WO2003104507A1 - Hard metal substrate body and method for producing the same - Google Patents

Hard metal substrate body and method for producing the same Download PDF

Info

Publication number
WO2003104507A1
WO2003104507A1 PCT/DE2003/001834 DE0301834W WO03104507A1 WO 2003104507 A1 WO2003104507 A1 WO 2003104507A1 DE 0301834 W DE0301834 W DE 0301834W WO 03104507 A1 WO03104507 A1 WO 03104507A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate body
hard metal
phase
atmosphere
metal substrate
Prior art date
Application number
PCT/DE2003/001834
Other languages
German (de)
French (fr)
Inventor
Dieter Kassel
Werner Daub
Klaus Dreyer
Klaus RÖDIGER
Walter Lengauer
Mariann Lovonyak
Vera Ucakar
Original Assignee
Kennametal Widia Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kennametal Widia Gmbh & Co. Kg filed Critical Kennametal Widia Gmbh & Co. Kg
Priority to EP03740063A priority Critical patent/EP1511870B1/en
Priority to US10/517,669 priority patent/US20050224958A1/en
Priority to JP2004511564A priority patent/JP2005529236A/en
Priority to DE50307024T priority patent/DE50307024D1/en
Publication of WO2003104507A1 publication Critical patent/WO2003104507A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • B22F3/101Changing atmosphere
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • Tungsten carbide substrate body and method for its production Tungsten carbide substrate body and method for its production
  • the invention relates to a hard metal substrate body consisting of a WC hard material phase and a 3 to 25 mass% binder phase which, in addition to at least one of the binder metals Fe, Co and / or Ni, also comprises up to 15 mass% (based on the binder phase). contains dissolved dopants from the group AI, Cr, Mo, Ti, Zr, Hf, V, Nb, Ta.
  • the invention further relates to a method of such a hard metal substrate body, in which the starting mixture is pretreated by powder metallurgy, pressed into a green body and finally heated and sintered in an atmosphere of a furnace.
  • the dopants which are mostly added in the form of carbides, nitrides or carbonitrides of the elements Ti, Zr, Hf, V, Ta or alloys of these elements, in particular Ti 2 AIN or Ti 2 AIC, act as Grain growth inhibitors, which ensure that the WC-Co base alloy produced remains fine-grained and uniform in order to ensure optimum hardness and wear resistance.
  • the wear properties of hard metal bodies can be influenced by applying one or more surface layers made of carbides, nitrides, carbonitrides, borides and / or oxides or diamond.
  • Chemical or physical coating processes were mentioned early on, namely in DE-A 24 33 737 or DE-A-25 25 185.
  • DE 199 22 059 A1 describes a hard metal or cermet body with a hard material phase made of WC and / or at least one carbide, nitride, carbonitride and / or oxicarbonitride of at least one of the elements IVa, Va or Vla group of the periodic table and a binder metal phase made of Fe, Co and / or Ni, the proportion of which is 3 to 25% by mass, in which WC crystallites protrude from the body surface by 2 to 20 ⁇ m.
  • This is to be achieved by either pressing a nitrogen-free mixture of hard materials and binding metals into a green body and heating it in a vacuum or inert gas atmosphere to a temperature between 1200 ° C and the sintering temperature, after which at the latest at
  • a nitrogen and possibly carbon-containing atmosphere is set at a pressure between 10 3 and 10 7 Pa, then possibly heated up to the sintering temperature and maintained for a holding time of at least 20 min or in this time of at least 20 min only a slight cooling of maximum 2 ° C / min is carried out and then cooled.
  • heating up or at the latest when the sintering temperature is reached maintain the set nitrogen atmosphere until at least 1000 ° C is reached in the cooling phase.
  • a mixture of hard materials and binder metals containing at least 0.2% by mass of nitrogen is pre-pressed and the green compact thus produced is heated to the sintering temperature, the inert gas or vacuum atmosphere set during the heating up, at least temporarily, from reaching a temperature between 1200 ° C. and the sintering temperature is exchanged for this gas pressure atmosphere by admission of nitrogen-containing gases under a pressure of 10 3 to 10 7 Pa.
  • the sintering time is at least 30 min; when heating from 1200 ° C or later, the nitrogen pressure should be maintained until at least 1000 ° C is reached in the furnace atmosphere when cooling.
  • Such layers can e.g. consist of diamond, amorphous carbon, cubic bomitride, carbon nitrides, oxides and metallic hard materials made of carbides, nitrides, carbonitrides and oxicarbonitrides, in particular the elements of the IVa to Vla group of the periodic table.
  • the hard metal substrate body according to claim 1, in which, according to the invention, the sum of the binding metals towards the substrate body drops in a depth of 0 to 1 ⁇ m to less than half the concentration of the binding metals in the interior of the substrate body.
  • the percentage of dopants in the hard metal, which consists of WC and a binder phase, is according to the invention 4 mass% limited.
  • the percentage of any third cubic phase is also limited to a maximum of 4 vol%.
  • the aim is not only mere binder depletion in the edge zones near the surface, but rather an edge zone in which the "free spaces” created by binder depletion are "filled” by doping agents.
  • the amount of dopants should be limited to 15% by mass, based on the binder metal phase, which in turn can make up 3% by mass to 25% by mass of the total amount.
  • the rest namely 75 to 97 mass%, consists of the pure toilet hard phase.
  • the concentration of the binder phase in the region close to the surface preferably decreases gradually, whereas the concentration of the dopants, the carbon and the nitrogen gradually increase.
  • the grain size of the toilet in the hard metal substrate body is a maximum of 1.5 ⁇ m.
  • the hard metal substrate body described above is particularly suitable for layers of diamond, but also of carbides, nitrides and / or carbonitrides of titanium, zirconium and / or hafnium or of Al 2 0 3 , HfO 2 , ZrO 2 , mixtures of oxides, amorphous Carbon, from cubic boron nitride or carbon nitrides.
  • nitrides of the metallic dopant e.g. TiN, CrN or VN, enriched.
  • the method according to claim 6 or claim 7 is used to produce the hard metal substrate body according to the invention.
  • the starting powder mixture of the desired hard metal composition is powder-metallurgically pretreated in a manner known in the prior art, pre-pressed into a green compact and until heated to the sintering temperature, with the vacuum or inert gas atmosphere being replaced by an N 2 atmosphere with an N 2 pressure of ⁇ 10 5 Pa in the heating phase after reaching the eutectic, but at the latest after reaching the sintering temperature, and at least until the sintering temperature is reached or is maintained until the end of the holding time in which the body is kept at the sintering temperature.
  • the nitrogen treatment after the final sintering specifically by the finished sintered body below the eutectic temperature of an N 2 atmosphere under a pressure p of 10 5 Pa ⁇ p ⁇ 10 7 Pa for at least 10 min is exposed.
  • This treatment can be carried out either in the cooling phase after sintering or in a second step, possibly also after grinding and / or blasting treatment of the finished sintered body.
  • the nitrogen atmosphere can be either by introducing nitrogen gas into the furnace atmosphere or by introducing precursors, i.e. N-containing gases, from which nitrogen is formed in situ at the corresponding temperature in the gas atmosphere.
  • the size of the WC crystallites can be influenced with the time period and with the gas composition at which the sintered body is above eutectic temperatures. Longer treatment times lead to larger WC crystallites.
  • the body is heated to 1250 ° C. and this temperature is maintained for a period of at least 20 minutes before heating to the sintering temperature is continued.
  • the body is preferably heated in the warm-up phase first in a vacuum and only from approx. 1250 ° C. in an inert gas atmosphere, for example made of argon, to the sintering temperature, when the nitrogen atmosphere is reached at a pressure of at least 10 4 Pa.
  • the heating and cooling rates are preferably at most 10 ° C./min; the corresponding rate is preferably between 2 ° C./min and 5 ° C./min.
  • up to 15% by mass, based on the binder phase, of carbides, nitrides, carbonitrides of the elements of the Iva, Va and Vla groups of the periodic table or of the AI or complex carbides are additionally complex nitrides in the starting mixture and / or complex carbonitrides of the form T- 2 AIC, Ti 2 AIN, Cr 2 AIN, Cr 2 AIC, but preferably only in an amount which can be dissolved at most in the binder phase.
  • This solubility limit is determined by the sum of the dissolved elements and can change for each element by adding other detachable elements.
  • the dopants or their carbides, nitrides or carbonitrides diffuse in the direction of the substrate surface and displace by enrichment with corresponding hard material particles, which are additionally caused by the combination of the existing nitrogen and at least one of the metals can be strengthened, the binding phase in deeper regions, which impoverishes on the surface.
  • nitrogen treatment also affects carbon activity due to the fact that nitrogen is dissolved in the binder phase, which in turn influences the excretion of hard material phases. This can also be used to control hard phase enrichment in the surface.
  • Fig. 4 further sintered profiles and 5a, b each show a semi-quantitative GDOS depth profile of sample C which has been subjected to a sintered profile according to FIG. 4.
  • the aforementioned alloy A was first heated to 1250 ° C. at a heating rate of 5 ° C./min. This temperature was maintained for about 30 minutes, after which an argon gas atmosphere was set at a pressure of 5 ⁇ 10 3 Pa. At the same time, the heating of the sintered body was continued at a heating rate of 5 c C / min, an N 2 pressure of 7 ⁇ 10 4 Pa being set when 1480 ° C. was reached, which pressure was maintained at 1480 ° C. even after the sintering temperature had been reached remained. The sintering time was approximately 1 hour, after which the furnace was switched off.
  • 3a shows a semi-quantitative GDOS depth profile as a further example of the effect of the modification of the edge zone. It can clearly be seen that the sum of the binding metals (Fe, Co, Ni) on the outer surface decreases. 3b shows a ratio Cr / (Co + Fe + Ni) which increases significantly to the surface at lower penetration depths (approx. 0.1 ⁇ m).
  • the Cr content in the binder phase is increased relative to the other elements of the binder phase compared to the inner regions of the alloy which are not influenced by nitrogen.
  • the nitrogen content increases sharply in the peripheral zone, the carbon and tungsten content increases slightly towards the surface.
  • Samples of the types A to F according to Table 1 were subjected to various annealing and sintering processes under increased nitrogen pressure according to Table 2.
  • FIG. 5 A semi-quantitative GDOS depth profile of sample C is shown in FIG. 5, which shows the decrease in the sum of the binding metals in areas near the surface.
  • the sum of the binding metals again shows the same characteristics as in the case of the same vacuum sintered grade.
  • the N and the C content are also increased towards the surface.
  • 5b shows a clear increase in the Cr / (Co + Ni + Fe) concentration ratio to zones near the edge.
  • the edge zone of the finished hard metal sintered body can be adjusted in such a way that not only an enrichment of doping agents but also the formation of a diffusion layer from nitrides is promoted. If, for example, Cr or a Cr compound is used as doping, a vacuum sintering with subsequent N 2 gas phase adjustment at low pressures ( ⁇ 105 Pa) does not result in a chromium nitride layer or enrichment because chromium nitrides do not form at low nitrogen pressures.

