WO2004007056A1 - 酸素ガス分離方法 - Google Patents

酸素ガス分離方法 Download PDF

Info

Publication number
WO2004007056A1
WO2004007056A1 PCT/JP2003/008684 JP0308684W WO2004007056A1 WO 2004007056 A1 WO2004007056 A1 WO 2004007056A1 JP 0308684 W JP0308684 W JP 0308684W WO 2004007056 A1 WO2004007056 A1 WO 2004007056A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption tower
gas
oxygen
pressure
adsorption
Prior art date
Application number
PCT/JP2003/008684
Other languages
English (en)
French (fr)
Inventor
Morihiko Yamamoto
Hiroaki Sasano
Masanori Miyake
Original Assignee
Sumitomo Seika Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co., Ltd. filed Critical Sumitomo Seika Chemicals Co., Ltd.
Priority to AU2003252484A priority Critical patent/AU2003252484A1/en
Priority to JP2004521159A priority patent/JPWO2004007056A1/ja
Publication of WO2004007056A1 publication Critical patent/WO2004007056A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/053Pressure swing adsorption with storage or buffer vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40064Five
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns

Definitions

  • the present invention relates to a method for separating oxygen from an oxygen-containing source gas by a pressure swing adsorption method (PSA method).
  • PSA method pressure swing adsorption method
  • the concentrated oxygen gas obtained by the PSA method is widely used in technologies requiring continuous supply of oxygen, such as electric furnace steelmaking, water treatment oxygen aeration, pulp bleaching, and ozone generators. ⁇ Concentrated oxygen gas is also used in biochemical fields such as fermentation. Furthermore, concentrated oxygen gas is also used in the field of incineration technology. Specifically, instead of burning in air, combustion is performed in concentrated oxygen gas for the purpose of melting incinerator residue, reducing NOx in exhaust gas, and increasing the efficiency of combustion reactions. May be adopted.
  • a multi-column PSA method is generally performed using an apparatus having two or more adsorption towers.
  • an adsorption step, a desorption step, a washing step, a pressurization step, and the like are repeated in each adsorption tower. These steps are performed with the timing shifted between the adsorption towers.
  • Various improvements have been attempted for the multi-tower PSA method.
  • a technique is used in which the high pressure in the adsorption tower after the completion of the adsorption step is used to increase the pressure of another adsorption tower. Have been.
  • a single-column PSA method using a single-column adsorption column may be adopted.
  • Various improvements have also been attempted for the single-column PSA method from the viewpoint of the amount and purity of concentrated oxygen gas obtained as a product.
  • the single-column PSA method disclosed in Japanese Patent Application Laid-Open No. 9-29044 after the adsorption step is completed, the gas remaining in the adsorption tower is collected in a separately provided recovery tank, and the desorption step is performed. After the completion, the adsorption tower is washed by introducing the recovered gas into the adsorption tower as a washing gas.
  • the present invention has been conceived under such circumstances, and it is an object of the present invention to provide an oxygen gas separation method suitable for achieving a high oxygen gas recovery rate or the like in a single-column PSA method.
  • oxygen is separated from gaseous oxygen-containing source gas by a single-column pressure swing adsorption method using a single adsorption column filled with an adsorbent.
  • a method is provided. In this method, a raw material gas is introduced into an adsorption tower, and an unnecessary component contained in the raw material gas is adsorbed by an adsorbent.
  • the oxygen-enriched gas is a gas having a predetermined high oxygen concentration.
  • Quasi-oxygen enrichment A gas is a gas that has an oxygen concentration that is at least as high as at least substantially higher than the oxygen-enriched gas.
  • the cleaning step of introducing at least a part of the quasi-oxygen-enriched gas held in the recovery tank into the adsorption tower and discharging the exhaust gas from the adsorption tower the inside of the adsorption tower is maintained at a constant pressure. That is, the desired low pressure in the adsorption tower, which is achieved at the end of the desorption step preceding the cleaning step, is maintained in the cleaning step, and the pressure increase phenomenon in the cleaning step is avoided.
  • a high oxygen gas recovery rate can be achieved by keeping the pressure in the adsorption tower constant during the washing step.
  • the flow rate of the quasi-oxygen-enriched gas introduced into the adsorption tower and the flow rate of z or the exhaust gas discharged from the adsorption tower are controlled.
  • the pressure in the adsorption tower is kept constant.
  • the pressure in the adsorption tower is reduced by discharging the exhaust gas from the adsorption tower by a pump while controlling the flow rate of the quasi-oxygen-enriched gas introduced into the adsorption tower by a flow rate control valve. It is kept constant. According to such a configuration, the pressure in the adsorption tower can be kept constant by controlling only the opening degree (throttle amount) of the flow control valve, and the pressure control becomes easy.
  • the maximum pressure in the adsorption tower in the adsorption step is 40 to 65 kPa (gage pressure).
  • the recovery step is performed until the pressure in the adsorption tower becomes 0 to 25 kPa (gauge pressure).
  • the minimum pressure in the adsorption tower in the desorption step is from 165 to -4 OkPa (gauge pressure).
  • the oxygen is separated from the gaseous oxygen-containing source gas by a single-column pressure swing adsorption method using a single adsorption tower filled with an adsorbent.
  • Other methods are provided.
  • an adsorption step of deriving an oxygen-enriched gas from the adsorption tower is performed.
  • a first recovery step in which the first quasi-oxygen-enriched gas in the adsorption tower is collected and held in the first recovery tank until the pressure drops to the first intermediate pressure, and the pressure in the adsorption tower is increased to the second intermediate pressure.
  • At least part of the first quasi-oxygen-enriched gas held in the first recovery tank or at least part of the second quasi-oxygen-enriched gas held in the second recovery tank is repeatedly performed.
  • the second intermediate pressure is lower than the first intermediate pressure.
  • the oxygen gas separation method according to the second aspect of the present invention, at least a part of the first or second quasi-oxygen-enriched gas held in the first or second recovery tank is introduced into the adsorption tower, and In the washing step of discharging exhaust gas from the adsorption tower, the pressure inside the adsorption tower is maintained at a constant pressure. That is, the desired low pressure and pressure in the adsorption tower achieved at the end of the desorption step prior to the cleaning step are maintained in the cleaning step, and the pressure increase phenomenon in the cleaning step is avoided.
  • a high oxygen gas recovery rate can be achieved by keeping the pressure in the adsorption tower constant during the washing step.
  • the first quasi-oxygen-enriched gas from the first recovery tank is introduced into the adsorption tower.
  • the primary quasi-oxygen-enriched gas is a gas remaining in the adsorption tower immediately after the adsorption step, and thus has a higher oxygen concentration than the secondary quasi-oxygen-enriched gas. Therefore, as a pressurized gas that is introduced into the adsorption tower in order to increase the pressure in the adsorption tower in the pressurization step and is recovered as a product gas, in order to achieve a high oxygen gas recovery rate, the secondary oxygen
  • the first quasi-oxygen enriched gas is more preferable than the enriched gas.
  • the secondary quasi-oxygen-enriched gas is lower than the primary quasi-oxygen-enriched gas, but considerably higher than the raw material gas, and is sufficient to promote the desorption of unnecessary components from the adsorbent in the cleaning process high.
  • Use of secondary quasi-oxygen-enriched gas as the cleaning gas in the cleaning process and primary quasi-oxygen-enriched gas as the pressurized gas in the pressurization process achieves high oxygen gas recovery It is suitable for doing so.
  • the pressure in the adsorption tower is kept constant by controlling the flow rate of the secondary quasi-oxygen-enriched gas introduced into the adsorption tower and / or the flow rate of the exhaust gas discharged from the adsorption tower. Is maintained.
  • the exhaust gas is discharged from the adsorption tower by a pump while the flow rate of the secondary quasi-oxygen-enriched gas introduced into the adsorption tower is controlled by a flow control valve, so that the pressure in the adsorption tower is reduced. Is kept constant. According to such a configuration, the pressure in the adsorption tower can be maintained constant by controlling only the opening degree (throttle amount) of the flow control valve, and the pressure control becomes easy.
  • the maximum pressure in the adsorption tower in the adsorption step is 40 to 65 kPa (gage pressure).
  • the first intermediate pressure is between 15 and 35 kPa (gauge pressure) and the second intermediate pressure is between 10 and 15 kPa (gauge pressure).
  • the minimum pressure in the adsorption tower in the desorption step is -65 to 140 kPa (gauge pressure).
  • FIG. 1 shows a schematic configuration of a PSA separation device for performing an oxygen gas separation method according to a first embodiment of the present invention.
  • FIG. 2 is a table showing the open / closed state of each valve of the PSA separation device shown in FIG. 1 in each step of the oxygen gas separation method according to the first embodiment.
  • FIG. 4 shows a schematic configuration of a PSA separation device for performing the oxygen gas separation method according to the second embodiment of the present invention.
  • FIG. 5 is a table showing the open / closed state of each valve of the PSA separation device shown in FIG. 4 in each step of the oxygen gas separation method according to the second embodiment.
  • FIG. 7 is a table listing conditions and results for Examples 1 and 2 and Comparative Example.
