed.
  • the cell pellets were then frozen at -20 ° C until digestion.
  • the frozen cell pellets were then thawed on ice and resuspended with 2 ml of cold 100 mM Tris-HCl pH 7.5 / 10% glycerol and digested in a Brenson Sonifier for 10 min.
  • the cell debris was then removed by centrifugation at 13000 rpm and 4 ° C in a Sigma 202 MK centrifuge.
  • the supernatants obtained in this way were initially extracted as crude extracts via a PD-10 column according to the manufacturer
  • Table 2 Components of the test batch for determining the 3 -phosphoglycerate dehydrogenase activity
  • Table 3 Overexpression of the serA gene and the C-terminally truncated serA alleles.
  • This strain is pantotenate-auxotrophic due to the deletion of the pantothenate biosynthesis genes panB and panC, and is characterized by the fact that it secretes approx. 50 mM alanine and 8 mM valine under pantothenate limitation due to an increased accumulation of pyruvate.
  • the strain forms approx. 100 ⁇ M L-serine and is therefore suitable as a starting strain for the construction of an L-serine producer.
  • the strain 13032 ⁇ panBCpZlserA transformed with the plasmid pZlserA was deposited with the DSMZ under DSM No. 14922 on April 11, 2002 in accordance with the Budapest Treaty.
  • the three strains were grown in complex medium (CgIII with 2% glucose and with 50 ⁇ g / 1 kanamycin), and the fermentation medium CGXII (J Bacteriol (1993) 175: 5595-5603) were inoculated from the precultures.
  • the medium additionally contained 50 ⁇ g / 1 kanamycin and 1 ⁇ M pantothenate.
  • Two independent fermentations were carried out. After culturing for 24 or 35 hours at 30 ° C. on a rotary shaker at 120 rpm, the amount of L-serine accumulated in the medium was determined.
  • the amino acid concentration was determined by means of high pressure liquid chromatography (J Chromat (1983) 266: 471-482).
  • the result of the fermentation is in Table 6 shown, and it turns out that the overexpression of the wild-type serA gene causes an approximately 10% increase in L-serine accumulation in the medium.
  • the overexpression of the deregulated 3-phosphoglycerate dehydrogenase achieves an increase of up to 40% compared to the control strain which only carries the empty plasmid.
  • the use of the constructed and described gene for the deregulated L-serine biosynthesis enzyme 3-phosphoglycerate dehydrogenase represents a method to decisively improve the L-serine formation.
  • microorganism referred to under I was received by this international depository on (date of first deposit) and an application for the conversion of this first deposit into a deposit under the Budapest Treaty was received on (date of receipt of the request for conversion). , '

Abstract

Die Erfindung betrifft Nukleotidsequenzen coryneformer Bakterien codierend für an der Biosynthese von L-Serin beteiligte Proteine sowie Verfahren zur Herstellung von L-Serin. Durch Deletion von mindestens 79 Aminosäuren im C-Terminus der Wild Typ serA Sequenz konnte eine 3-Phosphoglycerat-Dehydrogenase mit einer gegenüber dem Wild Typ verringerten Feedback Inhibition durch L-Serin erzeugt werden.