Abstract

The invention relates to a hard metal substrate body consisting of a WC hard material phase and between 3 and 25 mass % of a binding phase containing at least one binding metal Fe, Co and/or Ni, and up to 15 mass % (in relation to the binding phase) of dissolved dopants from the group containing AI, Cr, Mo, Ti, Zr, Hf, V, Nb, Ta. The invention also relates to a method for producing one such hard metal substrate body, using powder metallurgy followed by sintering. According to the invention, the percentage of all of the dopants in the hard metal is limited to a maximum of 4 mass %, the proportion of cubic phase in the hard metal is less than 4 vol. %, and the binding metal content in an edge region of the hard metal substrate body falls from up to 1 μm, preferably up to 0.5 μm, to less than half the binding agent content inside the substrate body. In order to produce said hard metal substrate body, once the eutectic has been reached and at the latest once the sintering temperature has been reached in the heating phase, the vacuum or inert gas atmosphere is replaced by a N2 atmosphere and maintained at least until the sintering temperature is reached.

Description

Beschreibung description
Hartmetall-Substratkörper und Verfahren zu dessen HerstellungTungsten carbide substrate body and method for its production
Die Erfindung betrifft einen Hartmetall-Substratkörper, bestehend aus einer WC-Hartstoffphase und einer 3- bis 25 Massen%igen Binderphase, die neben mindestens einem der Bindemetalle Fe, Co und/oder Ni noch bis zu 15 Massen% (bezogen auf die Binderphase) gelöste Dotierungsmittel enthält, die aus der Gruppe AI, Cr, Mo, Ti, Zr, Hf, V, Nb, Ta stammen.The invention relates to a hard metal substrate body consisting of a WC hard material phase and a 3 to 25 mass% binder phase which, in addition to at least one of the binder metals Fe, Co and / or Ni, also comprises up to 15 mass% (based on the binder phase). contains dissolved dopants from the group AI, Cr, Mo, Ti, Zr, Hf, V, Nb, Ta.
Die Erfindung betrifft ferner ein Verfahren eines solchen Hartmetall-Substratkörpers, bei dem die Ausgangsmischung pulvermetallurgisch vorbehandelt, zu einem Grünling vorgepreßt und abschließend in einer Atmosphäre eines Ofens erwärmt und gesintert wird.The invention further relates to a method of such a hard metal substrate body, in which the starting mixture is pretreated by powder metallurgy, pressed into a green body and finally heated and sintered in an atmosphere of a furnace.
In den genannten Hartmetallzusammensetzungen wirken die Dotierungen, die zumeist in Form von Carbiden, Nitriden oder Carbonitriden der Elemente Ti, Zr, Hf, V, Ta oder Legierungen aus diesen Elementen, insbesondere Ti2AIN oder Ti2AIC in der Ausgangspulvermischung zugegeben werden, als Kornwachstumshemmer, die gewährleisten, dass die hergestellte WC-Co-Basislegierung feinkörnig und gleichmäßig bleibt, um eine optimale Härte und Verschleißfestigkeit gewährleisten zu können.In the hard metal compositions mentioned, the dopants, which are mostly added in the form of carbides, nitrides or carbonitrides of the elements Ti, Zr, Hf, V, Ta or alloys of these elements, in particular Ti 2 AIN or Ti 2 AIC, act as Grain growth inhibitors, which ensure that the WC-Co base alloy produced remains fine-grained and uniform in order to ensure optimum hardness and wear resistance.
Ebenso ist es seit langem bekannt, dass die Verschleißeigenschaften von Hartmetallkörpern durch Aufbringen einer oder mehrerer Oberflächenschichten aus Carbiden, Nitriden, Carbonitriden, Boriden und/oder Oxiden oder Diamant beeinflußt werden kann. Schon früh, nämlich in der DE-A 24 33 737 oder der DE-A-25 25 185 sind chemische oder physikalische Beschichtungsverfahren erwähnt worden.It has also long been known that the wear properties of hard metal bodies can be influenced by applying one or more surface layers made of carbides, nitrides, carbonitrides, borides and / or oxides or diamond. Chemical or physical coating processes were mentioned early on, namely in DE-A 24 33 737 or DE-A-25 25 185.
In der DE 27 17 842 A1 wird hierzu ausgeführt, dass es zur Einsparung des getrennten Arbeitsganges, der zu Schichtaufbringung mittels CVD oder PVD erfor- derlich sei, sinnvoll wäre, den Hartmetallkörper nach dem Fertigsintern bei hohen Temperaturen einem Druck zwischen 2 bar (2 x 106 Pa) und 5000 bar (5 x 108 Pa) unter stickstoffhaltiger Atmosphäre auszusetzen. Die Behandlungstemperatur soll zwischen 800°C und einer oberen Grenze liegen, die mindestens 50°C unter der maximalen Sintertemperatur liegt. Mit dieser "Oberflächenaufstickung", die bis zu einer Tiefe von 300 μm wirksam sein soll, sollte ein verbessertes Verschleißverhalten sowie eine verbesserte Oxidationsbeständigkeit und eine Erniedrigung der Diffusions- und Klebeneigung des Hartmetalles bei seiner Wechselwirkung mit dem Verschleißpartner gewährleistet werden. Für viele praktische Anwendungen ist jedoch nach wie vor nicht auf eine Oberflächenbeschichtung verzichtbar. Insbesondere bei Diamantbeschichtungen, aber auch Beschichtungen anderer Zusammensetzung stellt sich das Problem der schlechten Haftfestigkeit der Beschichtung auf dem Substratkörper. Ursache für eine mangelhafte Haftung ist beispielsweise ein zu hoher Bindergehalt an der Substratkörperoberfläche.DE 27 17 842 A1 states that in order to save the separate work step that is required for the application of layers by means of CVD or PVD It would make sense to expose the hard metal body to a pressure between 2 bar (2 x 10 6 Pa) and 5000 bar (5 x 10 8 Pa) under nitrogen-containing atmosphere after the final sintering at high temperatures. The treatment temperature should be between 800 ° C and an upper limit that is at least 50 ° C below the maximum sintering temperature. With this "surface embroidery", which should be effective to a depth of 300 μm, an improved wear behavior as well as an improved oxidation resistance and a lowering of the diffusion and sticking tendency of the hard metal during its interaction with the wear partner should be guaranteed. For many practical applications, however, a surface coating is still indispensable. The problem of poor adhesion of the coating on the substrate body arises in particular in the case of diamond coatings, but also coatings of a different composition. The cause of poor adhesion is, for example, too high a binder content on the substrate body surface.
In der DE 199 22 059 A1 wird ein Hartmetall- oder Cermet-Körper mit einer Hartstoffphase aus WC und/oder mindestens einem Carbid, Nitrid, Carbonitrid und/oder Oxicarbonitrid mindestens eines der Elemente IVa-, Va- oder Vla-Gruppe des Periodensystems und einer Bindemetallphase aus Fe, Co und/oder Ni, deren Anteil.3 bis 25 Massen% beträgt, vorgeschlagen, bei der aus der Körperoberfläche um 2 bis 20 μm WC-Kristallite herausragen. Dies soll dadurch erreicht werden, indem entweder eine stickstofffreie Mischung aus Hartstoffen und Bindemetallen zu einem Grünling vorgepreßt und in einer Vakuum- oder Inertgasatmosphäre auf eine zwischen 1200°C und der Sintertemperatur liegende Temperatur aufgeheizt wird, wonach spätestens beiDE 199 22 059 A1 describes a hard metal or cermet body with a hard material phase made of WC and / or at least one carbide, nitride, carbonitride and / or oxicarbonitride of at least one of the elements IVa, Va or Vla group of the periodic table and a binder metal phase made of Fe, Co and / or Ni, the proportion of which is 3 to 25% by mass, in which WC crystallites protrude from the body surface by 2 to 20 μm. This is to be achieved by either pressing a nitrogen-free mixture of hard materials and binding metals into a green body and heating it in a vacuum or inert gas atmosphere to a temperature between 1200 ° C and the sintering temperature, after which at the latest at