  • FIG. 8 shows the pressure change in the adsorption tower in Example 1 and Comparative Example. is there.
  • FIG. 9 is a graph showing a pressure change in the adsorption tower in Example 2.
  • FIG. 1 shows an oxygen gas separation method according to the first embodiment of the present invention.
  • the PSA separation device X1 includes an adsorption tower 1, a product gas buffer tank 2, and a recovery tank 3.
  • the adsorption tower 1 has a product gas outlet 1a and a raw material gas inlet 1b, and the inside thereof is filled with an adsorbent.
  • the adsorbent include Li-X type zeolite molecular sieve, Ca-X type zeolite molecular sieve, and Ca-A type zeolite molecular sieve.
  • the product gas outlet 1a of the adsorption tower 1 is connected to the product gas buffer tank 2 via the common pipe 4a and the product gas pipe 4b, and the pipe 4a and the recovered gas pipe. It is connected to the recovery tank 3 via 4c.
  • the pipe 4a is provided with a flow control valve 5, and the pipes 4b and 4c are provided with automatic valves 6a and 6 respectively.
  • the raw material gas inlet 1b of the adsorption tower] is connected to the raw material gas supply section 7 through a common pipe 4d and raw gas supply pipes 4e and 4f, and is connected to the pipe 4d and 4d. It is connected to the desorbed gas recovery unit 8 via the desorbed gas discharge pipes 4 g and 4 h.
  • the pipe 4 d is provided with a blower pump BP, and the pipes 4 e, 4 f, 4 g, and 4 h are provided with automatic valves 6 c, 6 d, 6 e, and 6 f, respectively. I have.
  • the product gas buffer tank 2 is further connected to a product gas recovery unit 9 via a pipe 4i.
  • the oxygen-enriched product A gas that is, an oxygen-enriched gas or a concentrated oxygen gas is obtained.
  • the valves 5, 6a to 6f are opened and closed.
  • the gas flow state in the adsorption tower 1 and the pipes 4a to 4i is determined, and the adsorption step S11, the recovery step S12, and the desorption step S13 shown in FIG.
  • One cycle including the cleaning step S14, the first step-up step S15, and the second step-up step S16 is repeatedly performed.
  • FIGS. 3A to 3F show steps S 1:! 3 shows the gas flow state in S16.
  • gas flows are represented by thick arrows.
  • the open / close state of each of the valves 5, 6a to 6 ⁇ is selected as shown in FIG. 2, and the gas flow state as shown in FIG. 3 ⁇ is achieved.
  • the adsorption tower 1 communicates with the raw material gas supply unit 7, and the product gas is supplied through the product gas buffer tank 2. It communicates with the collection unit 9.
  • the raw material gas (for example, air) of the raw material gas supply unit 7 is introduced into the adsorption tower 1 through the pipes 4 e, 4 d, and 4 f and the raw material gas inlet 1 b by operating the blower pump BP. .
  • adsorption tower 1 Inside the adsorption tower 1, unnecessary components (eg, nitrogen) are adsorbed and removed by the adsorbent, and a gas having a high oxygen concentration is led out of the adsorption tower 1 as a product gas through the product gas outlet 1a. This gas flows into the product gas buffer tank 2 via the pipes 4a and 4b. After temporarily staying in the product gas buffer tank 2, the product gas flows into the product gas recovery unit 9 via the pipe 4i and is recovered.
  • unnecessary components eg, nitrogen
  • a gas having a high oxygen concentration is led out of the adsorption tower 1 as a product gas through the product gas outlet 1a.
  • This gas flows into the product gas buffer tank 2 via the pipes 4a and 4b.
  • the product gas After temporarily staying in the product gas buffer tank 2, the product gas flows into the product gas recovery unit 9 via the pipe 4i and is recovered.
  • the internal pressure of the adsorption tower 1 continues to increase during the present process and reaches a maximum value at the end of the present process.
  • the maximum pressure in the adsorption tower 1 in this step is, for example, in the range of 40 to 65 kPa. This pressure range is represented by the value of the gauge pressure.
  • the pressure conditions in each of the following steps are also represented by gauge pressures.
  • the open / close state of each of the valves 5, 6a to 6f is selected as shown in FIG. 2, and the gas flow state shown in FIG. 3B is achieved.
  • the adsorption tower 1 is in communication with the recovery tank 3.
  • the internal pressure of the adsorption tower 1 in which the adsorption step S11 was previously performed is high, for example, 40 to 65 kPa, while the internal pressure of the recovery tank 3 is, for example, 6 5 Is defined.
  • the quasi-oxygen-enriched gas having a relatively high oxygen concentration existing in the adsorption tower 1 at the start of the present process is not connected to the piping due to the pressure difference between the adsorption tower 1 and the recovery tank 3 in the present process.
  • the gas is transferred to the recovery tank 3 via 4c as the recovered gas.
  • the flow rate of the quasi-oxygen-enriched gas moving to the recovery tank 3 is appropriately adjusted by the flow control valve 5.
  • the internal pressure of the adsorption tower 1 continues to drop during the present process. This step is performed until the internal pressure of the adsorption tower 1 falls within a range of, for example, 0 to 25 kPa.
  • the adsorption tower 1 communicates with the desorption gas recovery unit 8.
  • the blower pump BP By operating the blower pump BP, the inside of the adsorption tower 1 is decompressed and unnecessary components are desorbed from the adsorbent.
  • the unnecessary components in a gaseous state are passed through the pipes 4 g, 4 d, and 4 h. Collected in the desorption gas collection unit 8.
  • the internal pressure of the adsorption tower 1 continues to drop during the present process and reaches a minimum value at the end of the present process.
  • the minimum pressure in the adsorption tower 1 in this step is, for example, in the range of 165 to 140 kPa.
  • the open / close state of each of the valves 5, 6a to 6f is selected as shown in FIG. 2, and the gas flow state as shown in FIG. 3D is achieved.
  • the adsorption tower 1 communicates with the recovery tank 3 and the desorbed gas recovery section 8.
  • the internal pressure of the adsorption tower 1 in which the desorption step S13 has been performed earlier is relatively low, whereas the internal pressure of the recovery tank 3 containing the quasi-oxygen-enriched gas is relatively low.
  • the pressure is relatively high. Therefore, quasi oxygen-enriched gas present in the collecting tank 3, due to a pressure difference between the adsorption tower 1 and the recovery tank 3, the adsorption tower 1 through the pipe 4 c and the product gas outlet 1. a Introduced as a cleaning gas.
  • the blower pump BP is operated, so that the gas is continuously sucked from the inside of the adsorption tower 1.
  • the introduction of the cleaning gas from the recovery tank 3 and the suction of the blower and the pump BP wash the adsorbent in the adsorption tower 1 and desorb unnecessary components from the adsorbent.
  • the gas inside is discharged from the raw material gas inlet 1b.
  • the exhaust gas is The gas is recovered by the desorbed gas recovery unit 8 via 4 g, 4 d, and 4 h.
  • the cleaning step S14 the sum of the flow rate of the cleaning gas (quasi-oxygen-enriched gas) introduced into the adsorption tower 1 through the product gas outlet 1a and the amount of desorbed gas in the adsorption tower 1, and the raw material gas inlet
  • the internal pressure of the adsorption tower 1 is adjusted to be constant by making the flow rate of the exhaust gas discharged from the adsorption tower 1 via 1b equal.
  • the internal pressure (absolute pressure) of the collection tank 3 that changes over time is P, ⁇ g / cm 1
  • the internal pressure (absolute pressure) of the adsorption tower 1 that is constant over time is P 2 ( kg / cm ')
  • the suction capacity of the blower pump BP is Q (m 3 / h)
  • the amount of gas desorbed from the adsorbent of the adsorption tower 1 is a (m 3 / h).
  • the sum of the cleaning gas flow rate and the gas desorption amount is made equal to the exhaust gas flow rate, and the cleaning process S
  • the internal pressure of the adsorption tower 1 in 14 can be kept constant.
  • variable control of the suction capability of the blower pump may be performed.
  • the open / close state of each of the valves 5, 6a to 6f is selected as shown in FIG. 2, and the gas flow state as shown in FIG. 3E is achieved.
  • the adsorption tower 1 is in communication with the product gas buffer tank 2 and the raw material gas supply unit 7.
  • the product gas or the oxygen-enriched gas is introduced into the adsorption tower 1 from the product gas buffer tank 2 via the pipe 4b.
  • the flow rate of the oxygen-enriched gas introduced into the adsorption tower 1 is appropriately adjusted by a flow control valve 5.
  • the raw material gas is supplied from the raw gas supply unit 7 to the adsorption tower 1 through the pipes 4 e, 4 d, and 4 f by the operation of the blower pump BP.
  • the internal pressure of the adsorption tower 1 continues to rise during this step, and is increased to, for example, 130 to 0 kPa.
  • the adsorption tower 1 is in communication with the raw material gas supply unit 7.
  • the source gas is supplied from the source gas supply unit 7 to the adsorption tower 1 via the pipes 4 e, 4 d, and 4 f by operating the pump BP, following the previous step.
  • the internal pressure of the adsorption tower 1 continues to increase during this step, and is increased to, for example, 0 to 30 kPa.
  • oxygen can be separated from the source gas to obtain concentrated oxygen gas, and a high oxygen gas recovery rate can be obtained. Can be achieved.
  • FIG. 4 shows a schematic configuration of a PSA separation device X2 for performing the oxygen gas separation method according to the second embodiment of the present invention.
  • the separation device 2 includes an adsorption tower 1, a product gas buffer tank 2, and recovery tanks 3A and 3B.
  • 3 Separation device 2 is equipped with collection tanks 3A and 3B, collection gas pipes 4j and 4k, and automatic valves 6g and 6h in place of collection tank 3, pipe 4c and automatic valve 6b. It differs from the PSA separation device X 1 in that it is provided.
  • the product gas outlet 1a of the adsorption tower 1 is connected to the product gas buffer tank 2 via the common pipe 4a and the product gas pipe 4b, and the pipe 4 a and a recovery tank 3A via a first recovery gas pipe 4j, and a recovery tank 3B via a pipe 4a and a second recovery gas pipe 4k.