Description

B e s c h r e i b u n g
Nukleotidsequenzen coryneformer Bakterien codierend für an der Biosynthese von L-Serin beteiligte Proteine sowie Verfahren zur Herstellung von L-Serin
Die Erfindung betrifft Nukleotidsequenzen coryneformer Bakterien codierend für an der Biosynthese von L-Serin beteiligte Proteine sowie Verfahren zur Herstellung von L-Serin.
Die Aminosäure L-Serin findet in der Nahrungsmittel-, Futtermittel- und Pharmaindustrie, sowie in der Humanmedizin Anwendung. Darüber hinaus dient sie als Baustein für die Synthese weiterer industriell verwert - barer Produkte, wie z. B. L-Tryptophan aus Indol und L-Serin.
Es ist bekannt, dass L-Serin durch Fermentation von Stämmen coryneformer Bakterien hergestellt werden kann. So ist z. B. ein Stamm von Corynebacterium glycinophi - lum in der Lage, L-Serin aus Glycin und Kohlenhydraten zu bilden (Kubota K, Kageyama K, Shiro T und Okumura S (1971) Journal of General Applications in Microbiology, 17: 167-168; Kubota K, Kageyama K, Maeyashiki I, Yamada K und Okumura S (1972) Journal of General Applications in Microbiology 18: 365) . An der Umsetzung von Glycin zu L-Serin ist hier das Enzym L-Serin-Hydroxymethyl- transferase beteiligt (Kubota K und Yokozeki K (1989) Journal of Fermentation and Bioengeneering, 67(6) :387- 390) . Die verwendeten Stämme weisen darüber hinaus einen verminderten L-Serin-Abbau auf, der auf eine Ver- ringerung der Aktivität des Enzyms L-Serin-Dehydratase zurückzuführen ist (Kubota K, Kageyama K, Shiro T und Okumura S (1971) Journal of General Applications in Microbiology, 17: 167-168; Kubota K (1985) Agricultural Biological Chemistry, 49:7-12).
Weiterhin wird L-Serin fermentativ aus Methanol und Glycin unter Zuhilfenahme methylotropher Bakterien, wie z. B. Hyphomicrobium Stämmen, produziert (Izumi Y, Yoshida T, Miyazaki SS, Mitsunaga T, Ohshiro T, Shiamo M, Miyata A und Tanabe T (1993) Applied Microbiology and Biotechnology, 39: 427-432) . In beiden Fällen muss die Aminosäure Glycin als Vorstufe für die Bildung der Aminosäure L-Serin eingesetzt werden. Ferner sind coryneforme Bakterien bekannt, die L-Serin direkt aus Kohlenhydraten, ohne zusätzliche Beigabe weiterer Vorstufen produzieren können. Diese Stämme, die zu der Gattung Corynebacterium glutamicum gehören, weisen sich dadurch aus, dass sie z. B. resistent gegen die L-Serin-Analoga Serin-Hydroxamat und ß-Chloroalanin sind und durch ungerichtete Mutagenese erhalten wurden
(Yoshida H und Nakayama K (1974) Nihon-Nogei-Kagaku- kaishi 48: 201-208) .
Darüber hinaus sind Brevibacterium flavum Stämme be- kannt, die durch ungerichtete Mutagenese Defekte im L-Serin-Abbau aufweisen, eine erhöhte Aktivität der durch serA kodierten 3-Phosphoglycerat-Dehydrogenase besitzen, und die aus Escherichia coli stammenden Gene serB und serC überexprimieren (EP0931833A2) . Das hier- bei verwendete deregulierte sexA-Gen wurde durch ungerichtete Mutagenese gewonnen und unterscheidet sich vom Wild Typ Gen nur durch einen einzigen Basenaustausch. Die Expression dieses Gens beinhaltet den Nachteil, dass es leicht zu einer Reveritierung und damit zur Zu- rückführung in den regulierten Zustand kommen kann.
Ein Nachteil bisher bekannter 3-Phosphoglycerat- Dehydrogenasen liegt in ihrer Feedback Inhibition durch L-Serin, wodurch beispielsweise die Produktivität der mikrobiellen Herstellung von L-Serin verringert wird. Die Region, die für diese Regulation durch L-Serin verantwortlich ist, ist der C-Terminus des Proteins. Aus WO 93/12235 ist eine DNA bekannt, die für eine
3-Phosphoglycerat-Dhydrogenase aus E. coli codiert, deren C-Terminus zu 25% verändert, komplett deletiert oder in den in einem bestimmten Bereich eine Insertion durchgeführt wurde, so dass eine geringere Inhibition durch L-Serin zu verzeichnen war. Diese 3-Phospho- glycerat-Dehydrogenase wies jedoch nur noch eine geringe Aktivität auf. Eine verbesserte L-Serinproduktion wurde mit der deregulierten 3-Phosphoglycerat- Dehydrogenase nicht nachgewiesen.
Die Wild Typ serA Sequenz ist allgemein bekannt und kann den dem Fachmann bekannten Datenbanken oder dem beigefügten Sequenzprotokoll gemäß SEQ ID No. 6 entnommen werden.
Es ist daher Aufgabe der Erfindung, Maßnahmen zur Ver- fügung zu stellen, mit denen die zuvor genannten
Nachteile beseitigt werden können und die zu einer verbesserten Produktion von L-Serin oder davon ableitbaren StoffWechselprodukten wie z. B. Tryptophan führen. Es ist somit Aufgabe der Erfindung Nukleinsäuren, codie- rend für eine 3-Phosphoglycerat-Dehydrogenase, bereitzustellen, die gegenüber natürlich vorkommenden
3-Phosphoglycerat-Dehydrogenasen eine verringerte Feed- back Inhibition durch L-Serin unter Erhalt der Aktivität aufweist . In diesem Zusammenhang ist es weiterhin Aufgabe der Erfindung eine 3-Phosphoglycerat-Dehydro- genase sowie Mikroorganismen bereitzustellen, die ge- genüber natürlich vorkommenden 3-Phosphoglycerat-
Dehydrogenasen bzw. Mikroorganismen mit einer 3-Phos- phoglycerat-Dehydrogenase, eine verringerte" Feedback Inhibition durch L-Serin unter Erhalt der Aktivität aufweisen. Weiterhin ist es Aufgabe der Erfindung, ein verbessertes Verfahren zur mikrobiellen Herstellung von L-Serin bereitzustellen.
Ausgehend vom Oberbegriff des Anspruchs 1, 2, 3, 4 oder 5 wird die Aufgabe erfindungsgemäß gelöst, mit den im kennzeichnenden Teil des Anspruchs 1, 2, 3, 4 oder 5 angegebenen Merkmalen. Weiterhin wird die Aufgabe ausgehend vom Oberbegriff des Anspruchs 9 erfindungsgemäß gelöst, mit den im kennzeichnenden Teil des Anspruchs 9 angegebenen Merkmalen. Die Aufgabe wird außerdem ausge- hend vom Oberbegriff des Anspruchs 10 erfindungsgemäß gelöst, mit den im kennzeichnenden Teil des Anspruchs 10 angegebenen Merkmalen. Die Aufgabe wird ebenso ausgehend vom Oberbegriff des Anspruchs 11 erfindungsgemäß gelöst, mit den im kennzeichnenden Teil des Anspruchs 11 angegebenen Merkmalen. Die Aufgabe wird weiterhin ausgehend vom Oberbegriff des Anspruchs 20 erfindungs- gemäß gelöst, mit den im kennzeichnenden Teil des Anspruchs 20 angegebenen Merkmalen. Ausgehend vom Oberbegriff des Anspruchs 26 wird die Aufgabe ebenfalls er- findungsgemäß gelöst, durch die im kennzeichnenden Teil des Anspruchs 26 angegebenen Merkmale. Weiterhin wird die Aufgabe ausgehend vom Oberbegriff des Anspruchs 27 erfindungsgemäß gelöst, durch die im kennzeichnenden Teil des Anspruchs 27 angegebenen Merkmale.
Mit den erfindungsgemäßen Nukleinsäuren sowie Polypep- tiden ist es nunmehr möglich, eine 3-Phosphoglycerat- Dehydrognase bereitzustellen, die gegenüber natürlich vorkommenden oder gentechnisch nicht veränderten Nukleinsäuren bzw. Enzymen keine bzw. eine verringerte L-Serin Feedback Inhibierung unter Erhalt der 3-Phosphoglycerat-Dehydrogenase Aktivität aufweist. Diese Eigenschaft wird im Folgenden unter der Bezeichnung „dereguliert" zusammengefasst . Weiterhin ist es möglich Mikroorganismen und Verfahren bereitzustellen, mit denen eine L-Serinproduktion mit gegenüber bisher bekannten mikrobiellen Verfahren höheren Ausbeuten mög- lieh ist.
Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.
Gegenstand der Erfindung ist die Bereitstellung von Nukleinsäuren codierend für eine deregulierte 3-Phosphoglycerat-Dehydrogenase, im Folgenden mit PGD bezeichnet, enthaltend eine Gensequenz serA gemäß SEQ ID No 1, 2, 3, 4 oder 5 oder ein Allel, Homolog oder Derivat dieser Nukleotidsequenzen oder mit diesen hybridisierende Nukleotidsequenzen. Die Nukleinsäure gemäß SEQ ID No 1, die für eine PGD mit einer Deletion von 197 Aminosäuren im C-Terminus codiert, hat sich als besonders vorteilhaft erwiesen.
Die erfindungsgemäßen Nukleinsäuren zeichnen sich dadurch aus, daß sie aus coryneformen Bakterien, bevor- zugt der Gattung Corynebacterium oder Brevibacterium besonders bevorzugt aus Corynebacterium glutamicum, isoliert werden. Beispiele für in Stammkulturen hinterlegte Wild Typen coryneformer Bakterien sind, Coryne- bacterium glutamicum ATCC 13032 sowie Corynebacterium acetoglutamicum ATCC 15806 oder auch Brevibacterium flavum ATCC 14067. Beispiele für zur Herstellung von L-Serin geeignete Mutanten oder Produktionsstamme sind, Organismen aus der Gruppe Arthrobacter, Pseudomonas, Nocardia, Methylobacterium, Hyphomycrobium, Alcaligenes oder Klebsiella. Die vorliegende Erfindung wird durch die Angabe der zuvor genannten Bakterienstämme näher charakterisiert, die jedoch nicht limitierend wirkt.
Unter einer Nukleinsäure oder einem Nukleinsäurefrag- ment ist erfindungsgemäß ein Polymer aus RNA oder DNA zu verstehen, das einzel- oder doppelsträngig sein kann und optional natürliche, chemisch synthetisierte, modifizierte oder artifizielle Nukleotide enthalten kann. Der Begriff DNA-Polymer schließt hierbei auch ge'nomi- sche DNA, cDNA oder Mischungen davon ein.
Unter Allelen sind erfindungsgemäß funktionell Äquivalente, d. h. im wesentlichen gleichwirkende Nukleotid- Sequenzen zu verstehen. Funktionell äquivalente Sequenzen sind solche Sequenzen, welche trotz abweichender Nukleotidsequenz, beispielsweise durch die Degenerierung des genetischen Codes bedingt noch die gewünschten Funktionen besitzen. Funktionelle Äquivalente umfassen somit natürlich vorkommende Varianten der hierin beschriebenen Sequenzen sowie künstliche, z. B. durch chemische Synthese erhaltene und gegebenenfalls an den Kodongebrauch des Wirtsorganismus angepasste Nukleotid¬ sequenzen.
Unter einem funktionellen Äquivalent versteht man ins- besondere auch natürliche oder künstliche Mutationen einer ursprünglich isolierten Sequenz, welche weiterhin die gewünschte Funktion zeigen. Mutationen umfassen Substitutionen, Additionen, Deletionen, Vertauschungen oder Insertionen eines oder mehrerer Nukleotidreste . Inbegriffen sind hier auch sogenannte Sinnmutationen, die auf Proteinebene beispielsweise zum Austausch konservierter Aminosäuren führen können, welche aber zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen und somit funktionsneutral sind. Dies beinhaltet auch Veränderungen der Nukleotidsequenz, die auf Proteinebene den N-Terminus eines Proteins betreffen, ohne jedoch die Funktion des Proteins wesentlich zu beeinträchtigen.
Durch die vorliegende Erfindung werden auch solche