Erreichen der Sintertemperatur zumindest zeitweise eine Stickstoff- und ggf. kohlenstoffhaltige Atmosphäre mit einem Druck zwischen 103 und 107 Pa eingestellt wird, anschließend ggf. auf Sintertemperatur aufgeheizt und diese über eine Haltezeit von mindestens 20 min aufrechterhalten oder in dieser Zeit von mindestens 20 min nur eine geringe Abkühlung von maximal 2°C/min durchgeführt und anschließend abgekühlt wird. Beim Aufheizen oder spätestens ab Erreichen der Sintertemperatur bleibt die eingestellte Stickstoffatmosphäre erhalten, bis in der Abkühlphase mindestens 1000°C erreicht wird.If the sintering temperature is reached, at least temporarily, a nitrogen and possibly carbon-containing atmosphere is set at a pressure between 10 3 and 10 7 Pa, then possibly heated up to the sintering temperature and maintained for a holding time of at least 20 min or in this time of at least 20 min only a slight cooling of maximum 2 ° C / min is carried out and then cooled. When heating up or at the latest when the sintering temperature is reached maintain the set nitrogen atmosphere until at least 1000 ° C is reached in the cooling phase.
Alternativ hierzu wird eine mindestens 0,2 Massen% Stickstoff enthaltende Mischung aus Hartstoffen und Bindermetallen vorgepreßt und der hierdurch hergestellte Grünling auf Sintertemperatur erwärmt, wobei die während des Aufheizens eingestellte Inertgas- oder Vakuumatmosphäre ab Erreichen einer Temperatur zwischen 1200°C und der Sintertemperatur zumindest zeitweise durch Einlaß von Stickstoff enthaltenden Gasen unter einem Druck von 103 bis 107 Pa gegen diese Gasdruckatmosphäre ausgetauscht wird. Die Sinterhaltezeit beträgt mindestens 30 min; bei Aufheizen ab 1200°C oder später soll der Stickstoff-Druck aufrechterhalten bleiben, bis in der Ofenatmosphäre bei der Abkühlung mindestens 1000°C erreicht sind.Alternatively, a mixture of hard materials and binder metals containing at least 0.2% by mass of nitrogen is pre-pressed and the green compact thus produced is heated to the sintering temperature, the inert gas or vacuum atmosphere set during the heating up, at least temporarily, from reaching a temperature between 1200 ° C. and the sintering temperature is exchanged for this gas pressure atmosphere by admission of nitrogen-containing gases under a pressure of 10 3 to 10 7 Pa. The sintering time is at least 30 min; when heating from 1200 ° C or later, the nitrogen pressure should be maintained until at least 1000 ° C is reached in the furnace atmosphere when cooling.
Das vorstehende Verfahren setzt jedoch eine Hartstoffzusammensetzung voraus, bei der in erheblichem Maße neben WC und dem Binder noch erhebliche Mengen weiterer Carbide, Nitride oder Carbonitride anwesend sein müssen.However, the above method requires a hard material composition in which, in addition to the toilet and the binder, considerable amounts of further carbides, nitrides or carbonitrides must also be present.
Es ist Aufgabe der vorliegenden Erfindung, einen verbesserten, im wesentlichen zweiphasigen Hartmetallkörper der eingangs genannten Art und ein Verfahren zu seiner Herstellung anzugeben, der gegenüber den nach dem Stand der Technik bekannten Substratkörpern eine bessere Haftung für Oberflächenbeschichtungen, die aus der Gasphase abgeschieden werden, liefert. Solche Schichten können z.B. aus Diamant, amorphem Kohlenstoff, kubischem Bomitrid, Kohlenstoffnitriden, Oxiden sowie metallischen Hartstoffen aus Carbiden, Nitriden, Carbonitriden und Oxi- carbonitriden, insbesondere der Elemente der IVa- bis Vla-Gruppe des Periodensystems bestehen.It is an object of the present invention to provide an improved, essentially two-phase hard metal body of the type mentioned at the outset and a method for its production which, compared to the substrate bodies known according to the prior art, provides better adhesion for surface coatings which are deposited from the gas phase , Such layers can e.g. consist of diamond, amorphous carbon, cubic bomitride, carbon nitrides, oxides and metallic hard materials made of carbides, nitrides, carbonitrides and oxicarbonitrides, in particular the elements of the IVa to Vla group of the periodic table.
Diese Aufgabe wird durch den Hartmetall-Substratkörper nach Anspruch 1 gelöst, bei dem erfindungsgemäß die Summe der Bindemetalle zum Substratkörper hin in einer tiefe von 0 bis 1 μm auf weniger als die Hälfte der Konzentration der Bindemetalle im Substratkörperinneren abfällt. Der prozentuale Anteil an Dotierungsmitteln im Hartmetall, das aus WC und einer Binderphase besteht, ist erfindungsgemäß auf 4 Massen% begrenzt. Ebenso limitiert ist der prozentuale Anteil einer etwaigen dritten kubischen Phase auf maximal 4 Vol%.This object is achieved by the hard metal substrate body according to claim 1, in which, according to the invention, the sum of the binding metals towards the substrate body drops in a depth of 0 to 1 μm to less than half the concentration of the binding metals in the interior of the substrate body. The percentage of dopants in the hard metal, which consists of WC and a binder phase, is according to the invention 4 mass% limited. The percentage of any third cubic phase is also limited to a maximum of 4 vol%.
Im Unterschied zu den nach dem Stand der Technik geschaffenen Hartmetallkörpern wird nicht nur eine bloße Binder-Verarmung in den oberflächennahen Randzonen angestrebt, sondern eine Randzone, bei der die durch Binderverarmung geschaffenen "Freiräume" durch Dotierungsmittel "aufgefüllt" werden. Die Menge der Dotierungsmittel soll jedoch auf 15 Massen%, bezogen auf die Bindemetallphase, beschränkt werden, die ihrerseits 3 Massen% bis 25 Massen% der Gesamtmenge ausmachen kann. Der Rest, nämlich 75 bis 97 Massen%, besteht aus der reinen WC-Hartstoffphase. Vorzugsweise nimmt die Konzentration der Binderphase in dem genannten oberflächennahen Bereich graduell ab, wohingegen die Konzentration der Dotierungsmittel, des Kohlenstoffs und des Stickstoffs graduell zunehmen.In contrast to the hard metal bodies created according to the prior art, the aim is not only mere binder depletion in the edge zones near the surface, but rather an edge zone in which the "free spaces" created by binder depletion are "filled" by doping agents. However, the amount of dopants should be limited to 15% by mass, based on the binder metal phase, which in turn can make up 3% by mass to 25% by mass of the total amount. The rest, namely 75 to 97 mass%, consists of the pure toilet hard phase. The concentration of the binder phase in the region close to the surface preferably decreases gradually, whereas the concentration of the dopants, the carbon and the nitrogen gradually increase.
Nach einer weiteren Ausgestaltung der Erfindung ist die Korngröße des WC im Hartmetall-Substratkörper maximal 1 ,5 μm.According to a further embodiment of the invention, the grain size of the toilet in the hard metal substrate body is a maximum of 1.5 μm.
Insbesondere eignet sich der vorstehend beschriebene Hartmetall-Substratkörper für Schichten aus Diamant, aber auch aus Carbiden, Nitriden und/oder Carbonitriden des Titans, Zirkoniums und/oder Hafniums oder aus Al203, HfO2, ZrO2, Mischungen aus Oxiden, amorphem Kohlenstoff, aus kubischem Bornitrid oder Kohlenstoffnitriden.The hard metal substrate body described above is particularly suitable for layers of diamond, but also of carbides, nitrides and / or carbonitrides of titanium, zirconium and / or hafnium or of Al 2 0 3 , HfO 2 , ZrO 2 , mixtures of oxides, amorphous Carbon, from cubic boron nitride or carbon nitrides.
Vorzugsweise sind in der oberflächennahen Randzone Nitride des metallischen Dotierungsmittels, z.B. TiN, CrN oder VN, angereichert.Preferably, nitrides of the metallic dopant, e.g. TiN, CrN or VN, enriched.
Zur Herstellung des erfindungsgemäßen Hartmetall-Substratkörpers wird das Verfahren nach Anspruch 6 oder Anspruch 7 verwendet.The method according to claim 6 or claim 7 is used to produce the hard metal substrate body according to the invention.
In der ersten Ausführungsalternative wird die Ausgangspulvermischung der gewünschten Hartmetallzusammensetzung pulvermetallurgisch in nach dem Stand der Technik bekannter Weise vorbehandelt, zu einem Grünling vorgepreßt und bis zur Sintertemperatur erwärmt, wobei in der Aufheizphase nach Erreichen des Eutek- tikums, aber spätestens nach Erreichen der Sintertemperatur die Vakuum- oder Inertgasatmosphäre durch eine N2-Atmosphäre mit einem N2-Druck < 105 Pa ersetzt und zumindest bis zum Erreichen der Sintertemperatur oder bis zum Ende der Haltezeit, in der der Körper auf Sintertemperatur gehalten wird, aufrechterhalten wird.In the first alternative embodiment, the starting powder mixture of the desired hard metal composition is powder-metallurgically pretreated in a manner known in the prior art, pre-pressed into a green compact and until heated to the sintering temperature, with the vacuum or inert gas atmosphere being replaced by an N 2 atmosphere with an N 2 pressure of <10 5 Pa in the heating phase after reaching the eutectic, but at the latest after reaching the sintering temperature, and at least until the sintering temperature is reached or is maintained until the end of the holding time in which the body is kept at the sintering temperature.