  • the pipes 4 j and 4 k are provided with automatic valves 6 g and 6 h, respectively.
  • PSA separation device X2 Other configurations of the PSA separation device X2 are the same as those described above with respect to the PSA separation device X1.
  • unnecessary components can be removed from the oxygen-containing raw material gas by the PSA method using the PSA separation apparatus X2 having the above-described configuration, and as a result, the oxygen-enriched product A gas, that is, an oxygen-enriched gas or a concentrated oxygen gas is obtained.
  • the open / close state of each of the valves 5, 6a, 6c to 6h is appropriately switched, so that the adsorption tower 1 and pipes 4a, 4b, 4d to 4k The flow state of the gas is determined, and the adsorption process S21 shown in FIG.
  • FIG. 5 also shows the open / closed state of each valve 5, 6a, 6c to 6h in each step S21 to S27.
  • 6A to 6G show the gas flow states in steps 321 to 327, respectively. In FIGS. 6A to 6G, the gas flows are represented by bold arrows.
  • the open / close state of each of the valves 5, 6a and 6c to 6h is selected as shown in FIG. 5, and the gas flow state as shown in FIG.
  • the concentrated oxygen gas is recovered as product gas in the recovery unit 9. This step is specifically performed in the same manner as the adsorption step S1.1 in the first embodiment.
  • the open / closed state of each of the valves 5, 6a, 6c to 6h is selected as shown in Fig. 5, and the gas flow state as shown in Fig. 6B is achieved. .
  • the adsorption tower 1 is in communication with the recovery tank 3A.
  • the internal pressure of the adsorption tower in which the adsorption step S21 was previously performed is high, for example, 40 to 65 kPa, while the internal pressure of the recovery tank 3A is, for example, It is set as low as 30 to 0 kPa.
  • the quasi-oxygen-enriched gas having a relatively high oxygen concentration in the adsorption tower 1 at the start of the present process is not connected to the piping due to the pressure difference between the adsorption tower 1 and the recovery tank 3A in the present process.
  • the gas is transferred to the recovery tank 3A via 4j as the first recovered gas.
  • the flow rate of the quasi-oxygen-enriched gas moving to the recovery tank 3A is appropriately adjusted by the flow rate control valve 5.
  • the internal pressure of the adsorption tower continues to drop during this process. This step is performed until the internal pressure of the adsorption tower 1 falls within a range of, for example, 15 to 35 kPa.
  • the open / close state of each of the valves 5, 6a, 6c to 6h is selected as shown in FIG. 5, and the gas flow state as shown in FIG. 6C is achieved. .
  • the adsorption tower 1 is in communication with the recovery tank 3B.
  • the internal pressure of the adsorption tower 1 in which the first recovery step S22 was previously performed is high, for example, 15 to 35 kPa, while the internal pressure of the recovery tank 3B is high. , E.g. one 65--30 k It is set as low as Pa. Therefore, the quasi-oxygen-enriched gas having a relatively high oxygen concentration existing in the adsorption tower 1 at the start of the present process is not connected to the piping due to the pressure difference between the adsorption tower 1 and the recovery tank 3B in the present process. It moves to recovery tank 3B via 4k as the second recovered gas. The flow rate of the quasi-oxygen-enriched gas moving to the recovery tank 3B is appropriately adjusted by the flow rate control valve 5.
  • the internal pressure of the adsorption tower 1 continues to drop during this process. This step is performed until the internal pressure of the adsorption tower 1 falls within a range of, for example, -10 to 15 kPa.
  • the open / close state of each of the valves 5, 6a, 6c to 6h is selected as shown in FIG. 5, and the gas flow state shown in FIG. Unnecessary components desorbed from the sorbent 1 are collected in the desorbed gas recovery unit 8. This step is specifically performed in the same manner as the desorption step S13 in the first embodiment.
  • the cleaning step S25 the open / close state of each of the valves 5, 6a and 6c to 6h is selected as shown in FIG. 5, and the gas flow state as shown in FIG. 6E is achieved.
  • the adsorption tower 1 in the washing step S25, is in communication with the recovery tank 3B and the desorbed gas recovery section 8, as can be well understood.
  • the internal pressure of the adsorption tower 1 where the desorption step S 24 was performed earlier is relatively low, while the internal pressure of the recovery tank 3 B containing the quasi-oxygen-enriched gas is Is relatively high. Therefore, the quasi-oxygen-enriched gas present in the recovery tank 3B is discharged through the pipe 4k and the product gas outlet 1a due to the pressure difference between the adsorption tower 1 and the recovery tank 3 ⁇ . Is introduced as a cleaning gas.
  • the gas is continuously sucked from the inside of the adsorption tower 1 by operating the blower pump BP.
  • the introduction of the cleaning gas from the recovered sodium bicarbonate 3B and the suction of the blower pump BP wash the adsorbent in the adsorption tower 1 and desorb unnecessary components from the adsorbent, thereby adsorbing the adsorbent.
  • the gas in the tower 1 is discharged from the raw material gas inlet 1b.
  • the exhaust gas is collected by the desorbed gas recovery unit 8 via the pipes 4 g, 4 d, and 4 h.
  • the flow rate of the washing gas (quasi-oxygen-enriched gas) introduced into the adsorption tower 1 through the product gas outlet 1a and the adsorption tower are the same as described above for the washing step S14.
  • the inside of the adsorption tower 1 The pressure is adjusted to be constant.
  • the open / closed state of each of the valves 5, 6a, 6c to 6h is selected as shown in Fig. 5, and the gas flow state as shown in Fig. 6F is achieved. .
  • the adsorption tower 1 is in communication with the recovery tank 3A and the raw material gas supply unit 7 in the first pressurization step S26.
  • a quasi-oxygen-enriched gas is introduced into the adsorption tower 1 from the recovery tank 3A via the pipe 4j.
  • the flow rate of the quasi-oxygen-enriched gas introduced into the adsorption tower 1 is appropriately adjusted by a flow control valve 5.
  • the raw material gas is supplied to the adsorption tower 1 from the raw material gas supply unit 7 through the pipes 4 e, 4 d, and 4 f by operating the blower pump BP.
  • the internal pressure of the adsorption tower 1 continues to rise during this step, and is increased to, for example, 130 to 0 kPa.
  • the open / closed state of each of the valves 5, 6a, 6c to 6h is selected as shown in FIG. 5, and the gas flow state shown in FIG. 6G is achieved,
  • the internal pressure of the adsorption tower 1 is increased to, for example, 0 to 35 kPa. This step is specifically performed in the same manner as the second step-up step S16 in the first embodiment.
  • oxygen can be separated from the source gas to obtain a concentrated oxygen gas.
  • the second step-up steps S16 and S27 are performed after the step-up steps S15 and S26.
  • the adsorption steps S 11 and S 2 are performed after the first boosting steps S 15 and S 26. You may do one.
  • a PSA separation device X1 as shown in Fig. 1, one cycle consisting of the steps shown in Fig. 2 and Figs. 3A to 3F is repeatedly performed to remove the raw material gas (air). Oxygen separation was performed.
  • This example corresponds to the first embodiment.
  • i-X type zeolite molecular sieve was used as the adsorbent to be packed in the adsorption tower].
  • Maximum pressure in adsorption tower 1 in adsorption process SI 1 is 5 0 kPa, the final pressure in the recovery step S12 was 17 kPa, and the minimum pressure in the desorption step S13 was 150 kPa.
  • the inside of the adsorption tower 1 was maintained at 15 OkPa by appropriately adjusting the flow control valve 5.
  • the amount of oxygen-enriched gas introduced into the adsorption tower 1 from the product gas buffer tank 2 in the first pressure increase step S15 was 1.6 Ndm per kg of the adsorbent.
  • One cycle was performed in 40 seconds. These conditions are listed in the table in Figure 7.
  • the change in the internal pressure of the adsorption tower 1 in this embodiment is represented by a thick line E 1 in the graph of FIG.
  • the horizontal axis represents time
  • the vertical axis represents the internal pressure (kPa) of the adsorption tower 1.
  • N in the unit "Ndm 3 Z adsorbent kg” and the unit “Nm 3 Zhr r Adsorption Ijk g" described in the table of Fig. 7 is the standard value with the unit. It means that it is a state conversion value.
  • a PSA separation apparatus X2 as shown in Fig. 4, one cycle consisting of the steps shown in Figs. 5 and 6A to 6G is repeatedly performed to obtain the oxygen of the raw material gas (air) power. Separation was performed.
  • This example corresponds to the second embodiment.
  • the final pressure in the first recovery step S22 was 27 kPa
  • the final pressure in the second recovery step S23 was 0 kPa.
  • the amount of the quasi-oxygen-enriched gas introduced into the adsorption tower 1 from the recovery tank 3A in the first pressurization step S5 was 1.6 Ndm : i per kg of the adsorbent.
  • Other conditions are the same as in the first embodiment. These conditions are listed in the table in Figure II.
  • the change in the internal pressure of the adsorption tower 1 in the present embodiment is indicated by a thick line E 2 in the graph of FIG.
  • the horizontal axis represents time
  • the vertical axis represents the internal pressure of the adsorption tower 1 (kPa).
  • concentrated oxygen gas having a purity of 93 vol% is 0.0720 (Nm 3 Zr r ⁇ Adsorbent kg) could be obtained.
  • the oxygen recovery based on the raw material gas was 51%.
  • Example 1 Except for the washing step, oxygen was separated from the raw material gas (air) in the same manner as in Example 1.
  • the opening of the flow control valve 5 of the PSA separation device X1 was kept constant.
  • the internal pressure of the adsorption tower 1 fluctuated within a range of 150 to 140 kPa.
  • the conditions and pressure changes in other steps are the same as in Example 1.
  • the method of FIG. 7 was more effective than that of the comparative example in which such pressure control was not performed. As shown in the table, high oxygen gas acquisition and high oxygen gas recovery can be achieved.