Nukleotidsequenzen umfasst, welche man durch Modifikation der Nukleotidsequenz, resultierend in entsprechenden Derivaten, erhält. Ziel einer solchen Modifikation kann z. B. die weitere Eingrenzung der darin enthalte- nen codierenden Sequenz oder z. B. auch die Einfügung weiterer Restriktionsenzym-Schnittstellen sein.
Außerdem sind artifizielle DNA-Sequenzen Gegenstand der vorliegenden Erfindung, solange sie, wie oben beschrie- ben, die gewünschten Eigenschaften vermitteln. Solche artifiziellen DNA-Sequenzen können beispielsweise durch Rückübersetzung von mittels computergestützten Programmen (molecular modelling) erstellten Proteinen oder durch in-vitro-Selektion ermittelt werden. Besonders geeignet sind codierende DNA-Sequenzen, die durch Rückübersetzung einer Polypeptidsequenz gemäß der für den Wirtsorganismus spezifischen Kodon-Nutzung erhalten wurden. Die spezifische Kodon-Nutzung kann ein mit molekulargenetischen Methoden vertrauter Fachmann durch Computerauswertung anderer, bereits bekannter Gene des zu trans ormierenden Organismus leicht ermitteln.
Unter homologen Sequenzen sind erfindungsgemäß solche zu verstehen, die zu den erfindungsgemäßen Nukleotidsequenzen komplementär sind und/oder mit diesen hybridisieren. Der Begriff hybridisierende Sequenzen schließt erfindungsgemäß substanziell ähnliche Nukleotidsequen- zen aus der Gruppe von DNA oder RNA ein, die unter an sich bekannten stringenten Bedingungen eine spezifische Wechselwirkung (Bindung) mit den zuvor genannten Nukleotidsequenzen eingehen. Hierzu zählen auch kurze Nukleotidsequenzen mit einer Länge von beispielsweise 10 bis 30, bevorzugt 12 bis 15 Nukleotiden. Dies umfaßt erfindungsgemäß u.a. auch sogenannte Primer oder Sonden.
Erfindungsgemäß sind auch die den codierenden Bereichen (Strukturgenen) vorausgehenden (5"-oder upstream) und/oder nachfolgenden (3 '-oder downstream) Sequenzbereiche eingeschlossen. Insbesondere sind hierin Sequenzbereiche mit regulatorischer Funktion inbegriffen. Sie können die Transkription, die RNA-Stabilität oder die RNA Prozessierung sowie die Translation beeinflus- sen. Beispiele für regulatorische Sequenzen sind u.a.
Promotoren, Enhancer, Operatoren, Terminatoren oder Translationsverstärker . Gegenstand der Erfindung ist ferner eine Genstruktur enthaltend wenigstens eine der zuvor beschriebenen Nukleotidsequenzen codierend für eine deregulierte PDG sowie mit diesen operativ verknüpfte regulatorische Se- quenzen, welche die Expression der codierenden Sequenzen in der Wirtszelle steuern.
Darüber hinaus betrifft die vorliegende Erfindung einen Vektor enthaltend eine Nukleotidsequenz der zuvor be- schriebenen Art codierend für eine deregulierte PDG, mit diesen operativ verknüpfte regulative Nukleotidsequenzen sowie zusätzliche Nukleotidsequenzen zur Selektion transformierter Wirtszellen, für die Replikation innerhalb der Wirtszelle oder zur Integration in das entsprechende Wirtszell-Genom. Ferner kann der erfindungsgemäße Vektor eine Genstruktur der vorgenannten Art enthalten.
Als Vektoren eignen sich solche, die in coryneformen Bakterien repliziert werden wie z. B. pZl (Menkel E, Thierbach G, Eggeling L, Sahm H. , 1989, Appl Environ
Microbiol 55(3): 684-688), pEKEx2 (Eikmanns et al . , Gene 102: 93-98 (1991) , pVWEx oder pXMJ19. Andere Plas- midvektoren können in gleicher Weise verwendet werden. Diese Aufzählung ist für die vorliegende Erfindung je- doch nicht limitierend.
Unter Ausnutzung der erfindungsgemäßen NukleinsäureSequenzen können entsprechende Sonden oder auch Primer synthetisiert und dazu verwendet werden, beispielsweise mit Hilfe der PCR-Technik analoge Gene aus anderen Mikroorganismen, bevorzugt coryneformen Bakterien zu amplifizieren und isolieren. Gegenstand der vorliegenden Erfindung ist somit auch eine Sonde zur Identifizierung und/oder Isolierung von Genen codierend für an der Biosynthese von L-Serin beteiligte Proteine, wobei diese Sonde ausgehend von den erfindungsgemäßen Nukleinsäuresequenzen der zuvor beschriebenen Art hergestellt wird und eine zur Detektion geeignete Markierung enthält . Bei der Sonde kann es sich um einen Teilausschnitt der erfindungsgemäßen Sequenz, beispielsweise aus einem konservierten Bereich handeln, der z. B. eine Länge von 10 bis 30 oder bevorzugt 12 bis 15 Nukleotiden aufweist und unter stringen- ten Bedingungen spezifisch mit homologen Nukleotidsequenzen hybridisieren kann. Geeignete Markierungen sind aus der Literatur zahlreich bekannt . Anleitungen hierzu findet der Fachmann unter anderem beispielsweise im
Handbuch von Gait : Oligonukleotide synthesis: a practi- cal approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994) oder beispielsweise im Handbuch "The DIG System Users Guide for Filter Hybri- dization" der Firma Röche Diagnostics (Mannheim, Deutschland) und bei Liebl et al . (International Journal of Systematic Bacteriology (1991) 41: 255-260).
Gegenstand der vorliegenden Erfindung ist ferner eine deregulierte PGD oder ein Teil davon, kodiert durch eine erfindungsgemäße Nukleinsäuresequenz gemäß SEQ ID No 1, 2, 3, 4 oder 5 oder deren Variationen der zuvor beschriebenen Art. Die vorliegende Erfindung betrifft ebenso eine deregulierte PGD mit einer Aminosäuresequenz gemäß der SEQ ID No 7, 8, 9, 10 oder 11 oder einer modifizierten Form dieser Polypeptidsequenzen oder Isoformen davon oder Mischungen daraus. Als beson- ders geeignet hat sich eine 3-Phosphoglycerat-Dehydro- genase mit einer Aminosäuresequenz gemäß SEQ ID No 7 erwiesen.
Unter Isoformen sind Enzyme mit gleicher oder vergleichbarer Substrat- und Wirkungsspezifität zu verstehen, die jedoch eine unterschiedliche Primärstruktur aufweisen.
Unter modifizierten Formen sind erfindungsgemäß Enzyme zu verstehen, bei denen Änderungen in der Sequenz, beispielsweise am N-Terminus des Polypeptids oder im Bereich konservierter Aminosäuren vorliegen, ohne jedoch die Funktion des Enzyms zu beeinträchtigen. Diese Ver- änderungen können in Form von Aminosäureaustauschen nach an sich bekannten Methoden vorgenommen werden.
Gegenstand der vorliegenden Erfindung sind Polypeptide mit der Funktion einer deregulierten PGD, die in ihrer Aminosäuresequenz derart verändert sind, dass sie gegenüber regulatorisch wirkenden Verbindungen, beispielsweise die sie in ihrer Aktivität regulierenden Stoffwechsel-Endprodukte (L-Serin) desensitiv sind (feedback-desensitiv) .
Die erfindungsgemäßen Polypeptide zeichnen sich dadurch aus, daß sie aus coryneformen Bakterien, bevorzugt der Gattung Corynebacterium oder Brevibacterium, besonders bevorzugt der Art Corynebacterium glutamicum oder Bre- vibacterium besonders bevorzugt aus Corynebacterium glutamicum stammen. Beispiele für in Stammkulturen hinterlegte Wild Typen coryneformer Bakterien sind Corynebacterium glutamicum ATCC 13032, sowie Corynebacterium acetoglutamicum ATCC 15806 oder auch Brevibacterium flavum ATCC 14067. Beispiele für zur Herstellung von L-Serin geeignete Mutanten oder Produktionsstämme sind Organismen aus der Gruppe Arthrobacter, Pseudomonas, Nocardia, Methylobacterium, Hyphomycrobium, Alcaligenes oder Klebsiella. Die vorliegende Erfindung wird durch die Angabe der zuvor genannten Bakterienstämme näher charakterisiert, die jedoch nicht limitierend wirkt.
Gegenstand der vorliegenden Erfindung ist ferner die
Übertragung wenigstens einer der erfindungsgemäßen Nuk- leinsäuresequenzen oder eines Teils davon codierend für eine deregulierte PGD, ein Allel, Homolog oder Derivat davon in ein Wirtssystem. Dies schließt auch die Über- tragung eines erfindungsgemäßen Genkonstrukts oder Vektors in ein Wirtssystem ein. Diese Übertragung von DNA in eine Wirtszelle erfolgt nach gentechnischen Methoden. Als bevorzugtes Verfahren sei hier die Transformation und besonders bevorzugt die Übertragung von DNA durch Elektroporation genannt.
Als besonders geeignet hat sich ein homologes Wirtssystem erwiesen. Unter einem homologen Wirtssystem sind Mikroorganismen zu verstehen, die alle einer verwandten Familie angehören. Erfindungsgemäß sind hierunter cory- neforme Bakterien zu verstehen, in die die erfindungsgemäß aus coryneformen Bakterien isolierten Nukleinsäuren eingebracht werden. Ein aus einer erfolgreich durchgeführten Nukleinsäureübertragung resultierender transformierter Mikroorganismus unterscheidet sich somit von dem entsprechend nicht transformierten Mikroorganismus dadurch, dass er zusätzliche Nukleinsäuren der erfindungsgemäßen Art enthält und entsprechend zur Aus- prägung bringen kann. Stellvertretend für ein geeignetes homologes Wirtssystem sei das Bakterium Corynebacterium glutamicum und bevorzugt der Stamm ATCC 13032 genannt. Als Kulturmedium ist je nach Anforderungen ein Komplexmedium wie z . B . LB Medium (T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Clonin : A Laborato- ry Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 1989) ) oder auch ein Mineralsalzmedium, wie z. B. CGXII-Medium (Keilhauer, C. et al 1993, J. Bacte- riol . , 175:5593-5603) geeignet. Nach entsprechender
Kultivierung kann die Bakteriensuspension geerntet und zur weiteren Untersuchung, beispielsweise zur Transformation oder zur Isolierung von Nukleinsäuren nach gängigen Methoden eingesetzt werden. Diese Vorgehensweise kann analog auch auf andere coryneforme Bakterienstämme angewendet werden. Dabei werden als Wirtssysteme Bakterien der Gattung Corynebacterium oder Brevibacterium bevorzugt . Innerhalb der Gattung Corynebacterium wird besonders die Art Corynebacterium glutamicum und inner- halb der Gattung Brevibacterium besonders die Art Brevibacterium flavum bevorzugt . Zu den Vertretern dieser Gattungen zählen zum einen Stämme, die in ihren Eigenschaften als Wild Typ charakterisiert sind. Hier sind beispielsweise Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 14752, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium acetogluta- micum ATCC 15806, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM BP-1539, Brevibacterium flavum ATCC 14067, Brevibacterium lacto- fermentum ATCC 13869 und Brevibacterium divaricatum ATCC 14020 zu nennen.
