WO2003107408A1 - Polisher - Google Patents

Polisher Download PDF

Info

Publication number
WO2003107408A1
WO2003107408A1 PCT/JP2003/007555 JP0307555W WO03107408A1 WO 2003107408 A1 WO2003107408 A1 WO 2003107408A1 JP 0307555 W JP0307555 W JP 0307555W WO 03107408 A1 WO03107408 A1 WO 03107408A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
liquid
polishing pad
pad
semiconductor wafer
Prior art date
Application number
PCT/JP2003/007555
Other languages
French (fr)
Japanese (ja)
Inventor
荒井 一尚
宮崎 一弥
石川 和則
津曲 昭男
三井 義則
Original Assignee
株式会社ディスコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ディスコ filed Critical 株式会社ディスコ
Priority to AU2003242400A priority Critical patent/AU2003242400A1/en
Publication of WO2003107408A1 publication Critical patent/WO2003107408A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing

Definitions

  • the present invention relates to a polishing apparatus used for CMP (Chemical Mechanical Polishing) of semiconductor wafers.
  • CMP Chemical Mechanical Polishing
  • the semiconductor wafer is sliced from a silicon ingot, both surfaces are flattened by a double-side grinder or a lapping device, and then mirror-polished using a polishing device, so that an integrated circuit can be formed on the surface.
  • polishing with a polishing device is performed in flattening an interlayer insulating film in forming a multilayer wiring, forming a metal plug, and forming a buried metal wiring.
  • the polishing apparatus is an important apparatus that is indispensable in the process of processing a semiconductor wafer.
  • a polishing apparatus is composed of a polishing pad formed of a filter or the like, a polishing pad made of silica, alumina, zirconia, manganese dioxide, ceria, and the like, and an oxidizing agent such as hydrogen peroxide solution or ammonia.
  • Slurry supply means for generating and supplying a slurry by mixing the additive of the above-mentioned slurrying agent, and a holding portion for holding the semiconductor wafer and acting on the polishing pad, and comprising: Polishing is performed by the mechanical action of the polishing pad.
  • the slurry generating means for generating the above-mentioned slurry since the abrasive grains and the additives are put into a tank at a predetermined ratio and stirred and mixed, there is a problem that the characteristics of the re-slurry change with time in the tank. is there. Therefore, such a problem
  • polishing abrasive grains and additives are separately stored, and the two are mixed immediately before use to form a polishing pad.
  • a technology for supplying a contact portion with a semiconductor wafer has been proposed.
  • the present invention relates to a polishing apparatus for polishing a surface of a semiconductor wafer, a polishing pad containing abrasive grains, a polishing pad supporting portion for supporting the polishing pad, and an action portion for causing the surface of the semiconductor wafer to act on the polishing pad.
  • a polishing pad and a semiconductor at least a polishing liquid supply unit for supplying a polishing liquid to a contact portion between the polishing pad and the semiconductor, the polishing liquid supply unit comprising: a first storage tank for storing a first liquid; A second storage tank that stores the second liquid, and a mixing unit that is connected to the first storage tank and the second storage tank and mixes the first liquid and the second liquid to generate a polishing liquid.
  • the present invention also provides a polishing apparatus including a supply unit for supplying a polishing liquid immediately after being generated in a mixing unit to a contact portion between a polishing pad and a semiconductor wafer.
  • the working part is a semiconductor.
  • a holding portion for holding the wafer; and an approaching / separating portion for moving the holding portion toward and away from the polishing pad relatively.
  • the action portion is disposed facing the polishing pad and the abrasive grains are provided.
  • a second polishing pad containing: a second polishing pad supporting portion for supporting the second polishing pad; and a second polishing pad.
  • the semiconductor wafer is sandwiched between the polishing pad and the second polishing pad, and the first liquid is an aqueous ammonia solution.
  • the second liquid is an aqueous solution of ethylenediaminetetraacetic acid.
  • the polishing pad is made to contain abrasive grains and the polishing liquid is not mixed with the abrasive grains, so that the mixing portion is not polished and the polishing liquid contains impurities. And the polishing liquid is generated immediately before it is supplied to the contact area between the semiconductor wafer and the polishing pad, so that the polishing liquid immediately after generation can be used, preventing the polishing liquid from changing over time. can do.
  • FIG. 1 is an explanatory view showing a first embodiment of a polishing apparatus according to the present invention.
  • FIG. 2 is an explanatory view showing a second embodiment of the polishing apparatus.
  • FIG. 3 is a cross-sectional view showing a configuration of a mixing unit according to the second embodiment.
  • FIG. 4 is a perspective view showing a third embodiment of the polishing apparatus according to the present invention.
  • FIG. 5 is a perspective view showing a polishing pad and a second polishing pad according to the third embodiment.
  • FIG. 6 is a plan view showing a planetary gear and a semiconductor ⁇ : c-ha according to the third embodiment.
  • FIG. 7 is a cross-sectional view showing how the semiconductor wafer is polished in the third embodiment.
  • FIG. 8 is a perspective view showing a polishing apparatus according to a fourth embodiment of the present invention.
  • FIG. 9 is a front view showing a state in which semiconductor ⁇ : E-8 is polished in the fourth embodiment.
  • BEST MODE FOR CARRYING OUT THE INVENTION A polishing apparatus 10 shown in FIG. 1 will be described as a first embodiment of the present invention.
  • the polishing apparatus 10 includes a polishing pad 11 containing abrasive grains, a polishing pad support 12 for supporting the polishing pad 11, and a semiconductor wafer W holding a semiconductor wafer W.
  • a polishing liquid supply unit 14 for supplying a polishing liquid to a contact portion between the polishing pad 11 and the semiconductor wafer W is provided.
  • the polishing pad 11 is a material in which abrasive grains are dispersed and contained in a material such as urethane. Boehmite, bayerite, diamond and the like can be used.
  • a polishing pad 11 having a thickness of 9 mm can be manufactured.
  • the inventor of the present invention has confirmed that a polishing pad having a long life can be formed by mixing abrasive particles, such as colloidal silica, fumed silica, boehmite, and bayerite, to which a hydroxyl group is attached, into a urethane material.
  • a polishing pad 11 is adhered to the upper surface of the polishing pad support portion 12, and is rotatable by being driven by a motor.
  • the working portion 13 is rotatable while holding the semiconductor ⁇ ⁇ : c-W to be polished from above, and the holding portion 15 for holding the semiconductor ⁇ m-c W, and the holding portion 15
  • the polishing liquid supply unit 14 includes a first storage tank 17 for storing a first liquid, for example, an aqueous ammonia solution, and a second storage tank 18 for storing a second liquid, for example, an aqueous solution of ethylenediaminetetraacetic acid.
  • a mixing unit 19 connected to the first storage tank 17 and the second storage tank 18, and a supply unit 20 connected to the mixing unit 19. It is.
  • the first liquid and the second liquid can be pumped by the pumps 21 and 22 and mixed at an appropriate ratio, and the polishing liquid generated by the mixing is supplied to the supply section 20.
  • the pH of the polishing solution was adjusted to 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, and 13.5, respectively, and the polishing amount of the silicon wafer per minute [ m / min] was measured as 0.01 m / min at pH 9.5, 0.1 / m / min at pH 10.0, 0.15 m / min at pH 10.5, and 0.2 ⁇ m at pH 11.0 / Min, 0.3 / mZ min at pH 1 1 55, 0.4 mZ min at PH 12.0, 0.45 m / min at pH 12.5, 0.47 m at pH 13.0, 0.48 m Z at pH 13.5 It was found that the polishing result of pH 12.5 was optimal from both the viewpoints of polishing efficiency and the amount of aqueous ammonia solution used.
  • the mixing ratio is set to 9: 1.
  • the aqueous ammonia solution is 9 Om I / min
  • the aqueous ethylenediaminetetraacetic acid solution is 1 OmI / min.
  • the ammonia aqueous solution is, for example, a solution obtained by diluting an ammonia stock solution (28%) with a volume of 2 with respect to a volume of 1, and has a pH of 2.5 or more.
  • the aqueous solution of ethylenediaminetetraacetic acid has a concentration of 0.01 moI / liter.
  • the ethylenediaminetetraacetic acid aqueous solution plays a role of preventing metal such as copper from adhering to the semiconductor I: L-ha W.
  • the polishing liquid having a pH of 12.5 generated by mixing is discharged from the supply unit 20 at a flow rate of 100 ml / min. Also, since the polishing liquid is generated immediately before the polishing liquid is supplied to the contact portion between the semiconductor wafer I and the polishing pad 11, the generated polishing liquid is reduced to a necessary minimum amount.
  • the pumps 21 and 22 are adjusted so that the generated polishing liquid 23 immediately flows out of the supply unit 20 without staying in the mixing unit 19.
  • the polishing pad 11 fixed to the polishing pad support portion 12 rotates,
  • the semiconductor wafer W rotates with the rotation of the polishing pad 11 and the polishing pad 11 containing abrasive grains and the supply section 2
  • the lower surface of the semiconductor wafer W is polished by the polishing liquid flowing out from zero.
  • the polishing pressure is set to 300 g / cm 2
  • the rotation speed of the polishing pad 11 is set to 40 rpm.
  • the mixing unit 19 is provided with a pH sensor 24, and the controller 25 reads the value of pH, and can adjust the supply amount of ethylenediaminetetraacetic acid according to the value.
  • the polishing liquid 23 does not contain abrasive grains and the inside of the mixing section 19 is not polished by stirring, impurities may be mixed into the polishing liquid. Absent. Further, since the polishing liquid 23 is generated immediately before the polishing liquid is supplied to the contact portion between the semiconductor wafer W and the polishing pad 11, the polishing liquid immediately after the generation can be supplied. However, it is possible to prevent the polishing liquid 23 from changing over time. Therefore, polishing can be performed satisfactorily and stably.
