WO2004003249A1 - Molten metal plated steel sheet production method and apparatus - Google Patents

Molten metal plated steel sheet production method and apparatus Download PDF

Info

Publication number
WO2004003249A1
WO2004003249A1 PCT/JP2003/007924 JP0307924W WO2004003249A1 WO 2004003249 A1 WO2004003249 A1 WO 2004003249A1 JP 0307924 W JP0307924 W JP 0307924W WO 2004003249 A1 WO2004003249 A1 WO 2004003249A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
molten metal
electromagnet
current value
bath
Prior art date
Application number
PCT/JP2003/007924
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Yamauchi
Yoichi Miyakawa
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP03738502A priority Critical patent/EP1516939A1/en
Priority to KR1020047019072A priority patent/KR100758240B1/en
Publication of WO2004003249A1 publication Critical patent/WO2004003249A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/24Removing excess of molten coatings; Controlling or regulating the coating thickness using magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/51Computer-controlled implementation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/524Position of the substrate

Definitions

  • the present invention relates to a method for manufacturing a molten metal-plated steel sheet, and more particularly, to a method for correcting the shape of a steel sheet in a non-contact manner using an electromagnet, and an apparatus for manufacturing the same.
  • BACKGROUND ART Molten metal plating methods such as hot-dip galvanizing, have been in practical use for a long time.
  • hot-dip galvanized steel sheet as an anti-reflection steel sheet for automobiles, home appliances, and building materials is increasing, and there is a need for higher quality such as uniform coating weight and suppression of surface defects. I have.
  • a gas drawing method using an apparatus as shown in Fig. 1 is generally used as a method of depositing molten metal on a continuous steel sheet.
  • a gas drawing method using an apparatus as shown in Fig. 1 has been adopted.
  • a steel sheet S continuously penetrated into a molten metal plating bath 2 is vertically pulled up from the plating bath, and a high-pressure gas injected from a gas throttle device 4 provided on both sides of the steel sheet S is provided. Excess molten metal adhering to the steel sheet S is wiped off by the gas, and a desired plating adhesion amount is adjusted.
  • an electromagnet is used to suppress the vibration of the steel sheet by magnetic force.
  • an electromagnet pair for applying a magnetic force to the steel sheet and a position sensor are provided, and the driving current of the electromagnet pair is controlled based on the measured distance.
  • a device for determining a control gain in current control based on information on a steel plate such as a plate thickness, a speed, a seam position, a plate width, and a tension.
  • the above-described conventional vibration damping devices and vibration damping methods using electromagnets have the following problems.
  • the method using an electromagnet requires a position sensor to measure the position of the steel sheet (distance from the electromagnet) in order to prevent contact and attraction between the steel sheet and the electromagnet. Therefore, not only is it costly, but also it becomes difficult to install an electromagnet near the gas throttle device because the device becomes large and disturbs the gas flow of the gas throttle device.
  • the interval between the gas expansion device and the steel plate must be set widely so that there is little danger of contact even if the warp occurs.
  • gas expansion must be performed at a high gas pressure and a high gas flow rate, and it is difficult to adjust the coating weight to a desired value.
  • a defect flash defect in which a splash of molten metal generated due to a gas flow near the gas expansion device adheres to the steel sheet is likely to occur.
  • An object of the present invention is to provide a method for producing a steel sheet with a molten metal, in which the occurrence of warpage is suppressed over the entire length of the steel sheet, the coating amount is uniform, and the surface properties are excellent. » The purpose of this is to continuously infiltrate the steel sheet into the molten metal plating bath and attach the molten metal to the surface of the steel sheet, and to change the direction of the steel sheet by using a direction change device provided in the molten metal plating bath.
  • the process of drawing the molten metal out of the molten metal bath, the process of adjusting the amount of molten metal deposited on the steel sheet by a gas expansion device, and the warpage of the steel plate are performed on the upstream and / or downstream side of the gas expansion device.
  • a step of correcting non-contact by a magnetic force using an electromagnet that applies a magnetic force in a direction intersecting with the surface of the steel sheet, and the current value of the electromagnet is determined in advance based on information on the steel sheet. This is achieved by a method of manufacturing a steel plate with molten metal set to a value.
  • This method comprises: a bath for applying a molten metal to the surface of a steel sheet; a turning device installed in the bath for the molten metal; and a turning device for turning the steel sheet; A gas expansion device installed on the steel plate to adjust the amount of molten metal attached to the steel plate, and a gas expansion device installed upstream and / or downstream of the gas expansion device to apply magnetic force in a direction that intersects the surface of the steel plate Production of a steel plate with a molten metal provided with an electromagnet that corrects the warpage of the electromagnet in a non-contact manner, and a current value preset control device that sets the current value of the electromagnet to a predetermined current value based on information about the steel plate It can be realized by the device.
  • FIG. 1 is a diagram showing an example of a conventional apparatus for manufacturing a hot-dip galvanized steel sheet.
  • Figure 2 is a conceptual diagram of the amount of displacement of the steel sheet and the force acting on the steel sheet during straightening of the steel sheet.
  • FIG. 3 is a diagram illustrating an example of a relationship between a displacement amount of a steel sheet and a force acting on the steel sheet.
  • FIG. 4 is a diagram showing an example of the apparatus for producing a molten metal-plated steel sheet according to the present invention.
  • FIG. 5 is a diagram showing an example of the arrangement of electromagnets in the width direction of the steel sheet according to the present invention.
  • FIG. 6 is a diagram showing an example of a preset control flow according to the present invention.
  • FIG. 7 is a diagram showing another example of the apparatus for manufacturing a steel sheet with molten metal according to the present invention.
  • FIG. 8 is a diagram showing an example of a feed pack control port according to the present invention.
  • FIG. 9 is a diagram comparing the shape controllability between the present invention and the conventional technology.
  • MODES FOR CARRYING OUT THE INVENTION As described above, in the conventional method of suppressing the vibration and warpage of a steel sheet by using an electromagnet, so-called feedback control is considered to be indispensable for controlling the current of the electromagnet. I have. This is because the magnetic force of the electromagnet is inversely proportional to the square of the distance from the steel sheet, so when the steel sheet is drawn to the electromagnet by the magnetic force, the magnetic force becomes stronger, and the steel sheet is further drawn to contact or attract the electromagnet. This is to prevent equipment trouble. The attraction of the steel sheet by the electromagnet is thus "unstable" and feedback control by position sensing is considered to be essential.
  • a steel sheet bent in the longitudinal direction by a contacting roll or the like warps in the width direction on the roll exit side.
  • the steel sheet S is warped in the width direction by being bent in the longitudinal direction by the sink roll 3 and the support roll 7 in the mounting bath 2.
  • the magnitude of this warpage depends on the bending of the roll, the angle of wrapping around the roll, the frictional force with the roll, the tension, the plate thickness, the plate width, and the type of steel. Depends on etc.
  • the force required to correct warpage depends on these various factors.
  • Figure 3 shows the relationship between the displacement of the steel sheet and the force acting on the steel sheet, based on data collected by a test device simulating an actual line.
  • the displacement of the steel sheet on the horizontal axis in FIG. 3 corresponds to the displacement X in FIG.
  • the attractive force of the electromagnet 5 is inversely proportional to the square of the distance between the steel sheet S and the electromagnet 5, and the restoring force of the steel sheet S is proportional to the displacement X.
  • the curve indicating the attractive force of the electromagnet 5 and the straight line indicating the restoring force of the steel sheet S intersect at two points as shown in FIG. One of these two points is a stable neutral point and the other is an unstable neutral point, considering the direction of the resultant force.
  • the attractive force always acts stronger than the restoring force, so the steel sheet S is attracted to the electromagnet 5.
  • the steel sheet S If the steel sheet S is located farther away from the electromagnet 5 than the unstable neutral point, the steel sheet S always returns to the stable neutral point. From this, it can be seen that by applying an appropriate current to the electromagnet 5 and generating an appropriate attraction force, the warpage of the steel sheet S settles down to a stable state. Further, the stable neutral point is a point where the suction force and the restoring force balance each other, and is not necessarily a point where the warpage of the steel sheet S is corrected and the steel sheet S is flattened. However, by optimizing the current value of the electromagnet 5, the steel sheet S can be flattened at the stable neutral point.
  • the shape correction by the magnetic force of the electromagnet 5 can be made not a "unstable system” but a “stable system”.
  • the feed pack control by the position sensor This means that preset control for setting an appropriate current value in advance is possible.
  • the process of continuously infiltrating the steel sheet into the molten metal plating bath and attaching the molten metal to the surface of the steel sheet, and the direction changing device provided in the molten metal plating bath After the conversion, the process of drawing the molten metal out of the molten metal bath, the process of adjusting the amount of molten metal deposited on the steel plate by a gas expansion device, and the warping of the steel plate are performed on the upstream and / or downstream side of the gas expansion device.
  • a step of correcting non-contact by magnetic force using an electromagnet that applies a magnetic force in a direction intersecting with the surface of the steel sheet, and the current value of the electromagnet is predetermined based on information on the steel sheet. By setting the current value, it is possible to suppress the occurrence of warpage over the entire length of the steel sheet, to produce a coated steel sheet with a uniform plating coating amount and excellent surface properties.
  • the current value of the electromagnet may be changed to a predetermined current value based on information on the following steel sheet.
  • a steel sheet shape measuring device and / or a measuring device for the amount of coating deposited on the steel plate is installed downstream of the gas throttle device, and the current value of the electromagnet is corrected based on the information measured by such a device.
  • the occurrence of warpage can be suppressed over the entire length of the steel sheet, and the coating weight can be made uniform.
  • the only equipment that supports the steel sheet in the bath with the molten metal is a direction change device for the steel sheet. Except for the supporting rolls, flaws and defects of the steel sheet caused by dross in the plating bath can be reduced.
  • Such a method of manufacturing a steel plate with a molten metal includes a bath for the molten metal to attach the molten metal to the surface of the steel plate, a turning device installed in the bath for the molten metal, and a turning device for turning the steel plate.
  • a gas throttle device installed above the plating bath surface of the metal plating bath to adjust the amount of molten metal attached to the steel plate; and a gas throttle device installed upstream and / or downstream of the gas throttle device to Apply magnetic force in the direction of intersection
  • the present invention can be realized by a device including an electromagnet that corrects a warp of a steel sheet in a non-contact manner, and a current value preset control device that sets a current value of the electromagnet to a predetermined current value based on information about the steel sheet.
  • Embodiment 1 a device for measuring the shape of the steel sheet and / or a device for measuring the amount of plating applied to the steel plate is provided downstream of the gas expansion device, the occurrence of warpage can be suppressed, and the uniformity of the applied amount of plating is more effective. is there.
  • Embodiment 1 a device for measuring the shape of the steel sheet and / or a device for measuring the amount of plating applied to the steel plate is provided downstream of the gas expansion device, the occurrence of warpage can be suppressed, and the uniformity of the applied amount of plating is more effective. is there. Embodiment 1
  • FIG. 4 shows an example of the apparatus for producing a steel sheet with molten metal according to the present invention.
  • the apparatus for producing a steel sheet with molten metal includes a molten metal plating bath 1 for holding a molten metal plating bath 2 for drawing in the steel sheet S and attaching the molten metal thereto, and a steel sheet S pulled up from the plating bath 2.