Abstract

 本発明は、単塔式圧力スイング吸着法により、酸素含有原料ガスから酸素を分離する方法であり、一連の工程(図3A~3B)を含む1サイクルが繰り返し行われる。吸着工程(図3A)では、吸着塔(1)に原料ガスを導入して当該原料ガス中の不要成分を吸着剤に吸着させた後、吸着塔(1)から酸素富化ガスを導出する。回収工程(図3B)では、吸着塔(1)内に存在する準酸素富化ガスを回収槽(3)に回収する。脱着工程(図3C)では、不要成分の少なくとも一部を吸着剤から脱着させて吸着塔(1)から排出する。洗浄工程(図3D)では、吸着塔(1)内の圧力を一定に維持しつつ、回収槽(3)に保持された準酸素富化ガスの少なくとも一部を吸着塔(1)に導入し、且つ、吸着塔(1)から排出ガスを排出する。昇圧工程(図3E,3F)では、吸着塔(1)内の圧力を上昇させる。

Description

明細書 酸素ガス分離方法 技術分野
本発明は、 圧力スイング吸着法 (P S A法) により、 酸素含有原料ガスから 酸素を分離する方法に関する。 背景技術
P S A法により得られる濃縮酸素ガスは、酸素の連続供給が要求される技術、 例えば電炉製鋼、 水処理酸素曝気、 パルプ漂白、 オゾン発生装置などで、 広く 利用されている。 醃酵などの生化学分野においても濃縮酸素ガスは利用されて いる。 更には、 焼却技術の分野においても濃縮酸素ガスは利用されている。 具 体的には、 焼却炉残量物の溶融化、 排ガスの低 N O X化、 燃焼反応の高効率化 などを目的として、 空気中で燃焼を行う代わりに濃縮酸素ガス中で燃焼を行う 手法が採用される場合がある。
P S A法においては、 2塔以上の吸着塔を備える装置を使用して行われる多 塔式 P S A法が一般的である。 多塔式 P S A法では、 各吸着塔において、 吸着 工程、 脱着工程、 洗浄工程、 昇圧工程などが繰り返される。 これらの工程は、 吸着塔間でタイミングがずらされて行われる。多塔式 P S A法については、種々 の改良が試みられている。 例えば特開平 8— 2 3 9 2 0 4号公報に開示されて いる多塔式 P S A法では、 吸着工程を終了した吸着塔内の高圧力を、 他の吸着 塔の昇圧に利用する技術が採用されている。
一方、 装置全体の小型化および簡略化、 並びにイニシャルコスト削減などの 観点から、 吸着塔は 1塔のみ備える装置を使用して行われる単塔式 P S A法が 採用される場合がある。 単塔式 P S A法についても、 製品として得られる濃縮 酸素ガスの量や純度などの観点から、 種々の改良が試みられている。 例えば特 開平 9— 2 9 0 4 4号公報に開示されている単塔式 P S A法では、 吸着工程終 了後に、 吸着塔内に残留するガスを別途設けられた回収槽に回収し、 脱着工程 終了後に、 当該回収ガスを洗浄ガスとして吸着塔に導入することによって吸着 塔の洗浄が行われる。
しかしながら、 特開平 9— 2 9 0 4 4号公報に開示されている単塔式 P S A 法によると、 上述の洗浄工程の初期段階において、 回収槽および吸着塔の比較 的大きな圧力差に直接的に相応して、 大量の洗浄ガスが回収槽から吸着塔へと 流入する傾向にある。 当該洗浄工程においては、 吸着塔内のガスを真空ポンプ により吸引して排出する場合であっても、 洗浄ガス流入量がガス排出量を上回 わる期間が生ずる。 そのような期間では、 吸着塔内は、 当該洗浄工程前の脱着 工程にて達成された所望の低圧力よりも、 高圧の状態となってしまう。 洗浄ェ 程におけるこのような昇圧現象は、 吸着剤の洗浄効率 (再生効率) の低下、 ひ いては濃縮酸素ガスの取得量や回収率の低下の原因となる場合が多く、 好まし くない。 発明の開示
本発明は、 このような事情のもとで考え出されたものであって、 単塔式 P S A法において高い酸素ガス回収率等を達成するのに適した酸素ガス分離方法を 提供することを目的とする。
本発明の第 1の側面によると、 吸着剤が充填された単一の吸着塔が用いられ る単塔式の圧力スィング吸着法により、 気体状の酸素を含有する原料ガスから 当該酸素を分離する方法が提供される。 この方法では、 吸着塔に原料ガスを導 入して当該原料ガスに含まれる不要成分を吸着剤に吸着させた後、 当該吸着塔 から酸素富化ガスを導出する吸着工程と、 吸着工程終了後に吸着塔内に存在す る準酸素富化ガスを回収して回収槽に保持する回収工程と、 吸着剤に吸着され ている不要成分の少なくとも一部を、 吸着塔内の圧力を低下させることにより 吸着剤から脱着させ、 当該吸着塔から排出する脱着工程と、 吸着塔内の圧力を 一定に維持しつつ、 回収槽に保持された準酸素富化ガスの少なくとも一部を吸 着塔に導入するとともに当該吸着塔から排出ガスを排出する洗浄工程と、 吸着 塔内の圧力を上昇させる昇圧工程と、 を含む 1サイクルが繰り返し行われる。 酸素富化ガスとは、 所定程度の高い酸素濃度を有するガスである。 準酸素富化 ガスとは、 酸素富化ガスより低くとも相当程度に高い酸素濃度以上の、 酸素濃 度を有するガスである。
本発明の第 1の側面に係る酸素ガス分離方法によると、 回収槽に保持された 準酸素富化ガスの少なくとも一部を吸着塔に導入するとともに当該吸着塔から 排出ガスを排出する洗浄工程において、吸着塔内は、一定の圧力に維持される。 すなわち、 洗浄工程に先行する脱着工程の終了時に達成される吸着塔内の所望 の低い圧力は洗浄工程にて維持され、 洗浄工程での昇圧現象は回避される。 単 塔式 P S A法において、 洗浄工程中の吸着塔内の圧力を一定に維持することに より、 高い酸素ガス回収率等を達成することが可能となる。
本発明の第].の側面において、 好ましくは、 洗浄工程では、 吸着塔に導入さ れる準酸素富化ガスの流量、 および zまたは、 吸着塔から排出される排出ガス の流量を制御することにより、 吸着塔内の圧力は一定に維持される。
好ましくは、 洗浄工程では、 吸着塔に導入される準酸素富化ガスの流量を流 量制御弁により制御しつつ、 ポンプにより吸着塔から排出ガスを排出させるこ とによって、 吸着塔内の圧力は一定に維持される。 このような構成によると、 流量制御弁の開度 (絞り量) のみを制御することにより吸着塔内の圧力を一定 に維持することが可能であり、 圧力制御が容易となる。
好ましくは、 吸着工程における吸着塔内の最高圧力は 4 0〜6 5 k P a (ゲ ージ圧) である。 好ましくは、 回収工程は、 吸着塔内の圧力が 0〜2 5 k P a (ゲージ圧) となるまで行う。 好ましくは、 脱着工程における吸着塔内の最低 圧力は一 6 5〜― 4 O k P a (ゲージ圧) である。
本発明の第 2の側面によると、 吸着剤が充填された単一の吸着塔が用いられ る単塔式の圧力スィング吸着法により、 気体状の酸素を含有する原料ガスから 当該酸素を分離する他の方法が提供される。 この方法では、 吸着塔に原料ガス を導入して当該原料ガスに含まれる不要成分を吸着剤に吸着させた後、 当該吸 着塔から酸素富化ガスを導出する吸着工程と、 吸着塔内の圧力が第 1中間圧力 に降下するまで吸着塔内の第 1準酸素富化ガスを回収して第 1回収槽に保持す る第 1回収工程と、 吸着塔内の圧力が第 2中間圧力に更に降下するまで吸着塔 内の第 2準酸素富化ガスを回収して第 2回収槽に保持する第 2回収工程と、 吸 着剤に吸着されている不要成分の少なくとも一部を、 吸着塔内の圧力を低下さ せることにより、 吸着剤から脱着させて当該吸着塔から排出する脱着工程と、 吸着塔內の圧力を一定に維持しつつ、 第 1回収槽に保持された第 1準酸素富化 ガスの少なくとも一部、 または、 第 2回収槽に保持された第 2準酸素富化ガス の少なくとも一部を、 吸着塔に導入するとともに、 当該吸着塔から排出ガスを 排出する洗浄工程と、 吸着塔内の圧力を上昇させる昇圧工程と、 を含む 1サイ クルが繰り返し行われる。 本発明において、 第 2中間圧力は第 1中間圧力より 低い。
本発明の第 2の側面に係る酸素ガス分離方法によると、 第 1または第 2回収 槽に保持された第 1または第 2準酸素富化ガスの少なくとも一部を吸着塔に導 入するとともに当該吸着塔から排出ガスを排出する洗浄工程において、 吸着塔 内は、 一定の圧力に維持される。 すなわち、 洗浄工程に先行する脱着工程の終 了時に達成される吸着塔内の所望の低レ、圧力は洗浄工程にて維持され、 洗浄ェ 程での昇圧現象は回避される。 単塔式 P S A法において、 洗浄工程中の吸着塔 内の圧力を一定に維持することにより、 高い酸素ガス回収率を達成することが 可能となる。