  • the polishing apparatus 3 0, the polishing pad 3 1 containing the abrasive grains, the polishing pad support 3 2 for supporting the polishing pad 3 1, semiconductor polishing pad 3 1 holds semiconductor ⁇ X- wafer W It is composed of a working part 33 that acts on the surface of the wafer W, and a polishing liquid supply part 34 that supplies a polishing liquid to a contact part between the polishing pad 11 and the semiconductor wafer W.
  • the polishing pad 31, the polishing pad support portion 32, and the action portion 33 are configured in the same manner as in the example of FIG. 1, and the action portion 33 includes a holding portion 35 and an approach / separation portion 36.
  • the polishing liquid supply unit 34 includes a first storage tank 37 for storing a first liquid such as an aqueous ammonia solution, and a second storage tank 38 for storing a second liquid such as an aqueous solution of ethylenediaminetetraacetic acid. And a mixing section 39 connected to the first storage tank 37 and the second storage tank 38, and a supply section 40 connected to the mixing section 39.
  • the first liquid and the second liquid can be pumped out by the pumps 41 and 42 and mixed at an appropriate ratio, and the polishing liquid generated by the mixing is supplied. It can be supplied from the part 40 to the contact part between the polishing pad 31 and the semiconductor wafer W.
  • the mixing section 39 has a substantially conical rotator 44 driven by a motor 43 and rotatable, and a lid 45 having an open lower end to constitute a supply section 40.
  • the first liquid and the second liquid are supplied to the inside of the lid 45.
  • a plurality of grooves 46 are provided on the outer peripheral surface of the rotator 44, and inside the lid 45, the first liquid and the second liquid that have flowed in descend along the grooves 46. Then, during the downward movement, the first liquid and the second liquid are mixed with the rotation of the rotating body 44, and the generated polishing liquid 47 is dropped downward from the supply unit 40.
  • the polishing pad 31 fixed to the polishing pad support section 32 rotates, and the approaching / separating section 36 descends.
  • the semiconductor wafer W comes into contact with the lower surface of the wafer W
  • the semiconductor wafer W rotates with the rotation of the polishing pad 31, and the semiconductor wafer W is polished by the polishing pad 31 containing abrasive grains and the polishing liquid 47 flowing out of the supply part 40.
  • C The lower surface of W is polished.
  • the polishing liquid 47 When the polishing is performed in this manner, no abrasive is contained in the polishing liquid 47 and the inside of the mixing section 39 is not polished, so that no impurities are mixed in the polishing liquid. Further, since the polishing liquid 47 is generated immediately before being supplied to the contact portion between the semiconductor wafer W and the polishing pad 31, the polishing liquid 47 can be supplied immediately after the polishing liquid is generated. The liquid 47 can be prevented from changing over time. Therefore, the polishing can be performed satisfactorily and stably.
  • the polishing apparatus 50 includes a polishing pad.
  • a pad 51 and a second polishing pad 52 are provided, both of which contain abrasive grains such as silica, alumina, zirconia, manganese dioxide, ceria, colloidal silica, and diamond.
  • the polishing pad 51 is supported by a polishing pad support 53, and a center gear 54 and an outer peripheral gear 55 are formed on the upper surface of the polishing pad 51. And the central gear
  • a ring-shaped planetary gear 56 holding the semiconductor wafer W on the inner peripheral surface 56a is combined with the outer gear 54 and the outer gear 55.
  • the outer peripheral gear 55 is rotatable.
  • the second polishing pad 52 is fixedly supported on the lower surface of the second polishing pad support portion 57.
  • the second polishing pad supporting portion 57 is fixed to a rotating shaft 58, and the rotating shaft 58 is connected to the elevating portion 59 so as to be freely rotatable.
  • the elevating unit 59 is guided by the rerail 61 by driving by the motor 60 and is capable of ascending and descending. That is, the rotating shaft 58, the elevating part 59, the motor 60, and the rail 61 constitute an approaching / separating part, and this, the second polishing pad 52, and the second polishing pad support part 57, An action section is configured.
  • a polishing liquid supply unit 62 is connected to the elevating unit 59. This polishing liquid supply section
  • the 6 2 is a first storage tank 6 3 for storing the first liquid, a second storage tank 6 4 for storing the second liquid, and a mixture of the first liquid and the second liquid.
  • a mixing section 65 for generating a polishing liquid.
  • the mixing section 65 is configured like the mixing section 19 shown in FIG. 1 or the mixing section 39 shown in FIG. 2, and generates a polishing liquid containing no abrasive grains.
  • the generated polishing liquid flows into the flow passage 66 formed inside the rotating shaft 58, flows out from the second polishing pad 52, and is supplied to the semiconductor wafer W.
  • the second polishing pad 52 becomes a supply unit for supplying the polishing liquid.
  • the center gear 54 is fixed to a fixed shaft 67.
  • the polishing pad support portion 53 is configured to rotate by a rotation transmitted from the polishing pad drive motor 68 via the drive transmission belt 69. It rotates while being supported by the bearing 70 by force.
  • the polishing pad 51 rotates at a rotation speed of, for example, about 40 rpm
  • the second polishing pad 52 rotates freely as the polishing pad supporting portion 53 rotates at, for example, about 40 rpm.
  • the polishing liquid is supplied, the semiconductor wafer W is sandwiched between the first polishing pad 51 and the second polishing pad 52, and a pressure of, for example, about 300 g Z cm 2 is applied to the first polishing pad 51 and the first polishing pad 51.
  • the polishing pad 51, the second polishing pad 52 and the polishing liquid polish both surfaces of the semiconductor ⁇ : L-ha W.
  • the used polishing liquid is drained from the drain hole 72 after being received in the drain receiving portion 71. Note that the first polishing pad 52 may be fixed.
  • polishing When polishing is performed in this manner, no impurities are mixed into the polishing liquid, and the polishing liquid is supplied without causing a change with time, so that polishing can be performed satisfactorily and stably.
  • a polishing apparatus 80 shown in FIG. 8 will be described as a fourth embodiment of the present invention.
  • the semiconductor wafers L to C before polishing are housed in a cassette 81, carried out by carrying-in / out means 82, and placed on a positioning table 83.
  • the first transfer means 84 places the chuck on a chuck table 86 that can move in the horizontal direction with the expansion and contraction of the bellows 85 and can rotate. By the movement of the table 86, it is positioned immediately below the polishing means 87.
  • the polishing means 87 is connected to a support plate 90 slidably engaged with a pair of guide rails 89 provided vertically on the inner surface of the wall portion 88, and A nut (not shown) provided inside is screwed into a ball screw 92 connected to the pulse motor 91, and the support plate 9 is rotated as the ball screw 92 rotates by the driving of the pulse motor 91. 0 and the polishing means 87 connected to it move up and down.
  • a first storage tank 93 for storing a first liquid
  • a second storage tank 94 for storing a second liquid
  • a polishing liquid supply unit 97 including a mixing unit 95 for generating a polishing liquid and a supply unit 96 for supplying the generated polishing liquid.
  • the mixing section 95 is configured like the mixing section 19 shown in FIG. 1 or the mixing section 39 shown in FIG. 2, and generates a polishing liquid containing no abrasive grains.
  • the polishing means 87 is fixed to a spindle 98 having a vertical axis, a motor 99 for rotating and driving the spindle 98, a mounter 100 formed at the lower end of the spindle, and a mounter 100. Polishing pad support 101 and a polishing pad 102 fixed to the lower surface of the polishing pad support 101. The polishing is performed as the spindle 98 rotates by being driven by the motor 99. The pad 102 is configured to rotate.
  • the polishing pad 102 contains abrasive particles dispersed in a material such as urethane.
  • the abrasive particles include silica, alumina, zirconia, manganese dioxide, seria, colloidal silica, fumed silica, boehmite. , Bayerite, diamond and the like can be used.
  • the polishing liquid 103 immediately after being generated is supplied from the supply unit 96 to the semiconductor —: n-c and rotates together.
  • polishing pad 102 descends and comes into contact with the semiconductor wafer W to apply pressure, polishing is performed by the polishing pad 102 and the polishing liquid 103.
  • the polishing pressure is 300 g / cm 2
  • the rotation speed of the polishing pad 102 is 40 rpm
  • the rotation speed of the chuck table 86 is 10 rpm.
  • polishing When polishing is performed in this manner, no impurities are mixed into the polishing liquid, and the polishing liquid is supplied without causing a change with time, so that polishing can be performed satisfactorily and stably.
  • the chuck table 86 moves to be positioned near the second transport means 104, and the polished semiconductor ⁇ : c-ha W is cleaned by the second transport means 104. Conveyed to the means 105. And the semiconductor wafer A washed here is transported. It is stored in the cassette 106 by the access means 82.
  • the polishing pad is made to contain the abrasive grains, and the polishing liquid is not mixed with the abrasive grains.
  • the polishing liquid is not mixed with the impurities, and the polishing liquid is generated immediately before the polishing liquid is supplied to the contact portion between the semiconductor wafer and the polishing pad. It can prevent the liquid from changing over time. Therefore, good and stable polishing can be efficiently performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

