WO2004002635A1 - Schaltkreis für eine elektromagnetische quelle zur erzeugung akustischer wellen - Google Patents

Schaltkreis für eine elektromagnetische quelle zur erzeugung akustischer wellen Download PDF

Info

Publication number
WO2004002635A1
WO2004002635A1 PCT/DE2003/002017 DE0302017W WO2004002635A1 WO 2004002635 A1 WO2004002635 A1 WO 2004002635A1 DE 0302017 W DE0302017 W DE 0302017W WO 2004002635 A1 WO2004002635 A1 WO 2004002635A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
voltage
circuit
source
diode
Prior art date
Application number
PCT/DE2003/002017
Other languages
English (en)
French (fr)
Inventor
Arnim Rohwedder
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP03740093A priority Critical patent/EP1517757B1/de
Priority to US10/519,022 priority patent/US7821871B2/en
Priority to DE50306318T priority patent/DE50306318D1/de
Priority to AU2003280438A priority patent/AU2003280438A1/en
Publication of WO2004002635A1 publication Critical patent/WO2004002635A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/50Application to a particular transducer type
    • B06B2201/52Electrodynamic transducer
    • B06B2201/53Electrodynamic transducer with vibrating magnet or coil

Definitions

  • the invention relates to a circuit for an electromagnetic source for generating acoustic waves.
  • FIG. 1 Such a circuit according to the prior art is shown in FIG. 1.
  • the circuit comprises a DC voltage source 1, a switching means 2, which is usually designed as a spark gap, a capacitor C and a coil L, which is part of a sound generation unit of the electromagnetic source.
  • the sound generating unit of the electromagnetic source has a coil carrier (not shown) on which the coil is arranged and a membrane (also not shown) arranged on the coil L in an insulating manner.
  • a current i (t) flows through the coil L, as a result of which an electromagnetic field is generated which interacts with the membrane.
  • the membrane is repelled into an acoustic propagation medium, as a result of which source pressure waves are emitted into the acoustic propagation medium as a carrier medium between the sound generation unit of the electromagnetic source and an object to be irradiated. Due to non-linear effects in the carrier medium, shock waves can arise from the acoustic source pressure waves, for example.
  • the structure of an electromagnetic source, in particular an electromagnetic shock wave source, is described for example in EP 0 133 665 B1.
  • Shock waves are used, for example, for the non-invasive destruction of concretions inside a patient's body, e.g. used to destroy a kidney stone.
  • Kidney stone-directed shock waves cause cracks to appear in the kidney stone.
  • the kidney stone finally breaks apart and can be eliminated naturally.
  • the capacitor C is discharged via the coil L during the discharging process, for which purpose a short circuit is generated by means of the switching means 2, the curves of the voltage u (t) (curve 3) over the coil L and the current i (t) (curve 4) through the coil L.
  • the decaying current i (t) flowing through the coil 4 is, as already mentioned, the cause of the generation of acoustic waves.
  • the acoustic waves generated by the electromagnetic shock wave source are proportional to the square of the current i (t), curve 5 in FIG.
  • a discharge process of the capacitor C accordingly results in a first acoustic source pressure wave from the first acoustic source pressure pulse (1st maximum) and further acoustic source pressure waves from the decaying sequence of positive acoustic source pressure pulses.
  • the first source pressure wave and the subsequent source pressure waves can form in shock waves with short positive components and subsequent elongated so-called vacuum wells due to nonlinear effects in the carrier medium and a nonlinear focusing, which usually takes place with an acoustic focusing lens known per se.
  • Properties of the shock wave can be changed by the frequency of the current i (t) flowing through the coil L.
  • the size of the active focus can be changed and adjusted to the object to be treated depending on the application.
  • the active focus can be selected according to the respective stone size, so that the acoustic energy is better for the disintegration of the Stone is used and the surrounding tissue is less stressed.
  • the invention is therefore based on the object of designing a circuit of the type mentioned at the outset in such a way that the generation of acoustic waves is improved.
  • this object is achieved by a circuit for an electromagnetic source for generating acoustic waves, characterized in that the circuit comprises at least one first capacitor which is connected in parallel to at least one series circuit comprising a second capacitor and a first valve.
  • the first valve which according to a preferred embodiment of the invention is a first diode or a first diode module, is connected in such a way that it blocks after charging both capacitors, thus preventing compensation processes between the two capacitors.
  • the first capacitor can be charged with a larger charging voltage than the second capacitor before the discharge of both capacitors.
  • the first step is to discharge the first capacitor, that is to say the capacitor with the higher charging voltage, via the coil. As soon as the charging voltage of the first capacitor is at least substantially equal to the charging voltage of the second capacitor, the first becomes Valve conductive, so that both capacitors discharge.
  • the circuit has the capacitance of the first capacitor before the second capacitor begins to discharge. While both capacitors are discharging, the circuit has a capacitance that is the sum of the capacitances of both capacitors.
  • the curve shape of the current through the coil can be changed, which in turn allows the properties of the shock wave to be varied.
  • the curve shape of the discharge current can be varied further if the circuit has a plurality of valve / capacitor pairs connected in series, which are connected in parallel with the first capacitor and are charged with different charging voltages.
  • the first diode module also includes, for example, a series and / or parallel connection of several diodes.
  • the first capacitor can be charged with a first DC voltage source and the second capacitor with a second DC voltage source before the discharge. According to a preferred embodiment of the invention, it is also provided to charge the first capacitor and the second capacitor with exactly one DC voltage source and to disconnect the DC voltage source from the second capacitor with a switching means as soon as the second capacitor has reached its charging voltage.
  • the switching means comprises at least one semiconductor element.
  • a second valve is connected in parallel to the parallel connection comprising the second capacitor / first valve and the first capacitor.
  • the second valve is a second diode or a second diode module.
  • a stronger first acoustic wave is generated, for example during the generation of shock waves, ie a stronger first shock wave, which results in an increase in the volume of the disintegrating effect for the destruction of concrements.
  • the tissue-damaging cavitation caused by the shock waves resulting from the subsequent source pressure pulses that result from the subsequent source pressure pulses is also reduced.
  • the reduced polarity reversal voltage caused by the second valve increases the service life of the first and the second capacitor.
  • decisive in the generation of audible sound waves in the generation of shock waves is the total area under the curve of the square of the current. In the case of the present invention, this is reduced overall by the elimination of the source pressure pulse that normally follows the first source pressure pulse.
  • FIG. 1 shows a known circuit for generating acoustic waves
  • Figure 2 The course of the voltage u (t), the current i (t) and the square of the current i 2 (t) over the Time during the discharge of the capacitor of the circuit from FIG. 1,
  • FIG. 3 shows an electromagnetic shock wave source