本発明の第 2の側面において、 好ましくは、 昇圧工程では、 第 1回収槽から の第 1準酸素富化ガスの少なくとも一部が吸着塔内に導入される。 第 :1準酸素 富化ガスは、 吸着工程直後における吸着塔内残留ガスであるため、 第 2準酸素 富化ガスよりも高い酸素濃度を有する。 そのため、 昇圧工程にて吸着塔内を昇 圧するために当該吸着塔に導入され且つ製品ガスとして回収されることとなる 昇圧ガスとしては、 高い酸素ガス回収率を達成するうえでは、 第 2準酸素富化 ガスよりも第 1準酸素富化ガスの方が好適である。
好ましくは、 洗浄工程では、 第 2回収槽からの第 2準酸素富化ガスの少なく とも一部が吸着塔に導入される。 酸素濃度について、 第 2準酸素富化ガスは、 第 1準酸素富化ガスより低いものの、 原料ガスより相当程度に高く、 洗浄工程 において吸着剤からの不要成分の脱着を促進するうえで充分に高い。 洗浄工程 における洗浄ガスとして第 2準酸素富化ガスを利用し、 昇圧工程における昇圧 ガスとして第 1準酸素富化ガスを利用することは、 高い酸素ガス回収率を達成 するうえで好適である。
好ましくは、洗浄工程では、吸着塔に導入される第 2準酸素富化ガスの流量、 および/または、吸着塔から排出される排出ガスの流量を制御することにより、 吸着塔内の圧力は一定に維持される。
好ましくは、 洗浄工程では、 吸着塔に導入される第 2準酸素富化ガスの流量 を流量制御弁により制御しつつ、 ポンプにより吸着塔から排出ガスを排出させ ることによって、 吸着塔内の圧力は一定に維持される。 このような構成による と、 流量制御弁の開度 (絞り量) のみを制御することにより吸着塔内の圧力を 一定に維持することが可能であり、 圧力制御が容易となる。
好ましくは、 吸着工程における吸着塔内の最高圧力は 4 0〜6 5 k P a (ゲ ージ圧) である。 好ましくは、 第 1中間圧力は 1 5〜3 5 k P a (ゲージ圧) であり、 第 2中間圧力は一 1 0〜1 5 k P a (ゲージ圧) である。 好ましくは、 脱着工程における吸着塔内の最低圧力は— 6 5〜一 4 0 k P a (ゲージ圧) で ある。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態に係る酸素ガス分離方法を実施するための P S A分離装置の概略構成を表す。
図 2は、 第 1の実施形態に係る酸素ガス分離方法の各工程における、 図 1に 示す P S A分離装置の各弁の開閉状態を示す表である。
図 3 A〜図 3 Fは、 第 1の実施形態の各工程におけるガス流れ状態を表す。 図 4は、 本発明の第 2の実施形態に係る酸素ガス分離方法を実施するための P S A分離装置の概略構成を表す。
図 5は、 第 2の実施形態に係る酸素ガス分離方法の各工程における、 図 4に 示す P S A分離装置の各弁の開閉状態を示す表である。
図 6 A〜図 6 Gは、第 2の実施形態の各工程におけるガスの流れ状態を表す。 図 7は、 実施例' 1, 2および比較例について、 条件および結果が掲げられた 表である。
図 8は、 実施例 1および比較例における吸着塔内の圧力変化を示す ある。
図 9は、 実施例 2における吸着塔内の圧力変化を示すグラフである。
発明を実施するための最良の形態
図 1は、 本発明の第 1の実施形態に係る酸素ガス分離方法を実施するための
P S A分離装置 X 1の概略構成を表す。 P S A分離装置 X 1は、 吸着塔 1、 製 品ガスバッファ槽 2、 および回収槽 3を備える。
吸着塔 1は、 製品ガス出口 1 aおよび原料ガス入口 1 bを有し、 その内部に は吸着剤が充填されている。 吸着剤としては、 L i 一 X型ゼォライトモレキュ ラーシーブ、 C a— X型ゼオライ トモレキュラーシーブ、 C a— A型ゼォライ トモレキュラーシーブなどが採用される。
吸着塔 1の製品ガス出口 1 aは、 共用の配管 4 aおよび製品ガス用の配管 4 bを介して製品ガスバッファ槽 2に繋げられており、 且つ、 配管 4 aおよび回 収ガス用の配管 4 cを介して回収槽 3に繫げられている。 配管 4 aには、 流量 調節弁 5が設けられており、 配管 4 b , 4 cには、 各々、 自動弁 6 a, 6 が 設けられている。
吸着塔].の原料ガス入口 1 bは、 共用の配管 4 dおよび原料ガス供給用の配 管 4 e , 4 f を介して原料ガス供給部 7に繋げられており、 且つ、 配管 4 dお よび脱着ガス排出用の配管 4 g, 4 hを介して脱着ガス回収部 8に繋げられて いる。 配管 4 dには、 ブロア 'ポンプ B Pが設けられており、 配管 4 e , 4 f , 4 g, 4 hには、 各々、 自動弁 6 c, 6 d , 6 e , 6 f が設けられている。 製品ガスバッファ槽 2は、 配管 4 iを介して製品ガス回収部 9に更に繋げら れている。
本実施形態では、以上のような構成を有する P S A分離装置 X 1を使用して、 P S A法により、 酸素含有原料ガスから不要成分を除去することができ、 その 結果、 酸素が富化された製品ガス、 即ち酸素富化ガスないし濃縮酸素ガスが得 られる。 P S A分離装置 X 1の駆動時においては、 各弁 5, 6 a〜6 f の開閉 状態が適宜切り替えられることにより、 吸着塔 1および配管 4 a〜4 iにおけ るガスの流れ状態が決定され、 図 2に示す吸着工程 S 1 1、 回収工程 S 1 2、 脱着工程 S 1 3、 洗浄工程 S 1 4、 第 1昇圧工程 S 1 5、 および第 2昇圧工程 S 1 6からなる 1サイクルが繰り返し行われる。 図 2には、 各工程 S 1 1〜S 1 6における各弁 5, 6 a〜6 f の開閉状態も示されている。 図 3 A〜図 3 F は、 各々、 工程 S 1 :!〜 S 1 6におけるガスの流れ状態を示している。 図 3 A 〜図 3 Fにおいて、 ガス流は太線矢印で表されている。
吸着工程 S 1 1では、 図 2に示すように各弁 5, 6 a〜 6 ίの開閉状態が選 択されて、 図 3 Αに示すようなガス流れ状態が達成される。
図 1および図 3 Aを併せて参照するとよく理解できるように、 吸着工程 S 1 1では、 吸着塔 1は、 原料ガス供給部 7と連通し、 且つ、 製品ガスバッファ槽 2を介して製品ガス回収部 9と連通している。原料ガス供給部 7の原料ガス(例 えば空気) は、 ブロア ·ポンプ B Pが稼動することにより、 配管 4 e, 4 d , 4 f および原料ガス入口 1 bを介して吸着塔 1に導入される。 吸着塔 1の内部 では、 吸着剤により不要成分 (例えば窒素) が吸着除去され、 酸素濃度の高い ガスが製品ガスとして製品ガス出口 1 aを介して吸着塔 1の外部に導出される。 このガスは、 配管 4 a, 4 bを介して製品ガスバッファ槽 2に流入する。 製品 ガスバッファ槽 2に一旦滞留した後、 当該製品ガスは、 配管 4 iを介して製品 ガス回収部 9に流入して回収される。
吸着塔 1の内部圧力は、 例えば、 本工程中上昇し続け、 本工程終了時に最高 値に到達する。 本工程における吸着塔 1内の最高圧力は、 例えば 4 0〜6 5 k P aの範囲内とされる。 この圧力範囲はゲージ圧の値で表されたものである。 後出の各工程の圧力条件についてもゲージ圧で表す。
回収工程 S 1 2では、 図 2に示すように各弁 5, 6 a〜6 f の開閉状態が選 択されて、 図 3 Bに示すようなガス流れ状態が達成される。
図 1および図 3 Bを併せて参照するとよく理解できるように、 回収工程 S 1 2では、 吸着塔 1は、 回収槽 3と連通している。 本工程開始時には、 先に吸着 工程 S 1 1が行われていた吸着塔 1の内部圧力は、 例えば 4 0〜6 5 k P aと 高いのに対し、 回収槽 3の内部圧力は、 例えば一 6 5 · ^— 3 O k P aと低く設 定されている。 そのため、 本工程開始時に吸着塔 1内に存在する比較的に酸素 濃度の高い準酸素富化ガスは、 本工程において、 吸着塔 1と回収槽 3の間の圧 力差に起因して、 配管 4 cを介して回収槽 3に回収ガスとして移動する。 回収 槽 3に移動する準酸素富化ガスの流量は、流量調節弁 5により適宜調節される。 吸着塔 1の内部圧力は、 例えば、 本工程中降下し続ける。 本工程は、 吸着塔 1の内部圧力が例えば 0〜 2 5 k P aの範囲内になるまで行われる。
脱着工程 S 1 3では、 図 2に示すように各弁 5, 6 a〜 6 f の開閉状態が選 択されて、 図 3 Cに示すようなガス流れ状態が達成される。
図 1および図 3 Cを併せて参照するとよく理解できるように、 脱着工程 S 1 3では、 吸着塔 1は、 脱着ガス回収部 8と連通している。 ブロア ·ポンプ B P が稼動することにより、 吸着塔 1の内部は減圧されて吸着剤から不要成分が脱 着し、 気体状態にある当該不要成分は、 配管 4 g, 4 d, 4 hを介して脱着ガ ス回収部 8に回収される。