A polisher (10) for polishing the surface of a semiconductor wafer (W) has at least a polishing pad (11) containing abrasive grains. A polishing solution supply unit (14) is composed of a first storage tank (17) where a first liquid is stored, a second storage tank (18) where a second liquid is stored, a mixing section (19) connected to the first and second tanks (17, 18) and adapted for producing a polishing solution by mixing the first and second liquids, and a supply section (20) for supplying the polishing solution to the contact portion where the polishing pad (11) is in contact with the semiconductor wafer (W) directly after the polishing solution is produced at the mixing section (19). Thus, foreign matters are not mixed, and the semiconductor wafer is polished without being adversely influenced by them.

Description

明 細 書  Specification
技術分野 Technical field
本発明は、 半導体ゥエーハの C M P (Chemical Mechanical Polishing) に用い る研磨装置に関する。 背景技術  The present invention relates to a polishing apparatus used for CMP (Chemical Mechanical Polishing) of semiconductor wafers. Background art
半導体ゥエーハは、 シリコンインゴットをスライスし、 両面を両面研削盤また はラッピング装置によって平坦化し、 更にポリッシング装置を用いて鏡面研磨す ることにより、 表面に集積回路を形成できる状態となる。  The semiconductor wafer is sliced from a silicon ingot, both surfaces are flattened by a double-side grinder or a lapping device, and then mirror-polished using a polishing device, so that an integrated circuit can be formed on the surface.
また、 半導体ゥエー八の表面に集積回路を形成していく工程においては、 多層 配線の形成における層間絶縁膜の平坦化、 金属プラグの形成、 埋め込み金属配線 の形成等において、 ポリツシング装置による研磨が行われる。 このように、 ポリ ッシング装置は、 半導体ゥ: cーハを加工する工程において欠かすことのできない 重要な装置である。  Also, in the process of forming an integrated circuit on the surface of the semiconductor device 8, polishing with a polishing device is performed in flattening an interlayer insulating film in forming a multilayer wiring, forming a metal plug, and forming a buried metal wiring. Will be As described above, the polishing apparatus is an important apparatus that is indispensable in the process of processing a semiconductor wafer.
一般的にポリツシング装置は、 フヱルト等で形成された研磨パッドと、 研磨パ ッドにシリカ、 アルミナ、 ジルコニァ、 二酸化マンガン、 セリア等からなる研磨 砥粒と過酸化水素水等の酸化剤またはアンモニア等のアル力リ剤の添加剤とを混 合させてスラリーを生成し供給するスラリー供給手段と、 半導体ゥエーハを保持 して研磨パッドに作用させる保持部とを備えており、 スラリーの化学的作用及び 研磨パッドの機械的作用によって研磨が行われる。  In general, a polishing apparatus is composed of a polishing pad formed of a filter or the like, a polishing pad made of silica, alumina, zirconia, manganese dioxide, ceria, and the like, and an oxidizing agent such as hydrogen peroxide solution or ammonia. Slurry supply means for generating and supplying a slurry by mixing the additive of the above-mentioned slurrying agent, and a holding portion for holding the semiconductor wafer and acting on the polishing pad, and comprising: Polishing is performed by the mechanical action of the polishing pad.
上記スラリーを生成するスラリー生成手段においては、 研磨砥粒と添加剤とを 所定の割合でタンクに入れて撹拌混合させるため、 タンク内において経時変化に よリスラリーの特性が変化してしまうという問題がある。 そこで、 かかる問題を 解決するために、 例えば特開平 2 0 0 0— 2 0 2 7 7 4号公報においては、 研磨 砥粒と添加剤とを個別に貯留し、 使用する直前において両者を混合して研磨パッ ドと半導体ゥェ一ハとの接触部に供給する技術が提案されている。 In the slurry generating means for generating the above-mentioned slurry, since the abrasive grains and the additives are put into a tank at a predetermined ratio and stirred and mixed, there is a problem that the characteristics of the re-slurry change with time in the tank. is there. Therefore, such a problem In order to solve this problem, for example, in Japanese Patent Application Laid-Open No. 2000-200274, polishing abrasive grains and additives are separately stored, and the two are mixed immediately before use to form a polishing pad. A technology for supplying a contact portion with a semiconductor wafer has been proposed.
しかしながら、 研磨砥粒と添加剤とを使用する直前で混合させることにより、 経時変化によるスラリーの特性の変化を防止することはできるものの、 研磨砥粒 の研磨力によって混合手段の内部が研磨されてしまうために、 研磨屑がスラリー に不純物として混入し、 半導体ゥヱーハの研磨に悪影響を及ぼすという新たな問 題を有している。  However, by mixing the abrasive grains and the additive immediately before use, it is possible to prevent the change in the characteristics of the slurry due to aging, but the inside of the mixing means is polished by the abrasive power of the abrasive grains. For this reason, there is a new problem that polishing debris is mixed into the slurry as an impurity and adversely affects the polishing of semiconductor wafers.
従って、 研磨砥粒と添加剤とを混合手段において混合させてポリッシングを行 う場合においては、 不純物の混入を防止して半導体ゥヱ一八の研磨に悪影響を与 えないようにすることに課題を有している。 発明の開示  Therefore, when polishing is performed by mixing abrasive grains and additives with a mixing means, it is an object to prevent impurities from being mixed and to have no adverse effect on the polishing of the semiconductor device. have. Disclosure of the invention
本発明は、 半導体ゥエーハの面を研磨する研磨装置であって、 砥粒を含有した 研磨パッドと、 研磨パッドを支持する研磨パッド支持部と、 研磨パッドに半導体 ゥエーハの面を作用させる作用部と、 研磨パッドと半導体ゥ: 一八との接触部に 研磨液を供給する研磨液供給部とを少なくとも備え、 研磨液供給部は、 第一の液 体を貯留する第一の貯留タンクと、 第二の液体を貯留する第二の貯留タンクと、 第一の貯留タンクと第二の貯留タンクとに連結され第一の液体と第二の液体とを 混合させて研磨液を生成する混合部と、 混合部において生成された直後の研磨液 を研磨パッドと半導体ゥエーハとの接触部に供給する供給部とから構成される研 磨装置を提供する。  The present invention relates to a polishing apparatus for polishing a surface of a semiconductor wafer, a polishing pad containing abrasive grains, a polishing pad supporting portion for supporting the polishing pad, and an action portion for causing the surface of the semiconductor wafer to act on the polishing pad. A polishing pad and a semiconductor: at least a polishing liquid supply unit for supplying a polishing liquid to a contact portion between the polishing pad and the semiconductor, the polishing liquid supply unit comprising: a first storage tank for storing a first liquid; A second storage tank that stores the second liquid, and a mixing unit that is connected to the first storage tank and the second storage tank and mixes the first liquid and the second liquid to generate a polishing liquid. The present invention also provides a polishing apparatus including a supply unit for supplying a polishing liquid immediately after being generated in a mixing unit to a contact portion between a polishing pad and a semiconductor wafer.
そしてこの研磨装置は、 作用部が、 半導体ゥ:!:ーハを保持する保持部と、 保持 部を研磨パッドに対して相対的に接近及び離反させる接近離反部とから構成され ること、 作用部が、 研磨パッドに対面して配設され砥粒を含有した第二の研磨パ ッドと、 第二の研磨パッドを支持する第二の研磨パッド支持部と、 第二の研磨パ ッドを研磨パッドに対して相対的に接近または離反させる接近離反部とから構成 され、 研磨パッドと第二の研磨パッドとで半導体ゥヱーハを挟持するようにした こと、 第一の液体はアンモニア水溶液であり、 第二の液体はエチレンジァミン四 酢酸水溶液であることを付加的要件とする。 And in this polishing apparatus, the working part is a semiconductor. : A holding portion for holding the wafer; and an approaching / separating portion for moving the holding portion toward and away from the polishing pad relatively. The action portion is disposed facing the polishing pad and the abrasive grains are provided. A second polishing pad containing: a second polishing pad supporting portion for supporting the second polishing pad; and a second polishing pad. The semiconductor wafer is sandwiched between the polishing pad and the second polishing pad, and the first liquid is an aqueous ammonia solution. The additional requirement is that the second liquid is an aqueous solution of ethylenediaminetetraacetic acid.