Darüber hinaus schließt die vorliegende Erfindung auch Bakterienstämme als Wirtssystem ein, die sich als L-Serin produzierende Mutanten oder Aminosäureproduktionsstämme auszeichnen. Diese können z. B. ausgehend von Wildtypstämmen durch klassische (chemische oder physikalische) oder gentechnische Methoden hergestellt wer- den. Beispiele für erfindungsgemäß geeignete Stämme sind u. a. Corynebacterium glutamicum ATCC 21586, Corynebacterium glutamicum KY 10150, Corynebacterium glutamicum ATCC 13032ΔpanBC und Brevibacterium ketoglutami- cum ATCC 21222. Ferner sind erfindungsgemäß auch dieje- nigen Produktionsstämme geeignet, die dem Fachmann aus mikrobiellen Herstellungsverfahren bekannt sind, wie z. B. Enterobacterien, Bacillaceen oder Hefe-Arten. Die vorliegende Erfindung wird durch die ausgewählten Beispiele an Mikroorganismen näher charakterisiert, jedoch nicht limitiert.
Die vorliegende Erfindung betrifft ferner einen genetisch veränderten Mikroorganismus enthaltend in replizierbarer Form eine erfindungsgemäße Nukleinsäure der zuvor beschriebenen Art, welche im Vergleich zu dem entsprechend nicht genetisch veränderten Mikroorganismus verstärkt exprimiert wird und/oder deren Kopienzahl erhöht ist.
Ebenso umfasst die vorliegende Erfindung einen genetisch veränderten Mikroorganismus enthaltend in replizierbarer Form eine Genstruktur oder einen Vektor der zuvor beschriebenen Art .
Gegenstand der vorliegenden Erfindung ist darüber hinaus auch ein genetisch veränderter Mikroorganismus enthaltend ein erfindungsgemäßes Polypeptid mit der Funktion einer deregulierten PGD der zuvor beschriebenen Art, welches eine im Vergleich zu dem entsprechend nicht genetisch veränderten Mikroorganismus eine verringerte bzw. keine feedback Inhibierung durch L-Serin unter Erhalt der PGD-Aktivität aufweist . Ein erfin- dungsgemäß genetisch veränderter Mikroorganismus zeichnet sich ferner dadurch aus, daß er ein coryneformes Bakterium, bevorzugt der Gattung Corynebacterium oder Brevibacterium, besonders bevorzugt der Spezies Corynebacterium glutamicum oder Brevibacterium flavum ist.
Prinzipiell können Gene durch an sich bekannte Methoden, wie beispielsweise die Polymerase-Ketten-Reaktion (PCR) mit Hilfe von kurzen, synthetischen Nukleotidsequenzen (Primern) amplifiziert und anschließend iso- liert werden. Die Herstellung der verwendeten Primer erfolgt im Allgemeinen anhand bekannter Gensequenzen aufgrund bestehender Homologien in konservierten Bereichen der Gene und/oder unter Berücksichtigung des GC- Gehalts der DNA des zu untersuchenden Mikroorganismus.
Eine weitere Vorgehensweise zur Isolierung von codierenden Nukleotidsequenzen ist die Komplementation von sogenannten Defekt-Mutanten des zu untersuchenden Orga- nismusses, die zumindest phänotypisch einen Funktions- verlust in der Aktivität des zu untersuchenden Gens oder entsprechenden Proteins aufweisen. Unter einer Komplementation ist die Aufhebung des Gendefektes der Mutante und weitgehende Wiederherstellung des ursprünglichen Erscheinungsbildes vor der Mutagenese zu verste- hen, die durch die Einbringung funktioneller Gene oder Genfragmente aus dem zu untersuchenden Mikroorganismus erreicht wird. Ein klassisches Mutagenese-Verfahren zur Herstellung von Defektmutanten ist beispielsweise die Behandlung der Bakterienzellen mit Chemikalien wie z. B. N-Methyl-N-Nitro-N-Nitrosoguanidin oder UV-Bestrahlung. Derartige Verfahren zur Mutationsauslösung sind allgemein bekannt und können unter anderem bei Miller (A Short Course in Bacterial Genetics, A Laboratory Manual and Handbook for Escherichia coli and Related Bac- teria (Cold Spring Harbor Laboratory Press, 1992)) oder im Handbuch "Manual of Methods for General Bacteriolo- gy" der American Society for Bacteriology (Washington D.C., USA, 1981) nachgelesen werden.
Die vorliegende Erfindung betrifft darüber hinaus ein Verfahren zur mikrobiellen Herstellung von L-Serin, wobei wenigstens eine der erfindungsgemäßen Nukleinsäuren, isoliert aus einem coryneformen Bakterium, in einen Wirtsorganismus übertragen und dort exprimiert werden, wobei die Genexpression und/oder die Aktivität des entsprechend kodierten Polypeptids gegenüber dem entsprechend nicht genetisch veränderten Mikroorganismus erhöht ist, dieser genetisch veränderte Mikroorganismus zur mikrobiellen Herstellung von L-Serin eingesetzt wird und das entsprechend gebildete L-Serin aus dem Kulturmedium isoliert wird.
Zur Erzielung einer erhöhten Genexpression (Überexpression) kann die Kopienzahl der entsprechenden Gene erhöht werden. Ferner kann die Promotor- und/oder Regulationsregion und/oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, entsprechend so verändert werden, dass die Expression mit erhöhter Rate erfolgt. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens einge- baut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fer- mentativen L-Serin Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der mRNA wird ebenfalls die Expression verbessert. Die Gene oder Gen- konstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Weiterhin kann auch die Aktivität des Enzyms selbst erhöht sein oder durch die Verhinderung des Abbaus des Enzymproteins verstärkt werden. Alternativ kann ferner eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden. Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al . (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al . (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (BioRechnology 6, 428-430 (1988)), bei Eikmanns et al . (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift EPS 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991), bei Reinscheid et al . (Applied and Envi- ronmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al . (Gene 134, 15-24 (1993)), in der japanischen Offen- legungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides (Microbiological Reviews 60:512-538 (1996) ) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.
Die erfindungsgemäß hergestellten genetisch veränderten Mikroorganismen können kontinuierlich oder diskontinu- ierlich im batch-Verfahren (Satzkultivierung) oder im fed batch (Zulauf erfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von L-Serin kultiviert werden. Eine Zusam- menfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braun- schweig/Wiesbaden, 1994) ) beschrieben.
Das zu verwendende Kulturmedium muss in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorga- nismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten. Als Kohlenstoffquelle können Zucker und Kohlenhydrate wie z. B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melas- se, Stärke und Cellulose, Öle und Fette wie z. B. Sojaöl, Sonnenblumenöl, Erdnussöl und Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z. B. Glycerin und Ethanol und organische Säuren wie z. B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden. Als Stickstoffquelle können organische stickstoffhaltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammo- niumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoni- umcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden. Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muss weiterhin Salze von Metallen enthalten wie z. B. Magnesiumsulfat oder Ei- sensulfat, die für das Wachstum notwendig sind.
Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die ge- nannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzu gegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden. Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaum- mittel wie z. B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plas- miden können dem Medium geeignete selektiv wirkende
Stoffe z. B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten werden Sauerstoff oder Sauerstoffhaltige Gasmischungen wie z. B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei
25°C bis 40°C. Die Kultur wird so lange fortgesetzt, bis sich ein Maximum an L-Serin gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht. Die Analyse der L-Serin-Bildung kann durch Anionen- austauschchromatographie mit anschließender Ninhydrin Derivatisierung erfolgen so wie bei Spackman et al . (Analytical Chemistry, 30, (1958), 1190) beschrieben, oder sie kann durch reversed Phase HPLC erfolgen so wie bei Lindroth et al . (Analytical Chemistry (1979) 51: 1167-1174) beschrieben.
Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können L-Serin aus Glucose, Saccharose, Lactose, Mannose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um die zuvor bereits näher beschriebenen Ver- treter coryneformer Bakterien handeln. Eine Auswahl an Ergebnissen der Fermentation ist in Tabelle 6 dargestellt. Hierbei zeichnen sich die erfindungsgemäß genetisch veränderten Mikroorganismen durch eine wesentlich verbesserte L-Serin-Produktion gegenüber den entspre- chend nicht transformierten Mikroorganismen (Wild Typen) oder den Mikroorganismen aus, die lediglich den Vektor ohne Gen-Insert enthalten. In einer besonderen Ausführungsvariante der vorliegenden Erfindung ist gezeigt, dass die Überexpression des homologen C-terminal verkürzten serA-Gens in C. glutamicum ATCC
13032DpanBCpZlserAΔl97 zu einer wenigstens 40%igen Steigerung der L-Serin Akkumulation im Medium im Vergleich zu den Kontrollstämmen führt (Tab. 6) . Durch die gemeinsame Überexpression weiterer Gene, die positiv auf den L-Serinbiosyntheseweg wirken, ist eine noch weitere Steigerung der L-Serin-Produktion zu erwarten.
Unter Aminosäure-Produktionsstämmen sind im Sinne der vorliegenden Erfindung Corynebacterium glutamicum- Stämme oder homologe Mikroorganismen zu verstehen, die durch klassische und/oder molekulargenetische Methoden derart verändert sind, dass ihr Stoffwechselfluss verstärkt in die Richtung der Biosynthese von Aminosäuren oder deren Abkömmlingen verläuft (metabolic enginee- ring) . Beispielsweise sind bei diesen Aminosäure- Produktionsstämmen ein oder mehrere Gen(e) und/oder die korrespondierenden Enzyme, die an entscheidenden und entsprechend komplex regulierten Schlüsselpositionen des Stoffwechselweges (Flaschenhals) stehen in ihrer Regulation verändert oder sogar dereguliert. Die vorliegende Erfindung umfasst hierbei sämtliche bereits bekannte Aminosäure-Produktionsstamme, bevorzugt der Gattung Corynebacterium oder homologer Organismen. Ferner sind erfindungsgemäß auch diejenigen Produktionsstämme umfaßt, die der Fachmann in Analogie zu Erkenntnissen aus anderen Mikroorganismen, beispielsweise En- terobacterien, Bacillaceen oder Hefe-Arten nach gängi- gen Methoden herstellen kann.