  • FIG. 4 shows a circuit according to the invention for generating acoustic waves
  • Figure 5 shows the course of the current i '(t) over time during the discharge of an inventive
  • FIG. 3 shows, in the form of a partly cut and partly block-like representation, an electromagnetic shock wave source in the form of a therapy head 10, which in the case of the present exemplary embodiment is part of a lithotripter, not shown in detail.
  • the therapy head 10 has a sound generation unit, known per se, designated 11, which operates according to the electromagnetic principle.
  • the sound generating unit 11 has, in a manner not shown in FIG. 3, a coil carrier, a flat coil arranged thereon and a metallic membrane insulated from the flat coil.
  • the membrane is repelled by shock waves through electromagnetic interaction with the flat coil into an acoustic propagation medium denoted by 12, as a result of which a source pressure wave is emitted into the acoustic propagation medium 12.
  • the source pressure wave of the acoustic lens 13 is focused on a focus zone F, the source pressure wave forming during its propagation in the acoustic propagation medium 12 and after introduction into the body of a patient P to a shock wave.
  • the shock wave serves to crush a stone ST in the kidney N of the patient P.
  • the therapy head 10 is assigned an operating and supply unit 14 which, apart from the flat coil, comprises the circuit according to the invention shown in FIG. 4 for generating acoustic waves.
  • the operating and supply unit 14 is electrically connected to the sound generating unit 11 comprising the flat coil via a connecting line 15 shown in FIG.
  • the circuit according to the invention shown in FIG. 4 for an electromagnetic shock wave source for generating acoustic waves has DC voltage sources DC0, DC1 and DC2, a switching means S, capacitors C0, Cl and C2 and the flat coil 23 of the electromagnetic sound generating unit 11 of the therapy head 10.
  • a diode D1 is connected to the capacitor C1 and a diode D2 is connected in series to the capacitor C2.
  • the series circuits comprising capacitor Cl / diode Dl and capacitor C2 / diode D2 are also connected in parallel to capacitor C0.
  • the switching means S is open for charging the capacitors C0 to C2.
  • the capacitor C0 is therefore charged with the DC voltage Uo of the DC voltage source DC0 and the polarity shown in FIG.
  • the capacitor C1 is charged with the direct voltage Ui of the direct voltage source DC1 and the polarity shown in FIG.
  • the voltage Ui of the DC voltage source DC1 is less than the voltage U 0 of the DC voltage source DC0.
  • the diode Dl is switched in such a way that it blocks as long as the capacitor C0 is charged with a larger voltage u 0 (t) than the capacitor Cl.
  • the diode Dl thus prevents a compensation process between the capacitors C0 and Cl charged with the voltages U 0 and Ui, which is why the capacitor C0 is charged with the higher voltage U 0 at the end of charging than the capacitor Cl, which is charged at the end of charging the voltage Ui is charged.
  • the capacitor C2 is the Furthermore charged with the DC voltage U 2 of the DC voltage source DC2 and the polarity shown in FIG. In the case of the present exemplary embodiment, the direct voltage U 2 is lower than the direct voltage Ui.
  • the diode D2 is also connected in such a way that it blocks as long as the voltage u 2 (t) of the capacitor C2 is less than the voltage u 0 (t) of the capacitor C0. It is therefore possible to charge the capacitors C0 to C2 with different voltages.
  • the switching means S is closed to generate the shock waves.
  • the capacitor C0 begins to discharge via the coil 23, as a result of which the voltage u 0 (t) of the capacitor C0 drops and a current i '(t) flows through the flat coil 23.
  • the voltage applied to the flat coil 23 is denoted by u '(t). If the voltage u 0 (t) of the capacitor C0 reaches the value of the voltage Ui of the charged capacitor Cl, the diode Dl becomes conductive and the current i '(t) through the flat coil 23 is fed by both capacitors C0 and Cl.
  • the curve shape of the current i '(t) can be reduced by the Flat coil 23 can be further influenced during unloading.
  • FIG. 5 shows, as an example, courses of currents i 1 (t) through the flat coil 23 during discharging, if the circuit shown in FIG. 4 only has the capacitors C0 and Cl includes.
  • FIG. 6 shows a further embodiment of a circuit according to the invention.
  • the circuit shown in FIG. 6 comprises capacitors CO 'to C2', switching means S ', SI and S2, diodes D1' and D2 ', a DC voltage source DCO' and the flat coil 23.
  • the diode Dl 'and the capacitor Cl' as well as the diode D2 'and the capacitor C2' are connected in series.
  • the series circuits comprising capacitor Cl '/ diode Dl' and capacitor C2 '/ diode D2' are connected in parallel to capacitor C0 '.
  • the diodes Dl 'and D2' are polarized such that they block as long as the capacitor C0 'is charged with a voltage uo' (t) according to the polarity shown in FIG. 6, which is greater than the voltage U ⁇ '(t) of the Capacitor Cl 'or the voltage u 2 ' (t) of the capacitor C2 'according to the polarity shown.
  • the switching means S ' is open while the capacitors C0' to C2 'are being charged.
  • switches SI and S2 are closed. Since the capacitors Cl 'and C2' are to be charged with charging voltages Ui 'and U 2 ' which are lower than the voltage U 0 'of the DC voltage source DCO', the switches SI and S2 are opened when the capacitors Cl 'and C2 'are charged with the desired voltages Ui' and U 2 '. Since the capacitors in the case of the present exemplary embodiment are charged with relatively low currents of less than 1 ampere, switching accuracies of the switches SI and S2 in the millisecond range are sufficient to charge the capacitors Cl 'and C2' with sufficient accuracy.
  • the voltages u x '(t) and u 2 ' (t) of the capacitors C1 'and C2' are monitored during charging using measuring devices which are not shown in FIG.
  • the switching means SI and S2 are therefore open, the capacitor CO 'is charged with the voltage Uo' of the DC voltage source DCO 'and the capacitors Cl' and C2 'with the voltages Ui' and U 2 '.
  • the voltage U 2 'of the charged capacitor C2 is lower than the voltage Ui' of the charged capacitor Cl.
  • Switching means S ' is closed and the capacitor C0' begins to discharge via the flat coil 23, as a result of which a current i '(t) flows through the flat coil 23.
  • the diodes Dl 'and D2' block. If the voltage o '(t) of the capacitor C0' reaches the value of the voltage Ui 'of the charged capacitor Cl', the diode Dl 'becomes conductive and the current i' (t) through the flat coil 23 is from the capacitors C0 'and Cl 'fed.
  • FIG. 7 shows a further circuit according to the invention, which has an additional diode D3 in comparison to the circuit shown in FIG.
  • the diode D3 is connected in parallel and in the reverse direction to the charging voltage U 0 of the capacitor C0.
  • FIG. 8 shows yet another circuit according to the invention, which has an additional diode D3 'in comparison to the circuit shown in FIG.
  • the diode D3 ' is connected in parallel and in the reverse direction to the charging voltage UO of the capacitor C0'.
  • diode modules having a series connection and / or a parallel connection of a plurality of diodes can in particular also be used.
  • the switching means S, S ', SI and S2 can in particular be a series connection of known thyristors, for example those from BEHLKE ELECTRONIC GmbH, Am Auerberg 4, 61476 Kronberg in their catalog “Fast High Voltage Solid State Switches” from June 2001 will be offered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Surgical Instruments (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Die Erfindung betrifft einen Schaltkreis für eine elektromagnetische Quelle zur Erzeugung akustischer Wellen. Der Schaltkreis umfasst wenigstens einen ersten Kondensator (C0, C0'), der parallel zu wenigstens einer Serienschaltung aus einem zweitem Kondensator (C1, C2, C1', C2') und einem ersten Ventil (D1, D2, D1', D2') geschaltet ist.