  • the current control device 8, a preset control computer 9 as a control device for the electromagnet 5.
  • a line control device 10 is provided.
  • the molten metal plating tank 1 is provided with a sink roll 3 as a turning device for turning the steel sheet S in the plating bath 2. Further, a supporting roll 7 for supporting the direction-changed steel sheet S in the plating bath 2 may be provided.
  • the support roll 7 is effective in suppressing vibration of the steel sheet S and correcting warpage, dross in the plating bath may be wound and cause dross defects in the steel sheet S.
  • the support roll 7 since the vibration can be sufficiently suppressed and the warpage corrected by the electromagnet 5, the support roll 7 is not always necessary, and it is preferable that the support roll 7 is not installed from the viewpoint of preventing the surface defects of the steel sheet S.
  • the gas expansion device 4 and the electromagnet 5 are provided between the plating surface of the plating bath 2 and the support port 6.
  • the electromagnet 5 is installed above and / or below the gas throttle device 4. Since zinc is scattered and deposited below the gas throttle device 4, it is desirable that the electromagnet 5 be installed above the gas throttle device 4. Masire,
  • the distance between the tip of the gas ejection port (wiving nozzle) of the gas throttle device 4 and the steel plate S was conventionally set to about 15 mm. This is the case where the warp state of the steel sheet changes abruptly at the seam between the preceding steel sheet and the succeeding steel sheet unless this interval is left.
  • the wiving nozzle and the steel plate may be fine.
  • the distance between the tip of the wiping nozzle and the steel sheet S can be made smaller than that of the conventional 15-thigh.
  • the electromagnet 5 is provided to face the steel sheet so as to generate a magnetic force in a direction crossing the steel sheet surface.
  • the electromagnet 5 has a function of suppressing the vibration of the steel sheet S and correcting a warp of the steel sheet S caused by the bending and return deformation received from the sink roll 3 and the support port 7 in the bath. Further, as shown in FIG. 5, for example, a large number of electromagnets 5 are provided in the width direction, and these electromagnets 5 are selectively used according to the degree of warpage in the width direction.
  • a conventional apparatus using an electromagnet requires a position sensor for measuring the position of a steel sheet, but in the present invention, so-called preset control is performed, and such a position sensor is not necessarily required. From the viewpoint of cost increase and large equipment size, it is preferable that there is no position sensor.
  • the steel sheet S that has entered the plating bath 2 is turned by the sink roll 3, pulled up from the plating bath 2, and adjusted by the gas squeezing device 4 to adjust the adhesion amount.
  • the steel sheet S that has passed through the sink roll 3 is supported by the support roll 7 in the bath and the support roll 6 outside the bath, and the magnetic force from the electromagnet 5 provided between these support rolls causes the steel sheet S to move. Vibration is suppressed and warpage is corrected.
  • the current control of the electromagnet 5 is performed as follows. First, various operation condition data are sent from the line control device 10 to the preset control computer 9. The preset control computer 9 determines the current value in the preset control based on these operation condition data. As a determination method, a table value prepared in advance may be used, or a model formula may be constructed and calculated. In the method using table values, an appropriate current value (current value at which the steel sheet becomes flat at a stable neutral point) is obtained in advance for each operating condition, and that value is used for each operating condition. The operating conditions should take into account the thickness of the steel sheet, the width, the type of steel, the tension, the roll diameter of the upstream roll, the winding angle, the frictional force, the pushing amount, and the like.
  • the model formula may be constructed from a physical model representing the occurrence of warpage or the attractive force of the electromagnet, but may be constructed by multiple regression of operating conditions. And this The optimum current value calculated as described above is sent to the current control device 8, and the output of the electromagnet 5 is controlled by a command from the current control device 8. Also, the current value of the electromagnet 5 may be changed to a predetermined current value based on the information of the succeeding steel sheet when the seam between the preceding steel sheet and the succeeding steel sheet passes through the installation position of the electromagnet. .
  • FIG. 6 shows an example of a preset control flow according to the present invention.
  • the flow indicated by the solid line is the flow of the preset control for the preceding steel sheet currently being processed as described above.
  • the preset control computer 9 calculates the optimum current value by a table value or a model formula using the operating conditions of the succeeding steel sheet sent from the line controller 10. Is done. Then, a signal is received from the line controller 10 at which the joint between the preceding steel sheet and the succeeding steel sheet passes through the position of the gas expansion device 4 or the electromagnet 5, and the optimum current value of the electromagnet 5 is sent to the current control device 8. . In this way, the current value of the electromagnet 5 is set to the optimum value from the time when the leading end portion of the succeeding steel sheet passes.
  • FIG. 7 shows another example of the apparatus for producing a steel sheet with molten metal according to the present invention.
  • the apparatus shown in Fig. 4 was installed downstream of the steel roll shape measuring device 11 and the out-of-bath support roll 6 provided near the gas expansion device 4.
  • a plating adhesion amount measuring device 12 and a feedback control computer 13 as a control device for the electromagnet 5 are added. According to this device, it is described in Embodiment 1.
  • the warpage of the steel sheet is recognized and the current value of the electromagnet 5 is corrected. Control can be performed.
  • the shape measuring device 11 measures the magnitude of the warpage of the steel sheet S, and does not necessarily need to be able to measure the entire width of the steel sheet S in the width direction.
  • it may be a position sensor that can measure only the center and the end in the width direction of the steel sheet S.
  • the coating weight measuring device 12 measures the coating weight attached to the steel sheet S, and obtains the plating weight distribution in the width direction.
  • the distance between the gas expansion device 4 and the steel plate S, that is, the warpage of the steel plate S can be estimated from the adhesion distribution.
  • the shape of the steel sheet S is measured by the shape measuring device 11, or the distribution in the width direction of the plating amount on the steel sheet surface is measured by the plating amount measuring device 12.
  • These pieces of information are sent to the feedback control computer 13, where the amount of warpage of the steel sheet S is obtained.
  • a correction amount of the current value set in the feedback control is determined.
  • this correction amount may be determined from table values prepared in advance, or may be determined by constructing a model formula.
  • the correction amount of the current value calculated in this way is sent to the current control device 8, and the output of the electromagnet 5 is controlled by a command of the current control device 8.
  • FIG. 7 shows an example of a feedback control port according to the present invention.
  • the flow indicated by the solid line is the preset control flow described in the first embodiment.
  • data on the shape measured by the shape measuring device 11 or data on the widthwise distribution of the sticking amount measured by the plating amount measuring device 12 is sent to the feed pack control computer 13. Sent.
  • the coating amount measuring device 12 the relationship between the distribution of coating weight in the width direction and the shape of the steel sheet is determined in advance, and the shape of the steel sheet is determined based on the relationship.
  • the warpage of the steel sheet is calculated from the data of these shapes, and the amount of correction of the current value of the electromagnet 5 is calculated using a table value or a model formula in the feed pack control computer 13 using various operating conditions sent from the line control device 10. Is calculated. Then, the correction amount of the current value is sent to the current control device 8.
  • FIG. 9 is a diagram comparing the shape controllability between the present invention and the conventional technology.
  • the amount of warpage can be suppressed to a certain range over the entire length of the steel sheet.
  • the method of controlling the current of the electromagnet 5 has been described.
  • the adjustment of the magnetic force by the electromagnet 5 can also be achieved by adjusting the distance between the electromagnet 5 and the steel plate. Therefore, the same effect can be obtained by adjusting the distance between the electromagnet 5 and the steel sheet instead of controlling the current of the electromagnet 5 of the present invention.
  • Embodiments 1 and 2 warpage can be corrected over the entire length of the steel sheet, and the occurrence of surface defects caused by rolls in the bath can be eliminated without using the support rolls in the bath. Since the distance between the tip of the wiving nozzle of the gas expansion device and the steel plate can be reduced to suppress the occurrence of the splash defect, it is possible to manufacture a high quality hot-dip galvanized steel plate.
  • the force S described for the application to the production of a general hot-dip galvanized steel sheet is not limited to this, and the present invention is applicable to the production of other hot-dip galvanized steel sheets. it can.
  • a cold-rolled steel sheet having a thickness of 0.7 mm and a width of 1500 mm was used as an original plate for plating, and the electromagnets and Hot-dip galvanized steel coil was manufactured under four conditions for the sensor.
  • electromagnet preset control is performed using the manufacturing apparatus of FIG.
  • the electromagnet is located 250 mm above the wiping nozzle and close to the wiping nozzle because it does not require a special sensor and has a simple device configuration.
  • the distance between the wiving nozzle and the steel plate is 7 mm, which is narrow. Regarding the support rolls in the bath, whether they were used or not were examined.
  • electromagnet preset control and feedback control are performed using the manufacturing apparatus of FIG.
  • a shape measuring device is provided in Invention Example 2
  • a plating adhesion amount measuring device is provided in Invention Example 3.
  • the electromagnet is located 500 mm above the wiping nozzle because the shape measuring device is installed near the upper part of the wiping nozzle in Invention Example 2, whereas it is located 250 mm above the wiping nozzle in Invention Example 2.
  • the distance between the wiving nozzle and the steel plate is 7 mm, which is narrow.
  • both used and non-used ⁇ were examined in the same manner as in Invention Example 1.
  • the occurrence of splash defects and the width direction distribution of the adhesion amount were investigated.
  • the occurrence of splash defects was evaluated based on the total number of splash defects over the entire length of the steel sheet coil using a surface defect meter installed in the hot-dip galvanizing line.
  • the distribution of the coating weight in the width direction was evaluated by measuring the distribution of the coating weight in the width direction by using a coating weight meter provided in the hot-dip galvanizing line.
  • the number of splashes generated in one steel sheet coil was about 10 in the comparative example, whereas the number of splashes in Invention Example 1-3 was 1-2 in all conditions. This was significantly reduced as compared with the comparative example. This is because the distance between the wiping nose and the steel plate was 15 mm in the comparative example, but could be reduced to 7 thighs in the invention example, and gas wiping at a low gas pressure became possible. In Inventive Examples 1-3, no difference was observed between the use and non-use of the support roll 7 in the bath.
  • the coating weight in the comparative example was non-uniform at about ⁇ 10 g / m 2 , whereas the coating weight in Invention Example 1-3 was not uniform. It was almost uniform at about ⁇ 3 g / m 2 . This is because, in the comparative example in which the electromagnet feedback control was performed, the change in the warp of the leading end of the succeeding steel sheet at the seam between the preceding steel sheet and the succeeding steel sheet could not be dealt with, but the invention example 1 in which the electromagnet preset control was performed. In the case of -3, the warpage can be properly corrected from the leading end of the succeeding steel sheet.
  • Example 1 Regarding the distribution of coating weight in the width direction at the center in the longitudinal direction of the steel coil, in Example 1, the coating weight was ⁇ Inventive Examples 2 and 3 showed that the adhesion amount was improved to about ⁇ 1 to 2 g / m 2 . This is because in Invention Example 1 in which only the electromagnet preset control was performed, the warpage of the steel sheet could be made substantially flat, but a slight warp might remain due to an error in the preset control, and in addition to the electromagnet preset control, In the invention examples 2 and 3 in which the feed pack control is performed, even if an error occurs in the preset control, the error can be appropriately corrected by the feedback control to correct the shape. Table 1 Invention example 1 Invention example 2 Invention example 3 Comparative example Electromagnet Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Preset + Preset +
  • Electromagnet control method Preset feed pack