Die Figuren zeigen beispielhaft verwendete Plasmide sowie einen Vergleich der Primärstruktur der PGD und mittels PCR konstruierter Allele von serA .
Es zeigt :
Fig. 1: Vergleich der Primärstruktur der 3-Phospho- glycerat-Dehydrogenase (PGD) aus verschiedenen Organis- men; Skalierung entspricht der Anzahl an Aminosäuren der corynebakteriellen PGD; N = Aminoterminus; C = Car- boxyterminus; der mit einer hell grauen Fläche markierte Bereich A stellt die Nukleotid-Bindungsstelle dar; der mit einer dunkel grauen Fläche markierte Bereich B stellt die Substrat-Bindungsstelle dar; der schwarz markierte Bereich C stellt die Inhibitor-Bindungsstelle dar. Darüber hinaus gibt es zwei weitere Gruppen von 3 -Phosphoglycerat-Dehydrogenasen, die exemplarisch durch E. coli (Tobey K.L. und Grant G.A. , 1986, J. Bi- ol. Chem., 261: 12179-12183) bzw. Thermotoga mari tima (GenBank-Accession-Nummer AE000512) vertreten sind.
Hierbei ist das Protein des hyperthermophilen Bakteri- ums T. mari tima mit einer Länge von 327 Aminosäuren am kürzesten, während die 3-Phosphoglycerat-Dehydrogenase aus E. coli mit 410 Aminosäuren eine intermediäre Länge aufweist.
Fig. 2: Übersicht über die mittels PCR konstruierten Allele von serA, die für die deregulierte, C-terminal verkürzte PGD codieren. Gezeigt ist der serA-Genbereich des Wild Typs (oben) und die erfindungsgemäßen Deleti- onskonstrukte . Die hell, dunkel und schwarz markierten Bereiche entsprechen der Definition wie in Fig. 1.
Fig. 3 Plasmidvektor pZlserA
Fig. 4 Plasmidvektor pZlserAΔ79
Fig. 5 Plasmidvektor pZlserAΔ188
Fig. 6 Plasmidvektor pZlserAΔl97
Fig. 7 Plasmidvektor pZlserAΔ205
Fig. 8 Plasmidvektor pZlserAΔ211
Ausführungsbeispiele ;
1. Gezielte Deregulation der 3-Phosphoglycerat- Dehydrogenase aus C. glutamicum a) Computergestützter Aminosäuresequenz-Vergleich der 3 -Phosphoglycerat-Dehydrogenase aus Corynebacterium glutamicum mit 3 -Phosphoglycerat-Dehydrogenasen anderer Organismen
Es wurde zunächst eine Strategie zur Konstruktion einer deregulierten 3 -Phosphoglycerat-Dehydrogenase entwickelt. Es wurde die Sequenz des serA-Gens, das für die 3 -Phosphoglycerat-Dehydrogenase von C. glutamicum kodiert, aus der Patent-Datenbank verwendet (Nakagawa, S . , Mizoguchi,H. , Ando,S., Hayashi,M., Ochiai,K., Yokoi,H., Tateishi,N. , Senoh,A. , Ikeda,M. and Ozaki,A. Patent: EP 1108790-A 7064 20-JUN-2001 ; KYOWA HAKKO KOGYO CO., LTD. (JP) ; Pompejus,M., Kroeger,B., Schroeder,H. , Zelder,0. and Haberhauer, G.Patent: WO 0100843-A 167 04-JAN-2001; BASF AKTIENGESELLSCHAFT (DE) ) . Die vom serA-Gen (SEQ- ID-No. 12) von Corynebacterium glutamicum abgeleitete Polypeptidkette wurde dann mit entsprechenden 3 -Phosphoglycerat-Dehydrogenasen aus der Datenbank (GenBank) verglichen. Es zeigte sich, dass die 3 -Phosphoglycerat-Dehydrogenase aus C. glutamicum wie die aus Mycobacterium tuberculosis (GenBank-Accession- Nummer AL123456) und einigen anderen Bakterien wie Ba- cillus subtilis (Sorokin,A. , Azevedo,V. , Zumstein,E., Galleron, N. , Ehrlich, S.D. und Serror,P. Microbiology 142 (Pt 8), 2005-2016 (1996)) und Aquifex aeolicus (GenBank-Accession-Nummer AE000657) mit 530 Aminosäuren ausserordentlich lang ist. Zu dieser Gruppe von Enzymen zählen auch die 3 -Phosphoglycerat-Dehydrogenasen aus Tieren wie Ratte (Achouri Y. , Rider M.H., Van Schaftin- gen E. und Robbi M. , 1997, Biochem. J. , 323:365-370) und Mensch (Cho HM, Jun DY, Bae MA, Ahn JD, Kim YH. ,
2000, Gene 245 (1) : 193-201) sowie Pflanzen (z. B. Arabi - dopsis thaliana; Ho CL, Saito K. , 2001, Amino Acids. 20(3) :243-59) . Die Analyse der Rδntgenstruktur des E. coli-Enzyms ergab, dass es aus drei funktioneilen Domänen besteht : einer Nukleotidbindedomäne (Aminosäure 108 bis 294) für die Bindung von NAD/H, einer zweigeteilten Substratbindedomäne (Aminosäure 7-107 und 295- 336) , an der das 3-Phosphoglycerat bindet, sowie einer C-termi-nalen regulatorischen Domäne (Aminosäure 337- 410) , die für die allosterische Bindung des L-Serin verantwortlich ist (Schuller DJ, Grant GA, Banaszak LJ., 1995, Nature Struct . Biol . Vol 2 1:69-76). Der Aminosäuresequenzvergleich der drei 3 -Phosphoglycerat- Dehydro-genäse-Typen ergab, dass sie sich im Wesentlichen in der Länge der C-terminalen regulatorischen Domäne unterscheiden (Abb. 1) .
Eine Clusteranalyse der 3-Phosphoglycerat-Dehydrogenasen, die aus vollständig sequenzierten Genomen bekannt sind, ergab, dass trotz der Unterschiede im C-Terminus alle diese Proteine zu einer Familie von Orthologen zählen, d. h. sie besitzen einen gemeinsamen evolutiven Ursprung, haben sich aber in den verschiedenen Spezies unterschiedlich entwickelt.
b) Konstruktion von Allelen des serA-Gens von C. gluta micum mittels PCR die für C-terminal verkürzte 3- Phosphoglycerat-Dehydrogenase Proteine codieren
Es wurden fünf verschiedene Muteine der 3-Phosphoglycerat-Dehydrogenase von C. glutamicum erzeugt, die am C-Terminus unterschiedlich lange Deletionen aufwie- sen (Abb. 2) . Die Konstruktion der Deletionsmutanten erfolgte ebenso wie die Isolierung des Wild Typ serA- Gens mittels PCR. Hierzu wurde ein PCR-Primer (serA-f : 5'-TCTAGAGCCGGAGACGTGAATAAAAT-3') erzeugt, der homolog zu einer Region 240 bp vor dem Start-Codon des Gens war, um so den gesamten Promotorbereich zu erfassen. Dieser Primer wurde für alle Konstrukte gleichermaßen verwendet und trägt am 3 ' -Ende eine Schnittstelle für das Restriktionsenzym Xbal . Zur Amplifikation des vollständigen serA-Gens wurde ein zweiter, revers-komplementärer Primer ausgewählt, der 199 bp hinter dem Stop- Codon lag und eine BamHI -Restriktionsschnittstelle trägt (serA-r: 5'-GGATCCGACTGGTGAGGGTCAAGTCC-3 ') . Das erwartete PCR-Produkt hat eine Länge von 2040 bp. Zur Erzeugung der Deletionen wurden revers-komplementäre Primer ausgewählt, die im Genbereich liegen, und alle ebenfalls eine Schnittstelle für BamEI tragen. Der Primer serAΔ211-r (5'-GGATCCTTAACCGGAAACGTTCACAGC3 ') liegt 956 bp hinter dem Start-Codon, so dass ein 1196 bp langes PCR-Produkt entsteht. Hierdurch werden die letzten 211 Aminosäuren der 3 -Phosphoglycerat-Dehydrogenase abgeschnitten. Die Deletion liegt etwa im Bereich des vermutlichen Übergangs von Substratbinde- zu regulato- rischer Domäne (vergl. Abb. 1 und Abb. 2) . Der Primer serAΔ205-r (5'-GGATCCTTACTCTTCGCCCACGCGACC3 ') liegt 974 bp hinter dem Start-Codon und das zu erwartende PCR- Produkt hat eine Länge von 1214 bp. Die C-terminale Deletion beträgt in diesem Fall 205 Aminosäuren und das Protein endet hinter der Aminosäure Glutamat an Position 325. Der ungerichtet erzeugte Austausch dieser Aminosäure zu Lysin führt in C. glutamicum zu einer Dere- gulation der 3 -Phosphoglycerat-Dehydrogenase (EP 0 931 833) . Beide Deletionen liegen in einem Bereich, in dem auch die Deletion (Δ209 Aminosäuren) des Proteins aus
Ratte erzeugt wurde (Achouri Y. , Rider M.H., Van Schaftingen E. und Robbi M. , 1997, Biochem. J. , 323:365- 370) . Die beiden Primer serAΔl97-r
(5" -GGATCCTTAAGCCAGATCCATCCACACAG3 ' ) und serAΔl88-r (5'-GGATCCTTACTTGCCAGCAAGAAGACC3') liegen 998 bp bzw. 1025 bp hinter dem ATG und befinden sich stromaufwärts vom Übergang Substratbindedomäne zu regulatorischer Domäne in E. coli . Die nach PCR zu erwartenden DNA- Fragmente erzeugen Polypeptidketten die entsprechend um 197 bzw. 188 Aminosäuren kürzer sind als die vollständige 3-Phosphoglycerat-Dehydrogenase . Die kürzeste De- letion-wird durch Primer serAΔ79-r (5'-
GGATCCTTAATCCAGGCCACGGCCATT3 ") erzeugt und schneidet den Bereich von 79 Aminosäuren ab, der die größte Ähnlichkeit zur regulatorischen Domäne von E. coli aufweist (Abb.2) . Zusätzlich wurde in allen revers- komplementären Primern, die zu einem verkürzten Protein führen sollen hinter der Schnittstelle das Stop-Codon TAA eingefügt .
Die PCR-Reaktion wurde in 30 Zyklen in Gegenwart von 200 μM Deoxynukleotid-triphosphaten (dATP, dCTP, dGTP, dTTP) , je 1 μM des entsprechenden Oligonukleotids, 100 ng chromosomaler DNA von Corynebacterium glutamicum ATCC13032, 1/10 Volumen 10-fach Reaktionspuffer und 2,6 Einheiten einer hitzestabilen Taq-/Pwo-DNA-Polymerase- Mischung (Expand High Fidelity PCR System der Firma Röche Diagnostics, Mannheim, Deutschland) in einem Ther- mocycler (PTC-100, MJ Research, Inc., Watertown, USA) unter folgenden Bedingungen durchgeführt: 94°C für 60 Sekunden, 50°C für 90 Sekunden und 72°C für 2 Minuten.
Nach der PCR-Reaktion wurden die erhaltenen DNA- Fragmente mit dem QIAExII Gelextraktionskit (Qiagen) nach Angaben des Herstellers aus einem 0,8 %igen Agaro- se-Gel isoliert, blunt-end mit Hilfe des Sure Clone- Kits (Amersham Pharmacia Biotech) in die Smal - Schnittstelle des Vektors pUC18 kloniert . Die Plasmide wurden durch Restriktionskartierung auf Richtigkeit überprüft. Diese Klonierung erfolgte in dem Escherichia coli Stamm DH5αmcr (Grant et al . , Proceedings of the National Academy of Sciences of the United States of America USA (1990) 87: 4645-4649).
Anschließend wurde das serA-Gen und die serA-Deletions- konstrukte in den E. coli/C. glutamicum Pendelvektor pZl (Menkel E, Thierbach G, Eggeling L, Sahm H. , 1989, Appl Environ Microbiol 55(3): 684-688) kloniert. Der Vektor vermittelt eine Kanamycin-Resistenz . Hierzu wurden die Inserts der Deletionskonstrukte jeweils mit den Restriktionsenzymen EcoRI und BamEI aus dem pUC18- Vektor ausgeschnitten. Die überhängenden DNA-Enden wurden mittels Klenow-Behandlung aufgefüllt und die Frag- mente wurden blunt-end in den Seal-geschnittenen Vektor pZl ligiert. Das Wild Typ serA-Gen wurde nach EcoRI- Restriktion ebenfalls Klenow behandelt und blunt-end in den Seal -geschnittenen Vektor pZl ligiert. Die so erhaltenen Konstrukte wurden pZlserA (Abb. 3) , pZlserAΔ79 (Abb. 4), pZlserAΔl88 (Abb. 5), pZlserAΔl97 (Abb. 6), pZlserAΔ205 (Abb. 7) und pZlserAΔ211 (Abb. 8) genannt.
2. Überexpression des Wild Typ serA-Gens sowie der verkürzten serA-Allele in C. grlutamicum