Description

Beschreibung
Schaltkreis für eine elektromagnetische Quelle zur Erzeugung akustischer Wellen
Die Erfindung betrifft einen Schaltkreis für eine elektromagnetische Quelle zur Erzeugung akustischer Wellen.
Ein derartiger Schaltkreis gemäß dem Stand der Technik ist in der Figur 1 dargestellt. Der Schaltkreis umfasst eine Gleichspannungsquelle 1, ein Schaltmittel 2 , das in der Regel als Funkenstrecke ausgeführt ist, einen Kondensator C sowie eine Spule L, die Teil einer Schallerzeugungseinheit der elektromagnetischen Quelle ist. Die Schallerzeugungseinheit der e- lektromagnetischen Quelle weist neben der Spule L einen nicht dargestellten Spulenträger, auf dem die Spule angeordnet ist, und eine ebenfalls nicht dargestellte, isolierend auf der Spule L angeordnete Membran auf. Bei der Entladung des Kondensators C über die Spule L fließt durch die Spule L ein Strom i(t), wodurch ein elektromagnetisches Feld erzeugt wird, das mit der Membran in Wechselwirkung tritt. Die Membran wird dabei in ein akustisches Ausbreitungsmedium abgestoßen, wodurch Quelldruckwellen in das akustische Ausbreitungsmedium als Trägermedium zwischen der Schallerzeugungseinheit der elektromagnetischen Quelle und einem zu beschallenden Objekt ausgesendet werden. Durch nichtlineare Effekte im Trägermedium können aus den akustischen Quelldruckwellen beispielsweise Stoßwellen entstehen. Der Aufbau einer elektromagnetischen Quelle, insbesondere einer elektromagnetischen Stoßwellenquelle, ist beispielsweise in der EP 0 133 665 Bl beschrieben.
Stoßwellen werden beispielsweise zur nichtinvasiven Zerstörung von Konkrementen im Körperinneren eines Patienten, z.B. zur Zerstörung eines Nierensteins, eingesetzt. Die auf den
Nierenstein gerichteten Stoßwellen bewirken, dass in dem Nierenstein Risse entstehen. Der Nierenstein bricht schließlich auseinander und kann auf natürlichem Weg ausgeschieden werden.
Betreibt man den in Figur 1 gezeigten Schaltkreis zur Erzeu- gung akustischer Wellen, so ergeben sich während des Entladevorgangs des Kondensators C über die Spule L, wozu mittels des Schaltmittels 2 ein Kurzschluss erzeugt wird, die in der Figur 2 exemplarisch eingetragenen Verläufe der Spannung u(t) (Kurve 3) über der Spule L und des Stromes i(t) (Kurve 4) durch die Spule L. Der durch die Spule 4 fließende abklingende Strom i(t), ist, wie bereits erwähnt, ursächlich für die Erzeugung von akustischen Wellen.
Dem Quadrat des Stromes i(t), Kurve 5 in der Figur 2, propor- tional sind die von der elektromagnetischen Stoßwellenquelle erzeugten akustische Wellen. Aus einem Entladevorgang des Kondensators C gehen demnach eine erste akustische Quelldruckwelle aus dem ersten akustischen Quelldruckpuls (1. Maximum) und weitere akustische Quelldruckwellen aus der ab- klingenden Folge von positiven akustischen Quelldruckpulsen hervor. Die erste Quelldruckwelle und die nachfolgenden Quelldruckwellen können sich, wie bereits erwähnt, durch nichtlineare Effekte im Trägermedium und eine nichtlineare Fokussierung, welche in der Regel mit einer an sich bekannten akustischen Fokussierungslinse erfolgt, in Stoßwellen mit kurzen aufgestellten Positivanteilen und nachfolgenden langgezogenen sogenannten Unterdruckwannen formen.
Durch die Frequenz des durch die Spule L fließenden Stromes i(t) können Eigenschaften der Stoßwelle, wie z.B. deren Fokusdurchmesser, verändert werden. Mit einer variablen Stromfrequenz und somit einer variablen Frequenz der Stoßwelle lässt sich beispielsweise die Größe des Wirkfokus verändern und je nach Anwendung auf das zu behandelnde Objekt einstel- len. Beispielsweise kann bei einem Lithotripter der Wirkfokus entsprechend der jeweiligen Steingröße gewählt werden, so dass die akustische Energie besser für die Desintegration des Steines ausgenutzt und das umliegendes Gewebe weniger belastet wird.
Wegen der relativ hohe Kurzschlussleistungen bis in den 100 MW-Bereich, sind eine variable Kapazität des Kondensators C und eine variable Induktivität der Spule L kostspielig. Um die Stoßwelle zu variieren, wird daher im Allgemeinen nur die Ladespannung des Kondensators C variiert, wodurch sich die Maxi a des Stromes i(t) durch die Spule L und der Spannung u(t) an der Spule L ändern. Die Kurvenformen des Stromes i(t) und der Spannung u(t) bleiben jedoch im Wesentlichen gleich.
Der Erfindung liegt daher die Aufgabe zugrunde, einen Schaltkreis der eingangs genannten Art derart auszubilden, dass die Erzeugung von akustischen Wellen verbessert wird.
Nach der Erfindung wird diese Aufgabe gelöst durch einen Schaltkreis für eine elektromagnetische Quelle zur Erzeugung akustischer Wellen, dadurch gekennzeichnet, dass der Schalt- kreis wenigstens einen ersten Kondensator umfasst, der parallel zu wenigstens einer Serienschaltung aus einem zweitem Kondensator und einem ersten Ventil geschaltet ist.