Abstract

A molten metal plated steel sheet production method comprising the steps of dipping a steel sheet in a molten metal plating bath continuously to cause a molten metal to adhere to the steel sheet, changing the orientation of the steel sheet in the molten metal plating bath by means of an orientation changing device to pull it out of the molten metal plating bath, adjusting the amount of molten metal adhering to the steel sheet by means of a gas wiping device, correcting the warp of the steel sheet in a contactless manner by a magnetic force acting perpendicularly to the steel sheet and produced by an electromagnet disposed upstream and/or downstream from the gas wiping device, wherein the value of the current flowing through the electromagnet is set at a predetermined value according to information on the steel sheet. The warp of the steel sheet over the full length is prevented, the amount of plating coating is uniform, and the surface properties are excellent

Description

明細書 溶融金属めつき鋼板の製造方法および製造装置 技術分野 本発明は、 溶融金属めつき鋼板の製造方法、 特に、 電磁石を用いて非接触に鋼 板の形状矯正を行う方法、 およびその製造装置に関する。 背景技術 溶融亜鉛めつきをはじめとする溶融金属のめっき方法は、 古くから実用化され ている。特に、 溶融亜鉛めつき鋼板は、 自動車、 家電、 建材用の防鲭鋼板としてそ の需要が増加しており、 めっき付着量の均一化や表面欠陥の抑制等さらなる高品 質化が求められている。  TECHNICAL FIELD The present invention relates to a method for manufacturing a molten metal-plated steel sheet, and more particularly, to a method for correcting the shape of a steel sheet in a non-contact manner using an electromagnet, and an apparatus for manufacturing the same. About. BACKGROUND ART Molten metal plating methods, such as hot-dip galvanizing, have been in practical use for a long time. In particular, the demand for hot-dip galvanized steel sheet as an anti-reflection steel sheet for automobiles, home appliances, and building materials is increasing, and there is a need for higher quality such as uniform coating weight and suppression of surface defects. I have.
現在、 連続した鋼板に溶融金属をめつきする方法、 例えば溶融亜鉛めつき鋼板 の製造方法としては、 図 1にその一例を示すような装置を用いた気体絞り(ガスヮ ィビング)法が一般的に採用されている。 この方法では、 溶融金属のめっき浴 2中 に連続的に侵入させた鋼板 Sをめつき浴から鉛直方向に引き上げ、 鋼板 Sの両面に 対向して設けられた気体絞り装置 4から噴射される高圧ガスにより鋼板 Sに付着し た余分な溶融金属を払拭して、 所望のめっき付着量が調整される。  At present, as a method of depositing molten metal on a continuous steel sheet, for example, a method of producing a hot-dip galvanized steel sheet, a gas drawing method using an apparatus as shown in Fig. 1 is generally used. Has been adopted. In this method, a steel sheet S continuously penetrated into a molten metal plating bath 2 is vertically pulled up from the plating bath, and a high-pressure gas injected from a gas throttle device 4 provided on both sides of the steel sheet S is provided. Excess molten metal adhering to the steel sheet S is wiped off by the gas, and a desired plating adhesion amount is adjusted.
図 1に示すような装置を用いると、 めっき浴から引き上げられた鋼板が振動し たり、 鋼板の幅方向に反りが発生する。 また、 鋼板の平坦度不良が発生する場合 もある。このような 、 気体絞り装置と鋼板との間隔が変化することとなり、 鋼 板の長手方向または幅方向のめっき付着量が不均一となる。 そのため、 めっき浴 中に一対の支持ロールを、 さらに気体絞り装置の上方にも同様な一対の支持口一 ルを設けて鋼板を拘束することにより、 鋼板の振動を防止し、 反りの矯正を行う ことが一般的に行われている。 しかし、 このような支持ロールによる方法では、 振動防止や形状矯正の効果が十分でない場合がある。 When an apparatus as shown in Fig. 1 is used, the steel sheet pulled up from the plating bath vibrates or warps in the width direction of the steel sheet. In addition, poor flatness of the steel sheet may occur. Such an interval between the gas expansion device and the steel plate changes, and the amount of coating in the longitudinal direction or the width direction of the steel plate becomes uneven. Therefore, a pair of support rolls are provided in the plating bath and a similar pair of support ports are provided above the gas squeezing device to restrain the steel plate, thereby preventing the steel plate from vibrating and correcting the warpage. This is commonly done. However, in such a method using a support roll, The effects of vibration prevention and shape correction may not be sufficient.
この対策として、 電磁石を用い、 磁力によって鋼板の振動を抑制する方法が提 案されている。例えば、 特開 2001- 38412号公報では、 走行する鋼板の制振を行う ため、 鋼板に磁力を作用させる電磁石対と位置センサーを設け、 測定された距離 に基づいて電磁石対の駆動電流を制御するとともに、 板厚、 速度、 継目位置、 板 幅、 張力等の鋼板に関する情報に基づいて電流制御における制御ゲインを決定す る制 置が記載されている。 しカゝし、 上記のような従来の電磁石を用いた制振装置や制振方法では、 以下の ような問題点がある。  As a countermeasure, a method has been proposed in which an electromagnet is used to suppress the vibration of the steel sheet by magnetic force. For example, in Japanese Patent Application Laid-Open No. 2001-38412, in order to control a running steel sheet, an electromagnet pair for applying a magnetic force to the steel sheet and a position sensor are provided, and the driving current of the electromagnet pair is controlled based on the measured distance. At the same time, there is described a device for determining a control gain in current control based on information on a steel plate such as a plate thickness, a speed, a seam position, a plate width, and a tension. However, the above-described conventional vibration damping devices and vibration damping methods using electromagnets have the following problems.
まず、 電磁石を用いた方法では、 鋼板と電磁石の接触や吸着を防止するために、 鋼板位置(電磁石との距離)を測定するための位置センサ一が必要となる。したが つて、 コストがかかるだけでなく、 装置が大型化して気体絞り装置のガス流を乱 すため気体絞り装置の近くに電磁石を設置することが困難になる。  First, the method using an electromagnet requires a position sensor to measure the position of the steel sheet (distance from the electromagnet) in order to prevent contact and attraction between the steel sheet and the electromagnet. Therefore, not only is it costly, but also it becomes difficult to install an electromagnet near the gas throttle device because the device becomes large and disturbs the gas flow of the gas throttle device.
また、 従来の電磁石を用いた方法では、 位置センサーからの位置情報を基にフ ィ一ドバック制御しており、 鋼板に振動や反りが発生した後それを位置センサー で認識し、 電磁石の電流値が変更される。しカゝし、 先行の鋼板と後行の鋼板の継目 では反りの状態が急激に変化する場合があり、 フィードパック制御では対応でき ず、 後行の鋼板先端部等における反りを矯正できない。  In the conventional method using an electromagnet, feedback control is performed based on the position information from the position sensor. After vibration or warpage occurs in the steel sheet, the position sensor recognizes the vibration and warpage, and then detects the current value of the electromagnet. Is changed. However, the state of warpage may change abruptly at the seam between the preceding steel sheet and the succeeding steel sheet, which cannot be controlled by the feed pack control, and the warp at the leading end of the succeeding steel sheet cannot be corrected.
さらに、 上記のように部分的に反りを矯正できない場合があるので、 気体絞り 装置と鋼板との間隔は、 反りが発生しても接触の危険が少ないように広く設定せ ざるを得ない。しかし、 気体絞り装置と鋼板との間隔が広いと、 それだけ高ガス圧 および高ガス流量で気体絞りを行わなければならず、 所望のめっき付着量に調整 することが難しくなる。また、 気体絞り装置近傍のガス流が原因となって生じる溶 融金属のスプラッシュが鋼板に付着する欠陥(スプラッシュ欠陥)も発生し易くな る。  Further, since the warp cannot be partially corrected as described above, the interval between the gas expansion device and the steel plate must be set widely so that there is little danger of contact even if the warp occurs. However, if the distance between the gas expansion device and the steel sheet is large, gas expansion must be performed at a high gas pressure and a high gas flow rate, and it is difficult to adjust the coating weight to a desired value. In addition, a defect (splash defect) in which a splash of molten metal generated due to a gas flow near the gas expansion device adheres to the steel sheet is likely to occur.
以上のように、 従来の電磁石を用いた方法では、 高コストであるだけではなく、 反りの矯正効果も十分でなく、 また、 高品質のめっき鋼板が製造できないという 問題がある。 発明の開示 本発明の目的は、 鋼板の全長に渡って反りの発生が抑制され、 めっき付着量が 均一であり、 かつ表面性状が優れた溶融金属めつき鋼板を製造する方法、 および その製造装置を »することにある。 この目的は、 鋼板を溶融金属めつき浴中に連続的に浸入させ、 鋼板の表面に溶 融金属を付着させる工程と、 鋼板を溶融金属めつき浴中に設けられた方向転換装 置により方向転換させた後、 溶融金属浴外へ引き出す工程と、 鋼板に付着した溶 融金属の付着量を気体絞り装置により調整する工程と、 鋼板の反りを、 気体絞り 装置の上流側および/または下流側に設けられ、 鋼板の表面と交わる方向に磁力 を作用させる電磁石を用いて磁力により非接触に矯正する工程とを有し、 かつ、 電磁石の電流値が鋼板に関する情報に基づいて予め決定された電流値に設定され る溶融金属めつき鋼板の製造方法によって達成される。 この方法は、 鋼板の表面に溶融金属を付着させる溶融金属めつき浴槽と、 溶融 金属めつき浴槽中に設置され、 鋼板を方向転換させる方向転換装置と、 溶融金属 めっき浴槽のめっき浴面の上方に設置され、 鋼板に付着した溶融金属めつき量を 調整する気体絞り装置と、 気体絞り装置の上流側および/または下流側に設置さ れ、 鋼板の表面と交わる方向に磁力を作用させて鋼板の反りを非接触に矯正する 電磁石と、 電磁石の電流値を鋼板に関する情報に基づレ、て予め決定された電流値 に設定する電流値プリセット制御装置とを備えた溶融金属めつき鋼板の製造装置 により実現できる。 図面の簡単な説明 図 1は、 従来の溶融亜鉛めつき鋼板の製造装置の一例を示す図である。 As described above, the conventional method using electromagnets is not only expensive, but also has an insufficient effect of correcting warpage, and cannot produce high-quality plated steel sheets. There's a problem. DISCLOSURE OF THE INVENTION An object of the present invention is to provide a method for producing a steel sheet with a molten metal, in which the occurrence of warpage is suppressed over the entire length of the steel sheet, the coating amount is uniform, and the surface properties are excellent. » The purpose of this is to continuously infiltrate the steel sheet into the molten metal plating bath and attach the molten metal to the surface of the steel sheet, and to change the direction of the steel sheet by using a direction change device provided in the molten metal plating bath. After the conversion, the process of drawing the molten metal out of the molten metal bath, the process of adjusting the amount of molten metal deposited on the steel sheet by a gas expansion device, and the warpage of the steel plate are performed on the upstream and / or downstream side of the gas expansion device. A step of correcting non-contact by a magnetic force using an electromagnet that applies a magnetic force in a direction intersecting with the surface of the steel sheet, and the current value of the electromagnet is determined in advance based on information on the steel sheet. This is achieved by a method of manufacturing a steel plate with molten metal set to a value. This method comprises: a bath for applying a molten metal to the surface of a steel sheet; a turning device installed in the bath for the molten metal; and a turning device for turning the steel sheet; A gas expansion device installed on the steel plate to adjust the amount of molten metal attached to the steel plate, and a gas expansion device installed upstream and / or downstream of the gas expansion device to apply magnetic force in a direction that intersects the surface of the steel plate Production of a steel plate with a molten metal provided with an electromagnet that corrects the warpage of the electromagnet in a non-contact manner, and a current value preset control device that sets the current value of the electromagnet to a predetermined current value based on information about the steel plate It can be realized by the device. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a diagram showing an example of a conventional apparatus for manufacturing a hot-dip galvanized steel sheet.
図 2は、 鋼板の反り矯正における鋼板の変位量と鋼板に作用する力の概念図で ある。  Figure 2 is a conceptual diagram of the amount of displacement of the steel sheet and the force acting on the steel sheet during straightening of the steel sheet.
図 3は、 鋼板の変位量と鋼板に作用する力との関係の一例を示す図である。 図 4は、 本発明である溶融金属めつき鋼板の製造装置の一例を示す図である。 図 5は、 本発明である鋼板の幅方向における電磁石の配置の一例を示す図であ る。  FIG. 3 is a diagram illustrating an example of a relationship between a displacement amount of a steel sheet and a force acting on the steel sheet. FIG. 4 is a diagram showing an example of the apparatus for producing a molten metal-plated steel sheet according to the present invention. FIG. 5 is a diagram showing an example of the arrangement of electromagnets in the width direction of the steel sheet according to the present invention.
図 6は、 本発明によるプリセット制御フローの一例を示す図である。  FIG. 6 is a diagram showing an example of a preset control flow according to the present invention.
図 7は、 本発明である溶融金属めつき鋼板の製造装置の別の例を示す図である。 図 8は、 本発明によるフィードパック制御フ口一の一例を示す図である。  FIG. 7 is a diagram showing another example of the apparatus for manufacturing a steel sheet with molten metal according to the present invention. FIG. 8 is a diagram showing an example of a feed pack control port according to the present invention.
図 9は、 本発明と従来技術との形状制御性を比較した図である。 発明を実施するための形態 上述したように、 電磁石を用いて鋼板の振動や反りを抑制する従来の方法にお いては、 電磁石の電流制御を行うためにいわゆるフィードバック制御が必須と考 えられている。これは、 電磁石の磁力は鋼板との距離の 2乗に反比例するため、 鋼 板が磁力により電磁石に引き寄せられると磁力が強くなり、 鋼板がさらに引き寄 せられて電磁石に接触したり吸着したりして、 設備上のトラブルに至ることを防 ぐためである。 電磁石による鋼板の吸引は、 このように 「不安定系」 であり、 位 置センシングによるフィードバック制御が必須であると考えられている。  FIG. 9 is a diagram comparing the shape controllability between the present invention and the conventional technology. MODES FOR CARRYING OUT THE INVENTION As described above, in the conventional method of suppressing the vibration and warpage of a steel sheet by using an electromagnet, so-called feedback control is considered to be indispensable for controlling the current of the electromagnet. I have. This is because the magnetic force of the electromagnet is inversely proportional to the square of the distance from the steel sheet, so when the steel sheet is drawn to the electromagnet by the magnetic force, the magnetic force becomes stronger, and the steel sheet is further drawn to contact or attract the electromagnet. This is to prevent equipment trouble. The attraction of the steel sheet by the electromagnet is thus "unstable" and feedback control by position sensing is considered to be essential.