Die Plasmide pZlserA, pZlserA_479, pZlserA_1188 pZlserA_dl97 pZlserA-4205 und pZlserAd211 wurden durch Elektroporation einzeln in C. glutamicum eingebracht. Als Kontrolle wurde das Leerplasmid pZl ebenfalls nach C. glutamicum ATCC 13032 elektroporiert . Die so erhaltenen Stämme 13032pZl, 13032pZlserÄ, 13032pZlserAΔ79, 13032pZlserAΔl88, 13032pZlserAΔl97, 13032pZlserAΔ205 und 13032pZlserAΔ211 wurden dann auf Überexpression der 3 -Phosphoglycerat-Dehydrogenase mittels 3-Phospho- glycerat-Dehydrogenase-Enzymtest analysiert. Hierzu wurden die sechs Stämme in Komplexmedium (CgIII = 2,5 g NaCl , 10 g Bacto-Peptone, 10 g Bacto-Yeast Extract, pH 7,4 mit 2 % Glukose) gezüchtet, und das Minimalmedium CGXII jeweils aus den Vorkulturen getrennt beimpft. Das Medium war identisch mit dem bei Keilhauer et al . beschriebenen Medium CGXII (Journal of Bacteriology (1993) 175: 5593-5603), enthielt aber zusätzlich 25 μg/mL Kanamycin. Die Zusammensetzung des von Keilhauer et al . beschriebenen Mediums ist in Tabelle 1 dargestellt.
Tabelle 1: Zusammensetzung des Mediums CGXII
Figure imgf000030_0001
Die Zellen wurden in der exponentiellen Wachstumsphase bei ODsoo von 5 bis 8 geerntet und zweimal in 100 mM
Tris-HCl, pH 7,5 gewaschen. Die Zellpellets wurden an- schliessend bis zum Aufschluss bei -20°C eingefroren. Die eingefrorenen Zellpellets wurden dann auf Eis aufgetaut und mit 2 ml kaltem 100 mM Tris-HCl pH 7,5/10 % Glycerin resuspendiert und in einem Brenson Sonifier 10 min aufgeschlossen. Anschließend wurden die Zell- trümmer mittels Zentrifugation bei 13000 rpm und 4°C in einer Sigma -202 MK Zentrifuge abgetrennt. Die so erhaltenen Überstände wurden als Rohextrakte zunächst über eine PD-10 Säule nach Angaben des Herstellers
(Amersham Pharmacia Biotech) entsalzt und dann sofort in die Enzymmessung eingesetzt. Der Enzymtest beruht auf dem photometrischen Nachweis der Bildung von NADH in der Reaktion 3 -Phosphoglycerat und NAD zu Phospho- hydroxypyruvat zu NADH. Der Testansatz ist in Tabelle 2 dargestellt :
Tabelle 2 : Komponenten des Testansatzes zur Bestimmung der 3 -Phosphoglycerat-Dehydrogenase Aktivität
Figure imgf000031_0001
Mit diesem Testansatz konnte für die 3-Phosphoglycerat- Dehydrogenase des Wild Typs eine spezifische Aktivität von ca. 150 mU/mg Protein bestimmt werden. Es zeigte sich, dass die Überexpression des vollständigen serA- Gens eine etwa 16-fache Steigerung der spezifischen 3 -Phosphoglycerat-Dehydrogenase-Aktivität ergibt. Das Konstrukt serAΔl97 ermöglichte eine 10-fache Überexpression gegenüber dem Wild Typ-Protein. Die Konstrukte serAΔlδδ und serAΔ205 lassen sich 3 bis 3,4-fach übe- rexprimieren, wohingegen für die Konstrukte serAΔ205 und serAΔ79 nur eine 1,2 bis 1,5-fache Überexpression möglich war. Damit ist gezeigt, dass das durch Deletion der C-terminalen 197 Aminosäuren der 3-Phosphoglycerat- Dehydrogenase von C. glutamicum erzeugte Mutein Se- rAΔl97 funktionell ist, und mehr als 60 % der Wild Typ Aktivität aufweist.
In Tabelle 3 sind die Ergebnisse zusammengefasst .
Tabelle 3: Überexpression des serA-Gens sowie der C-terminal verkürzten serA-Allele.
Figure imgf000032_0001
* Die 3 -Phosphoglycerat-Dehydrogenase-Aktivität im Stamm 13032pZl wurde auf 1,0 normiert
3. Untersuchungen zur Inhibition der Wild Typ 3-
Phosphoglycerat-Dehydrogenase aus C. glutamicum und des C-terminal verkürzten Muteins SerAΔl97 durch L-Serin
Im Folgenden wurde getestet, ob das um den C-Terminus verkürzte Mutein SerAΔl97 nicht mehr durch L-Serin ge- hemmt werden kann. Dazu wurde zunächst die Hemmbarkeit der 3 -Phosphoglycerat-Dehydrogenase des Wild Typs in zellfreien Extrakten von C. glutamicum durch L-Serin anhand des oben beschriebenen Enzymtests untersucht. Hierzu wurden dem Testansatz zusätzlich 1, 5 und 10 mM L-Serin zugesetzt und 5 Minuten bei 30°C inkubiert. Die Reaktion wurde dann durch Zugabe von 15 mM 3 -Phosphoglycerat gestartet. Die Inkubation war notwendig um eine Hemmung nachweisen zu können (Tab. 4) . Diese Zeitabhängigkeit der L-Serin-Hemmung, die mehrere Minuten Inkubation benötigt, bevor ein konstanter Level der Inhibition erreicht wird, wurde auch schon für andere 3 -Phosphoglycerat-Dehydrogenasen, z. B. für das aufgereinigte Enzym von B . subtilis beschrieben (Saski R. und Pitzer L., 1975, Eur. J. Biochem . , 51:415-427).
Tabelle 4: Inhibition der Wild Typ 3 -Phosphoglycerat Dehydrogenase von C. glutamicum durch L-Serin
Figure imgf000033_0001
ohne Zusatz von L-Serin wurde auf 100% gesetzt Auf diesem Ergebnis aufbauend wurde die L-Serin- Inhibition der 3 -Phopshoglycerat -Dehydrogenase in den Stämmen 13032pZlserA und 13032pZlserAΔl97 untersucht . Es zeigte sich, dass tatsächlich das C-terminal ver- kürzte 3 -Phosphoglycerat -Dehydrogenase -Mut ein nicht mehr signifikant durch L-Serin gehemmt werden kann (Tab . 5) .
Tabelle 5 : Inhibition der überexprimierten 3 - Phopshoglycerat -Dehydrogenase durch L-Serin in den Stämmen 13032pZlserA und 13032pZlserAΔl97
Figure imgf000034_0001
Die Aktivität der 3 -Phosphoglycerat-Dehydrogenase ohne Zusatz von L-Serin wurde auf 100% gesetzt
** Bestimmung der Aktivität nach 5-minütiger Inkubation bei 30 °C mit und ohne L-Serin
Damit ist es gelungen, durch Deletion des C-Terminus der 3 -Phosphoglycerat-Dehydrogenase von C. glutamicum gezielt ein dereguliertes 3-Phosphoglycerat-Dehydro- genase-Mutein zu generieren.
Gesteigerte Akkumulation von L-Serin durch Überexpression des Gens für die deregulierte 3 - Phosphoglycerat -Dehydrogenase (serAΔl97) Zur Analyse der L-Serinausscheidung des Stammes mit deregulierter 3 -Phosphoglycerat-Dehydrogenase wurden die Plasmide pZl, pZlserA und pZlserAΔl97 in den Stamm Corynebacterium glutamicum 13032ΔpanBC transformiert (E. Radmacher, A. Vaitsikova, U. Burger, K. Krumbach, H. Sahm, L. Eggeling, 2002, Appl . Environ . Microbiol . (Publikation in Vorbereitung) ) . Dieser Stamm ist durch die Deletion der Pantothenat-Biosynthese Gene panB und panC Pantothenat-auxotroph, und zeichnet sich dadurch aus, dass er unter Pantothenat-Limitation aufgrund einer verstärkten Akkumulation von Pyruvat ca. 50 mM Alanin und 8 mM Valin ausscheidet . Darüberhinaus bildet der Stamm ca. 100 μM L-Serin und eignet sich somit als Ausgangsstamm für die Konstruktion eines L-Serin-Pro- duzenten. Der Stamm mit dem Plasmid pZlserA transformierte Stamm 13032ΔpanBCpZlserA wurde gemäß Budapester Vertrag am 11.04.2002 bei der DSMZ unter der DSM Nr. 14922 hinterlegt.
Zur Untersuchung der L-Serinausscheidung wurden die drei Stämme in Komplexmedium (CgIII mit 2% Glukose und mit 50 μg/1 Kanamycin) gezüchtet, und das Fermentationsmedium CGXII (J Bacteriol (1993) 175: 5595-5603) jeweils aus den Vorkulturen beimpft. Das Medium enthielt zusätzlich 50 μg/1 Kanamycin und 1 μM Pantothenat. Es wurden zwei unabhängige Fermentationen durchgeführt. Nach Kultivierung für 24 bzw. 35 Stunden bei 30°C auf dem Rotationsschüttler bei 120 Upm wurde die in das Medium akkumulierte L-Serinmenge bestimmt. Die Bestimmung der Aminosäurekonzentration erfolgte mittels Hochdruckflüssigkeitchromatographie (J Chromat (1983) 266: 471- 482) . Das Ergebnis der Fermentation ist in Tabelle 6 dargestellt, und es zeigt sich, daß schon die Überexpression des Wildtyp serA-Gens eine ca. 10%ige Steigerung der L-Serin-Akkumulation im Medium hervorruft. Die Überexpression der deregulierten 3-Phosphoglycerat- Dehydrogenase erzielt dagegen sogar eine Steigerung von bis zu 40% im Vergleich zum Kontrollstamm der nur das Leerplasmid trägt. Somit stellt die Nutzung des konstruierten und beschriebenen Gens für das deregulierte L-Serin-Biosynthese Enzym 3-Phosphoglycerat-Dehydrogenase ein Verfahren dar, um die L-Serinbildung entscheidend zu verbessern.
Tabelle 6: Akkumulation von L-Serin im Kulturüberstand von Corynebacterium glutamicum 13032ΔpanBC nach Expression der Gene serA bzw. serAΔl97
Figure imgf000036_0001
* TG = Zelltrockengewicht
BUDAPESTER VERTRAG ÜBER DIE INTERNATIONALE , ANERKENNUNG DER HINTERLEGUNG VON MIKROORGANISMEN FÜR DIE ZWECKE VON PATENTVERFAHREN
INTERNATIONALES FORMBLATT
FotschuπgsZentrum Julien GmbH
Inst, für Biotechnologie I 52425 Julien
EMPFANGSBESTÄTIGUNG BEI ERSTHINTERLEGUNG, ausgestellt gemäß Regel 7.1 von der unten angegebenen INTERNATIONALEN HINTERLEGUNGSSTELLE
I. KENNZEICHNUNG DES MIKROORGANISMUS
Vom HINTERLEGER zugeteiltes Bezugszeichen' Von der INTERNATIONALEN HINTERLEGUNGSSTELLE zugeteilte EINGANGSNUMMER:
13032ΔpanBC pZl serA
DSM 14922
H WISSENSCHAFTLICHE BESCHREIBUNG UNDK)DER VORGESCHLAGENE TAXONOMISCHE BEZEICHNUNG
Mit dem unter I. bezeichneten Mikroorganismus wurde
(X ) eine wissenschaftliche Beschreibung
( } eine vorgeschlagene taxonoπuschc Bezeichnung eingereicht (Zutreffendes ankreuzen).
ÜX EINGANG UND ANNAHME
Diese mtemationale Hinterlegungsstelle nimmt den unter I bezeichneten Mikroorganismus an, der bei ihr am 20 02 - 04 - 11 (Datum der Ersthinteri-guπg)' eingegangen ist
IV. EINGANG DES ANTRAGS AUF UMWANDLUNG
Der unter I bezeichnete Mikroorganismus ist bei dieser Internationalen Hinterlegungsstelle am emgegangen (Datam der Erst- hinterlegung) und ein Antrag auf Umwandlung dieser Ersthinterlegung in eine Hinterlegung gemäß Budapester Vertrag ist am eingegangen (Datum des Eingangs des Antrags auf Umwandlung). , '
V INTERNATIONALE HINTERLEGUNGSSTELLE
Name: DSMZ-DETJTSCHE 'SAMMLUNG VON Unters_arift(eιϋ der zur Vertretung der internationalen Hinterlegungsstelle MIKROORGANISMEN UND ZELLKULTUREN GmbH betagten Peιsoπ(en) oder des (der) von ihr eJ Lchti ten Bediensteten:
Anschrift: Mascheroder Weg lb D-38124 Braunschweig
Datum: 2002 - 04 - 12
Falls Regel 6.4 Buchstabe d zutrifft, ist dies der Zeitpunkt, zu dem der Status einer internationalen Hinterlegungsstelle erworben worden ist BUDAPESTER VERTRAG ÜBER DIE INTERNATIONALE
ANERKENNUNG DER HINTERLEGUNG VON MIKROORGANISMEN
FÜR DIE ZWECKE VON PATENTVERFAHREN
INTERNATIONALES FORMBLATT
Forschungszentrum Julien GmbH
Inst . für Biotechnologie I 52425 Julien
LEBENSFÄIΠGKEΓΓSBESCHEINIGUNG ausgestellt gemäß Regel 10.2 von der unten angegebenen INTERNATIONALEN HINTERLEGUNGSSTELLE
Figure imgf000038_0001
Angabe des Datums der Ersthinterlegung. Wenn eine erneute Hinterlegung oder eine Weiterleitung vorgenommen worden ist, Angabe des Datums der jeweils letzten erneuten Hinterlegung oder Weiterleitung.
Iri den in Regel 10.2 Buchstabe a Ziffer ii und iü vorgesehenen Fällen Angabe der letzten Lebensfabigkeitsprüfung.
Zutreffendes ankreuzen.
Ausfüllen, wenn die- Angaben beantragt .worden sind und wenn die Ergebnisse der Prüfung negativ waren.