吸着塔 1の内部圧力は、 例えば、 本工程中降下し続け、 本工程終了時に最低 値に到達する。 本工程における吸着塔 1内の最低圧力は、 例えば一 6 5〜一 4 0 k P aの範囲内とされる。
洗浄工程 S 1 4では、 図 2に示すように各弁 5, 6 a〜 6 f の開閉状態が選 択されて、 図 3 Dに示すようなガス流れ状態が達成される。
図 1および図 3 Dを併せて参照するとよく理解できるように、 洗浄工程 S 1 4では、 吸着塔 1は、 回収槽 3および脱着ガス回収部 8と連通している。 本ェ 程開始時には、 先に脱着工程 S 1 3が行われていた吸着塔 1の内部圧力は相対 的に低レ、のに対し、 準酸素富化ガスが収容されている回収槽 3の内部圧力は相 対的に高い。 そのため、 回収槽 3内に存在する準酸素富化ガスは、 吸着塔 1と 回収槽 3の間の圧力差に起因して、 配管 4 cおよび製品ガス出口 1. aを介して 吸着塔 1に洗浄ガスとして導入される。 これとともに、 本工程では、 ブロア · ポンプ B Pが稼動することにより、 吸着塔 1内からガスが吸引され続ける。 こ のような、 回収槽 3からの洗浄ガスの導入、 および、 ブロア .ポンプ B Pの吸 引により、吸着塔 1内の吸着剤が洗浄されて当該吸着剤から不要成分が脱着し、 吸着塔 1内のガスは原料ガス入口 1 bから排出される。 当該排出ガスは、 配管 4 g, 4 d, 4 hを介して脱着ガス回収部 8に回収される。
洗浄工程 S 1 4では、 製品ガス出口 1 aを介して吸着塔 1に導入される洗浄 ガス (準酸素富化ガス) の流量および吸着塔 1内でのガス脱着量の和と、 原料 ガス入口 1 bを介して吸着塔 1から排出される排出ガスの流量とを、 等しくす ることにより、 吸着塔 1の内部圧力が一定となるように調整される。 例えば、 経時的に変化する回収槽 3の内部圧力 (絶対圧) を P, { g/ c m1) とし、 経時的に一定とされる吸着塔 1の内部圧力 (絶对圧) を P2 (k g/ c m') と し、 ブロア ·ポンプ B Pの吸引能力を Q (m3/h) とし、 吸着塔 1の吸着剤か らのガス脱着量を a (m3/h) とする場合、 下記の式で与えられる流量係数 C vに応じて流量調節弁 5の開度を調節することにより、 洗浄ガス流量およびガ ス脱着量の和と、 排出ガス流量とを等しく して、 洗浄工程 S 1 4における吸着 塔 1の内部圧力を一定に維持することができる。
Cv = (Q- α) / (40 6 X ((Ρ , - Ρ,) Χ Ρ2) <). 5) 洗浄工程 S 1 4において吸着塔 1の内部圧力を一定に維持するためには、 上 述のような流量調節弁 5の可変制御に代えて、 或はこれと共に、 ブロア ·ボン プ Β Ρの吸引能力についての可変制御を行ってもよい。
第 1昇圧工程 S 1 5では、 図 2に示すように各弁 5, 6 a〜 6 f の開閉状態 が選択されて、 図 3 Eに示すようなガス流れ状態が達成される。
図 1および図 3 Eを併せて参照するとよく理解できるように、 吸着塔 1は、 製品ガスバッファ槽 2および原料ガス供給部 7と連通している。 本工程では、 吸着塔 1には、 製品ガスバッファ槽 2から配管 4 bを介して製品ガスないし酸 素富化ガスが導入される。 吸着塔 1に導入される酸素富化ガスの流量は、 流量 調節弁 5により適宜調節される。 これとともに、 吸着塔 1には、 ブロア .ボン プ B Pの稼動により、 原料ガス供給部 7から配管 4 e, 4 d, 4 f を介して原 料ガスが供給される。 吸着塔 1の内部圧力は、 本工程中上昇し続け、 例えば一 3 0〜0 k P aまで高められる。
第 2昇圧工程 S 1 6では、 図 2に示すように各弁 5, 6 a〜6 f の開閉状態 が選択されて、 図 3 Fに示すようなガス流れ状態が達成される。
図 1および図 3 Fを併せて参照するとよく理解できるように、 吸着塔 1は、 原料ガス供給部 7と連通している。 本工程では、 前工程から引き続いて、 プロ ァ 'ポンプ BPの稼動により原料ガス供給部 7から配管 4 e, 4 d , 4 f を介 して原料ガスが吸着塔 1に供給される。 吸着塔 1の内部圧力は、 本工程中上昇 し続け、 例えば 0〜30 k P aまで高められる。
上述の一連の工程 S 1 1〜S 16からなる 1サイクルを PSA分離装置 X 1 において繰り返し行うことにより、 原料ガスから酸素を分離して濃縮酸素ガス を得ることができ、 高い酸素ガス回収率を達成できる。
図 4は、 本発明の第 2の実施形態に係る酸素ガス分離方法を実施するための PS A分離装置 X 2の概略構成を表す。 ?3 分離装置 2は、 吸着塔 1、 製 品ガスバッファ槽 2、 および回収槽 3 A, 3 Bを備える。 ?3 分離装置 2 は、 回収槽 3、 配管 4 c、 および自動弁 6 bに代えて、 回収槽 3A, 3B、 回 収ガス用の配管 4 j , 4 k、 および自動弁 6 g, 6 hを備える点において、 P S A分離装置 X 1と異なる。
P S A分離装置 X 2において、 吸着塔 1の製品ガス出口 1 aは、 共用の配管 4 aおよび製品ガス用の配管 4 bを介して製品ガスバッファ槽 2に繋げられて いるのに加え、 配管 4 aおよび第 1回収ガス用の配管 4 jを介して回収槽 3 A に繋げられ、 且つ、 配管 4 aおよび第 2回収ガス用の配管 4 kを介して回収槽 3 Bに繋げられている。 配管 4 j, 4 kには、 各々、 自動弁 6 g, 6 hが設け られている。
P S A分離装置 X 2の他の構成については、 P S A分離装置 X 1に関して上 述したのと同様である。
本実施形態では、以上のような構成を有する P S A分離装置 X 2を使用して、 PSA法により、 酸素含有原料ガスから不要成分を除去することができ、 その 結果、 酸素が富化された製品ガス、 即ち酸素富化ガスないし濃縮酸素ガスが得 られる。 P S A分離装置 X 2の駆動時においては、 各弁 5, 6 a , 6 c〜6 h の開閉状態が適宜切り替えられることにより、吸着塔 1および配管 4 a, 4 b, 4 d〜4 kにおけるガスの流れ状態が決定され、 図 5に示す吸着工程 S 21、 第 1回収工程 S 2 2、 第 2回収工程 S 2 3、脱着工程 S 2 4、洗浄工程 S 2 5、 第 1昇圧工程 S 2 6、 および第 2昇圧工程 S 2 7を含む 1サイクルが繰り返し 行われる。 図 5には、 各工程 S 2 1〜S 2 7における各弁 5, 6 a , 6 c〜6 hの開閉状態も示されている。 図 6 A〜図 6 Gは、 各々、 ェ程3 2 1〜3 2 7 におけるガスの流れ状態を示している。 図 6 A〜図 6 Gにおいて、 ガス流は太 線矢印で表されている。
吸着工程 S 2 1では、 図 5に示すように各弁 5, 6 a , 6 c〜6 hの開閉状 態が選択されて、 図 6 Aに示すようなガス流れ状態が達成され、 製品ガス回収 部 9に濃縮酸素ガスが製品ガスとして回収される。 本工程は、 具体的には、 第 1の実施形態における吸着工程 S 1. 1と同様にして実行される。
第 1回収工程 S 2 2では、 図 5に示すように各弁 5, 6 a , 6 c〜6 hの開 閉状態が選択されて、 図 6 Bに示すようなガス流れ状態が達成される。
図 4および図 6 Bを併せて参照するとよく理解できるように、 第 1回収工程 S 2 2では、 吸着塔 1は、 回収槽 3 Aと連通している。 本工程開始時には、 先 に吸着工程 S 2 1が行われていた吸着塔 ] の内部圧力は、 例えば 4 0〜 6 5 k P aと高いのに対し、 回収槽 3 Aの内部圧力は、 例えば一 3 0〜0 k P aと低 く設定されている。 そのため、 本工程開始時に吸着塔 1内に存在する比較的に 酸素濃度の高い準酸素富化ガスは、 本工程において、 吸着塔 1と回収槽 3 Aの 間の圧力差に起因して、 配管 4 jを介して回収槽 3 Aに第 1回収ガスとして移 '動する。 回収槽 3 Aに移動する準酸素富化ガスの流量は、 流量調節弁 5により 適宜調節される。
吸着塔]の内部圧力は、 本工程中降下し続ける。 本工程は、 吸着塔 1の内部 圧力が例えば 1 5〜3 5 k P aの範囲内になるまで行われる。
第 2回収工程 S 2 3では、 図 5に示すように各弁 5 , 6 a , 6 c〜6 hの開 閉状態が選択されて、 図 6 Cに示すようなガス流れ状態が達成される。