Alternativ hierzu ist es auch möglich, die Stickstoff-Behandlung nach dem Fertigsintern vorzunehmen, und zwar indem der fertiggesinterte Körper unterhalb der eutekti- schen Temperatur einer N2-Atmosphäre unter einem Druck p von 105 Pa < p < 107 Pa über mindestens 10 min ausgesetzt wird. Diese Behandlung kann entweder in der Abkühlphase nach dem Sintern oder in einem zweiten Arbeitsschritt, ggf. auch im Anschluß an eine Schleif- und/oder Strahlbehandlung des fertiggesinterten Körpers angeschlossen werden.As an alternative to this, it is also possible to carry out the nitrogen treatment after the final sintering, specifically by the finished sintered body below the eutectic temperature of an N 2 atmosphere under a pressure p of 10 5 Pa <p <10 7 Pa for at least 10 min is exposed. This treatment can be carried out either in the cooling phase after sintering or in a second step, possibly also after grinding and / or blasting treatment of the finished sintered body.
Die Stickstoffatmosphäre kann entweder durch Einleitung von Stickstoffgas in die Ofenatmosphäre oder auch durch Einleitung von Präkursoren, d.h. N-haltigen Gasen, eingestellt werden, aus denen sich Stickstoff bei der entsprechenden Temperatur in der Gasatmosphäre in situ bildet.The nitrogen atmosphere can be either by introducing nitrogen gas into the furnace atmosphere or by introducing precursors, i.e. N-containing gases, from which nitrogen is formed in situ at the corresponding temperature in the gas atmosphere.
Es ist allgemein bekannt, dass mit der Zeitspanne und mit der Gaszusammensetzung, bei der sich der Sinterkörper oberhalb eutektischer Temperaturen befindet, die Größe der WC-Kristallite beeinflußt werden kann. Längere Behandlungszeiten führen zu größeren WC-Kristalliten.It is generally known that the size of the WC crystallites can be influenced with the time period and with the gas composition at which the sintered body is above eutectic temperatures. Longer treatment times lead to larger WC crystallites.
In einer bevorzugten Ausführungsvariante wird der Körper auf 1250°C erwärmt und diese Temperatur über eine Zeitdauer von mindestens 20 min gehalten, bevor mit der Aufheizung auf die Sintertemperatur fortgefahren wird. Weiterhin vorzugsweise wird der Körper in der Aufwärmphase zunächst im Vakuum und erst ab ca. 1250°C in einer Inertgasatmosphäre, z.B. aus Argon, bis zur Sintertemperatur erwärmt, bei deren Erreichen die Stickstoffatmosphäre mit eine Druck von mindestens 104 Pa eingestellt wird. Vorzugsweise liegen die Aufheiz- und Abkühlraten maximal bei 10°C/min, bevorzugt liegt die entsprechende Rate zwischen 2°C/min und 5°C/min. Nach einer weiteren Ausgestaltung der Erfindung sind in der Ausgangsmischung zusätzlich bis zu 15 Massen%, bezogen auf die Binderphase, Carbide, Nitride, Car- bonitride der Elemente der Iva-, Va- und Vla-Gruppe des Periodensystems oder des AI oder Komplexcarbide, Komplexnitride und/oder Komplexcarbonitride der Form T-2AIC, Ti2AIN, Cr2AIN, Cr2AIC enthalten, vorzugsweise jedoch nur jeweils in einer Menge wie maximal in der Binderphase gelöst werden kann. Diese Löslichkeits- grenze ist jeweils durch Summe der gelösten Elemente bestimmt und kann sich für jedes Element durch Zugabe anderer lösbarer Elemente ändern.In a preferred embodiment variant, the body is heated to 1250 ° C. and this temperature is maintained for a period of at least 20 minutes before heating to the sintering temperature is continued. Furthermore, the body is preferably heated in the warm-up phase first in a vacuum and only from approx. 1250 ° C. in an inert gas atmosphere, for example made of argon, to the sintering temperature, when the nitrogen atmosphere is reached at a pressure of at least 10 4 Pa. The heating and cooling rates are preferably at most 10 ° C./min; the corresponding rate is preferably between 2 ° C./min and 5 ° C./min. According to a further embodiment of the invention, up to 15% by mass, based on the binder phase, of carbides, nitrides, carbonitrides of the elements of the Iva, Va and Vla groups of the periodic table or of the AI or complex carbides are additionally complex nitrides in the starting mixture and / or complex carbonitrides of the form T- 2 AIC, Ti 2 AIN, Cr 2 AIN, Cr 2 AIC, but preferably only in an amount which can be dissolved at most in the binder phase. This solubility limit is determined by the sum of the dissolved elements and can change for each element by adding other detachable elements.
Bei der vorbeschriebenen Behandlung der Sinterkörper in einer Stickstoffatmosphäre unter einem Druck von 102 Pa bis 107 Pa diffundieren die Dotierungsmittel bzw. deren Carbide, Nitride oder Carbonitride in Richtung der Substratoberfläche und verdrängen durch Anreicherung von entsprechenden Hartstoffpartikeln, die noch zusätzlich durch die Kombination des vorhandenen Stickstoffes und mindestens eines der Metalle verstärkt werden kann, die Bindephase in tiefere Regionen, die dadurch an der Oberfläche verarmt. Die Stickstoffbehandlung wirkt jedoch auch aufgrund der Tatsache, dass Stickstoff in der Binderphase gelöst wird, auf die Kohlen- stoffaktivität, die wiederum die Ausscheidung von Hartstoffphasen beeinflußt. Auch hierdurch kann eine Hartstoffphasenanreicherung in der Oberfläche gesteuert werden.In the above-described treatment of the sintered bodies in a nitrogen atmosphere under a pressure of 10 2 Pa to 10 7 Pa, the dopants or their carbides, nitrides or carbonitrides diffuse in the direction of the substrate surface and displace by enrichment with corresponding hard material particles, which are additionally caused by the combination of the existing nitrogen and at least one of the metals can be strengthened, the binding phase in deeper regions, which impoverishes on the surface. However, nitrogen treatment also affects carbon activity due to the fact that nitrogen is dissolved in the binder phase, which in turn influences the excretion of hard material phases. This can also be used to control hard phase enrichment in the surface.
Die Erfindung wird im folgenden anhand von Ausführungsbeispielen erläutert.The invention is explained below using exemplary embodiments.
Es zeigenShow it
Fig. 1 ein Sinterprofil für die Behandlung einer Probe,1 shows a sintered profile for the treatment of a sample,
Fig. 2a, b jeweils ein halbquantitatives GDOS-Tiefenprofil der Probe A,2a, b each a semi-quantitative GDOS depth profile of sample A,
Fig. 3a, b jeweils ein halbquantitatives GDOS-Tiefenprofil der Probe C,3a, b each a semi-quantitative GDOS depth profile of sample C,
Fig. 4 weitere Sinterprofile und Fig. 5a, b jeweils ein halbquantitatives GDOS-Tiefenprofil der Probe C, die gemäß einem Sinterprofil nach Fig. 4 unterzogen worden ist.Fig. 4 further sintered profiles and 5a, b each show a semi-quantitative GDOS depth profile of sample C which has been subjected to a sintered profile according to FIG. 4.
Fünf Legierungen gemäß der in der folgenden Tabelle aufgeführten Zusammensetzung wurden in üblicher weise gemahlen, gemischt und zu einem Grünling vorgepreßt sowie anschließend einer Sinterbehandlung unterzogen, deren Sinterprofil der Fig. 1 zu entnehmen ist.Five alloys according to the composition listed in the following table were ground, mixed and pressed into a green body in the usual way and then subjected to a sintering treatment, the sintering profile of which can be seen in FIG. 1.
Tabelle 1 ProbenzusammensetzungTable 1 Sample composition
Sinterkörper Zusammensetzung (Masse%)Sintered body composition (mass%)
A 92 % WC, 7,5 Co, 0,5 Ti2AICA 92% WC, 7.5 Co, 0.5 Ti 2 AIC
B 91 ,75 % WC, 0,75 % Cr3C2, 3,75 % Co, 3,75 % NiB 91, 75% WC, 0.75% Cr 3 C 2 , 3.75% Co, 3.75% Ni
C 91 ,75 % WC, 0,75 % Cr3C2, 4,5 % Co, 1 ,5 % Ni, 1 ,5 % FeC 91, 75% WC, 0.75% Cr 3 C 2 , 4.5% Co, 1, 5% Ni, 1, 5% Fe
D 91 ,75 % WC, 0,75 % Cr3C2, 7,5 % CoD 91, 75% WC, 0.75% Cr 3 C 2 , 7.5% Co