Claims

P a t e n t a n s p r u c h.e
1. Nukleinsäuren codierend für eine deregulierte
3 -Phosphoglycerat-Dehydrogenase enthaltend ein Gen serA gemäß SEQ ID No 1 oder ein Allel, Homolog oder Derivat dieser Nukleotidsequenz oder mit dieser hybridisierende Nukleotidsequenzen.
2. Nukleinsäuren codierend für eine deregulierte
3 -Phosphoglycerat-Dehydrogenase enthaltend ein Gen serA gemäß SEQ ID No 2 oder ein Allel, Homolog oder Derivat dieser Nukleotidsequenz • oder mit dieser hybridisierende Nukleotidsequenzen.
'3. Nukleinsäuren codierend für eine deregulierte
• 3 -Phosphoglycerat-Dehydrogenase enthaltend ein Gen . serA 'gemäß SEQ ID No- 3 oder ein Allel, Homolog oder Derivat dieser Nukleotidsequenz oder mit dieser hybridisierende Nukleotidsequenzen.
4. Nukleinsäuren codierend für eine deregulierte
3 -Phosphoglycerat-Dehydrogenase enthaltend ein Gen serA gemäß SEQ ID- No 4 oder ein Allel, Homolog oder Derivat dieser Nukleotidsequenz oder mit dieser hybridisierende Nukleotidsequenzen.
5. Nukleinsäuren codierend für eine deregulierte
'3 -Phosphoglycerat -Dehydrogenase enthaltend ein Gen serA gemäß SEQ ID No 5 oder ein Allel, Homolog- oder Derivat dieser Nukleotidsequenz oder mit dieser hybridisierende .-Nukleotidsequenzen.
6. Nukleinsäuren nach einem der Ansprüche 1 bis 5, . dadurch gekennzeichnet, dass sie aus coryneformen Bakterien isoliert werden.
7. Nukleinsäuren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sie aus Corynebacterium oder Brevibacterium isoliert werden.
8. Nukleinsäuren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sie aus Corynebacterium glutamicum oder Brevi- bacterium flavum isoliert werden.
9. Genstruktur enthaltend wenigstens eine Nukleotidsequenz gemäß den Ansprüchen 1 bis 8 sowie mit diesen operativ verknüpfte regulatorische Sequenzen.
10. Vektor enthaltend wenigstens eine Nukleotidsequenz gemäß Anspruch 1 bis 8 oder eine Genstruktur gemäß
Anspruch 9 sowie zusätzliche Nukleotidsequenzen zur
I
Selektion, zur Replikation in der Wirtszelle oder zur Integration in das Wirtszell-Genom.
11. Deregulierte 3-Phosphoglycerat-Dehydrogenase oder ein Teil davon, codiert durch eine Nukleinsäurese- quenz gemäß einem der Ansprüche 1 bis 8.
12. Deregulierte 3 -Phosphoglycerat-Dehydrogenase nach Anspruch 11, mit einer Aminosäuresequenz, gemäß SEQ ID No 7 oder einer modifizierten Form dieser Polypeptidsequenzen oder Isoformen davon.
13. Deregulierte 3 -Phosphoglycerat-Dehydrogenase nach Anspruch 11, mit einer Aminosäuresequenz, gemäß SEQ ID No 8 oder einer modifizierten Form dieser Polypeptidsequenz oder Isoform davon.
14. Deregulierte 3 -Phosphoglycerat -Dehydrogenase nach Anspruch 11, mit einer Aminosäuresequenz, gemäß SEQ ID No 9 oder einer modifizierten Form dieser Polypeptidsequenz oder Isoform davon.
15. Deregulierte 3 -Phosphoglycerat-Dehydrogenase nach Anspruch 11, mit einer Aminosäuresequenz, gemäß SEQ ID No 10 oder einer modifizierten Form dieser Polypeptidsequenz oder Isoform davon.
16. Deregulierte 3 -Phosphoglycerat-Dehydrogenase nach Anspruch 11 , mit einer Aminosäuresequenz, gemäß SEQ ID No 11 oder einer modifizierten Form dieser Polypeptidsequenz oder Isoform davon.
17. Polypeptide nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, daß sie aus coryneformen Bakterien stammen.
18. Polypeptide nach einem der Ansprüche 11 bis 17, dadurch gekennzeichnet, daß sie aus Corynebacterium oder Brevibacterium stammen.
19. Polypeptide nach einem der Ansprüche 11 bis 18, dadurch gekennzeichnet, daß sie aus Corynebacterium glutamicum oder Brevibacterium flavum stammen.
20. Mikroorganismus enthaltend wenigstens' eine Nuklein- säure gemäß Anspruch 1 bis 8 in replizierbarer Form, welche im Vergleich zum Wild Typ Mikroorganismus verstärkt exprimiert wird und/oder deren Ko- pienzahl erhöht ist . .
21. Mikroorganismus gemäß Anspruch 20 enthaltend in replizierbarer Form eine Genstruktur gemäß Anspruch 9 oder einen Vektor gemäß Anspruch 10.
22. Mikroorganismus gemäß einem der Ansprüche 20 bis 21 enthaltend wenigstens ein Polypeptid gemäß Anspruch
11 bis 19, welcher eine im Vergleich zu dem entsprechenden Wild Typ Stamm aktive deregulierte 3 -Phosphoglycerat-Dehydrogenase aufweist .
23. Mikroorganismus gemäß einem der Ansprüche 20 bis 22, dadurch gekennzeichnet, dass er ein coryneformes Bakterium ist.
24. Mikroorganismus gemäß einem der Ansprüche 20 bis
23, ' , - ' ' dadurch gekennzeichnet, ' dass er zur Gattung Corynebacterium oder Brevibacterium gehört .
25. Mikroorganismus gemäß einem der Ansprüche 20 bis
24, ' • dadurch gekennzeichnet, < . , dass er. 'zu Corynebacterium glutamicum oder Br'evi-' bacterium f'lavum gehört.
26. Sonde zur Identifizierung und /oder Isolierung von Genen codierend -für an- der Biosynthese von. L-Serin beteiligten Proteinen, dadurch gekennzeichnet, dass sie ausgehend von Nukleinsäuren ' gemäß einem der Ansprüche 1 bis.8 'hergestellt wird und' eine zur Detektion geeignete Markierung enthält .
27. Verfahren zur mikrobiellen Herstellung von L-Serin, dadurch gekennzeichnet, daß
a) wenigstens eine Nukleinsäure gemäß einem der Ansprüche 1 bis 8 isoliert aus einem coryneformen Bakteri- um in einen Mikroorganismus übertragen wird und dort exprimiert wird, wobei die Genexpression und/oder die Aktivität des entsprechend codierten Polypeptids gegenüber dem entsprechend nicht genetisch veränderten Mikroorganismus erhöht ist,
b) dieser genetisch veränderte Mikroorganismus aus Schritt ' b) zur mikrobiellen Herstellung eingesetzt wird und
c) das entsprechend gebildete L-Serin aus dem Kulturmedium isoliert wird.
PCT/DE2003/002290 2002-07-10 2003-07-08 Nukleotidsequenzen codierend für deregulierte phosphoglycerat-dehydrogenasen coryneformer bakterien sowie verfahren zur herstellung von l-serin WO2004007705A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MXPA05000527A MXPA05000527A (es) 2002-07-10 2003-07-08 Secuencias nucleotidas que codifican a las deshidrogenasas de fosfoglicerato desregularizadas de bacterias corineformes y procedimiento para la produccion de l-serina.
AT03763598T ATE479745T1 (de) 2002-07-10 2003-07-08 Nukleotidsequenzen codierend für deregulierte phosphoglycerat-dehydrogenasen coryneformer bakterien sowie verfahren zur herstellung von l- serin
EP03763598A EP1520013B1 (de) 2002-07-10 2003-07-08 Nukleotidsequenzen codierend für deregulierte phosphoglycerat-dehydrogenasen coryneformer bakterien sowie verfahren zur herstellung von l-serin
JP2004520314A JP2006524032A (ja) 2002-07-10 2003-07-08 コリネ型バクテリアの脱調節されたホスホグリセラート−デヒドロゲナーゼをコードするヌクレオチド配列並びにl−セリンの製造方法
US10/520,999 US7732176B2 (en) 2002-07-10 2003-07-08 Nucleotide sequences that encode deregulated phosphoglycerate dehydrogenases of coryneform bacteria and method for producing L-serine
DK03763598.4T DK1520013T3 (da) 2002-07-10 2003-07-08 Nukleotidsekvenser der koder for deregulerede phosphoglycerat-dehydrogenaser i coryneforme bakterier, samt fremgangsmåde til fremstilling af L-serin
BR0312374-0A BR0312374A (pt) 2002-07-10 2003-07-08 Sequências de nucleotìdeos codificando fosfoglicerato-desidrogenases desreguladas de bactérias corineformes e processo para a preparação de l-serina
DE50313042T DE50313042D1 (de) 2002-07-10 2003-07-08 Nukleotidsequenzen codierend für deregulierte phosphoglycerat-dehydrogenasen coryneformer bakterien sowie verfahren zur herstellung von l-serin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10231297.4 2002-07-10
DE10231297A DE10231297A1 (de) 2002-07-10 2002-07-10 Nukleotidsequenzen coryneformer Bakterien codierend für an der Biosynthese von L-Serin beteiligte Proteine sowie Verfahren zur Herstellung von L-Serin