図 4および図 6 Cを併せて参照するとよく理解できるように、 第 2回収工程 S 2 3では、 吸着塔 1は、 回収槽 3 Bと連通している。 本工程開始時には、 先 に第 1回収工程 S 2 2が行われていた吸着塔 1の内部圧力は、 例えば 1 5〜 3 5 k P aと高いのに対し、 回収槽 3 Bの内部圧力は、 例えば一 6 5〜― 3 0 k P aと低く設定されている。 そのため、 本工程開始時に吸着塔 1内に存在する 比較的に酸素濃度の高い準酸素富化ガスは、 本工程において、 吸着塔 1と回収 槽 3 Bの間の圧力差に起因して、 配管 4 kを介して回収槽 3 Bに第 2回収ガス として移動する。 回収槽 3 Bに移動する準酸素富化ガスの流量は、 流量調節弁 5により適宜調節される。
吸着塔 1の内部圧力は、 本工程中降下し続ける。 本工程は、 吸着塔 1の内部 圧力が例えば— 1 0〜 1 5 k P aの範囲内になるまで行われる。
脱着工程 S 2 4では、 図 5に示すように各弁 5, 6 a , 6 c〜6 hの開閉状 態が選択されて、 図 6 Dに示すようなガス流れ状態が達成され、 吸着塔 1の吸 着剤から脱着した不要成分が脱着ガス回収部 8に回収される。 本工程は、 具体 的には第 1の実施形態における脱着工程 S 1 3と同様にして実行される。 洗浄工程 S 2 5では、 図 5に示すように各弁 5, 6 a , 6 c〜6 hの開閉状 態が選択されて、 図 6 Eに示すようなガス流れ状態が達成される。
図 4および図 6 Eを併せて参照するとよく理 できるように、 洗浄工程 S 2 5では、 吸着塔 1は、 回収槽 3 Bおよび脱着ガス回収部 8と連通している。 本 工程開始時には、 先に脱着工程 S 2 4が行われていた吸着塔 1の内部圧力は相 対的に低いのに対し、 準酸素富化ガスが収容されている回収槽 3 Bの内部圧力 は相対的に高い。 そのため、 回収槽 3 B内に存在する準酸素富化ガスは、 吸着 塔 1と回収槽 3 Βの間の圧力差に起因して、 配管 4 kおよび製品ガス出口 1 a を介して吸着塔 1に洗浄ガスとして導入される。 これとともに、 本工程では、 ブロア ·ポンプ B Pが稼動することにより、 吸着塔 1内からガスが吸引され続 ける。 このような、 回収ネ曹 3 Bからの洗浄ガスの導入、 および、 ブロア .ポン プ B Pの吸引により、 吸着塔 1内の吸着剤が洗浄されて当該吸着剤から不要成 分が脱着し、 吸着塔 1内のガスは原料ガス入口 1 bから排出される。 当該排出 ガスは、 配管 4 g, 4 d , 4 hを介して脱着ガス回収部 8に回収される。 洗浄工程 S 2 5では、 洗浄工程 S 1 4に関して上述したのと同様に、 製品ガ ス出口 1 aを介して吸着塔 1に導入される洗浄ガス (準酸素富化ガス) の流量 および吸着塔 1内でのガス脱着量の和と、 原料ガス入口 1 bを介して吸着塔 1 から排出される排出ガスの流量とを、 等しくすることにより、 吸着塔 1の内部 圧力が一定となるように調整される。
第 1昇圧工程 S 2 6では、 図 5に示すように各弁 5, 6 a , 6 c〜6 hの開 閉状態が選択されて、 図 6 Fに示すようなガス流れ状態が達成される。
図 4および図 6 Fを併せて参照するとよく理解できるように、 第 1昇圧工程 S 2 6では、吸着塔 1は、回収槽 3 Aおよび原料ガス供給部 7と連通している。 本工程では、 吸着塔 1には、 回収槽 3 Aから配管 4 jを介して準酸素富化ガス が導入される。 吸着塔 1に導入される準酸素富化ガスの流量は、 流量調節弁 5 により適宜調節される。 これとともに、 吸着塔 1には、 ブロア ·ポンプ B Pの 稼動により、 原料ガス供給部 7から配管 4 e, 4 d, 4 f を介して原料ガスが 供給される。 吸着塔 1の内部圧力は、 本工程中上昇し続け、 例えば一 3 0〜0 k P aまで高められる。
第 2昇圧工程 S 2 7では、 図 5に示すように各弁 5, 6 a , 6 c〜6 hの開 閉状態が選択されて、 図 6 Gに示すようなガス流れ状態が達成され、 吸着塔 1 の内部圧力は例えば 0〜3 5 k P aにまで高められる。 本工程は、 具体的には 第 1の実施形態における第 2昇圧工程 S 1 6と同様にして実行される。
上述の一連の工程 S 2 1〜S 2 7からなる 1サイクルを P S A分離装置 X 2 において繰り返し行うことにより、 原料ガスから酸素を分離して濃縮酸素ガス を得ることができる。
第 1および第 2の実施形態では、 上述のように、 第].昇圧工程 S 1 5 , S 2 6に続いて第 2昇圧工程 S 1 6, S 2 7が行われる。 本発明では、 このような 構成に代えて、第 2昇圧工程 S 1 6 , S 2 7を行わずに、第 1昇圧工程 S 1 5, S 2 6に続いて吸着工程 S 1 1, S 2 1を行ってもよい。
〔実施例 1〕
図 1に示すような P S A分離装置 X 1を使用して、 図 2および図 3 A〜図 3 Fに示す各工程からなる 1サイクルを繰り返し行うことによつて、原料ガス(空 気) からの酸素の分離を行った。 本実施例は、 第 1の実施形態に対応する。 本実施例では、 吸着塔].に充填する吸着剤としてし i一 X型ゼォライトモレ キュラシーブを採用した。 吸着工程 S I 1における吸着塔 1内の最高圧力は 5 0 k P aとし、 回収工程 S 1 2における最終圧力は 1 7 k P aとし、 脱着工程 S 1 3における最低圧力は一 50 k P aとした。 洗浄工程 S 1 4では、 流量調 節弁 5を適切に調節することにより、 吸着塔 1内を一 5 O k P aに維持した。 第 1昇圧工程 S 1 5にて製品ガスバッファ槽 2から吸着塔 1に導入した酸素富 化ガスの量は、 吸着剤 k gあたり 1. 6 N dm とした。 また、 1サイクルを 40秒で行った。 これらの条件は図 7の表に掲げる。
本実施例における吸着塔 1の内部圧力の変化を、 図 8のグラフにて太線 E 1 で表す。 図 8のグラフにおいて、 横軸は時間を表し、 縦軸は吸着塔 1の内部圧 力 ( k P a ) を表す。
本実施例に係る方法によると、純度 9 3 vol %の濃縮酸素ガスを 0. 0725 (NmVh r ·吸着剤 k g) 取得することができた。 原料ガスに対する酸素回 収率は 50%であった。 これらの結果は図 7の表に掲げる。
図 7の表に記載されている単位 "Ndm3Z吸着剤 k g" および単位 "Nm3 Zh r '吸着斉 Ijk g" に含まれる "N" は、 当該単位が付されている数値が標 準状態換算値であることを意味する。
〔実施例 2〕
図 4に示すような P S A分離装置 X 2を使用して、 図 5および図 6 A〜図 6 Gに示す各工程からなる 1サイクルを繰り返し行うことによって、原料ガス(空 気) 力 の酸素の分離を行った。 本実施例は、 第 2の実施形態に対応する。 本実施例では、 第 1回収工程 S 2 2における最終圧力は 2 7 k P aとし、 第 2回収工程 S 23における最終圧力は 0 k P aとした。 第 1昇圧工程 S 5に て回収槽 3 Aから吸着塔 1に導入した準酸素富化ガスの量は、 吸着剤 k gあた り 1. 6N dm:iとした。 他の条件については、 実施例 1と同様である。 これ らの条件は図 Ίの表に掲げる。
本実施例における吸着塔 1の内部圧力の変化を、 図 9のグラフにて太線 E 2 で表す。 図 9のグラフにおいて、 横軸は時間を表し、 縦軸は吸着塔 1の内部圧 力 ( k P a ) を表す。
本実施例に係る方法によると、純度 93vol%の濃縮酸素ガスを 0. 0720 (Nm 3Zh r ·吸着剤 k g ) 取得することができた。 原料ガスに対する酸素回 収率は 5 1 %であった。 これらの結果は図 7の表に掲げる。
〔比較例〕
洗浄工程以外は実施例 1と同様にして、 原料ガス (空気) からの酸素の分離 を行った。 本比較例の洗浄工程では、 P S A分離装置 X 1の流量調節弁 5の開 度を一定に保った。 その結果、 本比較例の洗浄工程においては、 図 8のグラフ にて破線 Cで示すように、 吸着塔 1の内部圧力は一 5 0〜一 4 0 k P aの範囲 で変動した。 他の工程における条件および圧力変化については、 実施例 1と同 様である。
本比較例に係る方法により、純度 9 3 vol%の濃縮酸素ガスが 0 . 0 6 5 1 (N mVh r '吸着剤 k g ) 取得された。 原料ガスに対する酸素回収率は 4 3 %で あった。 これらの結果は図 7の表に掲げる。
〔評価〕
洗浄工程における吸着塔 1の内部圧力が一定となるように制御された実施例 1 , 2の方法によると、 そのような圧力制御が行われていない比較例の方法に よるよりも、 図 7の表に示すように、 高い酸素ガス取得量および高い酸素ガス 回収率を達成することができる。