E 91 ,4 % WC, 0,75 % Cr3C2, 0,35 % Mo2C, 7,5 % CoE 91, 4% WC, 0.75% Cr 3 C 2 , 0.35% Mo 2 C, 7.5% Co
Die vorgenannte Legierung A ist mit einer Aufwärmgeschwindigkeit von 5°C/min zunächst auf 1250°C erwärmt worden. Diese Temperatur wurde etwa 30 min gehalten, wonach eine Argon-Gasatmosphäre mit einem Druck von 5 x 103 Pa eingestellt wurde. Gleichzeitig ist die Erwärmung des Sinterkörpers mit einer Aufheizgeschwindigkeit von 5cC/min fortgesetzt worden, wobei bei Erreichen von 1480°C ein N2-Druck von 7 x 104 Pa eingestellt wurde, der auch nach Erreichen der Sintertemperatur von 1480°C aufrechterhalten blieb. Die Sinterdauer betrug ca. 1 Stunde, wonach der Ofen abgeschaltet worden ist.The aforementioned alloy A was first heated to 1250 ° C. at a heating rate of 5 ° C./min. This temperature was maintained for about 30 minutes, after which an argon gas atmosphere was set at a pressure of 5 × 10 3 Pa. At the same time, the heating of the sintered body was continued at a heating rate of 5 c C / min, an N 2 pressure of 7 × 10 4 Pa being set when 1480 ° C. was reached, which pressure was maintained at 1480 ° C. even after the sintering temperature had been reached remained. The sintering time was approximately 1 hour, after which the furnace was switched off.
Bei dem Sinterkörper gemäß Probe A war festzustellen, dass durch die N2-Behandlung die oberflächennahen Regionen in einer Tiefe bis zu 1 μm derart beeinflußt wurden, dass dort die Binderphase, d.h. die Summe der Bindemetalle verarmte und eine deutliche Anreicherung der Hartstoff phase an der Oberfläche und in den oberflächennahen Bereichen erzeugt wurde (siehe Fig. 2a). Dies konnte sowohl im metallographischen Querschliff als auch rein optisch durch eine Farbveränderung festgestellt werden. Fig. 2b zeigt das Verhältnis des Dotierungsmittels Ti zum Bindemetall Co. Man erkennt, dass das Dotierungselement im Verhältnis zum Bindemetall sich zur Oberfläche des Substratkörpers hin stark anreichert und an der Oberfläche eine sehr dünne Ti(C,N)-Schicht vorliegt.In the sintered body according to sample A, it was found that the N 2 treatment affected the regions close to the surface to a depth of up to 1 μm in such a way that the binder phase, ie the sum of the binder metals, became poor and a significant enrichment of the hard material phase on the Surface and in the areas near the surface was generated (see Fig. 2a). This could be both can be determined in the metallographic cross-section as well as purely optically by a color change. 2b shows the ratio of the dopant Ti to the binding metal Co. It can be seen that the doping element in relation to the binding metal accumulates strongly towards the surface of the substrate body and a very thin Ti (C, N) layer is present on the surface.
Als weiteres Beispiel für den erzielten Effekt der Modifikation der Randzone zeigt Fig. 3a ein halbquantitatives GDOS-Tiefenprofil. Man erkennt deutlich, dass die Summe der Bindemetalle (Fe, Co, Ni) an der äußeren Oberfläche abnimmt. Fig. 3b zeigt ein zur Oberfläche in geringeren Eindringtiefen (ca. 0,1 μm) deutlich ansteigendes Verhältnis Cr/(Co + Fe + Ni). Dies bedeutet, dass im Binder in der gradierten Randzone, welche durch Stickstoff beeinflußt ist, der Cr-Anteil in der Binderphase relativ zu den anderen Elementen der Binderphase gegenüber der nicht durch Stickstoff beeinflußten, inneren Bereiche der Legierung erhöht ist. Der Stickstoffgehalt nimmt in der Randzone stark, der Kohlenstoff- und Wolfram-Gehalt geringfügig zur Oberfläche hin zu.3a shows a semi-quantitative GDOS depth profile as a further example of the effect of the modification of the edge zone. It can clearly be seen that the sum of the binding metals (Fe, Co, Ni) on the outer surface decreases. 3b shows a ratio Cr / (Co + Fe + Ni) which increases significantly to the surface at lower penetration depths (approx. 0.1 μm). This means that in the binder in the graded edge zone, which is influenced by nitrogen, the Cr content in the binder phase is increased relative to the other elements of the binder phase compared to the inner regions of the alloy which are not influenced by nitrogen. The nitrogen content increases sharply in the peripheral zone, the carbon and tungsten content increases slightly towards the surface.
Proben des Typs A bis F gemäß Tabelle 1 wurden verschiedenen Glühungen und Sinterungen bei erhöhtem Stickstoffdruck gemäß Tabelle 2 unterzogen. Samples of the types A to F according to Table 1 were subjected to various annealing and sintering processes under increased nitrogen pressure according to Table 2.
Tabelle 2Table 2
Sinterprofile für die Proben A bis F der Tabelle 1Sintered profiles for samples A to F of Table 1
Probe SinterprofilSample sintered profile
B Zyklus 7B cycle 7
C Zyklus 7C cycle 7
A Zyklus 7A cycle 7
C php_1C php_1
A php_1A php_1
D php_2D php_2
E php_2E php_2
C php_2C php_2
E php_2E php_2
B php_2B php_2
D php_2aD php_2a
F php_2aF php_2a
D php_2bD php_2b
F php_2b.F php_2b.
Die Sinterprofile sind in Tabelle 3 sowie Fig. 4 wiedergegeben. The sintered profiles are shown in Table 3 and Fig. 4.
Tabelle 3Table 3
Tabellarische Beschreibung der SinterprofileTabular description of the sintered profiles
Figure imgf000011_0001
Figure imgf000011_0001
Zyklus 8Cycle 8
Figure imgf000011_0002
Figure imgf000011_0002
Zyklus 7Cycle 7
Figure imgf000011_0003
Figure imgf000011_0003
php_1php_1
Figure imgf000011_0004
Figure imgf000011_0004
Php_2Php_2
Figure imgf000011_0005
Figure imgf000011_0005
php_2aphp_2a
Figure imgf000011_0006
Figure imgf000011_0006
php_2bphp_2b
Figure imgf000011_0007
Ein halbquantitatives GDOS-Tiefenprofil der Probe C ist in Fig. 5 dargestellt, welches die Abnahme der Summe der Bindemetalle in oberflächennahen Bereichen zeigt. Die Summe der Bindemetalle zeigt wieder die gleiche Charakteristik wie im Falle der gleichen vakuumgesinterten Sorte. Auch der N- und der C-Anteil ist wie im Falle der unter vermindertem Druck gesinterten Legierung C zur Oberfläche hin erhöht. Fig. 5b zeigt einen deutlichen Anstieg der Cr/(Co + Ni + Fe)-Konzentrationsverhältnisses zu randnahen Zonen.
Figure imgf000011_0007
A semi-quantitative GDOS depth profile of sample C is shown in FIG. 5, which shows the decrease in the sum of the binding metals in areas near the surface. The sum of the binding metals again shows the same characteristics as in the case of the same vacuum sintered grade. As in the case of alloy C sintered under reduced pressure, the N and the C content are also increased towards the surface. 5b shows a clear increase in the Cr / (Co + Ni + Fe) concentration ratio to zones near the edge.
Durch die Wahl der Dotierungselemente bzw. deren Verbindungen und auch durch Wahl des Stickstoffdruckes kann die Randzone des fertigen Hartmetall-Sinterkörpers so eingestellt werden, dass nicht nur eine Anreicherung an Dotierungsmitteln, sondern sogar die Bildung einer Diffusionsschicht aus Nitriden gefördert wird. Wird beispielsweise Cr oder eine Cr-Verbindung als Dotierung eingesetzt, so entsteht bei einer Vakuumsinterung mit späterer N2-Gasphaseneinstellung unter kleinen Drücken (< 105 Pa) keine Chromnitrid-Schicht oder -Anreicherung, weil sich Chromnitride bei geringen Stickstoff drücken nicht bilden. Hingegen kann mittels einer Dotierung einer V- oder Ti-haltigen Phase die Bildung von TiN oder VN oder von Ti(C,N) oder V(C,N) unter denselben Bedingungen hervorgerufen werden, weil Vanadiumnitride bzw. -carbonitride bereits bei geringen Stickstoffdrücken ausgebildet werden. By choosing the doping elements or their connections and also by choosing the nitrogen pressure, the edge zone of the finished hard metal sintered body can be adjusted in such a way that not only an enrichment of doping agents but also the formation of a diffusion layer from nitrides is promoted. If, for example, Cr or a Cr compound is used as doping, a vacuum sintering with subsequent N 2 gas phase adjustment at low pressures (<105 Pa) does not result in a chromium nitride layer or enrichment because chromium nitrides do not form at low nitrogen pressures. On the other hand, by doping a V- or Ti-containing phase, the formation of TiN or VN or of Ti (C, N) or V (C, N) can be caused under the same conditions, because vanadium nitrides or carbonitrides already at low nitrogen pressures be formed.