Publications (2)

Publication Number Publication Date
WO2004007705A1 true WO2004007705A1 (de) 2004-01-22
WO2004007705A9 WO2004007705A9 (de) 2005-03-31

Family

ID=30009893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002290 WO2004007705A1 (de) 2002-07-10 2003-07-08 Nukleotidsequenzen codierend für deregulierte phosphoglycerat-dehydrogenasen coryneformer bakterien sowie verfahren zur herstellung von l-serin

Country Status (11)

Country Link
US (1) US7732176B2 (de)
EP (1) EP1520013B1 (de)
JP (1) JP2006524032A (de)
KR (1) KR20060015439A (de)
AT (1) ATE479745T1 (de)
BR (1) BR0312374A (de)
DE (2) DE10231297A1 (de)
DK (1) DK1520013T3 (de)
MX (1) MXPA05000527A (de)
WO (1) WO2004007705A1 (de)
ZA (1) ZA200501158B (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007144018A1 (en) * 2006-06-12 2007-12-21 Metabolic Explorer Ethanolamine production by fermentation
WO2013126721A1 (en) * 2012-02-23 2013-08-29 Massachusetts Institute Of Technology Engineering microbes and metabolic pathways for the production of ethylene glycol
CN114134185A (zh) * 2021-10-30 2022-03-04 新泰市佳禾生物科技有限公司 一种发酵生产l-丝氨酸的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624828A (en) * 1990-11-22 1997-04-29 Kyowa Hakko Kogyo Co. Ltd. Process for producing L-tryptophan in serine auxotrophic microorganisms belonging to the genus corynebacterium or brevabacterium
EP0943687A2 (de) * 1998-01-12 1999-09-22 Ajinomoto Co., Inc. Methode zur Herstellung von L-Serin mittels Fermentation
US6180373B1 (en) * 1992-09-28 2001-01-30 Consortium f{umlaut over (u)}r elektrochemische Industrie GmbH Microorganisms for the production of tryptophan and process for the preparation thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4066543B2 (ja) * 1998-01-12 2008-03-26 味の素株式会社 発酵法によるl−セリンの製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624828A (en) * 1990-11-22 1997-04-29 Kyowa Hakko Kogyo Co. Ltd. Process for producing L-tryptophan in serine auxotrophic microorganisms belonging to the genus corynebacterium or brevabacterium
US6180373B1 (en) * 1992-09-28 2001-01-30 Consortium f{umlaut over (u)}r elektrochemische Industrie GmbH Microorganisms for the production of tryptophan and process for the preparation thereof
EP0943687A2 (de) * 1998-01-12 1999-09-22 Ajinomoto Co., Inc. Methode zur Herstellung von L-Serin mittels Fermentation

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ARCHER J A C ET AL: "A C-TERMINAL DELETION IN CORYNEBACTERIUM-GLUTAMICUM HOMOSERINE DEHYDROGENASE ABOLISHES ALLOSTERIC INHIBITION BY L THREONINE", GENE (AMSTERDAM), vol. 107, no. 1, 1991, pages 53 - 60, XP001155222, ISSN: 0378-1119 *
BELL JESSICA K ET AL: "De-regulation of D-3-phosphoglycerate dehydrogenase by domain removal.", EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 269, no. 17, September 2002 (2002-09-01), =ejb&page=aims September, 2002, pages 4176 - 4184, XP002255645, ISSN: 0014-2956 *
DATABASE EMBL [online] XP002255654, retrieved from EBI Database accession no. AAY31651 *
DATABASE EMBL [online] XP002255655, retrieved from EBI Database accession no. AR162219 *
PETERS-WENDISCH P ET AL: "3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum: The C-terminal domain is not essential for activity but is required for inhibition by L-serine.", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 60, no. 4, 20 December 2002 (2002-12-20), pages 437 - 441, XP002255644, ISSN: 0175-7598 *

Also Published As

Publication number Publication date
US20060106207A1 (en) 2006-05-18
DE10231297A1 (de) 2004-02-05
EP1520013A1 (de) 2005-04-06
BR0312374A (pt) 2005-04-12
WO2004007705A9 (de) 2005-03-31
US7732176B2 (en) 2010-06-08
MXPA05000527A (es) 2005-09-30
ZA200501158B (en) 2007-04-25
DK1520013T3 (da) 2010-12-20
DE50313042D1 (de) 2010-10-14
ATE479745T1 (de) 2010-09-15
JP2006524032A (ja) 2006-10-26
EP1520013B1 (de) 2010-09-01
KR20060015439A (ko) 2006-02-17

Similar Documents

Publication Publication Date Title
DE102004001674B4 (de) Verfahren zur Herstellung von L-Lysin unter Einsatz von Methanol verwertenden Bakterien
EP1094111B1 (de) Coryneforme Bakterien mit einer Deletion der Phosphoenolpyruvat-Carboxykinase und ihre Verwendung
EP2354235B1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
DE19951975A1 (de) Neue für das poxB-Gen codierende Nuleotidsequenzen
DE60115900T2 (de) Nukleotidsequenzen kodierend für das mdha gen aus corynebakterium glutamicum
DE60033026T4 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren durch Verstärkung des zwf Gens
DE19959327A1 (de) Neue für das zwa2-Gen codierende Nukleotidsequenzen
DE60312592T2 (de) Verfahren zur Herstellung von L-Lysin unter Verwendung Coryneformer Bakterien die ein attenuiertes Malat Enzym-gen enthalten
DE10162387A1 (de) Für das rpoB-Gen kodierende Nukleotidsequenzen
EP1601773A2 (de) Nukleotidsequenzen coryneformer bakterien codierend f r am l -serinstoffwechsel beteiligte proteine sowie verfahren zur mikrobiellen herstellung von l-serin
EP1239040A2 (de) Mutationen im rpoB-Gen L-Lysin produzierender Corynebacterium glutamicum-Stämme und Verfahren zur Herstellung von L-Lysin
EP1259622B1 (de) Nukleotidsequenzen kodierend fur proteine beteiligt an der biosynthese von l-serin, verbessertes verfahren zur mikrobiellen herstellung von l-serin sowie ein dazu geeigneter genetisch veranderter mikroorganismus
EP1520013B1 (de) Nukleotidsequenzen codierend für deregulierte phosphoglycerat-dehydrogenasen coryneformer bakterien sowie verfahren zur herstellung von l-serin
DE10162386A1 (de) Für das rpsL-Gen kodierende Nukleotidsequenzen
DE102005049527B4 (de) Verfahren zur Herstellung von L-Serin, Gensequenz, Vektoren sowie Mikroorganismus
DE10055869A1 (de) Neue für das nadA-Gen kodierende Nukleotidsequenzen
DE60115913T2 (de) Nukleotid sequenzen kodierend für das csta gen aus corynebacterium glutamicum
DE10055870A1 (de) Neue für das nadC-Gen kodierende Nukleotidsequenzen
DE10220574A1 (de) Verfahren zur Herstellung von Aminosäuren mit coryneformen Bakterien unter Verwendung von Phosphoglucose-Isomerasen aus coryneformen Bakterien
DE10112098A1 (de) Neue für das chrA-Gen kodierende Nukleotidsequenzen
EP1143003A2 (de) Nukleotidsequenzen, die für das rplk-Gen kodieren, und Verfahren zur Herstellung von L-Aminosäuren
DE10017057A1 (de) Neue für das rpIK Gen kodierende Nukleotidsequenzen
DE10009799A1 (de) Nukleotidsequenzen kodierend für Proteine beteiligt an der Biosynthese von L-Serin und Verfahren zu dessen Herstellung
DE10140095A1 (de) Für das tmk-Gen kodierende Nukleotidsequenzen
DE10113958A1 (de) Neue für das mikE17-Gen kodierende Nukleotidsequenzen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP KR MX US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003763598

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004520314

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/000527

Country of ref document: MX

Ref document number: 1020057000470

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005/01158

Country of ref document: ZA

Ref document number: 200501158

Country of ref document: ZA

COP Corrected version of pamphlet

Free format text: PAGES 1-15, SEQUENCE LISTING, REPLACED BY CORRECT PAGES 1-15

WWP Wipo information: published in national office

Ref document number: 2003763598

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006106207

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10520999

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057000470

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWP Wipo information: published in national office

Ref document number: 10520999

Country of ref document: US