これに対し、 本発明者等が、 電磁石による鋼板の吸引力と反った鋼板に作用す る力との関係を詳細に調査した結果、 以下のことが明らかとなった。  On the other hand, the present inventors have conducted a detailed investigation on the relationship between the attractive force of the steel sheet by the electromagnet and the force acting on the warped steel sheet, and as a result, the following has become clear.
1 ) 接触するロール等により長手方向に曲げられた鋼板は、 そのロール出側に おいて幅方向に反る。 例えば、 図 1に示したような従来の溶融亜鉛めつき鋼板の 製造装置では、 鋼板 Sはめつき浴 2中のシンクロール 3や支持ロール 7により長手方 向に曲げを受けて幅方向に反る。 そして、 この反りの大きさは、 ローノレによる曲 げ雜、 ロールへの巻き付き角度、 ロールとの摩擦力、 張力、 板厚、 板幅、 鋼種 等により異なる。また、 反りを矯正するために必要な力は、 こうした各種要素に依 存する。 1) A steel sheet bent in the longitudinal direction by a contacting roll or the like warps in the width direction on the roll exit side. For example, in the conventional apparatus for manufacturing a hot-dip galvanized steel sheet as shown in Fig. 1, the steel sheet S is warped in the width direction by being bent in the longitudinal direction by the sink roll 3 and the support roll 7 in the mounting bath 2. . The magnitude of this warpage depends on the bending of the roll, the angle of wrapping around the roll, the frictional force with the roll, the tension, the plate thickness, the plate width, and the type of steel. Depends on etc. In addition, the force required to correct warpage depends on these various factors.
2 ) このような鋼板の反りを電磁石により矯正する^、 図 2に示すように、 図 中の点線で示した幅方向に反った鋼板 Sに対して、 鋼板 Sの幅方向端部付近に対向 して設置した電磁石 5にある一定の電流を流して磁力を作用させると、 鋼板 Sには 電磁石 5に近づく方向の力、 すなわち吸引力が働く。 そして、 鋼板 Sの幅方向端部 は距離 Xだけ変位して、 鋼板 Sは図中の実線で示した状態になる。 この時、 鋼板 S には、 元の状態(点線の状態)へ戻ろうとする力、 すなわち復元力が働く。 したが つて、 鋼板 Sは、 この吸引力と復元力とが釣り合った状態に落ち着くことになる。 図 3に、 実ラインを模擬したテスト装置により採取したデータを基にして求め た鋼板の変位量と鋼板に作用する力との関係を示す。 図 3の横軸の鋼板変位量は、 図 2の変位量 Xに相当する。  2) Correcting the warpage of the steel sheet with an electromagnet ^ As shown in Fig. 2, the steel sheet S warped in the width direction indicated by the dotted line in the figure is opposed to the vicinity of the width direction end of the steel sheet S. When a certain current is applied to the electromagnet 5 and the magnetic force acts on the steel sheet S, a force in a direction approaching the electromagnet 5, that is, an attractive force acts on the steel sheet S. Then, the end in the width direction of the steel sheet S is displaced by the distance X, and the steel sheet S becomes a state shown by a solid line in the figure. At this time, a force to return to the original state (the state indicated by the dotted line), that is, a restoring force acts on the steel sheet S. Therefore, the steel sheet S settles in a state where the suction force and the restoring force are balanced. Figure 3 shows the relationship between the displacement of the steel sheet and the force acting on the steel sheet, based on data collected by a test device simulating an actual line. The displacement of the steel sheet on the horizontal axis in FIG. 3 corresponds to the displacement X in FIG.
このように、 電磁石 5による吸引力は鋼板 Sと電磁石 5との距離の 2乗に反比例し、 鋼板 Sの復元力は変位量 Xに比例する。いま、 電磁石 5に流す電流値を適切に選ぶと、 電磁石 5の吸引力を示す曲線と鋼板 Sの復元力を示す直線とは、 図 3に示すように 2 点で交わる。 この 2点は、 合力の向きから考えると、 片方が安定中立点であり、 もう一方が不安定中立点となる。 不安定中立点よりも鋼板 Sが電磁石 5に近づくと、 常に吸引力が復元力より強く作用するため、 鋼板 Sは電磁石 5に吸い付けられてし まう。 し力 、 不安定中立点よりも鋼板 Sが電磁石 5から遠レ、位置にあれば、 鋼板 Sは必ず安定中立点に戻ることになる。 このことから、 電磁石 5に適切な電流を流 して適切な吸引力を発生させることにより、 鋼板 Sの反りが安定した状態に落ち 着くことがわかる。 また、 この安定中立点は、 吸引力と復元力との力が釣り合う ポイントであり、 必ずしも鋼板 Sの反りが矯正され、 鋼板 Sが平坦ィヒされるポイン トとは限らない。しかし、 電磁石 5の電流値を最適化することにより、 安定中立点 において鋼板 Sを平坦化することができる。  Thus, the attractive force of the electromagnet 5 is inversely proportional to the square of the distance between the steel sheet S and the electromagnet 5, and the restoring force of the steel sheet S is proportional to the displacement X. Now, if the value of the current flowing through the electromagnet 5 is appropriately selected, the curve indicating the attractive force of the electromagnet 5 and the straight line indicating the restoring force of the steel sheet S intersect at two points as shown in FIG. One of these two points is a stable neutral point and the other is an unstable neutral point, considering the direction of the resultant force. When the steel sheet S approaches the electromagnet 5 from the unstable neutral point, the attractive force always acts stronger than the restoring force, so the steel sheet S is attracted to the electromagnet 5. If the steel sheet S is located farther away from the electromagnet 5 than the unstable neutral point, the steel sheet S always returns to the stable neutral point. From this, it can be seen that by applying an appropriate current to the electromagnet 5 and generating an appropriate attraction force, the warpage of the steel sheet S settles down to a stable state. Further, the stable neutral point is a point where the suction force and the restoring force balance each other, and is not necessarily a point where the warpage of the steel sheet S is corrected and the steel sheet S is flattened. However, by optimizing the current value of the electromagnet 5, the steel sheet S can be flattened at the stable neutral point.
このように、 復元力と吸引力との間には安定中立点が存在し、 電磁石 5の磁力 による形状矯正を 「不安定系」 ではなく、 「安定系」 にすることができるが、 こ れは、 電磁石 5の電流制御には位置センサ一によるフィードパック制御は必ずし も必要ではなく、 適切な電流値を予め設定するプリセット制御が可能であること を意味している。 以上の知見から、 鋼板を溶融金属めつき浴中に連続的に浸入させ、 鋼板の表面 に溶融金属を付着させる工程と、 鋼板を溶融金属めつき浴中に設けられた方向転 換装置により方向転換させた後、 溶融金属浴外へ引き出す工程と、 鋼板に付着し た溶融金属の付着量を気体絞り装置により調整する工程と、 鋼板の反りを、 気体 絞り装置の上流側および/または下流側に設けられ、 鋼板の表面と交わる方向に 磁力を作用させる電磁石を用いて磁力により非接触に矯正する工程とを有し、 か つ、 電磁石の電流値が鋼板に関する情報に基づいて予め決定された電流値に設定 されるような方法により、 鋼板の全長に渡って反りの発生が抑制され、 めっき付 着量が均一であり、 かつ表面性状が優れた溶融金属めつき鋼板を製造できること になる。 As described above, there is a stable neutral point between the restoring force and the attraction force, and the shape correction by the magnetic force of the electromagnet 5 can be made not a "unstable system" but a "stable system". For the current control of the electromagnet 5, the feed pack control by the position sensor This means that preset control for setting an appropriate current value in advance is possible. Based on the above findings, the process of continuously infiltrating the steel sheet into the molten metal plating bath and attaching the molten metal to the surface of the steel sheet, and the direction changing device provided in the molten metal plating bath After the conversion, the process of drawing the molten metal out of the molten metal bath, the process of adjusting the amount of molten metal deposited on the steel plate by a gas expansion device, and the warping of the steel plate are performed on the upstream and / or downstream side of the gas expansion device. A step of correcting non-contact by magnetic force using an electromagnet that applies a magnetic force in a direction intersecting with the surface of the steel sheet, and the current value of the electromagnet is predetermined based on information on the steel sheet. By setting the current value, it is possible to suppress the occurrence of warpage over the entire length of the steel sheet, to produce a coated steel sheet with a uniform plating coating amount and excellent surface properties.
先行の鋼板と後行の鋼板の継目が電磁石の設置位置を通過する場合は、 電磁石 の電流値を後行の鋼板に関する情報に基づいて予め決定された電流値に変更すれ ばよい。  When the joint between the preceding steel sheet and the succeeding steel sheet passes through the installation position of the electromagnet, the current value of the electromagnet may be changed to a predetermined current value based on information on the following steel sheet.
気体絞り装置の下流側に、 鋼板の形状測定装置および/または鋼板に付着した めっき付着量の測定装置を設け、 こうした装置により計測された情報に基づき電 磁石の電流値を修正すれば、 より効果的に鋼板の全長に渡つて反りの発生を抑制 でき、 めっき付着量を均一化できる。  More effective if a steel sheet shape measuring device and / or a measuring device for the amount of coating deposited on the steel plate is installed downstream of the gas throttle device, and the current value of the electromagnet is corrected based on the information measured by such a device. The occurrence of warpage can be suppressed over the entire length of the steel sheet, and the coating weight can be made uniform.
溶融金属めつき浴中で鋼板を支持する装置を鋼板の方向転換装置のみにし、 支 持ロールなどを除けば、 めっき浴中のドロスに起因する鋼板の疵ゃ欠陥を低減で さる。  The only equipment that supports the steel sheet in the bath with the molten metal is a direction change device for the steel sheet. Except for the supporting rolls, flaws and defects of the steel sheet caused by dross in the plating bath can be reduced.
こうした溶融金属めつき鋼板の製造方法は、 鋼板の表面に溶融金属を付着させ る溶融金属めつき浴槽と、 溶融金属めつき浴槽中に設置され、 鋼板を方向転換さ せる方向転換装置と、 溶融金属めつき浴槽のめっき浴面の上方に設置され、 鋼板 に付着した溶融金属めつき量を調整する気体絞り装置と、 気体絞り装置の上流側 および/または下流側に設置され、 鋼板の表面と交わる方向に磁力を作用させて 鋼板の反りを非接触に矯正する電磁石と、 電磁石の電流値を鋼板に関する情報に 基づいて予め決定された電流値に設定する電流値プリセット制御装置とを備えた 装置により実現できる。 また、 気体絞り装置の下流側に、 鋼板の形状測定装置お よび/または鋼板に付着しためっき付着量の測定装置を設けると、 反りの発生を 抑制でき、 めっき付着量の均一化により効果的である。 実施の形態 1 Such a method of manufacturing a steel plate with a molten metal includes a bath for the molten metal to attach the molten metal to the surface of the steel plate, a turning device installed in the bath for the molten metal, and a turning device for turning the steel plate. A gas throttle device installed above the plating bath surface of the metal plating bath to adjust the amount of molten metal attached to the steel plate; and a gas throttle device installed upstream and / or downstream of the gas throttle device to Apply magnetic force in the direction of intersection The present invention can be realized by a device including an electromagnet that corrects a warp of a steel sheet in a non-contact manner, and a current value preset control device that sets a current value of the electromagnet to a predetermined current value based on information about the steel sheet. In addition, if a device for measuring the shape of the steel sheet and / or a device for measuring the amount of plating applied to the steel plate is provided downstream of the gas expansion device, the occurrence of warpage can be suppressed, and the uniformity of the applied amount of plating is more effective. is there. Embodiment 1
図 4に、 本発明である溶融金属めつき鋼板の製造装置の一例を示す。  FIG. 4 shows an example of the apparatus for producing a steel sheet with molten metal according to the present invention.
この溶融金属めつき鋼板の製造装置は、 鋼板 Sを引き込んで溶融金属を付着さ せる溶融金属めつき浴 2を保持する溶融金属めつき槽 1と、 めっき浴 2から引き上 げられた鋼板 Sに付着した溶融金属めつき量を調整する気体絞り装置 4と、 電磁石 5と、 浴外の支持ロール 6と力 ^構成され、 さらに電磁石 5の制御装置として電流 制御装置 8、 プリセット制御用計算機 9、 ライン制御装置 10を備えている。  The apparatus for producing a steel sheet with molten metal includes a molten metal plating bath 1 for holding a molten metal plating bath 2 for drawing in the steel sheet S and attaching the molten metal thereto, and a steel sheet S pulled up from the plating bath 2. A gas squeezing device 4 for adjusting the amount of molten metal adhered to the steel plate, an electromagnet 5, a support roll 6 outside the bath, and a force.The current control device 8, a preset control computer 9 as a control device for the electromagnet 5. A line control device 10 is provided.
溶融金属めつき槽 1には、 めっき浴 2中で鋼板 Sを方向転換させる方向転換装置 として、 シンクロール 3が備えられている。また、 方向転換された鋼板 Sをめつき 浴 2中で支持する支持ロール 7が設けられていてもよい。 ただし、 この支持ロール 7は、 鋼板 Sの振動抑制や反り矯正には効果があるが、 めっき浴中のドロスを卷き 込んで鋼板 Sにドロス欠陥を生じさせる場合がある。本発明においては、 電磁石 5 により十分に振動抑制や反り矯正を行うことができるので、 この支持ロール 7は 必ずしも必要でなく、 鋼板 Sの表面欠陥防止の観点からはむしろ設置しない方が 好ましい。  The molten metal plating tank 1 is provided with a sink roll 3 as a turning device for turning the steel sheet S in the plating bath 2. Further, a supporting roll 7 for supporting the direction-changed steel sheet S in the plating bath 2 may be provided. However, although the support roll 7 is effective in suppressing vibration of the steel sheet S and correcting warpage, dross in the plating bath may be wound and cause dross defects in the steel sheet S. In the present invention, since the vibration can be sufficiently suppressed and the warpage corrected by the electromagnet 5, the support roll 7 is not always necessary, and it is preferable that the support roll 7 is not installed from the viewpoint of preventing the surface defects of the steel sheet S.