Claims

Ansprüche Expectations
1. Hartmetall-Substratkörper, bestehend aus einer WC-Hartstoffphase und einer 3- bis 25 Massen%igen Binderphase, die neben mindestens einem der Bindemetalle Fe, Co und/oder Ni noch bis zu 15 Massen% (bezogen auf die Binderphase) gelöste Dotierungsmittel enthält, die aus der Gruppe AI, Cr, V, Nb, Ta, Ti, Zr, Hf bestehen, d a d u r c h g e k e n n z e i c h n e t, dass der prozentuale Anteil aller Dotierungsmittel im Hartmetall auf maximal 4 Massen% begrenzt ist, dass der Anteil einer kubischen Phase im Hartmetall kleiner als 4 Vol% ist und dass der Bindemetallgehalt in einer Hartmetall- Substratkörper-Randzone von bis zu 1.μm, vorzugsweise bis zu 0,5 μm, auf weniger als das 0,5-fache des Bindergehaltes im Substratkörperinneren abfällt.1. Tungsten carbide substrate body, consisting of a WC hard material phase and a 3 to 25 mass% binder phase which, in addition to at least one of the binder metals Fe, Co and / or Ni, also contains up to 15 mass% (based on the binder phase) dopant contains, which consist of the group AI, Cr, V, Nb, Ta, Ti, Zr, Hf, characterized in that the percentage of all dopants in the hard metal is limited to a maximum of 4 mass%, that the proportion of a cubic phase in the hard metal is smaller than 4% by volume and that the binder metal content in a hard metal substrate body edge zone is up to 1 . μm, preferably up to 0.5 μm, drops to less than 0.5 times the binder content in the interior of the substrate body.
2. Hartmetall-Substratkörper nach Anspruch 1 , dadurch gekennzeichnet, dass die Konzentration der Binderphase zur Substraktkörperoberfläche hin graduell abnimmt und die Konzentration des Dotierungsmittels in entsprechender , Weise graduell zunimmt.2. Tungsten carbide substrate body according to claim 1, characterized in that the concentration of the binder phase gradually decreases towards the surface of the substrate body and the concentration of the dopant gradually increases in a corresponding manner.
3. Hartmetall-Substratkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Korngröße des WC < 1 ,5 μm beträgt, wobei bei WC-Feinstkorn- Hartmetallen (Korngröße < 0,8 μm) und/oder bei WC-Ultrafeinstkorn-Hartmetallen (Korngröße < 0,5 μm) vorzugsweise Cr, V und/oder Ta als Dotierungsmittel enthalten sind.3. Tungsten carbide substrate body according to claim 1 or 2, characterized in that the grain size of the WC is <1, 5 microns, with WC fine grain carbides (grain size <0.8 microns) and / or WC ultra fine grain hard metals (Grain size <0.5 μm) preferably Cr, V and / or Ta are contained as dopants.
4. Hartmetall-Substratkörper, dadurch gekennzeichnet, dass auf der Substratkörperoberfläche mindestens eine Schicht aus einem Carbid, Nitrid und/oder Carbonitrid des Ti, Zr und/oder Hf und/oder aus Al203, HfO2, ZrO2, Oxiden, amorphem Kohlenstoff, aus Diamant, kubischem Bomitrid, Kohlenstoffnitrid (CNX) oder anderen mindestens eines der Elemente B, C, N und/oder O aufweisenden Verbindungen aufgebracht ist.4. hard metal substrate body, characterized in that on the substrate body surface at least one layer of a carbide, nitride and / or carbonitride of Ti, Zr and / or Hf and / or Al 2 0 3 , HfO 2 , ZrO 2 , oxides, amorphous carbon, from diamond, cubic bomitride, carbon nitride (CN X ) or other compounds having at least one of the elements B, C, N and / or O is applied.
5. Hartmetall-Substratkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in der oberflächennahen Randzone Nitride oder Carbo- nitride des metallischen Dotierungsmittels angereichert sind.5. Hard metal substrate body according to one of claims 1 to 4, characterized in that nitrides or carbo-nitrides of the metallic dopant are enriched in the edge zone near the surface.
6. Verfahren zur Herstellung des Hartmetall-Substratkörpers nach einem der Ansprüche 1 bis 5, bei dem die Ausgangsmischung pulvermetallurgisch vorbehandelt, zu einem Grünling vorgepreßt und abschließend in der Atmosphäre eines Ofens erwärmt und gesintert wird, dadurch gekennzeichnet, dass in der Aufheizphase nach Erreichen des Eutektikums, aber spätestens nach Erreichen der Sintertemperatur die Vakuum- oder Inertgasatmosphäre durch eine N2-Atmosphäre mit einem N2-Druck < 105 Pa ersetzt und zumindest bis zum Erreichen der Sintertemperatur aufrechterhalten wird.6. The method for producing the hard metal substrate body according to one of claims 1 to 5, in which the starting mixture is powder-metallurgically pretreated, pressed into a green body and finally heated and sintered in the atmosphere of a furnace, characterized in that in the heating phase after reaching the Eutectic, but at the latest after reaching the sintering temperature, the vacuum or inert gas atmosphere is replaced by an N 2 atmosphere with an N 2 pressure <10 5 Pa and is maintained at least until the sintering temperature is reached.
7. Verfahren zur Herstellung des Hartmetall-Substratkörpers nach einem der Ansprüche 1 bis 5, bei dem die Ausgangsmischung pulvermetallurgisch vorbehandelt, zu einem Grünling vorgepreßt und abschließend in der Atmosphäre eines Ofens erwärmt und gesintert wird, dadurch gekennzeichnet, dass nach dem Fertigsintern oder ggf. in einer Endbehandlung unterhalb der eutekti- schen Temperatur der Sinterkörper einer ^-Atmosphäre unter einem7. The method for producing the hard metal substrate body according to one of claims 1 to 5, in which the starting mixture is pretreated by powder metallurgy, pressed into a green body and finally heated and sintered in the atmosphere of a furnace, characterized in that after the final sintering or, if appropriate, in a final treatment below the eutectic temperature of the sintered bodies in a ^ atmosphere under one