Claims

請求の範囲
1 . 吸着剤が充填された単一の吸着塔が用いられる単塔式の圧力スイング吸着 法により、 気体状の酸素を含有する原料ガスから当該酸素を分離するための方 法であって、
前記吸着塔に前記原料ガスを導入して当該原料ガスに含まれる不要成分を 前記吸着剤に吸着させた後、 当該吸着塔から酸素富化ガスを導出する吸着工程 と、
前記吸着工程終了後に前記吸着塔内に存在する準酸素富化ガスを回収して 回収槽に保持する回収工程と、
前記吸着剤に吸着されている前記不要成分の少なくとも一部を、 前記吸着 塔内の圧力を低下させることにより前記吸着剤から脱着させ、 当該吸着塔から 排出する脱着工程と、
前記吸着塔内の圧力を一定に維持しつつ、 前記回収槽に保持された前記準 酸素富化ガスの少なくとも一部を前記吸着塔に導入するとともに、 当該吸着塔 から排出ガスを排出する洗浄工程と、
前記吸着塔内の圧力を上昇させる昇圧工程と、 を含む 1サイクルが繰り返 し行われる、 酸素ガス分離方法。
2 . 前記洗浄工程では、 前記吸着塔に導入される前記準酸素富化ガスの流量、 および Zまたは、 前記吸着塔から排出される前記排出ガスの流量を制御するこ とにより、 前記吸着塔内の圧力は一定に維持される、 請求項 1に記載の酸素ガ ス分離方法。
3 . 前記洗浄工程では、 前記吸着塔に導入される前記準酸素富化ガスの流量を 流量制御弁により制御しつつ、 ポンプにより前記吸着塔から前記排出ガスを排 出させることによって、 前記吸着塔内の圧力は一定に維持される、 請求項 1に 記載の酸素ガス分離方法。
4 . 前記吸着工程における前記吸着塔内の最高圧力は 4 0〜6 5 k P a (ゲー ジ圧) である、 請求項 1に記載の酸素ガス分離方法。
5 . 前記回収工程は、 前記吸着塔内の圧力が 0〜2 5 k P a (ゲージ圧) とな るまで行う、 請求項 1に記載の酸素ガス分離方法。
6 .前記脱着工程における前記吸着塔内の最低圧力は一 6 5〜一 4 0 k P a (ゲ ージ圧) である、 請求項 1に記載の酸素ガス分離方法。
7 . 吸着剤が充填された単一の吸着塔が用いられる単塔式の圧力スイング吸着 法により、 気体状の酸素を含有する原料ガスから当該酸素を分離するための方 法であって、
前記吸着塔に前記原料ガスを導入して当該原料ガスに含まれる不要成分を 前記吸着剤に吸着させた後、 当該吸着塔から酸素富化ガスを導出する吸着工程 と、
前記吸着塔内の圧力が第 1中間圧力に降下するまで前記吸着塔内の第 1準 酸素富化ガスを回収して第 1回収槽に保持する第 1回収工程と、
前記吸着塔内の圧力が第 2中間圧力に更に降下するまで前記吸着塔內の第 2準酸素富化ガスを回収して第 2回収槽に保持する第 2回収工程と、
前記吸着剤に吸着されている前記不要成分の少なくとも一部を、 前記吸着 塔内の圧力を低下させることにより前記吸着剤から脱着させ、 当該吸着塔から 排出する脱着工程と、
前記吸着塔内の圧力を一定に維持しつつ、 前記第 1回収槽に保持された前 記第 1準酸素富化ガスの少なくとも一部、 または、 前記第 2回収槽に保持され た前記第 2準酸素富化ガスの少なくとも一部を、 前記吸着塔に導入するととも に、 当該吸着塔から排出ガスを排出する洗浄工程と、
前記吸着塔内の圧力を上昇させる昇圧工程と、 を含む 1サイクルが繰り返 し行われる、 酸素ガス分離方法。
8. 前記昇圧工程では、 前記第 1回収槽からの前記第 1準酸素富化ガスの前記 少なくとも一部が前記吸着塔内に導入される、 請求項 7に記載の酸素ガス分離 方法。
9. 前記洗浄工程では、 前記第 2回収槽からの前記第 2準酸素富化ガスの前記 少なくとも一部が前記吸着塔に導入される、 請求項 7に記載の酸素ガス分離方 法。
10. 前記洗浄工程では、 前記吸着塔に導入される前記第 2準酸素富化ガスの 流量、 および/または、 前記吸着塔から排出される前記排出ガスの流量を制御 することにより、 前記吸着塔内の圧力は一定に維持される、 請求項 9に記載の 酸素ガス分離方法。
1 1. 前記洗浄工程では、 前記吸着塔に導入される前記第 2準酸素富化ガスの 流量を流量制御弁により制御しつつ、 ポンプにより前記吸着塔から前記排出ガ スを排出させることによって、 前記吸着塔内の圧力は一定に維持される、 請求 項 9に記載の酸素ガス分離方法。
12. 前記吸着工程における前記吸着塔内の最高圧力は 40〜65 k P a (ゲ ージ圧) である、 請求項 7に記載の酸素ガス分離方法。
13. 前記第 1中間圧力は] 5〜35 k P a (ゲージ圧) であり、 前記第 2中 間圧力は一 10〜 1 5 k P a (ゲージ圧) である、 請求項 7に記載の酸素ガス 分離方法。
14. 前記脱着工程における前記吸着塔内の最低圧力は— 65〜一 40 k P a (ゲージ圧) である、 請求項 7に記載の酸素ガス分離方法。
PCT/JP2003/008684 2002-07-15 2003-07-08 酸素ガス分離方法 WO2004007056A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003252484A AU2003252484A1 (en) 2002-07-15 2003-07-08 Method for separating oxygen gas
JP2004521159A JPWO2004007056A1 (ja) 2002-07-15 2003-07-08 酸素ガス分離方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002205718 2002-07-15
JP2002-205718 2002-07-15

Publications (1)

Publication Number Publication Date
WO2004007056A1 true WO2004007056A1 (ja) 2004-01-22

Family

ID=30112774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008684 WO2004007056A1 (ja) 2002-07-15 2003-07-08 酸素ガス分離方法

Country Status (4)

Country Link
JP (1) JPWO2004007056A1 (ja)
AU (1) AU2003252484A1 (ja)
TW (1) TWI276459B (ja)
WO (1) WO2004007056A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013154340A (ja) * 2012-01-06 2013-08-15 Kyuchaku Gijutsu Kogyo Kk 空気からの酸素と窒素の吸着分離方法及び装置
JP2014057957A (ja) * 2004-11-30 2014-04-03 Phyre Technologies Inc 接触装置および接触方法ならびにそれらの使用
JP2015016399A (ja) * 2013-07-09 2015-01-29 大阪瓦斯株式会社 圧力スイング吸着装置の使用方法と圧力スイング吸着装置
JP2017018917A (ja) * 2015-07-14 2017-01-26 吸着技術工業株式会社 バイオガスからch4を吸着分離するための方法及び装置
JP2017160084A (ja) * 2016-03-09 2017-09-14 吸着技術工業株式会社 H2、co、co2、h2o主成分とする水蒸気改質ガスからのh2を吸着分離するための方法及び装置
JP2017202447A (ja) * 2016-05-11 2017-11-16 コフロック株式会社 ガス分離装置
JP2020171894A (ja) * 2019-04-12 2020-10-22 オルガノ株式会社 ガス分離装置及びガス分離方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788036A (en) * 1972-07-26 1974-01-29 D Stahl Pressure equalization and purging system for heatless adsorption systems
EP0771583A1 (en) * 1995-11-06 1997-05-07 Praxair Technology, Inc. Single bed pressure swing adsorption process for recovery of oxygen from air
EP0853966A1 (en) * 1997-01-15 1998-07-22 Praxair Technology, Inc. Vacuum/pressure swing adsorption (VPSA) method for production of an oxygen enriched gas
JP2000237522A (ja) * 1999-02-22 2000-09-05 Nippon Sanso Corp ガス分離方法及び装置
WO2002049959A1 (fr) * 2000-12-19 2002-06-27 Sumitomo Seika Chemicals Co., Ltd. Procede de recuperation d'oxygene gazeux enrichi

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788036A (en) * 1972-07-26 1974-01-29 D Stahl Pressure equalization and purging system for heatless adsorption systems
EP0771583A1 (en) * 1995-11-06 1997-05-07 Praxair Technology, Inc. Single bed pressure swing adsorption process for recovery of oxygen from air
EP0853966A1 (en) * 1997-01-15 1998-07-22 Praxair Technology, Inc. Vacuum/pressure swing adsorption (VPSA) method for production of an oxygen enriched gas
JP2000237522A (ja) * 1999-02-22 2000-09-05 Nippon Sanso Corp ガス分離方法及び装置
WO2002049959A1 (fr) * 2000-12-19 2002-06-27 Sumitomo Seika Chemicals Co., Ltd. Procede de recuperation d'oxygene gazeux enrichi

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014057957A (ja) * 2004-11-30 2014-04-03 Phyre Technologies Inc 接触装置および接触方法ならびにそれらの使用
JP2013154340A (ja) * 2012-01-06 2013-08-15 Kyuchaku Gijutsu Kogyo Kk 空気からの酸素と窒素の吸着分離方法及び装置
JP2017014101A (ja) * 2012-01-06 2017-01-19 吸着技術工業株式会社 吸着分離によって空気から酸素を分離して取得する方法およびそのための装置
JP2015016399A (ja) * 2013-07-09 2015-01-29 大阪瓦斯株式会社 圧力スイング吸着装置の使用方法と圧力スイング吸着装置
JP2017018917A (ja) * 2015-07-14 2017-01-26 吸着技術工業株式会社 バイオガスからch4を吸着分離するための方法及び装置
JP2017160084A (ja) * 2016-03-09 2017-09-14 吸着技術工業株式会社 H2、co、co2、h2o主成分とする水蒸気改質ガスからのh2を吸着分離するための方法及び装置
JP2017202447A (ja) * 2016-05-11 2017-11-16 コフロック株式会社 ガス分離装置
JP2020171894A (ja) * 2019-04-12 2020-10-22 オルガノ株式会社 ガス分離装置及びガス分離方法
JP7317555B2 (ja) 2019-04-12 2023-07-31 オルガノ株式会社 ガス分離装置及びガス分離方法

Also Published As

Publication number Publication date
TW200404599A (en) 2004-04-01
TWI276459B (en) 2007-03-21
JPWO2004007056A1 (ja) 2005-11-10
AU2003252484A1 (en) 2004-02-02

Similar Documents

Publication Publication Date Title
JP2634022B2 (ja) 真空スイング吸着法によるガス成分の分離方法
CA2189232C (en) Method of recovering oxygen-rich gas
JP2000354726A (ja) 圧力スゥイング吸着プロセス及び装置
JPS6261616A (ja) 混合ガスから高純度ガスを分離する方法
JPH09150028A (ja) 空気から酸素を回収するための単床圧力スイング式吸着方法
JP3902416B2 (ja) ガス分離方法
WO2004076030A1 (ja) オフガス供給方法、および目的ガス精製システム
KR100483894B1 (ko) 농축산소가스의 회수방법
WO2004007056A1 (ja) 酸素ガス分離方法
TWI230093B (en) Method of separating target gas
WO2007023761A1 (ja) 酸素ガスおよび窒素ガスの併行分離方法および併行分離システム
JP6452206B2 (ja) 炭酸ガスの精製方法および精製システム
JP3694343B2 (ja) 低濃度酸素用psa
JP3219612B2 (ja) 混合ガスより一酸化炭素及び水素を併産する方法
JPH10225609A (ja) パラメトリックガスクロマトグラフィーによる気体のバルク分離方法
JP2529929B2 (ja) 一酸化炭素ガスの分離回収方法
JP4171392B2 (ja) ガスの分離回収方法および圧力スイング吸着式ガス分離回収システム
JP2529928B2 (ja) 一酸化炭素ガスの分離回収方法
TW200304849A (en) Pressure swing adsorption process with controlled internal depressurization flow
JP2005349249A (ja) 酸素ガスおよび窒素ガスの併行分離方法
CN116196724A (zh) 一种从石灰窑气中提纯高浓度二氧化碳的变压吸附工艺
JPH047013A (ja) 吸着法による高純度ガスの精製方法および装置
KR20050012344A (ko) 기체농축방법
JPH07275634A (ja) Co及びco2 ガスの吸着分離方法
JPH08108030A (ja) 圧力変動吸着法における真空ポンプの消費電力削減方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004521159

Country of ref document: JP

122 Ep: pct application non-entry in european phase