このように構成される研磨装置においては、 研磨パッドに砥粒を含有させ、 研 磨液には砥粒を混入させないようにしたことにより、 混合部が研磨されてしまう ことがなく研磨液に不純物が混入しないと共に、 研磨液の生成を半導体ゥヱーハ と研磨パッドとの接触部に供給する直前に行うようにしたことにより、 生成直後 の研磨液を使用することができ、 研磨液の経時変化を防止することができる。 図面の簡単な説明  In the polishing apparatus configured as described above, the polishing pad is made to contain abrasive grains and the polishing liquid is not mixed with the abrasive grains, so that the mixing portion is not polished and the polishing liquid contains impurities. And the polishing liquid is generated immediately before it is supplied to the contact area between the semiconductor wafer and the polishing pad, so that the polishing liquid immediately after generation can be used, preventing the polishing liquid from changing over time. can do. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係る研磨装置の第一の実施の形態を示す説明図である。 第 2図は、 同研磨装置の第二の実施の形態を示す説明図である。  FIG. 1 is an explanatory view showing a first embodiment of a polishing apparatus according to the present invention. FIG. 2 is an explanatory view showing a second embodiment of the polishing apparatus.
第 3図は、 同第二の実施の形態における混合部の構成を示す断面図である。 第 4図は、 本発明に係る研磨装置の第三の実施の形態を示す斜視図である。 第 5図は、 同第三の実施の形態における研磨パッド及び第二の研磨パッドを示 す斜視図である。  FIG. 3 is a cross-sectional view showing a configuration of a mixing unit according to the second embodiment. FIG. 4 is a perspective view showing a third embodiment of the polishing apparatus according to the present invention. FIG. 5 is a perspective view showing a polishing pad and a second polishing pad according to the third embodiment.
第 6図は、 同第三の実施の形態における遊星歯車及び半導体ゥ: cーハを示す平 面図である。  FIG. 6 is a plan view showing a planetary gear and a semiconductor ゥ: c-ha according to the third embodiment.
第 7図は、 同第三の実施の形態において半導体ゥエーハが研磨される様子を示 す断面図である。  FIG. 7 is a cross-sectional view showing how the semiconductor wafer is polished in the third embodiment.
第 8図は、 本発明に係る研磨装置の第四の実施の形態を示す斜視図である。 第 9図は、 同第四の実施の形態において半導体ゥ: E—八が研磨される様子を示 す正面図である。 発明を実施するための最良の形態 本発明の第一の実施の形態として、 第 1図に示す研磨装置 1 0について説明す る。 この研磨装置 1 0は、 砥粒を含有した研磨パッド 1 1と、 研磨パッド 1 1を 支持する研磨パッド支持部 1 2と、 半導体ゥェ一ハ Wを保持して研磨パッド 1 1 に半導体ゥ: Lーハ Wの面を作用させる作用部 1 3と、 研磨パッド 1 1 と半導体ゥ ェーハ Wとの接触部に研磨液を供給する研磨液供給部 1 4とから構成される。 研磨パッド 1 1は、 例えばウレタン等の素材に砥粒を分散させた状態で含有さ せたもので、 砥粒としては、 シリカ、 アルミナ、 ジルコニァ、 二酸化マンガン、 セリア、 コロイダルシリカ、 ヒュームドシリカ、 ベーマイト、 バイャライ ト、 ダ ィャモンド等を用いることができる。 FIG. 8 is a perspective view showing a polishing apparatus according to a fourth embodiment of the present invention. FIG. 9 is a front view showing a state in which semiconductor ゥ: E-8 is polished in the fourth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION A polishing apparatus 10 shown in FIG. 1 will be described as a first embodiment of the present invention. The polishing apparatus 10 includes a polishing pad 11 containing abrasive grains, a polishing pad support 12 for supporting the polishing pad 11, and a semiconductor wafer W holding a semiconductor wafer W. A polishing liquid supply unit 14 for supplying a polishing liquid to a contact portion between the polishing pad 11 and the semiconductor wafer W is provided. The polishing pad 11 is a material in which abrasive grains are dispersed and contained in a material such as urethane. Boehmite, bayerite, diamond and the like can be used.
例えば、 ポリオール 8 0重量比、 イソシァネート 5 2 . 4重量比、 水 0 . 2重量 比、 触媒 0 . 7重量比、 シリコーン製泡剤 0 . 5重量比、 シリカ 9 0重量比を混合 し、 液状混合物を生成して金型に注入して 2 0 °C~ 3 0 °Cの室温で 2 4時間放置 することにより、 発泡ポリウレタン中に体積比 3 0 %のシリ力を含有した直径 6 O c m, 厚さ 9 m mの研磨パッド 1 1を作製することができる。 なお、 コロイダ ルシリカ、 ヒュームドシリカ、 ベーマイト、 バイャライト等の水酸基が付着した 砥粒をウレタン素材に混入させると、 長寿命の研磨パッドが形成されることが本 発明の発明者によって確認された。  For example, 80% by weight of polyol, 52.4% by weight of isocyanate, 0.2% by weight of water, 0.7% by weight of catalyst, 0.5% by weight of silicone foaming agent, and 90% by weight of silica The mixture is formed, poured into a mold, and left at room temperature of 20 ° C. to 30 ° C. for 24 hours. Thus, a polishing pad 11 having a thickness of 9 mm can be manufactured. The inventor of the present invention has confirmed that a polishing pad having a long life can be formed by mixing abrasive particles, such as colloidal silica, fumed silica, boehmite, and bayerite, to which a hydroxyl group is attached, into a urethane material.
研磨パッド支持部 1 2の上面には研磨パッド 1 1が貼着され、 モータに駆動さ れて回転可能となっている。 一方、 作用部 1 3は、 研磨する半導体ゥ: cーハ Wを 上方から保持して回転可能となっており、 半導体ゥ m—ハ Wを保持する保持部 1 5と、 保持部 1 5を上下動させて半導体ゥヱーハ Wを研磨パッド 1 1に対して相 対的に接近及び離反させる接近離反部 1 6とから構成される。  A polishing pad 11 is adhered to the upper surface of the polishing pad support portion 12, and is rotatable by being driven by a motor. On the other hand, the working portion 13 is rotatable while holding the semiconductor す る: c-W to be polished from above, and the holding portion 15 for holding the semiconductor ゥ m-c W, and the holding portion 15 An approaching / separating portion 16 for vertically moving the semiconductor wafer W relatively to and away from the polishing pad 11;
研磨液供給部 1 4は、 第一の液体、 例えばアンモニア水溶液を貯留する第一の 貯留タンク 1 7と、 第二の液体、 例えばエチレンジァミン四酢酸水溶液を貯留す る第二の貯留タンク 1 8と、 第一の貯留タンク 1 7と第二の貯留タンク 1 8とに 連結された混合部 1 9と、 混合部 1 9に連結された供給部 2 0とから概ね構成さ れる。 The polishing liquid supply unit 14 includes a first storage tank 17 for storing a first liquid, for example, an aqueous ammonia solution, and a second storage tank 18 for storing a second liquid, for example, an aqueous solution of ethylenediaminetetraacetic acid. A mixing unit 19 connected to the first storage tank 17 and the second storage tank 18, and a supply unit 20 connected to the mixing unit 19. It is.
混合部 1 9においては、 第一の液体と第二の液体とをポンプ 21、 22によつ て汲み出して適宜の割合で混合させることができ、 混合により生成された研磨液 は、 供給部 20から研磨パッド 1 1 と半導体ゥ: Lーハ Wとの接触部に供給するこ とができる。 なお、 研磨液の p Hを 9.5、 1 0.0、 1 0.5、 1 1.0、 1 1.5、 1 2.0、 1 2.5、 1 3.0、 1 3.5にそれぞれ調整してシリコンゥェ一ハの 1分 間当たりの研磨量 [ m/分]を実測したところ、 p H 9.5で 0.01 m/分、 p H 1 0.0で 0.1 / m/分、 p H 1 0.5で 0.1 5 m/分、 p H 1 1.0で 0. 2 μ m/分、 p H 1 1 · 5で 0.3 / mZ分、 P H 1 2.0で 0.4 mZ分、 p H 1 2.5で 0.45 m/分、 p H 1 3.0で 0.47 m、 p H 1 3.5で 0.48 m Z分という研磨結果が得られ、 P H 1 2.5の場合が、 研磨効率及びアンモニア水 溶液の使用量の双方の観点から最適であることがわかった。  In the mixing section 19, the first liquid and the second liquid can be pumped by the pumps 21 and 22 and mixed at an appropriate ratio, and the polishing liquid generated by the mixing is supplied to the supply section 20. Can be supplied to the contact area between the polishing pad 11 and the semiconductor ゥ: L-ha W. The pH of the polishing solution was adjusted to 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, and 13.5, respectively, and the polishing amount of the silicon wafer per minute [ m / min] was measured as 0.01 m / min at pH 9.5, 0.1 / m / min at pH 10.0, 0.15 m / min at pH 10.5, and 0.2 μm at pH 11.0 / Min, 0.3 / mZ min at pH 1 1 55, 0.4 mZ min at PH 12.0, 0.45 m / min at pH 12.5, 0.47 m at pH 13.0, 0.48 m Z at pH 13.5 It was found that the polishing result of pH 12.5 was optimal from both the viewpoints of polishing efficiency and the amount of aqueous ammonia solution used.