Druck (p) von 105 Pa < p < 107 Pa über mindestens 10 min ausgesetzt wird.Pressure (p) of 10 5 Pa <p <10 7 Pa for at least 10 min.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Stickstoffatmosphäre durch Einleitung von Präkursoren, d.h. N-haltigen Gasen eingestellt wird, wobei sich Stickstoff in der Gasatmosphäre in situ bildet.8. The method according to claim 6 or 7, characterized in that the nitrogen atmosphere by introducing precursors, i.e. N-containing gases is set, nitrogen being formed in situ in the gas atmosphere.
9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass bis auf 1250°C während der Aufheizphase erwärmt und diese Temperatur eine Zeitdauer von mindestens 20 min, vorzugsweise mehr als 1 h, gehalten wird, bevor mit der Aufheizung auf die Sintertemperatur fortgefahren wird. 9. The method according to any one of claims 6 to 8, characterized in that heated to 1250 ° C during the heating phase and this temperature is held for a period of at least 20 min, preferably more than 1 h, before heating to the sintering temperature is continued.
10. Verfahren nach einem der Ansprüche 6, 8 oder 9, dadurch gekennzeichnet, dass zunächst in der Aufwärmphase bei etwa 1200°C das bisher bestehende Vakuum durch eine Inertgasatmosphäre, vorzugsweise bei einem Druck von 103 Pa bis 104 Pa, und erst bei Erreichen der Sintertemperatur die Stickstoffenthaltende Atmosphäre bei höherem Druck, vorzugsweise > 104 Pa eingestellt wird.10. The method according to any one of claims 6, 8 or 9, characterized in that first in the warm-up phase at about 1200 ° C, the previously existing vacuum through an inert gas atmosphere, preferably at a pressure of 10 3 Pa to 10 4 Pa, and only at When the sintering temperature is reached, the nitrogen-containing atmosphere is set at a higher pressure, preferably> 10 4 Pa.
11. Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass die Aufheiz- und Abkühlrate bis zu 10°C/min beträgt, vorzugsweise zwischen 2°C/min und 5°C/min liegt.11. The method according to any one of claims 6 to 10, characterized in that the heating and cooling rate is up to 10 ° C / min, preferably between 2 ° C / min and 5 ° C / min.
12. Verfahren nach einem der Ansprüche 6 bis 11 , dadurch gekennzeichnet, dass in der Ausgangsmischung bis zu 15 Massen% der Binderphase zusätzliche Carbide, Nitride, Carbonitride der Elemente der IVa- oder Vla-Gruppe des Periodensystems oder des AI oder Komplexcarbide, Komplexnitride und/oder Komplexcarbonitride der Form T-2AIC, Ti2AIN, Cr2AIN, Cr2AIC enthalten sind. 12. The method according to any one of claims 6 to 11, characterized in that in the starting mixture up to 15 mass% of the binder phase additional carbides, nitrides, carbonitrides of the elements of the IVa or Vla group of the periodic table or of the AI or complex carbides, complex nitrides and / or complex carbonitrides of the form T- 2 AIC, Ti 2 AIN, Cr 2 AIN, Cr 2 AIC are contained.
PCT/DE2003/001834 2002-06-10 2003-06-04 Hard metal substrate body and method for producing the same WO2003104507A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03740063A EP1511870B1 (en) 2002-06-10 2003-06-04 Hard metal substrate body and method for producing the same
US10/517,669 US20050224958A1 (en) 2002-06-10 2003-06-04 Hard metal substrate body and method for producing the same
JP2004511564A JP2005529236A (en) 2002-06-10 2003-06-04 Hard metal support and manufacturing method thereof
DE50307024T DE50307024D1 (en) 2002-06-10 2003-06-04 Hard metal substrate and method for the production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10225521A DE10225521A1 (en) 2002-06-10 2002-06-10 Hard tungsten carbide substrate with surface coatings, includes doped metallic binder
DE10225521.0 2002-06-10

Publications (1)

Publication Number Publication Date
WO2003104507A1 true WO2003104507A1 (en) 2003-12-18

Family

ID=29557684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/001834 WO2003104507A1 (en) 2002-06-10 2003-06-04 Hard metal substrate body and method for producing the same

Country Status (7)

Country Link
US (1) US20050224958A1 (en)
EP (1) EP1511870B1 (en)
JP (1) JP2005529236A (en)
AT (1) ATE359381T1 (en)
DE (2) DE10225521A1 (en)
PT (1) PT1511870E (en)
WO (1) WO2003104507A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501801A1 (en) * 2005-05-13 2006-11-15 Boehlerit Gmbh & Co Kg Hard metal body with tough surface
WO2007001226A1 (en) * 2005-06-27 2007-01-04 Sandvik Intellectual Property Ab Sintered cemented carbides using vanadium as gradient former
JP2007039752A (en) * 2005-08-04 2007-02-15 National Institute Of Advanced Industrial & Technology Tool or die material having hard film deposited on hard alloy for forming high hardness film, and manufacturing method of the same
CN110284038A (en) * 2019-04-26 2019-09-27 中南大学 One kind having the PVD coating and preparation method thereof of strong (111) texture

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10342364A1 (en) * 2003-09-12 2005-04-14 Kennametal Widia Gmbh & Co.Kg Carbide or cermet body and process for its preparation
DE102006045339B3 (en) * 2006-09-22 2008-04-03 H.C. Starck Gmbh metal powder
DE102008048967A1 (en) * 2008-09-25 2010-04-01 Kennametal Inc. Carbide body and process for its production
CN102424970A (en) * 2011-12-05 2012-04-25 嘉鱼县海鑫合金制造有限公司 Technology for preparing hard alloy coating on surface of wear resistant part with powder metallurgy method
US8834594B2 (en) 2011-12-21 2014-09-16 Kennametal Inc. Cemented carbide body and applications thereof
JP6474389B2 (en) * 2013-05-31 2019-02-27 サンドビック インテレクチュアル プロパティー アクティエボラーグ New manufacturing method of cemented carbide and product obtained thereby
EP2821165A1 (en) * 2013-07-03 2015-01-07 Sandvik Intellectual Property AB A sintered cermet or cemented carbide body and method of producing it
JP6375636B2 (en) * 2014-02-14 2018-08-22 新日鐵住金株式会社 Carbide tool substrate and carbide tool, and carbide tool substrate and method of manufacturing carbide tool
JP6327102B2 (en) * 2014-10-10 2018-05-23 新日鐵住金株式会社 Carbide tool
CN109180187B (en) * 2018-08-31 2021-05-18 中国科学院金属研究所 Preparation method of highly oriented nanometer MAX phase ceramic and MAX phase in-situ authigenic oxide nanometer complex phase ceramic

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11197936A (en) * 1998-01-19 1999-07-27 Mitsubishi Materials Corp Milling tool excellent in wear resistance
DE19845376A1 (en) * 1998-07-08 2000-01-13 Widia Gmbh Hard metal or cermet body useful as a cutter insert
EP1048750A1 (en) * 1999-04-26 2000-11-02 Sandvik Aktiebolag Coated cutting tool
WO2001016388A1 (en) * 1999-09-01 2001-03-08 Sandvik Ab (Publ) Coated grooving or parting insert
WO2002014569A2 (en) * 2000-08-11 2002-02-21 Kennametal Inc. Chromium-containing cemented tungsten carbide body

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2684688B2 (en) * 1988-07-08 1997-12-03 三菱マテリアル株式会社 Surface-coated tungsten carbide based cemented carbide for cutting tools
DE3837006C3 (en) * 1988-10-31 1993-11-18 Krupp Widia Gmbh hard metal
JP2762745B2 (en) * 1989-12-27 1998-06-04 住友電気工業株式会社 Coated cemented carbide and its manufacturing method
JP3046336B2 (en) * 1990-09-17 2000-05-29 東芝タンガロイ株式会社 Sintered alloy with graded composition and method for producing the same
JP3158429B2 (en) * 1990-11-21 2001-04-23 三菱マテリアル株式会社 Cemented carbide members with excellent wear resistance and toughness
US5750247A (en) * 1996-03-15 1998-05-12 Kennametal, Inc. Coated cutting tool having an outer layer of TiC
JPH11302767A (en) * 1998-04-21 1999-11-02 Toshiba Tungaloy Co Ltd Cemented carbide excellent in mechanical characteristic and its production
DE19922057B4 (en) * 1999-05-14 2008-11-27 Widia Gmbh Carbide or cermet body and process for its preparation
US6110603A (en) * 1998-07-08 2000-08-29 Widia Gmbh Hard-metal or cermet body, especially for use as a cutting insert
JP2000336451A (en) * 1999-05-28 2000-12-05 Toshiba Tungaloy Co Ltd Modified sintered alloy, coated sintered alloy, and their production
SE518890C2 (en) * 2000-09-27 2002-12-03 Sandvik Ab Carbide tools for cold working operations
JP2001293603A (en) * 2001-02-28 2001-10-23 Mitsubishi Materials Corp Cutting tool coated with vapor phase synthetic diamond

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11197936A (en) * 1998-01-19 1999-07-27 Mitsubishi Materials Corp Milling tool excellent in wear resistance
DE19845376A1 (en) * 1998-07-08 2000-01-13 Widia Gmbh Hard metal or cermet body useful as a cutter insert
EP1048750A1 (en) * 1999-04-26 2000-11-02 Sandvik Aktiebolag Coated cutting tool
WO2001016388A1 (en) * 1999-09-01 2001-03-08 Sandvik Ab (Publ) Coated grooving or parting insert
WO2002014569A2 (en) * 2000-08-11 2002-02-21 Kennametal Inc. Chromium-containing cemented tungsten carbide body

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 12 29 October 1999 (1999-10-29) *
S. TAKATSU, K. SHIBUKI, H. KISO: "Properties and cutting performance of nitriding cemented carbide and TiC cermet tools", CUTTING TOOL MATERIALS: PROCEEDINGS OF AN INTERNATIONAL CONFERENCE FORT MITCHELL, KY, USA, 1981, pages 207 - 224, XP009017005 *
WALTER LENGAUER, KLAUS DREYER: "Functionally graded hardmetals", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 338, 16 May 2002 (2002-05-16), pages 194 - 212, XP002256760 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501801A1 (en) * 2005-05-13 2006-11-15 Boehlerit Gmbh & Co Kg Hard metal body with tough surface
AT501801B1 (en) * 2005-05-13 2007-08-15 Boehlerit Gmbh & Co Kg Hard metal body with tough surface
WO2007001226A1 (en) * 2005-06-27 2007-01-04 Sandvik Intellectual Property Ab Sintered cemented carbides using vanadium as gradient former
US7794830B2 (en) 2005-06-27 2010-09-14 Sandvik Intellectual Property Ab Sintered cemented carbides using vanadium as gradient former
JP2007039752A (en) * 2005-08-04 2007-02-15 National Institute Of Advanced Industrial & Technology Tool or die material having hard film deposited on hard alloy for forming high hardness film, and manufacturing method of the same
CN110284038A (en) * 2019-04-26 2019-09-27 中南大学 One kind having the PVD coating and preparation method thereof of strong (111) texture
CN110284038B (en) * 2019-04-26 2020-07-28 中南大学 PVD coating with strong (111) texture and preparation method thereof

Also Published As

Publication number Publication date
JP2005529236A (en) 2005-09-29
PT1511870E (en) 2007-06-28
DE50307024D1 (en) 2007-05-24
EP1511870B1 (en) 2007-04-11
ATE359381T1 (en) 2007-05-15
US20050224958A1 (en) 2005-10-13
DE10225521A1 (en) 2003-12-18
EP1511870A1 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
DE2005707C3 (en) Hard material powder for the production of metal-bonded hard material alloys
DE3936129C2 (en) Blade part made of cemented carbide based on tungsten carbide for cutting tools and method for producing the same
DE60126068T2 (en) CEMENTED CARBIDE TOOL AND METHOD OF MANUFACTURING THEREOF
DE2717842C2 (en) Process for the surface treatment of sintered hard metal bodies
EP2010687B1 (en) Hard metal body and method for producing the same
EP1511870B1 (en) Hard metal substrate body and method for producing the same
DE3744573A1 (en) Surface-refined sintered alloy body and process for the manufacture thereof
EP1664363B1 (en) Hard metal or cermet body and method for producing the same
DE2658813C2 (en) High-speed steel containing nitrogen produced using the powder metallurgy process
DE2831293A1 (en) METHOD FOR PRODUCING SINTERED HARD METALS AND DEVICE FOR CARRYING OUT THIS METHOD
EP1095168B1 (en) Hard metal or ceramet body and method for producing the same
EP1957429B1 (en) Coated hard metal member
DE2420768A1 (en) CARBONITRIDE ALLOYS FOR CUTTING TOOLS AND WEAR PARTS
EP0758407B1 (en) Cermet and process for producing it
AT392929B (en) METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF WORKPIECES OR TOOLS
DE19922057B4 (en) Carbide or cermet body and process for its preparation
DE10297020T5 (en) Multi-component ceramic powder, method for producing multi-component ceramic powder, sintered body and method for producing a sintered body
EP1625102A1 (en) Sintered part and the method for the production thereof
EP0149449B1 (en) Hard metal body, in particular a cutting tool
DE102008048967A1 (en) Carbide body and process for its production
DE2303756A1 (en) PROCESS FOR GENERATING AN EXTREMELY HARD MIXED CARBIDE LAYER ON FERROUS MATERIALS TO INCREASE THE WEAR RESISTANCE
DE10117657B4 (en) Complex boride cermet body and use of this body
WO2023217326A1 (en) Method for diffusion coating with a cr-si-containing slip
DE4440544C2 (en) Sintered hard material molded body and process for its production
DE112021001964T5 (en) COATED TOOL

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003740063

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004511564

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003740063

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10517669

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003740063

Country of ref document: EP