気体絞り装置 4および電磁石 5は、 めっき浴 2の浴面と の支持口ール 6との間 に設けられる。 電磁石 5は、 気体絞り装置 4の上方および/または下方に設置され るが、 気体絞り装置 4の下方では亜鉛が飛散して堆積するため、 気体絞り装置 4よ り上方に設置されることが望ましレ、。  The gas expansion device 4 and the electromagnet 5 are provided between the plating surface of the plating bath 2 and the support port 6. The electromagnet 5 is installed above and / or below the gas throttle device 4. Since zinc is scattered and deposited below the gas throttle device 4, it is desirable that the electromagnet 5 be installed above the gas throttle device 4. Masire,
気体絞り装置 4の気体噴出口(ワイビングノズル)の先端と鋼板 Sとの間隔は、 従 来、 15mm程度に設定されていた。これは、 この程度の間隔を空けておかないと、 先行の鋼板と後行の鋼板の継目において鋼板の反りの状態が急激に変化する場合 に、 ワイビングノズルと鋼板とが繊する恐れがあるためである。しかし、 本発明 では、 鋼板の全長に渡って反り矯正を行うことができるため、 ワイビングノズル 先端と鋼板 Sとの間隔を従来の 15腿よりも小さくすることが可能である。 The distance between the tip of the gas ejection port (wiving nozzle) of the gas throttle device 4 and the steel plate S was conventionally set to about 15 mm. This is the case where the warp state of the steel sheet changes abruptly at the seam between the preceding steel sheet and the succeeding steel sheet unless this interval is left. In addition, the wiving nozzle and the steel plate may be fine. However, in the present invention, since the warp can be corrected over the entire length of the steel sheet, the distance between the tip of the wiping nozzle and the steel sheet S can be made smaller than that of the conventional 15-thigh.
電磁石 5は、 鋼板表面と交わる方向に磁力を発生させるように、 鋼板面に対向 して設けられる。 この電磁石 5は、 鋼板 Sの振動を抑制すると共に、 シンクロール 3や浴中の支持口ール 7から受ける曲げ曲げ戻し変形によって生じる鋼板 Sの反り を矯正する機能も有する。 また、 電磁石 5は、 例えば図 5に示すように、 幅方向に 多数設置され、 幅方向の反りの程度に応じてこれらの電磁石 5が選択的に使用さ れる。  The electromagnet 5 is provided to face the steel sheet so as to generate a magnetic force in a direction crossing the steel sheet surface. The electromagnet 5 has a function of suppressing the vibration of the steel sheet S and correcting a warp of the steel sheet S caused by the bending and return deformation received from the sink roll 3 and the support port 7 in the bath. Further, as shown in FIG. 5, for example, a large number of electromagnets 5 are provided in the width direction, and these electromagnets 5 are selectively used according to the degree of warpage in the width direction.
なお、 従来の電磁石を用いた装置では、 鋼板の位置を測定するための位置セン サ一が必要であるが、 本発明ではいわゆるプリセット制御を行うので、 そのよう な位置センサーは必ずしも必要ない。 コスト増や装置大型ィヒの観点から、 むしろ 位置センサーはない方が好ましい。  It should be noted that a conventional apparatus using an electromagnet requires a position sensor for measuring the position of a steel sheet, but in the present invention, so-called preset control is performed, and such a position sensor is not necessarily required. From the viewpoint of cost increase and large equipment size, it is preferable that there is no position sensor.
めっき浴 2へ侵入した鋼板 Sは、 シンクロール 3により方向転換されてめっき浴 2 力、ら引き上げられ、 気体絞り装置 4によりそのめつき付着量が調整される。 この とき、 シンクロール 3を通過した鋼板 Sは、 浴中の支持ロール 7およぴ浴外の支持 ロール 6により支持されるとともに、 これらの支持ロール間に設けられた電磁石 5 からの磁力によりその振動が抑制され、 反りも矯正される。  The steel sheet S that has entered the plating bath 2 is turned by the sink roll 3, pulled up from the plating bath 2, and adjusted by the gas squeezing device 4 to adjust the adhesion amount. At this time, the steel sheet S that has passed through the sink roll 3 is supported by the support roll 7 in the bath and the support roll 6 outside the bath, and the magnetic force from the electromagnet 5 provided between these support rolls causes the steel sheet S to move. Vibration is suppressed and warpage is corrected.
電磁石 5の電流制御は、 次のように行われる。まず、 ライン制御装置 10から各種 の操業条件データがプリセット制御用計算機 9へ送られる。 プリセット制御用計 算機 9では、 これらの操業条件データをもとにプリセット制御における電流値が 決定される。 その決定方法としては、 予め用意したテーブル値を用いてもよいし、 モデル式を構築して計算して求めてもよい。テーブル値を用いる方法では、 予め操 業条件ごとに適切な電流値 (安定中立点で鋼板が平坦となる電流値)を求めておき、 操業条件ごとにその値を用いる。操業条件としては、 鋼板の板厚、 板幅、 鋼種、 張 力、 上流側ロールのロール径、 卷き付け角度、 摩擦力、 押し込み量等を考慮する とよい。また、 モデル式は、 反りの発生や電磁石による吸引力などをあらわす物理 モデルから構築してもよいが、 操業条件を重回帰して構築してもよい。そして、 こ のようにして計算された最適な電流値は電流制御装置 8へ送られ、 電流制御装置 8 力ら指令により電磁石 5の出力が制御される。 また、 電磁石 5の電流値は、 先行の 鋼板と後行の鋼板の継目が電磁石の設置位置を通過する時には、 後行の鋼板の情 報に基づいて予め決定された電流値に変更すればよい。 The current control of the electromagnet 5 is performed as follows. First, various operation condition data are sent from the line control device 10 to the preset control computer 9. The preset control computer 9 determines the current value in the preset control based on these operation condition data. As a determination method, a table value prepared in advance may be used, or a model formula may be constructed and calculated. In the method using table values, an appropriate current value (current value at which the steel sheet becomes flat at a stable neutral point) is obtained in advance for each operating condition, and that value is used for each operating condition. The operating conditions should take into account the thickness of the steel sheet, the width, the type of steel, the tension, the roll diameter of the upstream roll, the winding angle, the frictional force, the pushing amount, and the like. The model formula may be constructed from a physical model representing the occurrence of warpage or the attractive force of the electromagnet, but may be constructed by multiple regression of operating conditions. And this The optimum current value calculated as described above is sent to the current control device 8, and the output of the electromagnet 5 is controlled by a command from the current control device 8. Also, the current value of the electromagnet 5 may be changed to a predetermined current value based on the information of the succeeding steel sheet when the seam between the preceding steel sheet and the succeeding steel sheet passes through the installation position of the electromagnet. .
図 6に、 本発明によるプリセット制御フローの一例を示す。  FIG. 6 shows an example of a preset control flow according to the present invention.
実線で示したフローは、 上述した現在処理中の先行の鋼板に対するプリセット 制御のフローである。  The flow indicated by the solid line is the flow of the preset control for the preceding steel sheet currently being processed as described above.
後行の鋼板に関しては、 点線で示すように、 ライン制御装置 10から送られた後 行の鋼板の操業条件を用いてプリセット制御用計算機 9でテーブル値またはモデ ル式により最適な電流値が計算される。 そして、 ライン制御装置 10から、 先行の 鋼板と後行の鋼板の継目が気体絞り装置 4あるいは電磁石 5の位置を通過する信号 を受け取り、 電磁石 5の最適な電流値が電流制御装置 8へ送られる。 このようにし て、 後行の鋼板の先端部が通過する時点から電磁石 5の電流値は最適値に設定さ れる。  For the succeeding steel sheet, as shown by the dotted line, the preset control computer 9 calculates the optimum current value by a table value or a model formula using the operating conditions of the succeeding steel sheet sent from the line controller 10. Is done. Then, a signal is received from the line controller 10 at which the joint between the preceding steel sheet and the succeeding steel sheet passes through the position of the gas expansion device 4 or the electromagnet 5, and the optimum current value of the electromagnet 5 is sent to the current control device 8. . In this way, the current value of the electromagnet 5 is set to the optimum value from the time when the leading end portion of the succeeding steel sheet passes.
以上のように、 電磁石 5の電流制御としてプリセット制御を行うことにより、 先行の鋼板と後行の鋼板の継目近傍を含めた鋼板の全長に渡る反り矯正が可能と なる。また、 浴中の支持ロール 7を使用しないで済むので、 プリセットモデルをさ らに簡略化することも可能である。 その他、 浴中ロールに起因する表面欠陥発生 の防止、 口一ル整備費の削減なども可能である。さらに、 気体絞り装置 4のワイピ ングノズル先端と鋼板 Sとの間隔を近づけることができるので、 低ガス圧での操 業が可能となり、 スプラッシュ欠陥の発生も抑制することができる。 実施の形態 2  As described above, by performing the preset control as the current control of the electromagnet 5, it is possible to correct the warp over the entire length of the steel sheet including the vicinity of the joint between the preceding steel sheet and the succeeding steel sheet. In addition, since the use of the support roll 7 in the bath is not required, the preset model can be further simplified. In addition, it is possible to prevent the occurrence of surface defects caused by rolls in the bath and to reduce the cost of mouth maintenance. Further, since the distance between the tip of the wiping nozzle of the gas expansion device 4 and the steel plate S can be reduced, operation at a low gas pressure becomes possible, and generation of splash defects can be suppressed. Embodiment 2
図 7に、 本発明である溶融金属めつき鋼板の製造装置の別の例を示す。  FIG. 7 shows another example of the apparatus for producing a steel sheet with molten metal according to the present invention.
この溶融金属めつき鋼板の製造装置では、 図 4に示した装置に、 気体絞り装置 4 の近傍に設けられた鋼板の形状測定装置 11、 浴外支持ロール 6よりも下流側に設 けられためっき付着量測定装置 12、 および電磁石 5の制御装置としてのフィード バック制御用計算機 13が付加されている。 本装置により、 実施の形態 1で述べた プリセット制御に加えて、 形状測定装置 11および/またはめつき付着量測定装置 12により計測された情報に基づき、 鋼板の反りを認識して電磁石 5の電流値を修 正する、 レ、わゆるフィードバック制御を行うことができる。 In this apparatus for manufacturing a steel plate with molten metal, the apparatus shown in Fig. 4 was installed downstream of the steel roll shape measuring device 11 and the out-of-bath support roll 6 provided near the gas expansion device 4. A plating adhesion amount measuring device 12 and a feedback control computer 13 as a control device for the electromagnet 5 are added. According to this device, it is described in Embodiment 1. In addition to the preset control, based on the information measured by the shape measuring device 11 and / or the adhesion measuring device 12, the warpage of the steel sheet is recognized and the current value of the electromagnet 5 is corrected. Control can be performed.
形状測定装置 11およびめつき付着量測定装置 12は、 鋼板 Sの振動や反りの状態 を認識するために設置されているので、 必ずしも両方の測定装置を備える必要は ない。  Since the shape measuring device 11 and the attached adhesion amount measuring device 12 are installed to recognize the state of vibration and warpage of the steel sheet S, it is not always necessary to provide both measuring devices.
形状測定装置 11は、 鋼板 Sの反りの大きさを測定するものであり、 必ずしも鋼 板 Sの幅方向全体を計測できるものである必要はない。 例えば、 鋼板 Sの幅方向の 中心部と端部のみを計測できる位置センサーのようなものであればよい。また、 気 体絞り装置 4の位置での形状を測定するためには、 できるだけ気体絞り装置 4に近 づけて設置することが望ましい。 さらに、 亜鉛の飛散を避けるためには気体絞り 装置 4の上方に設置することが望ましい。  The shape measuring device 11 measures the magnitude of the warpage of the steel sheet S, and does not necessarily need to be able to measure the entire width of the steel sheet S in the width direction. For example, it may be a position sensor that can measure only the center and the end in the width direction of the steel sheet S. In order to measure the shape at the position of the gas throttle device 4, it is desirable to install the gas throttle device 4 as close to the gas throttle device 4 as possible. Furthermore, it is desirable to install above the gas expansion device 4 in order to avoid the scattering of zinc.
めっき付着量測定装置 12は、 鋼板 Sに付着しためっき付着量を測定し、 幅方向 のめつき付着量分布を求めるものである。このめつき付着量分布より気体絞り装置 4と鋼板 Sとの距離、 すなわち鋼板 Sの反りを推測できる。  The coating weight measuring device 12 measures the coating weight attached to the steel sheet S, and obtains the plating weight distribution in the width direction. The distance between the gas expansion device 4 and the steel plate S, that is, the warpage of the steel plate S can be estimated from the adhesion distribution.
まず、 形状測定装置 11により鋼板 Sの形状が、 あるいはめっき付着量測定装置 12により鋼板表面のめっき付着量の幅方向分布が測定される。 これらの情報は、 フィードバック制御用計算機 13へ送られ、 ここで鋼板 Sの反り量が求められる。 そして、 ライン制御装置 10から送られる各種の操業条件データを基に、 フィード バック制御で設定する電流値の補正量を決定する。 この補正量は、 プリセット制 御の場合と同様に、 予め用意したテーブル値から決定してもよいし、 モデル式を 構築して決定してもょレ、。そして、 このようにして計算された電流値の補正量は電 流制御装置 8へ送られ、 電流制御装置 8の指令により電磁石 5の出力が制御される。 図 7に、 本発明によるフィードバック制御フ口一の一例を示す。  First, the shape of the steel sheet S is measured by the shape measuring device 11, or the distribution in the width direction of the plating amount on the steel sheet surface is measured by the plating amount measuring device 12. These pieces of information are sent to the feedback control computer 13, where the amount of warpage of the steel sheet S is obtained. Then, based on various operation condition data sent from the line control device 10, a correction amount of the current value set in the feedback control is determined. As in the case of the preset control, this correction amount may be determined from table values prepared in advance, or may be determined by constructing a model formula. Then, the correction amount of the current value calculated in this way is sent to the current control device 8, and the output of the electromagnet 5 is controlled by a command of the current control device 8. FIG. 7 shows an example of a feedback control port according to the present invention.