アンモニア水溶液とエチレンジァミン四酢酸水溶液とを混合させて研磨液を生 成する場合は、混合比率を 9: 1 とし、例えばアンモニア水溶液を 9 Om I /分、 エチレンジァミン四酢酸水溶液を 1 Om Iノ分の割合で撹拌して混合する。 ここ で、 アンモニア水溶液は、 例えば、 アンモニア原液 (28%) を容量 1に対して 容量 2の水で希釈したもので、 p hMil 2.5強である。 一方、 エチレンジァミン 四酢酸水溶液は、 0.01 mo I //リットルの濃度である。 このエチレンジァミン 四酢酸水溶液は、 半導体ゥ: Lーハ Wに銅等の金属が付着するのを防止する役割を 果たす。  When the polishing solution is generated by mixing an aqueous ammonia solution and an aqueous ethylenediaminetetraacetic acid solution, the mixing ratio is set to 9: 1. For example, the aqueous ammonia solution is 9 Om I / min, and the aqueous ethylenediaminetetraacetic acid solution is 1 OmI / min. Stir and mix in proportions. Here, the ammonia aqueous solution is, for example, a solution obtained by diluting an ammonia stock solution (28%) with a volume of 2 with respect to a volume of 1, and has a pH of 2.5 or more. On the other hand, the aqueous solution of ethylenediaminetetraacetic acid has a concentration of 0.01 moI / liter. The ethylenediaminetetraacetic acid aqueous solution plays a role of preventing metal such as copper from adhering to the semiconductor I: L-ha W.
こうして混合され生成された p H 1 2.5の研磨液を、 1 00m l /分の流量で 供給部 20から流出させる。 また、 研磨液の生成が半導体ゥ I—ハ Wと研磨パッ ド 1 1 との接触部に供給する直前に行われるようにするため、 生成される研磨液 が必要最小限の量となるようにポンプ 21、 22を調整し、 生成された研磨液 2 3が混合部 1 9において滞留せずに直ちに供給部 20から流出するようにする。 そして、研磨パッド支持部 1 2に固定された研磨パッド 1 1が回転すると共に、 接近離反部 1 6が下降して半導体ゥ: Lーハ Wの下面と接触すると、 半導体ゥエー ハ Wが研磨パッド 1 1の回転によって連れ回り、 砥粒を含有する研磨パッド 1 1 及び供給部 2 0から流出する研磨液によって半導体ゥエーハ Wの下面が研磨され る。 このとき、 例えば研磨圧力を 3 0 0 g / c m 2、 研磨パッド 1 1の回転数を 4 0 r p mとする。 The polishing liquid having a pH of 12.5 generated by mixing is discharged from the supply unit 20 at a flow rate of 100 ml / min. Also, since the polishing liquid is generated immediately before the polishing liquid is supplied to the contact portion between the semiconductor wafer I and the polishing pad 11, the generated polishing liquid is reduced to a necessary minimum amount. The pumps 21 and 22 are adjusted so that the generated polishing liquid 23 immediately flows out of the supply unit 20 without staying in the mixing unit 19. Then, while the polishing pad 11 fixed to the polishing pad support portion 12 rotates, When the approaching / separating portion 16 descends and comes into contact with the lower surface of the semiconductor wafer L-W, the semiconductor wafer W rotates with the rotation of the polishing pad 11 and the polishing pad 11 containing abrasive grains and the supply section 2 The lower surface of the semiconductor wafer W is polished by the polishing liquid flowing out from zero. At this time, for example, the polishing pressure is set to 300 g / cm 2 , and the rotation speed of the polishing pad 11 is set to 40 rpm.
混合部 1 9には p Hセンサー 2 4を備え、 制御装置 2 5において p Hの値を読 み取り、 その値に応じてエチレンジァミン四酢酸の供給量を調整することができ る。  The mixing unit 19 is provided with a pH sensor 24, and the controller 25 reads the value of pH, and can adjust the supply amount of ethylenediaminetetraacetic acid according to the value.
このようにして研磨を行うと、 生成された研磨液 2 3に砥粒が含まれず、 撹拌 により混合部 1 9の内部が研磨されることがないため、 研磨液に不純物が混入す ることがない。 また、 研磨液 2 3の生成を半導体ゥェ一ハ Wと研磨パッド 1 1と の接触部に供給する直前に行うようにしたことにより、 生成された直後の研磨液 を供給することができるため、 研磨液 2 3の経時変化を防止することができる。 従って、 研磨を良好かつ安定的に行うことができる。  When the polishing is performed in this manner, since the generated polishing liquid 23 does not contain abrasive grains and the inside of the mixing section 19 is not polished by stirring, impurities may be mixed into the polishing liquid. Absent. Further, since the polishing liquid 23 is generated immediately before the polishing liquid is supplied to the contact portion between the semiconductor wafer W and the polishing pad 11, the polishing liquid immediately after the generation can be supplied. However, it is possible to prevent the polishing liquid 23 from changing over time. Therefore, polishing can be performed satisfactorily and stably.
次に、 本発明の第二の実施の形態として、 第 2図に示す研磨装置 3 0について 説明する。 この研磨装置 3 0は、 砥粒を含有した研磨パッド 3 1 と、 研磨パッド 3 1を支持する研磨パッド支持部 3 2と、 半導体ゥ X—ハ Wを保持して研磨パッ ド 3 1に半導体ゥエーハ Wの面を作用させる作用部 3 3と、 研磨パッド 1 1と半 導体ゥエーハ Wとの接触部に研磨液を供給する研磨液供給部 3 4とから構成され る。 Next, a polishing apparatus 30 shown in FIG. 2 will be described as a second embodiment of the present invention. The polishing apparatus 3 0, the polishing pad 3 1 containing the abrasive grains, the polishing pad support 3 2 for supporting the polishing pad 3 1, semiconductor polishing pad 3 1 holds semiconductor © X- wafer W It is composed of a working part 33 that acts on the surface of the wafer W, and a polishing liquid supply part 34 that supplies a polishing liquid to a contact part between the polishing pad 11 and the semiconductor wafer W.
研磨パッド 3 1、 研磨パッド支持部 3 2及び作用部 3 3は、 第 1図の例と同様 に構成され、 作用部 3 3には保持部 3 5及び接近離反部 3 6を備えている。 一方、 研磨液供給部 3 4は、 アンモニア水溶液等の第一の液体を貯留する第一 の貯留タンク 3 7と、 エチレンジァミン四酢酸水溶液等の第二の液体を貯留する 第二の貯留タンク 3 8と、 第一の貯留タンク 3 7と第二の貯留タンク 3 8とに連 結された混合部 3 9と、 混合部 3 9に連結された供給部 4 0とから概ね構成され る。 The polishing pad 31, the polishing pad support portion 32, and the action portion 33 are configured in the same manner as in the example of FIG. 1, and the action portion 33 includes a holding portion 35 and an approach / separation portion 36. On the other hand, the polishing liquid supply unit 34 includes a first storage tank 37 for storing a first liquid such as an aqueous ammonia solution, and a second storage tank 38 for storing a second liquid such as an aqueous solution of ethylenediaminetetraacetic acid. And a mixing section 39 connected to the first storage tank 37 and the second storage tank 38, and a supply section 40 connected to the mixing section 39. You.
混合部 3 9においては、 第一の液体と第二の液体とをポンプ 4 1、 4 2によつ て汲み出して適宜の割合で混合させることができ、 混合により生成された研磨液 は、 供給部 4 0から研磨パッド 3 1と半導体ゥエーハ Wとの接触部に供給するこ とができる。  In the mixing section 39, the first liquid and the second liquid can be pumped out by the pumps 41 and 42 and mixed at an appropriate ratio, and the polishing liquid generated by the mixing is supplied. It can be supplied from the part 40 to the contact part between the polishing pad 31 and the semiconductor wafer W.