Das erste Ventil, das gemäß einer bevorzugten Ausführungsform der Erfindung eine erste Diode oder ein erstes Diodenmodul ist, ist dabei derart geschaltet, dass es nach dem Aufladen beider Kondensatoren sperrt, also Ausgleichsvorgänge zwischen beiden Kondensatoren verhindert. Dadurch kann, wie es nach einer bevorzugten Variante der Erfindung vorgesehen ist, der erste Kondensator vor der Entladung beider Kondensatoren mit einer größeren Ladespannung als der zweite Kondensator aufgeladen werden. Für die Erzeugung der akustischen Welle durch den Stromkreis wird zuerst mit dem Entladen des ersten Kondensators, also mit dem Kondensator mit der größeren Lade- Spannung, über die Spule begonnen. Sobald die Ladespannung des ersten Kondensators wenigstens im Wesentlichen gleich der Ladespannung des zweiten Kondensators ist, wird das erste Ventil leitend, so dass sich beide Kondensatoren entladen. Folglich hat der Schaltkreis die Kapazität des ersten Kondensators, bevor der zweite Kondensator beginnt, sich zu entladen. Während sich beide Kondensatoren entladen, hat der Schaltkreis eine Kapazität, die der Summe der Kapazitäten beider Kondensatoren entspricht. Durch ein Variierung der Ladespannungen beider Kondensatoren kann somit die Kurvenform des Stromes durch die Spule verändert werden, wodurch wiederum die Eigenschaften der Stoßwelle variiert werden können. Die Kurvenform des Entladestromes kann weiter variiert werden, wenn der Schaltkreis mehrere in Serie geschaltete Ventil/Kondensatorpaare aufweist, die parallel zum ersten Kondensator geschaltet und mit unterschiedlichen Ladespannungen geladen sind.
Das erste Diodenmodul umfasst im Übrigen beispielsweise eine Reihen- und/oder Parallelschaltung mehrerer Dioden.
Gemäß einer Ausführungsform der Erfindung kann vor der Entla- düng der erste Kondensator mit einer ersten Gleichspannungs- quelle und der zweite Kondensator mit einer zweiten Gleichspannungsquelle aufgeladen werden. Nach einer bevorzugten Ausführungsform der Erfindung ist es auch vorgesehen, den ersten Kondensator und den zweiten Kondensator mit genau ei- ner Gleichspannungsquelle aufzuladen und die Gleichspannungsquelle von dem zweiten Kondensator mit einem Schaltmittel wegzuschalten, sobald der zweite Kondensator seine Ladespannung erreicht hat. Das Schaltmittel umfasst gemäß einer Ausführungsform der Erfindung wenigstens ein Halbleiterelement.
Nach einer besonders bevorzugten Variante der Erfindung ist vorgesehen, dass der Parallelschaltung aus zweitem Kondensator/erstem Ventil und erstem Kondensator ein zweites Ventil parallel geschaltet ist. Das zweite Ventil ist gemäß einer Ausführungsform der Erfindung eine zweite Diode oder ein zweites Diodenmodul. Durch die Parallelschaltung des zweiten Ventils zu den Kondensatoren erreicht man bei der Entladung der Kondensatoren eine zeitliche Verlängerung des ersten Quelldruckpulses. Außerdem werden die nachfolgenden abklingenden Quelldruckpulse abhängig von der Impedanz des zweiten Ventils stark bedämpft. Die Dämpfung kann dabei so groß sein, dass die nachfolgenden Quelldruckpulse gänzlich verschwinden. Durch die zeitliche Verlängerung des ersten Quelldruckpulses wird eine stärkere erste akustische Welle, beispielsweise bei der Erzeugung von Stoßwellen, also eine stärkere erste Stoßwelle, erzeugt, wodurch sich für die Zertrümmerung von Kon- krementen eine Verstärkung der Volumen desintegrierenden Wirkung ergibt. Dadurch, dass zudem nur noch wenige schwache o- der überhaupt keine dem ersten Quelldruckpuls nachfolgende Quelldruckpulse auftreten, wird auch die gewebeschädigende Kavitation, verursacht durch die auf die erste Stoßwelle fol- genden aus den nachfolgenden Quelldruckpulsen hervorgegangenen Stoßwellen vermindert. Dadurch erhöht sich durch die durch das zweite Ventil bedingte verringerte Umpolspannung die Lebensdauer des ersten und des zweiten Kondensators. Zudem werden bei einer derartigen Erzeugung von Stoßwellen we- niger hörbare Schallwellen erzeugt, so dass sich eine Lärmreduzierung ergibt. Maßgeblich bei der Erzeugung von hörbaren Schallwellen bei der Erzeugung von Stoßwellen ist nämlich die Gesamtfläche unter der Kurve des Quadrates des Stromes. Diese wird im Falle der vorliegenden Erfindung insgesamt durch den Wegfall des normalerweise auf den ersten Quelldruckpuls folgenden Quelldruckpulses verringert.
Ausführungsbeispiele der Erfindung sind in den beigefügten schematischen Zeichnungen exemplarisch dargestellt. Es zei- gen:
Figur 1 einen bekannten Schaltkreis zur Erzeugung akustischer Wellen,
Figur 2 Den Verlauf der Spannung u(t), des Stromes i(t) und des Quadrates des Stromes i2(t) über der Zeit während der Entladung des Kondensators des Schaltkreises aus Figur 1,
Figur 3 eine elektromagnetische Stoßwellenquelle,
Figur 4 einen erfindungsgemäßen Schaltkreis zur Erzeugung akustischer Wellen,
Figur 5 den Verlauf des Stromes i' (t) über der Zeit während der Entladung eines erfindungsgemäßen
Schaltkreises und
Figur 6 bis 8 weitere erfindungsgemäße Schaltkreise.
Die Figur 3 zeigt in Form einer teils geschnittenen und teils blocksc altartigen Darstellung eine elektromagnetische Stoßwellenquelle in Form eines Therapiekopfes 10, der im Falle des vorliegenden Ausführungsbeispiels Bestandteil eines nicht näher dargestellten Lithotripters ist. Der Therapiekopf 10 weist eine mit 11 bezeichnete, an sich bekannte Schallerzeugungseinheit auf, welche nach dem elektromagnetischen Prinzip arbeitet. Die Schallerzeugungseinheit 11 weist in in der Figur 3 nicht dargestellter Weise einen Spulenträger, eine auf diesem angeordnete Flachspule und eine gegenüber der Flach- spule isolierte metallische Membran auf. Zur Erzeugung von
Stoßwellen wird die Membran durch elektromagnetische Wechselwirkung mit der Flachspule in ein mit 12 bezeichnetes akustisches Ausbreitungsmedium abgestoßen, wodurch eine Quelldruckwelle in das akustische Ausbreitungsmedium 12 ausgesendet wird. Die Quelledruckwelle der akustischen Linse 13 wird auf eine Fokuszone F fokussiert, wobei sich die Quelldruckwelle während ihrer Ausbreitung in dem akustischen Ausbreitungsmedium 12 und nach Einleitung in den Körper eines Patienten P zu einer Stoßwelle aufstellt. Im Falle des in Figur 3 gezeig- ten Ausführungsbeispiels dient die Stoßwelle zur Zertrümmerung eines Steines ST in der Niere N des Patienten P. Dem Therapiekopf 10 ist eine Bedien- und Versorgungseinheit 14 zugeordnet, die bis auf die Flachspule den in der Figur 4 gezeigten erfindungsgemäßen Schaltkreis zur Erzeugung von a- kustischen Wellen umfasst. Die Bedien- und Versorgungseinheit 14 ist dabei über eine in der Figur 3 gezeigte Verbindungsleitung 15 mit der die Flachspule umfassenden Schallerzeugungseinheit 11 elektrisch verbunden.
Der in der Figur 4 gezeigte erfindungsgemäße Schaltkreis für eine elektromagnetische Stoßwellenquelle zur Erzeugung akustischer Wellen weist Gleichspannungsquellen DC0, DC1 und DC2, ein Schaltmittel S, Kondensatoren C0, Cl und C2 und die Flachspule 23 der elektromagnetischen Schallerzeugungseinheit 11 des Therapiekopfes 10 auf. Mit dem Kondensator Cl ist im Falle des vorliegenden Ausführungsbeispiels eine Diode Dl und mit dem Kondensator C2 ist eine Diode D2 in Serie geschaltet. Die Serienschaltungen aus Kondensator Cl/Diode Dl und Kondensator C2/Diode D2 sind außerdem parallel zum Kondensator C0 geschaltet.
Für eine Aufladung der Kondensatoren C0 bis C2 ist das Schaltmittel S geöffnet. Der Kondensator C0 wird deshalb mit der Gleichspannung Uo der Gleichspannungsquelle DC0 und der in der Figur 4 dargestellten Polarität aufgeladen. Der Kon- densator Cl wird mit der Gleichspannung Ui der Gleichspannungsquelle DC1 und der in der Figur 4 dargestellten Polarität aufgeladen. Die Spannung Ui der Gleichspannungsquelle DC1 ist im Falle des vorliegenden Ausführungsbeispiels kleiner als die Spannung U0 der Gleichspannungsquelle DC0. Die Diode Dl ist derart geschaltet, dass sie sperrt, solange der Kondensator C0 mit einer größeren Spannung u0(t) aufgeladen ist als der Kondensator Cl . Die Diode Dl verhindert also einen Ausgleichsvorgang zwischen den mit den Spannungen U0 bzw. Ui aufgeladenen Kondensatoren C0 und Cl, weshalb der Kondensator C0 am Ende des Aufladens mit der höheren Spannung U0 aufgeladen ist als der Kondensator Cl, der am Ende des Aufladens mit der Spannung Ui aufgeladen ist. Der Kondensator C2 wird des Weiteren mit der Gleichspannung U2 der Gleichspannungsquelle DC2 und der in der Figur 4 dargestellten Polarität aufgeladen. Die Gleichspannung U2 ist im Falle des vorliegenden Ausführungsbeispiels kleiner als die Gleichspannung Ui. Die Diode D2 ist ebenfalls derart geschaltet, dass sie sperrt, solange die Spannung u2(t) des Kondensators C2 kleiner als die Spannung u0(t) des Kondensators C0 ist. Somit ist es möglich, die Kondensatoren C0 bis C2 mit unterschiedlich großen Spannungen aufzuladen.
Für das Erzeugen der Stoßwellen wird das Schaltmittel S geschlossen. Dadurch beginnt der Kondensator C0 sich über die Spule 23 zu entladen, wodurch die Spannung u0(t) des Kondensators C0 sinkt und ein Strom i' (t) durch die Flachspule 23 fließt. Die an der Flachspule 23 anliegende Spannung ist mit u' (t) bezeichnet. Erreicht die Spannung u0(t) des Kondensators C0 den Wert der Spannung Ui des geladenen Kondensators Cl, wird die Diode Dl leitend und der Strom i' (t) durch die Flachspule 23 wird von beiden Kondensatoren C0 und Cl ge- speist. Erreichen die Spannung u0(t) des Kondensators C0 und die Spannung Uι(t) des Kondensators Cl die Spannung U2 des aufgeladenen Kondensators C2, wird die Diode D2 leitend und der Strom i' (t) durch die Flachspule 23 wird von den drei Kondensatoren C0 bis C2 gespeist. Somit stellt sich eine zeitlich veränderbare Kapazität des Schaltkreises ein, wodurch die Kurvenform des durch die Flachspule 23 fließenden Stromes i' (t) beeinflussbar ist. Durch in der Figur 4 nicht dargestellte weitere, parallel zum Kondensator C0 geschaltete Kondensator/Dioden Kombinationen, deren Kondensatoren mit un- terschiedlich hohen Spannungen kleiner als die Spannung Uo der Gleichspannungsquelle DC0 aufgeladen sind, kann die Kurvenform des Stromes i' (t) durch die Flachspule 23 während des Entladens weiter beeinflusst werden.
Die Figur 5 zeigt als Beispiel Verläufe von Strömen i1 (t) durch die Flachspule 23 während des Entladens, wenn der in der Figur 4 gezeigte Schaltkreis nur die Kondensatoren C0 und Cl umfasst. Durch eine geeignete Wahl der Spannungen U0 und Ui der Gleichspannungsquellen DCO und DC1 haben die Stromma- xima gleiche Werte.
Die Figur 6 zeigt eine weitere Ausführungsform eines erfindungsgemäßen Schaltkreises. Der in der Figur 6 dargestellte Schaltkreis umfasst im Falle des vorliegenden Ausführungsbei- spiels Kondensatoren CO' bis C2 ' , Schaltmittel S', SI und S2, Dioden Dl' und D2 ' , eine Gleichspannungsquelle DCO' und die Flachspule 23.
Die Diode Dl' und der Kondensator Cl' sowie die Diode D2 ' und der Kondensator C2 ' sind in Serie geschaltet. Die Serienschaltungen aus Kondensator Cl' /Diode Dl' und Kondensator C2' /Diode D2 ' sind parallel zum Kondensator C0' geschaltet. Die Dioden Dl' und D2 ' sind derart gepolt, dass sie sperren, solange der Kondensator C0' mit einer Spannung uo' (t) gemäß der in der Figur 6 eingezeichneten Polarität geladen ist, die größer als die Spannung Uι'(t)des Kondensators Cl' bzw. der Spannung u2' (t) des Kondensators C2' gemäß der eingezeichneten Polarität ist.
Während des Aufladens der Kondensatoren C0' bis C2 ' ist das Schaltmittel S' geöffnet. Zu Beginn des Aufladens sind die Schaler SI und S2 geschlossen. Da die Kondensatoren Cl ' und C2' mit Ladespannungen Ui' und U2' geladen werden sollen, die kleiner als die Spannung U0' der Gleichspannungsquelle DCO' sind, werden die Schalter SI und S2 dann geöffnet, wenn die Kondensatoren Cl' und C2 ' mit den gewünschten Spannungen Ui' und U2' aufgeladen sind. Da die Kondensatoren im Falle des vorliegenden Ausführungsbeispiels mit relativ geringen Strömen kleiner als 1 Ampere aufgeladen werden, sind Schaltgenauigkeiten der Schalter SI und S2 im Millisekundenbereich ausreichend, um die Kondensatoren Cl' und C2 ' mit ausreichender Genauigkeit aufzuladen. Die Spannungen ux' (t) und u2' (t) der Kondensatoren Cl ' und C2 ' werden während des Aufladens mit in der Figur 6 nicht dargestellten Messgeräten überwacht. Am Ende des Aufladens sind daher die Schaltmittel SI und S2 geöffnet, der Kondensator CO' mit der Spannung Uo' der Gleichspannungsquelle DCO' und die Kondensatoren Cl' und C2 ' mit den Spannungen Ui' und U2' geladen. Außerdem ist im Falle des vorliegenden Ausführungsbeispiels die Spannung U2' des aufgeladenen Kondensators C2 kleiner als die Spannung Ui' des aufgeladenen Kondensators Cl.
Für die Entladung der Kondensatoren C0' bis C2 ' wird das
Schaltmittel S' geschlossen und der Kondensator C0' beginnt sich über die Flachspule 23 zu entladen, wodurch ein Strom i'(t) durch die Flachspule 23 fließt. Solange die Spannung Uo' (t) des Kondensators C0' größer als die Spannung Ui' des aufgeladenen Kondensators Cl' ist, sperren die Dioden Dl' und D2'. Erreicht die Spannung o' (t) des Kondensators C0' den Wert der Spannung Ui' des aufgeladenen Kondensators Cl', wird die Diode Dl' leitend und der Strom i' (t) durch die Flachspule 23 wird von den Kondensatoren C0' und Cl ' gespeist. Errei- chen die Spannungen u0' (t) und Ui' (t) der Kondensatoren C0' und Cl ' den Wert der Spannung U2' des aufgeladenen Kondensators C2 ' , wird auch die Diode D2 ' leitend und der Strom i' (t) durch die Flachspule 23 wird von den Kondensatoren CO' bis C2' gespeist.
Die Figur 7 zeigt einen weiteren erfindungsgemäßen Schaltkreis, der im Vergleich zu dem in der Figur 4 gezeigten Schaltkreis eine zusätzliche Diode D3 aufweist. Die Diode D3 ist parallel und in Sperrrichtung zur Ladespannung U0 des Kondensators C0 geschaltet.
Die Figur 8 zeigt noch einen weiteren erfindungsgemäßen Schaltkreis, der im Vergleich zu dem in der Figur 6 gezeigten Schaltkreis eine zusätzliche Diode D3 ' aufweist. Die Diode D3' ist parallel und in Sperrrichtung zur Ladespannung UO des Kondensators C0' geschaltet. Anstelle der Dioden Dl bis D3 und Dl' bis D3' können insbesondere auch Diodenmodule aufweisend eine Reihenschaltung und/oder Parallelschaltung mehrerer Dioden eingesetzt werden. Die Schaltmittel S, S', SI und S2 können insbesondere eine Reihenschaltung von an sich bekannten Thyristoren sein, die z.B. von der Firma BEHLKE ELECTRONIC GmbH, Am Auerberg 4, 61476 Kronberg in ihrem Katalog "Fast High Voltage Solid- State Switches" vom Juni 2001 angeboten werden.

Claims

Patentansprüche
1. Schaltkreis für eine elektromagnetische Quelle zur Erzeugung akustischer Wellen, d a d u r c h g e k e n n z e i c h n e t, dass der Schaltkreis wenigstens einen ersten Kondensator (CO, C0') umfasst, der parallel zu wenigstens einer Serienschaltung aus einem zweitem Kondensator (Cl, C2, Cl ' , C2') und einem ersten Ventil (Dl, D2, Dl*, D2 ' ) geschaltet ist.
2. Schaltkreis nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass das erste Ventil eine erste Diode (Dl, D2, Dl', D2 ' ) oder ein erstes Diodenmodul ist.
3. Schaltkreis nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass vor einer Entladung des ersten Kondensators (C0, C0') und des zweiten Kondensators (Cl, C2, Cl', C2 ' ) der erste Kondensator (C0, C0') mit einer größeren Ladespannung (U0, U0') als der zweite Kondensator (Cl, C2, Cl', C2 ' ) aufladbar ist.
4. Schaltkreis nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass vor der Entladung der erste Kondensator (C0) mit einer ersten Gleichspannungsquelle (DCO) und der zweite Kondensator (Cl, C2) mit einer zweiten Gleichspannungsquelle (DC1, DC2) auf- ladbar sind.
5. Schaltkreis nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass der erste Kondensator (C0') und der zweite Kondensator (Cl', C2 ' ) mit genau einer Gleichspannungsquelle (DC) aufladbar sind und die Gleichspannungsquelle (DC) von dem zweiten Kon- densator mit einem Schaltmittel (SI, S2) wegschaltbar ist, sobald der zweite Kondensator seine Ladespannung erreicht hat.
6. Schaltkreis nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, dass das Schaltmittel (SI, S2) wenigstens ein Halbleiterelement umfasst.
7. Schaltkreis nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, dass der Parallelschaltung aus zweitem Kondensator (Cl, C2, Cl ' , C2') /erstem Ventil (Dl, D2, Dl', D2 ' ) und erstem Kondensator (C0, C0') ein zweites Ventil (D3, D3 ' ) parallel geschaltet ist.
8. Schaltkreis nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t, dass das zweite Ventil eine zweite Diode (D3, D3 ' ) oder ein zweites Diodenmodul ist.
PCT/DE2003/002017 2002-06-28 2003-06-16 Schaltkreis für eine elektromagnetische quelle zur erzeugung akustischer wellen WO2004002635A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03740093A EP1517757B1 (de) 2002-06-28 2003-06-16 Schaltkreis für eine elektromagnetische quelle zur erzeugung akustischer wellen
US10/519,022 US7821871B2 (en) 2002-06-28 2003-06-16 Switching circuit for an electromagnetic source for the generation of acoustic waves
DE50306318T DE50306318D1 (de) 2002-06-28 2003-06-16 Schaltkreis für eine elektromagnetische quelle zur erzeugung akustischer wellen
AU2003280438A AU2003280438A1 (en) 2002-06-28 2003-06-16 Switching circuit for an electromagnetic source for the generation of acoustic waves

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10229112A DE10229112B4 (de) 2002-06-28 2002-06-28 Schaltkreis für eine elektromagnetische Quelle zur Erzeugung akustischer Wellen
DE10229112.8 2002-06-28

Publications (1)

Publication Number Publication Date
WO2004002635A1 true WO2004002635A1 (de) 2004-01-08

Family

ID=29795961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002017 WO2004002635A1 (de) 2002-06-28 2003-06-16 Schaltkreis für eine elektromagnetische quelle zur erzeugung akustischer wellen

Country Status (6)

Country Link
US (1) US7821871B2 (de)
EP (1) EP1517757B1 (de)
CN (1) CN100448554C (de)
AU (1) AU2003280438A1 (de)
DE (2) DE10229112B4 (de)
WO (1) WO2004002635A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7821871B2 (en) * 2002-06-28 2010-10-26 Siemens Aktiengesellschaft Switching circuit for an electromagnetic source for the generation of acoustic waves

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8630148B2 (en) * 2011-06-02 2014-01-14 Schlumberger Technology Corporation Systems, methods, and apparatus to drive reactive loads
DE102012013534B3 (de) 2012-07-05 2013-09-19 Tobias Sokolowski Vorrichtung für repetitive Nervenstimulation zum Abbau von Fettgewebe mittels induktiver Magnetfelder
US10124187B2 (en) * 2015-04-28 2018-11-13 Btl Holdings Limited Combination of radiofrequency and magnetic treatment methods
US9919161B2 (en) * 2015-07-01 2018-03-20 Btl Holdings Limited Method of neural structure stimulation by magnetic field
US11491342B2 (en) * 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US9636519B2 (en) 2015-07-01 2017-05-02 Btl Holdings Limited Magnetic stimulation methods and devices for therapeutic treatments
US10245439B1 (en) 2015-07-01 2019-04-02 Medical Technologies Cz A.S. Aesthetic method of biological structure treatment by magnetic field
US10478633B2 (en) 2015-07-01 2019-11-19 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US20170106201A1 (en) * 2015-07-01 2017-04-20 Btl Holdings Limited Combination of magnetic and electromagnetic treatment method
US10821295B1 (en) 2015-07-01 2020-11-03 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10478634B2 (en) 2015-07-01 2019-11-19 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US20180001107A1 (en) 2016-07-01 2018-01-04 Btl Holdings Limited Aesthetic method of biological structure treatment by magnetic field
US10695575B1 (en) 2016-05-10 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US20170001030A1 (en) * 2015-07-01 2017-01-05 Btl Holdings Limited Magnetic stimulation device and methods
US10549110B1 (en) 2015-07-01 2020-02-04 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10569094B2 (en) 2015-07-01 2020-02-25 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11266850B2 (en) 2015-07-01 2022-03-08 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
US10569095B1 (en) 2015-07-01 2020-02-25 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10549109B2 (en) 2015-07-01 2020-02-04 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10695576B2 (en) 2015-07-01 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US9937358B2 (en) 2015-07-01 2018-04-10 Btl Holdings Limited Aesthetic methods of biological structure treatment by magnetic field
US9974519B1 (en) 2015-07-01 2018-05-22 Btl Holdings Limited Aesthetic method of biologoical structure treatment by magnetic field
US10471269B1 (en) 2015-07-01 2019-11-12 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10493293B2 (en) 2015-07-01 2019-12-03 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10709894B2 (en) 2015-07-01 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11253717B2 (en) 2015-10-29 2022-02-22 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US10709895B2 (en) 2016-05-10 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US10583287B2 (en) 2016-05-23 2020-03-10 Btl Medical Technologies S.R.O. Systems and methods for tissue treatment
US10556122B1 (en) 2016-07-01 2020-02-11 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10039929B1 (en) 2017-04-04 2018-08-07 BLT Holdings Limited Method and device for pelvic floor tissue treatment
US11896823B2 (en) 2017-04-04 2024-02-13 Btl Healthcare Technologies A.S. Method and device for pelvic floor tissue treatment
CN113286630B (zh) 2019-04-11 2024-08-02 比特乐医疗方案股份有限公司 通过射频和磁能对生物结构进行美容治疗的方法和装置
CN113496828A (zh) * 2020-04-08 2021-10-12 南京南瑞继保电气有限公司 电磁斥力操作机构的控制方法、控制电路及操作机构
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
CA3173876A1 (en) 2020-05-04 2021-11-11 Tomas SCHWARZ Device and method for unattended treatment of a patient
EP4415812A1 (de) 2021-10-13 2024-08-21 BTL Medical Solutions a.s. Vorrichtungen zur ästhetischen behandlung biologischer strukturen durch hochfrequenz und magnetische energie
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1747188A1 (ru) * 1990-07-05 1992-07-15 Центральный научно-исследовательский институт судовой электротехники и технологии Способ возбуждени акустического импульса и устройство дл его осуществлени
DE19814331A1 (de) * 1998-03-31 1999-10-14 Dornier Medtech Holding Int Gmbh Vorrichtung zum Erzeugen von akustischen Druckpulsen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE299873C (de) *
DE896172C (de) * 1943-05-13 1953-11-09 Atlas Werke Ag Vorrichtung zur Erzeugung von Impulsen, insbesondere zur Erregung von Schallsendern
DE3328051A1 (de) 1983-08-03 1985-02-14 Siemens AG, 1000 Berlin und 8000 München Einrichtung zum beruehrungslosen zertruemmern von konkrementen
CN2173592Y (zh) * 1992-11-23 1994-08-10 深圳科达电气新技术有限公司 电磁式体外冲击波发生装置
DE10207737C1 (de) * 2002-02-22 2003-04-17 Siemens Ag Schaltkreis für eine elektromagnetische Quelle zur Erzeugung akustischer Wellen
DE10229112B4 (de) * 2002-06-28 2004-07-15 Siemens Ag Schaltkreis für eine elektromagnetische Quelle zur Erzeugung akustischer Wellen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1747188A1 (ru) * 1990-07-05 1992-07-15 Центральный научно-исследовательский институт судовой электротехники и технологии Способ возбуждени акустического импульса и устройство дл его осуществлени
DE19814331A1 (de) * 1998-03-31 1999-10-14 Dornier Medtech Holding Int Gmbh Vorrichtung zum Erzeugen von akustischen Druckpulsen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section PQ Week 199328, Derwent World Patents Index; Class P43, AN 1993-225453, XP002259249 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7821871B2 (en) * 2002-06-28 2010-10-26 Siemens Aktiengesellschaft Switching circuit for an electromagnetic source for the generation of acoustic waves

Also Published As

Publication number Publication date
US7821871B2 (en) 2010-10-26
DE10229112A1 (de) 2004-01-29
EP1517757B1 (de) 2007-01-17
DE50306318D1 (de) 2007-03-08
AU2003280438A1 (en) 2004-01-19
EP1517757A1 (de) 2005-03-30
CN1665607A (zh) 2005-09-07
US20060152301A1 (en) 2006-07-13
CN100448554C (zh) 2009-01-07
DE10229112B4 (de) 2004-07-15

Similar Documents

Publication Publication Date Title
WO2004002635A1 (de) Schaltkreis für eine elektromagnetische quelle zur erzeugung akustischer wellen
DE69402202T2 (de) Elektrochirurgischer generator
DE102007046902A1 (de) Impulsspannungsgenerator sowie Stoßwellentherapievorrichtung mit einem Impulsspannungsgenerator
DE3523871A1 (de) Hochfrequenz-chirurgiegeraet
DE4213586A1 (de) Therapieeinrichtung zur Behandlung mit fokussierten akustischen Wellen
DE3510586A1 (de) Kontrolleinrichtung fuer ein hochfrequenz-chirurgiegeraet
EP0781447A1 (de) Verfahren und vorrichtung zur erzeugung von stosswellen für die medizinische therapie, insbesondere für die elektro-hydraulische lithotripsie
EP0183236A2 (de) Einrichtung zur berührungsfreien Zertrümmerung von Konkrementen im Körper von Lebewesen
EP0209053A2 (de) Verfahren und Einrichtung zur berührungsfreien Zertrümmerung von Konkrementen im Körper von Lebewesen
DE2824326C2 (de)
DE2538960A1 (de) Einrichtung zum beruehrungsfreien zertruemmern von im koerper eines lebewesens befindlichen konkrementen
EP0414317A2 (de) Wechselrichteranordnung
DE10207737C1 (de) Schaltkreis für eine elektromagnetische Quelle zur Erzeugung akustischer Wellen
EP0359863B1 (de) Hochspannungsgenerator und Verfahren zur Erzeugung eines Hochspannungsimpulses hoher Stromstärke zum Antrieb einer Stosswellenquelle
EP0483396B1 (de) Akusticher Druckimpulsgenerator
EP0259559B1 (de) Stosswellengenerator zum berührungslosen Zertrümmern von Konkrementen im Körper eines Lebewesens
DE4123160C1 (de)
EP2506789B1 (de) Hochfrequenzchirurgiegenerator
EP3513574B1 (de) Verfahren und schaltung zum betreiben eines piezoelektrischen mems-schallwandlers sowie integrierter schaltkreis mit einer derartigen schaltung
DE102018214000B4 (de) Gleichstrom-Schalteinrichtung und deren Verwendung
EP0587602B1 (de) Vorrichtung zum betreiben einer gasentladungslampe
DE20014128U1 (de) Hochfrequenz-Chirurgiegerät
DE4125375C1 (en) Pressure pulse source for lithotripsy - has pulsed diaphragm in acoustic medium with layer of lower acoustic impedance
EP0702350A2 (de) Ansteuerschaltung für eine Impulsschallquelle
DE19916891C1 (de) Einrichtung zur Erzeugung akustischer Wellen und Verwendung einer derartigen Einrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003740093

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006152301

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10519022

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038153599

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003740093

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10519022

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 2003740093

Country of ref document: EP