実線で示したフローは、 実施の形態 1で説明したプリセット制御フローである。 フィードバック制御では、 点線で示すように、 形状測定装置 11により測定され た形状のデータ、 あるいはめっき付着量測定装置 12により測定されためつき付着 量の幅方向分布のデータがフィードパック制御用計算機 13に送られる。 めっき付 着量測定装置 12を用いる には、 予め幅方向のめっき付着量分布と鋼板形状と の関係を求めておき、 それに基づいて鋼板の形状が求められる。 これらの形状の データから鋼板の反り量を計算し、 ライン制御装置 10から送られる各種操業条件 を用いて、 フィードパック制御用計算機 13においてテーブル値またはモデル式に より電磁石 5の電流値の補正量が計算される。 そして、 この電流値の補正量が電 流制御装置 8へ送られる。 The flow indicated by the solid line is the preset control flow described in the first embodiment. In the feedback control, as shown by the dotted line, data on the shape measured by the shape measuring device 11 or data on the widthwise distribution of the sticking amount measured by the plating amount measuring device 12 is sent to the feed pack control computer 13. Sent. With plating In order to use the coating amount measuring device 12, the relationship between the distribution of coating weight in the width direction and the shape of the steel sheet is determined in advance, and the shape of the steel sheet is determined based on the relationship. The warpage of the steel sheet is calculated from the data of these shapes, and the amount of correction of the current value of the electromagnet 5 is calculated using a table value or a model formula in the feed pack control computer 13 using various operating conditions sent from the line control device 10. Is calculated. Then, the correction amount of the current value is sent to the current control device 8.
実施の形態 1で説明したプリセット制御により、 ほぼ平坦な鋼板が実現できる 力 モデルの誤差やロール摩耗等の不確定要因により、 プリセット精度に誤差が 生じる^がある。そのような^^に、 さらにこのフィードバック制御を行って実 際の鋼板の反り量を測定し、 電磁石の出力に補正を加えれば、 より平坦な鋼板を 得ることができる。また、 このようなプリセット誤差を考慮し、 次回以降のプリセ ット時にもこの誤差を反映する誤差学習を行うことがより好ましい。 図 9は、 本発明と従来技術との形状制御性を比較した図である。  With the preset control described in the first embodiment, an almost flat steel plate can be realized. There is an error in the preset accuracy due to uncertain factors such as a force model error and roll wear. If such ^^ is further subjected to this feedback control to measure the actual warpage of the steel sheet and to correct the output of the electromagnet, a flatter steel sheet can be obtained. In addition, it is more preferable to consider such a preset error and perform error learning that reflects the error at the next and subsequent presets. FIG. 9 is a diagram comparing the shape controllability between the present invention and the conventional technology.
従来技術では、 フィードバック制御のみを行っているため、 先行の鋼板と後行 の鋼板の継目において後行の鋼板先端部の反りを矯正できない。  In the prior art, since only the feedback control is performed, it is not possible to correct the warp of the leading end of the succeeding steel sheet at the joint between the preceding steel sheet and the succeeding steel sheet.
上記本発明である実施の形態 1では、 プリセット制御を行っているため、 鋼板 全長に渡って反り量を一定範囲に抑制することができる。  In the first embodiment of the present invention, since the preset control is performed, the amount of warpage can be suppressed to a certain range over the entire length of the steel sheet.
上記本発明である実施の形態 2では、 プリセット制御に加えてフィードバック 制御を行っているため、 プリセット制御で生じた誤差を補正でき、 ほぼ鋼板全長 に渡り平坦な形状に制御することができる。  In the second embodiment of the present invention, since feedback control is performed in addition to the preset control, an error generated by the preset control can be corrected, and the flat shape can be controlled substantially over the entire length of the steel sheet.
なお、 実施の形態 1および 2では、 電磁石 5の電流制御を行う方法について述べ たが、 電磁石 5による磁力を調整するには電磁石 5と鋼板との距離を調整すること によっても達成される。 したがって、 本発明の電磁石 5の電流制御を行う代わり に、 電磁石 5と鋼板との距離を調整することによつても同様な効果を得ることが できる。  In the first and second embodiments, the method of controlling the current of the electromagnet 5 has been described. However, the adjustment of the magnetic force by the electromagnet 5 can also be achieved by adjusting the distance between the electromagnet 5 and the steel plate. Therefore, the same effect can be obtained by adjusting the distance between the electromagnet 5 and the steel sheet instead of controlling the current of the electromagnet 5 of the present invention.
また、 実施の形態 1および 2では、 鋼板全長に渡り反りを矯正することが可能と なり、 浴中支持ロールを使用せずに浴中ロール起因の表面欠陥の発生を解消する ことができ、 気体絞り装置のワイビングノズル先端と鋼板との間隔を近づけてス ブラッシュ欠陥の発生を抑制することができるので、 高品質な溶融亜鉛めつき鋼 板の製造が可能となる。 In Embodiments 1 and 2, warpage can be corrected over the entire length of the steel sheet, and the occurrence of surface defects caused by rolls in the bath can be eliminated without using the support rolls in the bath. Since the distance between the tip of the wiving nozzle of the gas expansion device and the steel plate can be reduced to suppress the occurrence of the splash defect, it is possible to manufacture a high quality hot-dip galvanized steel plate.
なお、 ここでは一般的な溶融亜鉛めつき鋼板の製造への適用について説明した 力 S、 本発明はこれに限定されるものではなく、 他の溶融金属めつき鋼板の製造に も適用することができる。 実施例  Here, the force S described for the application to the production of a general hot-dip galvanized steel sheet is not limited to this, and the present invention is applicable to the production of other hot-dip galvanized steel sheets. it can. Example
図 4および図 7に示した本発明である溶融金属めつき鋼板の製造装置を用レ、、 板 厚 0 . 7mm、 板幅 1500mmの冷延鋼板をめつき原板として、 表 1に示す電磁石やセン サーに関する 4種の条件下で溶融亜鉛めつき鋼板コイルを製造した。  Using the apparatus for producing a molten metal-plated steel sheet according to the present invention shown in FIGS. 4 and 7, a cold-rolled steel sheet having a thickness of 0.7 mm and a width of 1500 mm was used as an original plate for plating, and the electromagnets and Hot-dip galvanized steel coil was manufactured under four conditions for the sensor.
発明例 1の条件では、 図 4の製造装置を用いて電磁石のプリセット制御が行われ る。 特別なセンサ一を必要とせず、 簡易な装置構成であるため、 電磁石はワイピ ングノズルより上方 250mmに位置し、 ワイビングノズルに近接している。 また、 ワイビングノズルと鋼板との間隔は 7mmであり、 狭い。 なお、 浴中の支持ロール については、 使用と不使用の两方の を検討した。  Under the conditions of Invention Example 1, electromagnet preset control is performed using the manufacturing apparatus of FIG. The electromagnet is located 250 mm above the wiping nozzle and close to the wiping nozzle because it does not require a special sensor and has a simple device configuration. The distance between the wiving nozzle and the steel plate is 7 mm, which is narrow. Regarding the support rolls in the bath, whether they were used or not were examined.
発明例 2および 3の条件では、 図 7の製造装置を用いて電磁石のプリセット制御 とフィードバック制御が行われる。 センサーとしては、 発明例 2では形状測定装 置が、 発明例 3ではめつき付着量測定装置が設置されている。 電磁石は、 発明例 2 では形状測定装置がワイビングノズルの上方近傍に設置されているためワイピン グノズルょり上方 500mmに位置するが、 発明例 3ではワイピングノズルょり上方 250騰に位置する。 また、 ワイビングノズルと鋼板との間隔は 7mmであり、 狭い。 なお、 浴中の支持ロールについては、 発明例 1と同様に、 使用と不使用の両方の ^^を検討した。  Under the conditions of Invention Examples 2 and 3, electromagnet preset control and feedback control are performed using the manufacturing apparatus of FIG. As a sensor, a shape measuring device is provided in Invention Example 2, and a plating adhesion amount measuring device is provided in Invention Example 3. The electromagnet is located 500 mm above the wiping nozzle because the shape measuring device is installed near the upper part of the wiping nozzle in Invention Example 2, whereas it is located 250 mm above the wiping nozzle in Invention Example 2. The distance between the wiving nozzle and the steel plate is 7 mm, which is narrow. Regarding the supporting roll in the bath, both used and non-used ^^ were examined in the same manner as in Invention Example 1.
比較例の条件では、 電磁石とその近傍に形状測定装置が設けられた図 9の従来 の製造装置を用いて従来の電磁石のフィードバック制御が行われる。 電磁石は、 形状測定装置も設置されるため、 ワイビングノズルより上方 500mmに位置する。 また、 ワイビングノズルと鋼板との間隔は 15議である。 なお、 浴中の支持ロール については、 使用する場合のみを検討した。 Under the conditions of the comparative example, feedback control of the conventional electromagnet is performed using the conventional manufacturing apparatus of FIG. 9 in which the electromagnet and the shape measuring device are provided in the vicinity thereof. The electromagnet is located 500mm above the wiping nozzle because the shape measuring device is also installed. The distance between the wiving nozzle and the steel plate is 15 minutes. The support roll in the bath As for, only the case where it is used was considered.
そして、 製造された溶融亜鉛めつき鋼板について、 スプラッシュ欠陥の発生お よびめつき付着量の幅方向分布を調査した。 スプラッシュ欠陥の発生については、 溶融亜鉛めつきラインに設けられた表面欠陥計を用い、 鋼板コイル全長に渡るス プラッシュ欠陥の総数で評価した。 また、 めっき付着量の幅方向分布については、 溶融亜鉛めつきラインに設けられためつき付着量計を用い、 幅方向のめつき付着 量分布を測定して評価した。  Then, with respect to the manufactured hot-dip galvanized steel sheet, the occurrence of splash defects and the width direction distribution of the adhesion amount were investigated. The occurrence of splash defects was evaluated based on the total number of splash defects over the entire length of the steel sheet coil using a surface defect meter installed in the hot-dip galvanizing line. The distribution of the coating weight in the width direction was evaluated by measuring the distribution of the coating weight in the width direction by using a coating weight meter provided in the hot-dip galvanizing line.
その結果、 スプラッシュ欠陥の発生については、 1本の鋼板コイルに発生する スプラッシュ個数は比較例では約 10個であるのに対し、 発明例 1-3では、 どの条 件においても、 1-2個であり、 比較例に較べて大幅に低減された。 これは、 ワイ ビングノズ^^と鋼板との間隔が、 比較例では 15mmであるのに対し、 発明例では 7腿まで狭めることができ、 低ガス圧でのガスワイビングが可能になったためで ある。 なお、 発明例 1-3において、 浴中支持ロール 7の使用/不使用による差は認 められなかった。  As a result, with regard to the occurrence of splash defects, the number of splashes generated in one steel sheet coil was about 10 in the comparative example, whereas the number of splashes in Invention Example 1-3 was 1-2 in all conditions. This was significantly reduced as compared with the comparative example. This is because the distance between the wiping nose and the steel plate was 15 mm in the comparative example, but could be reduced to 7 thighs in the invention example, and gas wiping at a low gas pressure became possible. In Inventive Examples 1-3, no difference was observed between the use and non-use of the support roll 7 in the bath.
鋼板コィル先端部における幅方向のめつき付着量分布については、 比較例では めっき付着量が ± 10g/m2程度で不均一であるのに対し、 発明例 1-3ではめつき付 着量が ± 3g/m2程度でほぼ均一であった。 これは、 電磁石のフィードバック制御 を行った比較例では、 先行の鋼板と後行の鋼板の継目において後行の鋼板先端部 の反りの変化に対応できないが、 電磁石のプリセット制御を行った発明例 1-3で は、 後行の鋼板の先端部から反りを適切に矯正することができるためである。 鋼板コイル長手方向中央部における幅方向のめっき付着量分布については、 発 明例 1ではめつき付着量が鋼板コイル先端部と同等の ±
Figure imgf000015_0001
発明 例 2および 3ではめつき付着量が ± l〜2g/m2程度に改善された。 これは、 電磁石 のプリセット制御のみを行った発明例 1では、 鋼板の反りをほぼ平坦とすること ができるが、 プリセット制御の誤差により若干の反りが残る場合があり、 電磁石 のプリセット制御に加えてフィードパック制御を行った発明例 2および 3では、 プ リセット制御に誤差を生じた^^でも、 その誤差をフィードバック制御により適 切に補正して形状矯正できるためである。 表 1 発明例 1 発明例 2 発明例 3 比較例 電磁石 あり あり あり あり プリセッ卜 + プリセット +
Regarding the distribution of the coating weight in the width direction at the tip of the steel coil, the coating weight in the comparative example was non-uniform at about ± 10 g / m 2 , whereas the coating weight in Invention Example 1-3 was not uniform. It was almost uniform at about ± 3 g / m 2 . This is because, in the comparative example in which the electromagnet feedback control was performed, the change in the warp of the leading end of the succeeding steel sheet at the seam between the preceding steel sheet and the succeeding steel sheet could not be dealt with, but the invention example 1 in which the electromagnet preset control was performed. In the case of -3, the warpage can be properly corrected from the leading end of the succeeding steel sheet. Regarding the distribution of coating weight in the width direction at the center in the longitudinal direction of the steel coil, in Example 1, the coating weight was ±
Figure imgf000015_0001
Inventive Examples 2 and 3 showed that the adhesion amount was improved to about ± 1 to 2 g / m 2 . This is because in Invention Example 1 in which only the electromagnet preset control was performed, the warpage of the steel sheet could be made substantially flat, but a slight warp might remain due to an error in the preset control, and in addition to the electromagnet preset control, In the invention examples 2 and 3 in which the feed pack control is performed, even if an error occurs in the preset control, the error can be appropriately corrected by the feedback control to correct the shape. Table 1 Invention example 1 Invention example 2 Invention example 3 Comparative example Electromagnet Yes Yes Yes Yes Preset + Preset +
電磁石制御方法 プリセット フィードパック Electromagnet control method Preset feed pack
フィードパック フィード/くック  Feed Pack Feed / Cook
めつさ付 ¾"虽  With つ "付
センサー なし 形状測定装置 形状測定装置 測定装置  No sensor Shape measurement device Shape measurement device Measurement device
電磁石設置位置 Electromagnet installation position
250mm 500mm 250mm 500mm (ノズルよリ上)  250mm 500mm 250mm 500mm (above the nozzle)
ノズルと鋼板の 7mm /'mm 7mm 15mm 距離 7mm / 'mm 7mm 15mm distance between nozzle and steel plate
浴中支持ロール 使用/不使用 使用/不使用 使用/不使用 使用 Support roll in bath Used / Not used Used / Not used Used / Not used Used

Claims

請求の範囲 The scope of the claims
1 . 鋼板を、 溶融金属めつき浴中に連続的に浸入させ、 前記鋼板の表面に前記 溶融金属を付着させる工程と、 1. A steel sheet is continuously immersed in a bath for plating a molten metal, and the molten metal is adhered to the surface of the steel sheet;
前記鋼板を、 前記溶融金属めつき浴中に設けられた方向転換装置により方向 転換させた後、 前記溶融金属?^へ引き出す工程と、  A step of turning the steel sheet by a turning device provided in the molten metal plating bath, and then drawing the steel sheet to the molten metal;
前記鋼板に付着した前記溶融金属の付着量を、 気体絞り装置により調整する 工程と、  Adjusting the amount of the molten metal adhered to the steel plate by a gas throttle device;
前記鋼板の反りを、 前記気体絞り装置の上流側および/または下流側に設け られ、 前記鋼板の表面と交わる方向に磁力を作用させる電磁石を用いて、 磁力に より非 に矯正する工程と、  A step of correcting the warpage of the steel sheet by using an electromagnet provided on the upstream side and / or the downstream side of the gas expansion device and applying a magnetic force in a direction intersecting with the surface of the steel sheet;
を有し、 Has,
力つ、 前記電磁石の電流値が前記鋼板に関する情報に基づいて予め決定された電 流値に設定される溶融金属めつき鋼板の製造方法。 A method of manufacturing a steel sheet with a molten metal, wherein a current value of the electromagnet is set to a current value determined in advance based on information on the steel sheet.
2 . 電磁石の電流値を、 先行の鋼板と後行の鋼板の継ぎ目が前記電磁石の設置 位置を通過するのに合わせて、 前記後行の鋼板に関する情報に基づいて予め決定 された電流値に変更する請求の範囲 1に記載の溶融金属めつき鋼板の製造方法。 2. Change the current value of the electromagnet to a predetermined current value based on the information about the succeeding steel sheet as the seam between the preceding steel sheet and the succeeding steel sheet passes through the installation position of the electromagnet. 2. The method for producing a molten metal-plated steel sheet according to claim 1.
3 . 気体絞り装置の下流側に、 鋼板の形状測定装置および/または鋼板のめっき 付着量測定装置を設け、 前記形状測定装置および/または前記めつき付着量測定 装置により計測された情報に基づき電磁石の電流値を修正する請求の範囲 1に記 載の溶融金属めつき鋼板の製造方法。 3. Provide a shape measuring device for steel sheet and / or a coating weight measuring device for steel plate on the downstream side of the gas throttle device, and use an electromagnet based on the information measured by the shape measuring device and / or the adhesion measuring device. 2. The method for producing a molten metal-plated steel sheet according to claim 1, wherein the current value of the steel sheet is corrected.
4. 気体絞り装置の下流側に、 鋼板の形状測定装置および/または鋼板のめつき 付着量測定装置を設け、 前記形状測定装置および/または前記めつき付着量測定 装置により計測された情報に基づき電磁石の電流値を修正する請求の範囲 2に記 載の溶融金属めつき鋼板の製造方法。 4. Provide a shape measuring device for steel sheet and / or an adhesion measuring device for steel plate on the downstream side of the gas expansion device, based on the information measured by the shape measuring device and / or the adhesion measuring device for plating. 3. The method for producing a steel sheet with a molten metal according to claim 2, wherein the current value of the electromagnet is corrected.
5 . 溶融金属めつき浴中で鋼板を支持する装置を、 前記鋼板の方向転換装置の みとする請求の範囲 1に記載の溶融金属めつき鋼板の製造方法。 5. The method for producing a steel sheet with molten metal according to claim 1, wherein the apparatus for supporting the steel sheet in the molten metal plating bath is only the direction change device for the steel sheet.
6 . 溶融金属めつき浴中で鋼板を支持する装置を、 前記鋼板の方向転換装置の みとする請求の範囲 2に記載の溶融金属めつき鋼板の製造方法。 6. The method for producing a steel sheet with molten metal according to claim 2, wherein the apparatus for supporting the steel sheet in the molten metal plating bath is only the direction change device for the steel sheet.
7 . 溶融金属めつき浴中で鋼板を支持する装置を、 前記鋼板の方向転換装置の みとする請求の範囲 3に記載の溶融金属めつき鋼板の製造方法。 7. The method for producing a steel sheet with molten metal according to claim 3, wherein the apparatus for supporting the steel sheet in the molten metal plating bath is only the direction change device for the steel sheet.
8 . 溶融金属めつき浴中で鋼板を支持する装置を、 前記鋼板の方向転換装置の みとする請求の範囲 4の溶融金属めっき鋼板の製造方法。 8. The method for producing a hot-dip metal-plated steel sheet according to claim 4, wherein the apparatus for supporting the steel sheet in the hot-dip metal bath is only the direction change device for the steel sheet.
9 . 鋼板の表面に溶融金属を付着させる溶融金属めつき浴槽と、 9. A bathtub for applying molten metal to the surface of the steel plate,
前記溶融金属めつき浴槽中に設置され、 前記鋼板を方向転換させる方向転換 装置と、  A turning device installed in the molten metal plating bath, for turning the steel plate;
前記溶融金属めつき浴槽のめっき浴面の上方に設置され、 前記鋼板に付着し た溶融金属めつき量を調整する気体絞り装置と、  A gas squeezing device installed above a plating bath surface of the molten metal plating bath to adjust a molten metal plating amount attached to the steel plate;
前記気体絞り装置の上流側および/または下流側に設置され、 前記鋼板の表 面と交わる方向に磁力を作用させて前記鋼板の反りを非接触に矯正する電磁石と、 前記電磁石の電流値を、 前記鋼板に関する情報に基づいて予め決定された電 流値に設定する電流値プリセット制御装置と、  An electromagnet installed upstream and / or downstream of the gas expansion device to apply a magnetic force in a direction intersecting the surface of the steel sheet to correct the warpage of the steel sheet in a non-contact manner; A current value preset control device that sets a current value determined in advance based on information on the steel sheet;
を備えた溶融金属めつき鋼板の製造装置。 For manufacturing steel sheet with molten metal.
10 . さらに、 気体絞り装置の下流側に設置された鋼板の形状測定装置および/ または鋼板のめっき付着量測定装置と、 10. Further, a shape measuring device for the steel plate and / or a coating weight measuring device for the steel plate installed downstream of the gas throttle device,
前記形状測定装置および/または前記めっき付着量測定装置により計測され た情報に基づき電磁石の電流値を修正する電流値フィ一ドバック制御装置と、 を備えた請求の範囲 9に記載の溶融金属めつき鋼板の製造装置。 A current value feedback control device that corrects the current value of the electromagnet based on the information measured by the shape measurement device and / or the plating adhesion amount measurement device, 10. The apparatus for producing a molten metal-plated steel sheet according to claim 9, comprising:
11 . 溶融金属めつき浴槽中に設けられた鋼板を支持する装置が、 前記鋼板の方 向転換装置のみである請求の範囲 9に記載の溶融金属めつき鋼板の製造装置。 11. The apparatus for producing a steel sheet with a molten metal according to claim 9, wherein the apparatus for supporting the steel sheet provided in the bath with the molten metal is only the direction change device for the steel sheet.
12 . 溶融金属めつき浴槽中に設けられた鋼板を支持する装置が、 前記鋼板の方 向転換装置のみである請求の範囲 10に記載の溶融金属めっき鋼板の製造装 So 12. The apparatus for manufacturing a hot-dip metal-plated steel sheet according to claim 10, wherein the apparatus for supporting the steel sheet provided in the bath with the hot-dip metal plating is only the direction change device for the steel sheet.
PCT/JP2003/007924 2002-06-27 2003-06-23 Molten metal plated steel sheet production method and apparatus WO2004003249A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03738502A EP1516939A1 (en) 2002-06-27 2003-06-23 Molten metal plated steel sheet production method and apparatus
KR1020047019072A KR100758240B1 (en) 2002-06-27 2003-06-23 Molten Metal Plated Steel Sheet Production Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002187519A JP2004027315A (en) 2002-06-27 2002-06-27 Method and apparatus for manufacturing hot dip metal-coated steel plate
JP2002-187519 2002-06-27

Publications (1)

Publication Number Publication Date
WO2004003249A1 true WO2004003249A1 (en) 2004-01-08

Family

ID=29996789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007924 WO2004003249A1 (en) 2002-06-27 2003-06-23 Molten metal plated steel sheet production method and apparatus

Country Status (5)

Country Link
EP (1) EP1516939A1 (en)
JP (1) JP2004027315A (en)
KR (1) KR100758240B1 (en)
CN (1) CN1659301A (en)
WO (1) WO2004003249A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006021437A1 (en) * 2004-08-24 2006-03-02 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Strip coating method
WO2006021436A1 (en) 2004-08-24 2006-03-02 Betriebsforschungsinstitut VDEh-Institut für angewandte Forschung GmbH Method for guiding a strip and use of said method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525105B2 (en) * 2004-02-23 2010-08-18 Jfeスチール株式会社 Metal strip control device and manufacturing method of hot dip metal strip
FR2887707B1 (en) * 2005-06-24 2007-09-07 Celes Sa DEVICE AND METHOD FOR GUIDING A METAL STRIP IN CONTINUOUS PROCESS EQUIPMENT
SE529060C2 (en) * 2005-06-30 2007-04-24 Abb Ab Thickness-controlling device for metallic coating on elongated metallic strip comprises second wiper associated with respective electromagnetic wiper and designed to apply jet of gas to strip
DE102006052000A1 (en) * 2006-11-03 2008-05-08 Emg Automation Gmbh Device for stabilizing the run of a metal strip
JP5022770B2 (en) * 2007-05-11 2012-09-12 三菱日立製鉄機械株式会社 Manufacturing method of molten metal plating plate, molten metal plating equipment and control device thereof
JP5223451B2 (en) * 2008-05-17 2013-06-26 Jfeスチール株式会社 Method for producing hot-dip metal strip
CN103597111B (en) 2012-05-10 2015-07-22 新日铁住金株式会社 Steel sheet shape control method and steel sheet shape control device
JP2013239335A (en) * 2012-05-15 2013-11-28 Sharp Corp Backlight unit and liquid crystal display device
KR101517782B1 (en) 2013-08-30 2015-05-06 주식회사 포스코 Apparatus for strip flatness correction in hot dip galvanizing process
DE102016222224A1 (en) 2016-02-23 2017-08-24 Sms Group Gmbh Method for operating a coating device for coating a metal strip and coating device
DE102016222230A1 (en) * 2016-08-26 2018-03-01 Sms Group Gmbh Method and coating device for coating a metal strip
MX2021006938A (en) * 2018-12-11 2021-07-15 Jfe Steel Corp Method for manufacturing hot-dip metal-plated steel sheet, and apparatus for manufacturing hot-dip metal-plated steel sheet.
IT202000016012A1 (en) * 2020-07-02 2022-01-02 Danieli Off Mecc EQUIPMENT FOR CORRECTING THE FLATNESS OF A METALLIC STRIP AND RELATED CORRECTION METHOD
CN114934249A (en) * 2022-06-15 2022-08-23 武汉钢铁有限公司 Method and device for controlling hot-dip galvanized strip steel C warping defect and electronic equipment
CN116005092B (en) * 2022-12-14 2023-09-12 河北燕赵蓝天板业集团有限责任公司 Gradient type heat supplementing device and method for reducing zinc slag on surface of hot dip galvanized steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525387A1 (en) * 1991-06-25 1993-02-03 Nkk Corporation Method for controlling the coating weight on a hot-dip coated steel strip
JPH06287736A (en) * 1993-04-05 1994-10-11 Mitsubishi Heavy Ind Ltd Continuous plating device
JPH0925552A (en) * 1995-07-06 1997-01-28 Nkk Corp Method for controlling shape of hot dip coated steel sheet
JP2002294426A (en) * 2001-03-29 2002-10-09 Mitsubishi Heavy Ind Ltd Device and method for controlling plated coating weight

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2601068B2 (en) * 1991-06-25 1997-04-16 日本鋼管株式会社 Hot-dip galvanized steel sheet
JP2556220B2 (en) * 1991-08-26 1996-11-20 日本鋼管株式会社 Hot-dip galvanized steel sheet
JP2601067B2 (en) * 1991-06-25 1997-04-16 日本鋼管株式会社 Hot-dip galvanized steel sheet
JPH0525387A (en) * 1991-07-24 1993-02-02 Hitachi Chem Co Ltd Fluorine-containing polyimide precursor composition and pattern production with the same
KR950000007A (en) * 1993-06-14 1995-01-03 김종립 How to Cultivate Tea
JP3574204B2 (en) * 1995-01-24 2004-10-06 新日本製鐵株式会社 Apparatus and method for controlling coating weight of hot-dip coated steel sheet
JP3530514B2 (en) * 2001-08-02 2004-05-24 三菱重工業株式会社 Steel plate shape correction device and method
JP2003105515A (en) * 2001-09-26 2003-04-09 Mitsubishi Heavy Ind Ltd Device and method for correcting steel plate shape

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0525387A1 (en) * 1991-06-25 1993-02-03 Nkk Corporation Method for controlling the coating weight on a hot-dip coated steel strip
JPH06287736A (en) * 1993-04-05 1994-10-11 Mitsubishi Heavy Ind Ltd Continuous plating device
JPH0925552A (en) * 1995-07-06 1997-01-28 Nkk Corp Method for controlling shape of hot dip coated steel sheet
JP2002294426A (en) * 2001-03-29 2002-10-09 Mitsubishi Heavy Ind Ltd Device and method for controlling plated coating weight

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006021437A1 (en) * 2004-08-24 2006-03-02 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Strip coating method
WO2006021436A1 (en) 2004-08-24 2006-03-02 Betriebsforschungsinstitut VDEh-Institut für angewandte Forschung GmbH Method for guiding a strip and use of said method

Also Published As

Publication number Publication date
CN1659301A (en) 2005-08-24
EP1516939A1 (en) 2005-03-23
KR20050014836A (en) 2005-02-07
KR100758240B1 (en) 2007-09-12
JP2004027315A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
WO2004003249A1 (en) Molten metal plated steel sheet production method and apparatus
KR101130483B1 (en) Method and equipment for the continuous deposition of a coating on a strip type substrate
JP2009275243A (en) Method for measuring mass of plated film per unit area on hot-dip metal-plated steel sheet, and device for measuring mass of plated film per unit area
JP2004076082A (en) Apparatus and method for manufacturing hot dip coated metallic strip
JP2003105515A (en) Device and method for correcting steel plate shape
JPH1060614A (en) Method for adjusting coating weight of plating utilizing electromagnetic force and apparatus therefor
JP3111857B2 (en) Shape control method for hot-dip coated steel sheet
JP3096166B2 (en) Plating equipment for continuous hot metal plating line
JPH06108220A (en) Method for controlling coating weight of hot-dip metal-coated steel strip by electromagnetic force
JPH1053849A (en) Method for preventing meandering of hot dipped steel strip
JP5030278B2 (en) Steel strip shape control method and control apparatus in continuous hot dipping line
JP2014201798A (en) Method for manufacturing galvanized steel strip
JP2939033B2 (en) Manufacturing method of galvannealed steel sheet
JP5644141B2 (en) Metal band damping and position correcting apparatus, and hot-dip plated metal band manufacturing method using the apparatus
JP4169860B2 (en) Steel strip width warpage control method and apparatus during continuous hot dipping
JP5169089B2 (en) Continuous molten metal plating method
WO2020121646A1 (en) Method for manufacturing hot-dip metal-plated steel sheet, and apparatus for manufacturing hot-dip metal-plated steel sheet
JPH08197139A (en) Controller for shape of steel plate
JPH07277559A (en) Metal strip supporting device
JPH06299311A (en) Warpage correcting device and correcting method for strip in continuous hot dip metal coating equipment
JP3535131B2 (en) Manufacturing method of hot dip galvanized steel strip
JP2015160959A (en) Non-contact control device for metal strip and production method for hot-dip galvanized metal strip
JP2972204B1 (en) Control method of plating metal adhesion amount in molten metal plating equipment
JP2000282207A (en) Wiping device in hot dip metal coating apparatus
JP2003253414A (en) Manufacturing method and manufacturing apparatus for molten metal plated steel sheet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047019072

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038135698

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003738502

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047019072

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003738502

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003738502

Country of ref document: EP