混合部 3 9は、 第 3図に示すように、 モータ 4 3によって駆動されて回転可能 な略円錐形状の回転体 4 4が、 下端が開口して供給部 4 0を構成する蓋体 4 5の 内部に収容され、 第一の液体及び第二の液体が蓋体 4 5の内部に供給される構成 となっている。  As shown in FIG. 3, the mixing section 39 has a substantially conical rotator 44 driven by a motor 43 and rotatable, and a lid 45 having an open lower end to constitute a supply section 40. The first liquid and the second liquid are supplied to the inside of the lid 45.
回転体 4 4の外周面には複数の溝 4 6が設けられており、 蓋体 4 5の内部にお いては、 流入した第一の液体及び第二の液体が溝 4 6に沿って下降し、 下降の過 程において回転体 4 4の回転に伴って第一の液体と第二の液体とが混合され、 生 成された研磨液 4 7が供給部 4 0から下方に滴下する。  A plurality of grooves 46 are provided on the outer peripheral surface of the rotator 44, and inside the lid 45, the first liquid and the second liquid that have flowed in descend along the grooves 46. Then, during the downward movement, the first liquid and the second liquid are mixed with the rotation of the rotating body 44, and the generated polishing liquid 47 is dropped downward from the supply unit 40.
第 2図に示したように構成される研磨装置 3 0においては、 研磨パッド支持部 3 2に固定された研磨パッド 3 1が回転すると共に、 接近離反部 3 6が下降して 半導体ゥ: —ハ Wの下面と接触すると、 半導体ゥエーハ Wが研磨パッド 3 1の回 転によって連れ回り、 砥粒を含有する研磨パッド 3 1及び供給部 4 0から流出す る研磨液 4 7によって半導体ゥヱ一ハ Wの下面が研磨される。  In the polishing apparatus 30 configured as shown in FIG. 2, the polishing pad 31 fixed to the polishing pad support section 32 rotates, and the approaching / separating section 36 descends. When the semiconductor wafer W comes into contact with the lower surface of the wafer W, the semiconductor wafer W rotates with the rotation of the polishing pad 31, and the semiconductor wafer W is polished by the polishing pad 31 containing abrasive grains and the polishing liquid 47 flowing out of the supply part 40. C The lower surface of W is polished.
このようにして研磨を行うと、 研磨液 4 7に砥粒が含まれず、 混合部 3 9の内 部が研磨されることがないため、 研磨液に不純物が混入することがない。 また、 研磨液 4 7が半導体ゥエーハ Wと研磨パッド 3 1との接触部へ供給される直前に 生成されることにより、 生成された直後に研磨液 4 7を供給することができるた め、 研磨液 4 7の経時変化を防止することができる。 従って、 研磨を良好かつ安 定的に行うことができる。  When the polishing is performed in this manner, no abrasive is contained in the polishing liquid 47 and the inside of the mixing section 39 is not polished, so that no impurities are mixed in the polishing liquid. Further, since the polishing liquid 47 is generated immediately before being supplied to the contact portion between the semiconductor wafer W and the polishing pad 31, the polishing liquid 47 can be supplied immediately after the polishing liquid is generated. The liquid 47 can be prevented from changing over time. Therefore, the polishing can be performed satisfactorily and stably.
次に、 本発明の第三の実施の形態として、 第 4図、 第 5図、 第 6図に示す研磨 装置 5 0について説明する。 この研磨装置 5 0は、 第 5図に示すように、 研磨パ ッド 5 1と第二の研磨パッド 5 2とを備えており、 双方ともシリカ、 アルミナ、 ジルコニァ、 二酸化マンガン、 セリア、 コロイダルシリカ、 ダイヤモンド等の砥 粒を含有している。 Next, a polishing apparatus 50 shown in FIG. 4, FIG. 5, and FIG. 6 will be described as a third embodiment of the present invention. As shown in FIG. 5, the polishing apparatus 50 includes a polishing pad. A pad 51 and a second polishing pad 52 are provided, both of which contain abrasive grains such as silica, alumina, zirconia, manganese dioxide, ceria, colloidal silica, and diamond.
研磨パッド 5 1は、 研磨パッド支持部 5 3に支持されており、 研磨パッド 5 1 の上面には中心歯車 5 4及び外周歯車 5 5が形成されている。 そして、 中心歯車 The polishing pad 51 is supported by a polishing pad support 53, and a center gear 54 and an outer peripheral gear 55 are formed on the upper surface of the polishing pad 51. And the central gear
5 4及び外周歯車 5 5には、 第 6図に示すように半導体ゥヱーハ Wを内周面 5 6 aにて保持するリング型の遊星歯車 5 6が嚙合している。 外周歯車 5 5は回動可 能となっている。 一方、 第二の研磨パッド 5 2は、 第二の研磨パッド支持部 5 7 の下面に固着されて支持されている。 As shown in FIG. 6, a ring-shaped planetary gear 56 holding the semiconductor wafer W on the inner peripheral surface 56a is combined with the outer gear 54 and the outer gear 55. The outer peripheral gear 55 is rotatable. On the other hand, the second polishing pad 52 is fixedly supported on the lower surface of the second polishing pad support portion 57.
第 4図に示すように、第二の研磨パッド支持部 5 7は、回転軸 5 8に固定され、 回転軸 5 8は昇降部 5 9に対して自由回転可能に連結されている。 そして、 昇降 部 5 9は、 モータ 6 0による駆動によリレール 6 1にガイドされて昇降可能とな つている。 即ち、 回転軸 5 8と昇降部 5 9とモータ 6 0とレール 6 1とで接近離 反部が構成され、 これと第二の研磨パッド 5 2と第二の研磨パッド支持部 5 7と で作用部が構成される。  As shown in FIG. 4, the second polishing pad supporting portion 57 is fixed to a rotating shaft 58, and the rotating shaft 58 is connected to the elevating portion 59 so as to be freely rotatable. The elevating unit 59 is guided by the rerail 61 by driving by the motor 60 and is capable of ascending and descending. That is, the rotating shaft 58, the elevating part 59, the motor 60, and the rail 61 constitute an approaching / separating part, and this, the second polishing pad 52, and the second polishing pad support part 57, An action section is configured.
更に、 昇降部 5 9には研磨液供給部 6 2が連結されている。 この研磨液供給部 Further, a polishing liquid supply unit 62 is connected to the elevating unit 59. This polishing liquid supply section
6 2は、 第一の液体を貯留する第一の貯留タンク 6 3と、 第二の液体を貯留する 第二の貯留タンク 6 4と、 第一の液体と第二の液体とを混合して研磨液を生成す る混合部 6 5とから構成される。 混合部 6 5は、 第 1図に示した混合部 1 9また は第 2図に示した混合部 3 9のように構成され、 砥粒が含まれない研磨液が生成 される。 6 2 is a first storage tank 6 3 for storing the first liquid, a second storage tank 6 4 for storing the second liquid, and a mixture of the first liquid and the second liquid. And a mixing section 65 for generating a polishing liquid. The mixing section 65 is configured like the mixing section 19 shown in FIG. 1 or the mixing section 39 shown in FIG. 2, and generates a polishing liquid containing no abrasive grains.
第 7図に示すように、 生成された研磨液は、 回転軸 5 8の内部に形成された流 通路 6 6に流入し、 第二の研磨パッド 5 2から流出して半導体ゥヱーハ Wに供給 される。即ちこの場合は第二の研磨パッド 5 2が研磨液を供給する供給部となる。 中心歯車 5 4は、 固定軸 6 7に固定されている。 一方、 研磨パッド支持部 5 3 は、 研磨パッド駆動モータ 6 8から駆動伝達ベルト 6 9を介して伝達される回転 力によりベアリング 7 0に支持された状態で回転する。 As shown in FIG. 7, the generated polishing liquid flows into the flow passage 66 formed inside the rotating shaft 58, flows out from the second polishing pad 52, and is supplied to the semiconductor wafer W. You. That is, in this case, the second polishing pad 52 becomes a supply unit for supplying the polishing liquid. The center gear 54 is fixed to a fixed shaft 67. On the other hand, the polishing pad support portion 53 is configured to rotate by a rotation transmitted from the polishing pad drive motor 68 via the drive transmission belt 69. It rotates while being supported by the bearing 70 by force.
そして、 研磨パッド支持部 5 3が例えば 4 0 r p m程の回転数で回転すること により研磨パッド 5 1が回転するのに伴って、 第二の研磨パッド 5 2が自由回転 し、 更に生成直後の研磨液が供給されることにより、 第一の研磨パッド 5 1 と第 二の研磨パッド 5 2とによって半導体ゥエーハ Wが挟持され、 例えば 3 0 0 g Z c m 2程の圧力が加わり、 第一の研磨パッド 5 1、 第二の研磨パッド 5 2及び研 磨液によって半導体ゥ: Lーハ Wの両面が研磨される。また、使用済みの研磨液は、 排液受け部 7 1において受け止めた後に、 排液孔 7 2から排水される。 なお、 第 一の研磨パッド 5 2は固定させておいてもよい。 Then, as the polishing pad 51 rotates at a rotation speed of, for example, about 40 rpm, the second polishing pad 52 rotates freely as the polishing pad supporting portion 53 rotates at, for example, about 40 rpm. When the polishing liquid is supplied, the semiconductor wafer W is sandwiched between the first polishing pad 51 and the second polishing pad 52, and a pressure of, for example, about 300 g Z cm 2 is applied to the first polishing pad 51 and the first polishing pad 51. The polishing pad 51, the second polishing pad 52 and the polishing liquid polish both surfaces of the semiconductor ゥ: L-ha W. The used polishing liquid is drained from the drain hole 72 after being received in the drain receiving portion 71. Note that the first polishing pad 52 may be fixed.
このようにして研磨を行うと、 研磨液に不純物が混入することがなく、 研磨液 が経時変化を起こすことなく供給されるため、 研磨を良好かつ安定的に行うこと ができる。  When polishing is performed in this manner, no impurities are mixed into the polishing liquid, and the polishing liquid is supplied without causing a change with time, so that polishing can be performed satisfactorily and stably.
次に、 本発明の第四の実施の形態として、 第 8図に示す研磨装置 8 0について 説明する。 この研磨装置 8 0においては、 研磨前の半導体ゥ: L—ハ Wがカセット 8 1に収容され、 搬出入手段 8 2によって搬出されて位置合わせテーブル 8 3に 載置される。 そしてここで中心位置の位置合わせがなされた後、 第一の搬送手段 8 4によって、 蛇腹 8 5の伸縮を伴って水平方向に移動可能でかつ自転可能なチ ャックテーブル 8 6に載置され、 チャックテーブル 8 6の移動によって研磨手段 8 7の直下に位置付けられる。  Next, a polishing apparatus 80 shown in FIG. 8 will be described as a fourth embodiment of the present invention. In this polishing apparatus 80, the semiconductor wafers L to C before polishing are housed in a cassette 81, carried out by carrying-in / out means 82, and placed on a positioning table 83. Then, after the center position is adjusted, the first transfer means 84 places the chuck on a chuck table 86 that can move in the horizontal direction with the expansion and contraction of the bellows 85 and can rotate. By the movement of the table 86, it is positioned immediately below the polishing means 87.
研磨手段 8 7は、 壁部 8 8の内側の面に垂直方向に配設された一対のガイドレ ール 8 9に摺動可能に係合した支持板 9 0に連結され、 支持板 9 0の内部に設け たナツト (図示せず) がパルスモータ 9 1に連結されたボールネジ 9 2に螺合し ており、 パルスモータ 9 1の駆動によリボールネジ 9 2が回動するのに伴い支持 板 9 0及びこれに連結された研磨手段 8 7が昇降する構成となっている。  The polishing means 87 is connected to a support plate 90 slidably engaged with a pair of guide rails 89 provided vertically on the inner surface of the wall portion 88, and A nut (not shown) provided inside is screwed into a ball screw 92 connected to the pulse motor 91, and the support plate 9 is rotated as the ball screw 92 rotates by the driving of the pulse motor 91. 0 and the polishing means 87 connected to it move up and down.
研磨手段 8 7の近傍には、 第一の液体を貯留する第一の貯留タンク 9 3と、 第 二の液体を貯留する第二の貯留タンク 9 4と、 第一の液体と第二の液体とを混合 して研磨液を生成する混合部 9 5と、 生成された研磨液を供給する供給部 9 6と からなる研磨液供給部 9 7が配設されている。 混合部 9 5は、 第 1図に示した混 合部 1 9または第 2図に示した混合部 3 9のように構成され、 砥粒が含まれない 研磨液が生成される。 In the vicinity of the polishing means 87, a first storage tank 93 for storing a first liquid, a second storage tank 94 for storing a second liquid, a first liquid and a second liquid Mixed with A polishing liquid supply unit 97 including a mixing unit 95 for generating a polishing liquid and a supply unit 96 for supplying the generated polishing liquid is provided. The mixing section 95 is configured like the mixing section 19 shown in FIG. 1 or the mixing section 39 shown in FIG. 2, and generates a polishing liquid containing no abrasive grains.
研磨手段 8 7は、 垂直方向の軸心を有するスピンドル 9 8と、 スピンドル 9 8 を回転駆動するモータ 9 9と、スピンドルの下端に形成されたマウンタ 1 0 0と、 マウンタ 1 0 0に固定された研磨パッド支持部 1 0 1 と、 研磨パッド支持部 1 0 1の下面に固着された研磨パッド 1 0 2とから構成され、 モータ 9 9に駆動され てスピンドル 9 8が回転するのに伴い研磨パッド 1 0 2が回転する構成となって いる。  The polishing means 87 is fixed to a spindle 98 having a vertical axis, a motor 99 for rotating and driving the spindle 98, a mounter 100 formed at the lower end of the spindle, and a mounter 100. Polishing pad support 101 and a polishing pad 102 fixed to the lower surface of the polishing pad support 101. The polishing is performed as the spindle 98 rotates by being driven by the motor 99. The pad 102 is configured to rotate.
研磨パッド 1 0 2は、 ウレタン等の素材に砥粒を分散させた状態で含有させた もので、 砥粒としては、 シリカ、 アルミナ、 ジルコニァ、 二酸化マンガン、 セリ ァ、 コロイダルシリカ、 ヒュームドシリ力、 ベーマイト、 バイャライト、 ダイヤ モンド等を用いることができる。  The polishing pad 102 contains abrasive particles dispersed in a material such as urethane. The abrasive particles include silica, alumina, zirconia, manganese dioxide, seria, colloidal silica, fumed silica, boehmite. , Bayerite, diamond and the like can be used.
研磨時は、 第 9図に示すように、 チャックテーブル 8 6が回転しながら、 供給 部 9 6から生成直後の研磨液 1 0 3が半導体ゥ: n—ハ Wに供給される共に回転す る研磨パッド 1 0 2が下降して半導体ゥェ一ハ Wに接触して圧力をかけることに より、 研磨パッド 1 0 2及び研磨液 1 0 3によって研磨が行われる。  At the time of polishing, as shown in FIG. 9, while the chuck table 86 rotates, the polishing liquid 103 immediately after being generated is supplied from the supply unit 96 to the semiconductor —: n-c and rotates together. When the polishing pad 102 descends and comes into contact with the semiconductor wafer W to apply pressure, polishing is performed by the polishing pad 102 and the polishing liquid 103.
このとき、 例えば研磨圧力は 3 0 0 g / c m 2、 研磨パッド 1 0 2の回転数は 4 0 r p m チャックテーブル 8 6の回転数は 1 0 r p mとする。 At this time, for example, the polishing pressure is 300 g / cm 2 , the rotation speed of the polishing pad 102 is 40 rpm, and the rotation speed of the chuck table 86 is 10 rpm.
このようにして研磨を行うと、 研磨液に不純物が混入することがなく、 研磨液 が経時変化を起こすことなく供給されるため、 研磨を良好かつ安定的に行うこと ができる。  When polishing is performed in this manner, no impurities are mixed into the polishing liquid, and the polishing liquid is supplied without causing a change with time, so that polishing can be performed satisfactorily and stably.
研磨の終了後は、 チャックテーブル 8 6が移動して第二の搬送手段 1 0 4の近 傍に位置付けられ、 第二の搬送手段 1 0 4によって研磨後の半導体ゥ: cーハ Wが 洗浄手段 1 0 5に搬送される。 そしてここで洗浄された半導体ゥエーハ Wは、 搬 出入手段 8 2によってカセット 1 0 6に収容される。 産業上の利用可能性 After the polishing is completed, the chuck table 86 moves to be positioned near the second transport means 104, and the polished semiconductor ゥ: c-ha W is cleaned by the second transport means 104. Conveyed to the means 105. And the semiconductor wafer A washed here is transported. It is stored in the cassette 106 by the access means 82. Industrial applicability
以上説明したように、 本発明に係る研磨装置においては、 研磨パッドに砥粒を 含有させ、 研磨液には砥粒を混入させないようにしたことにより、 混合部が研磨 されてしまうことがなく研磨液に不純物が混入しないと共に、 研磨液の生成を半 導体ゥエーハと研磨パッドとの接触部に供給する直前に行うようにしたことによ リ、 生成直後の研磨液を使用することができ、 研磨液の経時変化を防止すること ができる。 従って、 良好かつ安定的な研磨を効率良く行うことができる。  As described above, in the polishing apparatus according to the present invention, the polishing pad is made to contain the abrasive grains, and the polishing liquid is not mixed with the abrasive grains. The polishing liquid is not mixed with the impurities, and the polishing liquid is generated immediately before the polishing liquid is supplied to the contact portion between the semiconductor wafer and the polishing pad. It can prevent the liquid from changing over time. Therefore, good and stable polishing can be efficiently performed.

Claims

請 求 の 範 囲 The scope of the claims
1 . 半導体ゥ x—ハの面を研磨する研磨装置であって、 1. A polishing apparatus for polishing a surface of a semiconductor ゥ x—c,
砥粒を含有した研磨パッドと、 該研磨パッドを支持する研磨パッド支持部と、 該研磨パッドに半導体ゥエーハの面を作用させる作用部と、 該研磨パッドと該半 導体ゥエー八との接触部に研磨液を供給する研磨液供給部とを少なくとも備え、 該研磨液供給部は、 第一の液体を貯留する第一の貯留タンクと、  A polishing pad containing abrasive grains, a polishing pad supporting portion for supporting the polishing pad, an operating portion for causing the surface of the semiconductor wafer to act on the polishing pad, and a contact portion between the polishing pad and the semiconductor wafer. A polishing liquid supply unit for supplying a polishing liquid, the polishing liquid supply unit includes: a first storage tank that stores a first liquid;
第二の液体を貯留する第二の貯留タンクと、  A second storage tank for storing a second liquid;
該第一の貯留タンクと該第二の貯留タンクとに連結され該第一の液体と該第二 の液体とを混合させて研磨液を生成する混合部と、  A mixing unit connected to the first storage tank and the second storage tank and mixing the first liquid and the second liquid to generate a polishing liquid;
該混合部において生成された直後の研磨液を該研磨パッドと該半導体ゥ X—ハ との接触部に供給する供給部と  A supply unit that supplies a polishing liquid immediately after being generated in the mixing unit to a contact portion between the polishing pad and the semiconductor X-C;
から構成される研磨装置。 Polishing device composed of
2 . 作用部は、 半導体ゥ: Lーハを保持する保持部と、 2. The working part is a holding part for holding the semiconductor wafer: L-ha,
該保持部を研磨パッドに対して相対的に接近及び離反させる接近離反部と から構成される請求の範囲第 1項に記載の研磨装置。  2. The polishing apparatus according to claim 1, further comprising: an approaching / separating portion that relatively moves the holding portion toward and away from the polishing pad.
3 . 作用部は、 研磨パッドに対面して配設され砥粒を含有した第二の研磨パッド と、 該第二の研磨パッドを支持する第二の研磨パッド支持部と、 該第二の研磨パ ッドを該研磨パッドに対して相対的に接近または離反させる接近離反部とから構 成され、 該研磨パッドと該第二の研磨パッドとで半導体ゥ: r一ハを挟持するよう にした請求の範囲第 1項に記載の研磨装置。 3. The working unit is a second polishing pad that is disposed to face the polishing pad and contains abrasive grains, a second polishing pad support that supports the second polishing pad, and the second polishing. An approaching / separating portion for relatively moving the pad toward or away from the polishing pad, wherein the semiconductor pad is sandwiched between the polishing pad and the second polishing pad. The polishing apparatus according to claim 1.
4 . 第一の液体はアンモニア水溶液であり、 第二の液体はエチレンジァミン四酢 酸水溶液である請求の範囲第 1項、 第 2項または第 3項に記載の研磨装置。 4. The polishing apparatus according to claim 1, wherein the first liquid is an aqueous ammonia solution, and the second liquid is an aqueous solution of ethylenediaminetetraacetic acid.
PCT/JP2003/007555 2002-06-17 2003-06-13 Polisher WO2003107408A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003242400A AU2003242400A1 (en) 2002-06-17 2003-06-13 Polisher

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-175623 2002-06-17
JP2002175623A JP2004022804A (en) 2002-06-17 2002-06-17 Polishing device

Publications (1)

Publication Number Publication Date
WO2003107408A1 true WO2003107408A1 (en) 2003-12-24

Family

ID=29728046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007555 WO2003107408A1 (en) 2002-06-17 2003-06-13 Polisher

Country Status (3)

Country Link
JP (1) JP2004022804A (en)
AU (1) AU2003242400A1 (en)
WO (1) WO2003107408A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098141A1 (en) * 2005-03-16 2006-09-21 Asahi Glass Company, Limited Abrasive for semiconductor integrated circuit device, method for polishing semiconductor integrated circuit device and semiconductor integrated circuit device manufacturing method
KR101146696B1 (en) 2009-12-18 2012-05-22 주식회사 엘지실트론 Apparatus and method for supplying wafer polishing slurry
JP2015062987A (en) * 2013-09-26 2015-04-09 株式会社ディスコ Method for sticking polishing pad
US10875149B2 (en) * 2017-03-30 2020-12-29 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and method for timed dispensing various slurry components
JP6901905B2 (en) * 2017-05-11 2021-07-14 株式会社ディスコ Polishing liquid manufacturing method
JP6920141B2 (en) 2017-09-05 2021-08-18 株式会社ディスコ Polishing equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864562A (en) * 1994-08-24 1996-03-08 Matsushita Electric Ind Co Ltd Polishing of semiconductor wafer and device
JP2000237952A (en) * 1999-02-19 2000-09-05 Hitachi Ltd Manufacture of polishing device and semiconductor device
JP2000317826A (en) * 1999-05-07 2000-11-21 Okamoto Machine Tool Works Ltd Method of detecting polishing end point of substrate and detecting device therefor
JP2001232557A (en) * 2000-02-23 2001-08-28 Toshiba Ceramics Co Ltd Device and method for polishing both faces of workpiece
JP2002170792A (en) * 2000-11-29 2002-06-14 Mitsubishi Electric Corp Polishing liquid supplying apparatus, polishing liquid supplying method, polishing apparatus and method for manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864562A (en) * 1994-08-24 1996-03-08 Matsushita Electric Ind Co Ltd Polishing of semiconductor wafer and device
JP2000237952A (en) * 1999-02-19 2000-09-05 Hitachi Ltd Manufacture of polishing device and semiconductor device
JP2000317826A (en) * 1999-05-07 2000-11-21 Okamoto Machine Tool Works Ltd Method of detecting polishing end point of substrate and detecting device therefor
JP2001232557A (en) * 2000-02-23 2001-08-28 Toshiba Ceramics Co Ltd Device and method for polishing both faces of workpiece
JP2002170792A (en) * 2000-11-29 2002-06-14 Mitsubishi Electric Corp Polishing liquid supplying apparatus, polishing liquid supplying method, polishing apparatus and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
AU2003242400A1 (en) 2003-12-31
JP2004022804A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
US20010037821A1 (en) Integrated chemical-mechanical polishing
TW201125031A (en) Semiconductor substrate planarization apparatus and planarization method
US6589099B2 (en) Method for chemical mechanical polishing (CMP) with altering the concentration of oxidizing agent in slurry
KR102363562B1 (en) GRINDING SOLUTION AND METHOD FOR GRINDING SiC SUBSTRATE
KR102230096B1 (en) Method for polishing gan single crystal material
US20230256563A1 (en) Slurry recycling for chemical mechanical planarization system
JP2004071833A (en) Method for polishing both sides of semiconductor wafer
WO2003107408A1 (en) Polisher
JP2000031100A (en) Slurry supply system for semiconductor cmp process
US20190311910A1 (en) METHOD OF POLISHING SiC SUBSTRATE
US7195546B2 (en) Polishing apparatus and method of polishing work piece
US6827633B2 (en) Polishing method
JP4644954B2 (en) Polishing equipment
KR102640690B1 (en) Polyurethane chemical mechanical polishing pad with high elastic modulus ratio
WO1998011600A1 (en) Method for working semiconductor wafer
US6686284B2 (en) Chemical mechanical polisher equipped with chilled retaining ring and method of using
US20050107016A1 (en) Polishing equipment, and method of manufacturing semiconductor device using the equipment
JP2006062047A (en) Polishing device and polishing method
US20020098784A1 (en) Abrasive free polishing in copper damascene applications
JP2010094806A (en) Surface polishing method, surface polishing device and surface polishing plate
TW200400099A (en) Polishing device and manufacturing method for semiconductor device
US6468909B1 (en) Isolation and/or removal of ionic contaminants from planarization fluid compositions using macrocyclic polyethers and methods of using such compositions
JP2006351618A (en) Apparatus and method for polishing semiconductor substrate
US20240076521A1 (en) Polishing liquid for polishing compound semiconductor substrate
KR100307487B1 (en) Cmp method and apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase