WO2003102569A1 - Schichtsystem sowie verfahren zur herstellung eines schichtsystems - Google Patents

Schichtsystem sowie verfahren zur herstellung eines schichtsystems Download PDF

Info

Publication number
WO2003102569A1
WO2003102569A1 PCT/DE2003/001577 DE0301577W WO03102569A1 WO 2003102569 A1 WO2003102569 A1 WO 2003102569A1 DE 0301577 W DE0301577 W DE 0301577W WO 03102569 A1 WO03102569 A1 WO 03102569A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrically conductive
conductive layer
solid electrolyte
metal
Prior art date
Application number
PCT/DE2003/001577
Other languages
English (en)
French (fr)
Inventor
Lothar Diehl
Stefan Rodewald
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2003102569A1 publication Critical patent/WO2003102569A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • H01M4/8889Cosintering or cofiring of a catalytic active layer with another type of layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/02Noble metals
    • B32B2311/06Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/02Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/408Noble metals, e.g. palladium, platina or silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention is based on a layer system according to the preamble of independent claim 1 and on a method for producing a layer system according to the preamble of independent claim 12.
  • Such a layer system is known for example from DE 44 39 883 AI.
  • the layer system contains an oxygen ion-conductive solid electrolyte layer, an electrically conductive layer and an electrically insulating layer between the solid electrolyte layer and the
  • the material of the insulating layer contains metal oxides of niobium or tantalum before sintering. During sintering, the pentavalent cations of the metal oxide diffuse into the host lattice of the adjacent solid electrolyte layer (into the diffusion area). Due to the doping of the diffusion region of the solid electrolyte layer, the diffusion region has a significantly higher electrical resistance than a solid electrolyte layer without doping.
  • the electrically insulating layer as well as the electrically conductive layer by screen printing processes to be applied to the unsintered solid electrolyte layer (green film).
  • the electrically insulating layer has holes. In the area of these holes, the 5 electrically conductive layer is in direct contact with the solid electrolyte layer.
  • no niobium or tantalum can diffuse into the solid electrolyte layer in the area of these holes, so that the insulating effect of the solid electrolyte layer in the area of the holes of the L0 electrically insulating layer is reduced.
  • Layer system with the characterizing features of independent claim 12 has the advantage that adequate insulation of the electrically conductive layer is ensured.
  • the electrically conductive layer contains an additive with at least one metal that has an oxidation state greater than four before sintering.
  • the metal with an oxidation state greater than four diffuses into the solid electrolyte layer during sintering.
  • the layer is thus completely surrounded by an area within the solid electrolyte layer into which the metal with an oxidation state greater than four has diffused and which insulates the electrically conductive layer. In areas 5 of the solid electrolyte layer, the holes that may occur in the electrically conductive layer an insulating effect is not required.
  • the electrically conductive layer according to the invention can be applied directly to the solid electrolyte layer. Since a well-insulating region surrounding the electrically conductive layer forms in the solid electrolyte layer during sintering, an electrically insulating layer can be saved.
  • a particularly good insulating effect has resulted if niobium and / or tantalum and / or tungsten in the form of a metal oxide as metal with an oxidation state greater than four has been added to the electrically conductive layer.
  • the proportion of the metal oxide in the electrically conductive layer before sintering is preferably 1 to 18 percent by weight, in particular 9 percent by weight.
  • Zirconium oxide stabilized with yttrium oxide is often used as the solid electrolyte layer. It is also known that the electrically conductive layer has platinum and a ceramic containing zirconium oxide as a supporting structure. The insulating effect resulting from the diffusion process is further increased if the support structure of the electrically conductive layer has yttrium oxide and if the proportion of yttrium oxide based on the zirconium oxide in the support structure of the electrically conductive layer is less than in the solid electrolyte layer. The effect is based on the fact that during sintering yttrium ions from the
  • Solid electrolyte layer in the doped with yttrium oxide Diffuse zirconium oxide from the support structure of the electrically conductive layer. This happens due to the different yttrium concentration in the solid electrolyte layer and in the supporting structure. The reduction in the yttrium concentration in the diffusion layer in the solid electrolyte, like the doping with niobium, tantalum or tungsten, causes an increase in the electrical resistance of this layer.
  • Layer systems of this type are used in sensor elements which serve to determine the concentration of an exhaust gas component or the temperature of the exhaust gas of an internal combustion engine.
  • the sensor element has a measuring area and a supply area, at least one electrical element arranged in the measuring area, such as an electrode or a heater, being connected by a
  • Lead is electrically connected to a contact.
  • the additive with at least one metal oxide, the metal of which has an oxidation state of greater than four, is advantageously added to the supply line to the electrode or heater and / or the heater.
  • FIG. 1 shows an exemplary embodiment of a layer structure according to the invention in an exploded view
  • FIG. 2 shows the exemplary embodiment of the layer structure after a sintering process
  • FIG. 3 shows the exploded drawing of a sensor element with the layer structure according to the invention.
  • the two solid electrolyte layers 11, 13 consist of zirconium oxide stabilized with yttrium oxide, the proportion of yttrium oxide being 8 percent by weight.
  • the electrically conductive layer 12 contains 84 percent by weight of platinum, a support structure made of one
  • the support structure of the electrically conductive layer 12 contains, in addition to zirconium oxide, a yttrium oxide fraction of less than 8 percent by weight, preferably 5
  • Percentage by weight based on the proportion of zirconium oxide.
  • the layer system 10 is produced by applying the electrically conductive layer 12 to the unsintered solid electrolyte layer 11 (green film) by screen printing.
  • the solid electrolyte layer 11 is then laminated together with the electrically conductive layer 12 and the further solid electrolyte layer 13 and then sintered.
  • niobium diffuses into the regions 15 (in the following diffusion region 15) of the two solid electrolyte layers 11, 13 surrounding the electrically conductive layer 12.
  • FIG. 2 schematically shows a layer system 10 after sintering, in which the electrically conductive layer 12 is completely surrounded by the diffusion region 15 and is thus electrically insulated.
  • niobium oxide instead of or in addition to the niobium oxide, another metal oxide can be used as the diffusion-active additive, the metal of which has an oxidation state of greater than four. A good insulation effect was also achieved with tungsten or tantalum, for example.
  • FIG. 3 shows an exemplary embodiment of a sensor element 100 in which the layer composite according to FIGS. 1 and 2 is realized.
  • the elongated, planar sensor element 100 has a first, a second, a third and a fourth solid electrolyte layer 111, 112, 113, 114 with a measuring area 161 and a supply area 162.
  • a reference gas channel is in the third solid electrolyte layer 113
  • a heater 141 with two heater supply lines 142 is arranged between the first and the second solid electrolyte layer 111, 112.
  • the heater feed lines 142 are electrically connected via vias to contact surfaces 143 arranged on the outer surface of the first solid electrolyte layer 111.
  • a first electrode 121 with a lead 122 is arranged between the third and fourth solid electrolyte layers 113, 114 and is likewise connected to a contact surface 123 by a plated-through hole.
  • a second electrode 131 with lead 132 and contact surface 133 is provided on the outer surface of fourth solid electrolyte layer 114.
  • the second electrode 131 and, in some areas, the feed line 132 to the second electrode 131 are covered by a protective layer 134.
  • the heater 141 and electrodes 121, 131 are arranged in the measuring area 161, the corresponding feed lines 142, 122, 132 and contact surfaces 143, 123, 133 in the feed area 162 of the sensor element 100.
  • the first and second electrodes 121, 131 together with the fourth solid electrolyte layer 114 form an electrochemical cell.
  • a sensor can be used in a manner known to those skilled in the art to determine the oxygen content in exhaust gases from Internal combustion engines are used (so-called lambda jump probe).
  • the heater 141, the heater feed lines 142 and contact surfaces 143 of the heater 141 with the surrounding solid electrolyte layers 111, 112 are constructed like the layer composite 10 shown in FIGS. 1 and 2. Furthermore, the leads 122, 132 and contact surfaces 123, 133 to the first and second electrodes 121, 131 (individually or in any combination) with the respectively adjacent solid electrolyte layers 111, 112, 113, 114 can result in the layer composite shown in FIGS. 1 and 2.
  • the invention is not restricted to the exemplary embodiments shown in the figures.
  • the electrically conductive layers in particular heaters, feed lines and / or contact surfaces, can also be insulated from the surrounding solid electrolyte layers by electrically insulating layers, for example made of aluminum oxide.
  • the invention is also implemented in a layer composite in which the electrically conductive layer is applied to a solid electrolyte layer without the electrically conductive layer being covered by a further solid electrolyte layer.
  • the second solid electrolyte layer can be omitted.

Abstract

Es wird ein Schichtsystem (10) vorgeschlagen, das eine Sauerstoffionen leitende, Zirkonoxid enthaltende Festelektrolytschicht (11, 13) und eine elektrisch leitende Schicht (12) enthält. Die elektrisch leitende Schicht (12) enthält vor dem Sintern einen Zusatzstoff mit mindestens einem Metalloxid, dessen Metall eine Oxidationsstufe von größer vier aufweist. Weiterhin wird ein Verfahren zur Herstellung eines Schichtsystems (10) mit einer Sauerstoffionen leitenden, Zirkonoxid enthaltenden Festelektrolytschicht (11, 13) und einer elektrisch leitenden Schicht (12) vorgeschlagen. Die elektrisch leitende Schicht (12) wird auf die Festelektrolytschicht (11, 13) aufgebracht und das so entstandene Schichtsystem (10) wird einem Sinterprozess unterzogen. Die elektrisch leitende Schicht (12) enthält einen Zusatzstoff mit mindestens einem Metalloxid, dessen Metall eine Oxidationsstufe von größer vier aufweist. Das Metalloxid diffundiert während des Sinterprozesses zumindest teilweise aus der elektrisch leitenden Schicht (12) in den an die elektrisch leitende Schicht (12) angrenzenden Bereich der Festelektrolytschicht (11, 13).

Description

L0 Schichtsystem sowie Verfahren zur Herstellung eines SchichtSystems
Stand der Technik
L5 Die Erfindung geht aus von einem Schichtsystem nach dem Oberbegriff des unabhängigen Anspruchs 1 sowie von einem Verfahren zur Herstellung eines Schichtsystems nach dem Oberbegriff des unabhängigen Anspruchs 12.
20 Ein derartiges Schichtsystem ist beispielsweise aus der DE 44 39 883 AI bekannt. Das Schichtsystem enthält eine Sauerstoffionen leitende Festelektrolytschicht, eine elektrisch leitende Schicht und eine elektrisch isolierende Schicht zwischen der Festelektrolytschicht und der
25 elektrisch leitenden Schicht. Das Material der isolierenden Schicht enthält vor dem Sintern Metalloxide des Niobs oder des Tantals. Beim Sintern diffundieren die fünfwertigen Kationen des Metalloxids in das Wirtsgitter der angrenzenden Festelektrolytschicht (in den Diffusionsbereich) . Durch die 0 Dotierung des Diffusionsbereichs der Festelektrolytschicht weist der Diffusionsbereich einen deutlich höheren elektrischen Widerstand auf als eine Festelektrolytschicht ohne Dotierung.
5 Es ist bekannt, die elektrisch isolierende Schicht ebenso wie die elektrisch leitende Schicht durch Siebdruckverfahren auf die ungesinterte Festelektrolytschicht (Grünfolie) aufzubringen. Beim Bedrucken der Festelektrolytschicht besteht die Gefahr, dass die elektrisch isolierende Schicht Löcher aufweist. Im Bereich dieser Löcher steht die 5 elektrisch leitende Schicht mit der Festelektrolytschicht in direktem Kontakt. Gleichzeitig kann in die Festelektrolytschicht im Bereich dieser Löcher kein Niob oder Tantal diffundieren, so dass die isolierende Wirkung der Festelektrolytschicht im Bereich der Löcher der L0 elektrisch isolierenden Schicht verringert wird. Insgesamt ist also nachteilig, dass im Bereich von fertigungstechnisch bedingten Löchern in der elektrisch isolierenden Schicht eine ausreichende Isolation der elektrisch leitenden Schicht nicht gewährleistet ist.
L5
Vorteile der Erfindung
Das erfindungsgemäße Schichtsystem mit den kennzeichnenden Merkmalen des unabhängigen Anspruchs 1 sowie das
20 erfindungsgemäße Verfahren zur Herstellung eines
Schichtsystems mit den kennzeichnenden Merkmalen des unabhängigen Anspruchs 12 hat demgegenüber den Vorteil, dass eine ausreichende Isolation der elektrisch leitenden Schicht gewährleistet wird.
25
Hierzu enthält die elektrisch leitende Schicht vor dem Sintern einen Zusatzstoff mit mindestens einem Metall, dass eine Oxidationsstufe größer vier aufweist. Das Metall mit einer Oxidationsstufe größer vier diffundiert beim Sintern 0 in die Festelektrolytschicht. Die elektrisch leitende
Schicht ist damit vollständig von einem Bereich innerhalb der Festelektrolytschicht umgeben, in den das Metall mit einer Oxidationsstufe größer vier diffundiert ist, und der die elektrisch leitende Schicht isoliert. In den Bereichen 5 der Festelektrolytschicht, die zu unter Umständen auftretenden Löchern in der elektrisch leitenden Schicht benachbart sind, wird eine isolierende Wirkung nicht benötigt.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen des in den unabhängigen Ansprüchen angegebenen Schichtsystems beziehungsweise des Verfahrens zur Herstellung des Schichtsystems möglich.
Die erfindungsgemäße elektrisch leitende Schicht kann direkt auf die Festelektrolytschicht aufgebracht werden. Da sich beim Sintern ein die elektrisch leitende Schicht umgebender, gut isolierender Bereich in der Festelektrolytschicht ausbildet, kann eine elektrisch isolierende Schicht eingespart werden.
Eine besonders gute isolierende Wirkung hat sich ergeben, wenn der elektrisch leitenden Schicht Niob und/oder Tantal und/oder Wolfram in Form eines Metalloxids als Metall mit einer Oxidationsstufe größer vier zugesetzt wurde. Bevorzugt beträgt der Anteil des Metalloxids an der elektrisch leitenden Schicht vor dem Sintern 1 bis 18 Gewichtsprozent, insbesondere 9 Gewichtsprozent.
Als Festelektrolytschicht wird häufig mit Yttriumoxid stabilisiertes Zirkonoxid verwendet. Es ist weiterhin bekannt, dass die elektrisch leitende Schicht Platin und als Stützgerüst eine Zirkonoxid enthaltende Keramik aufweist. Die durch den Diffusionsprozess auftretende isolierende Wirkung wird weiter erhöht, wenn das Stützgerüst der elektrisch leitenden Schicht Yttriumoxid aufweist, und wenn der Anteil des Yttriumoxids bezogen auf das Zirkonoxid im Stützgerüst der elektrisch leitenden Schicht geringer ist als in der Festelektrolytschicht. Der Effekt beruht darauf, dass während des Sinterns Yttrium-Ionen aus der
Festelektrolytschicht in das mit Yttriumoxid dotierte Zirkonoxid des Stützgerüsts der elektrisch leitenden Schicht diffundieren. Dies geschieht aufgrund der unterschiedlichen Yttrium-Konzentration in der Festelektrolytschicht und in dem Stützgerüst. Die Verringerung der Yttrium-Konzentration in der Diffusionsschicht im Festelektrolyten bewirkt ebenso wie die Dotierung mit Niob, Tantal oder Wolfram eine Erhöhung des elektrischen Widerstands dieser Schicht.
Derartige Schichtsysteme finden in Sensorelementen Verwendung, die der Bestimmung der Konzentration einer Abgaskomponente oder der Temperatur des Abgases eines Verbrennungsmotors dienen. Das Sensorelement weist einen Messbereich und einen Zuleitungsbereich auf, wobei mindestens ein im Messbereich angeordnetes elektrisches Element wie eine Elektrode oder ein Heizer durch eine
Zuleitung mit einer Kontaktierung elektrisch verbunden ist. Vorteilhaft wird der Zuleitung zu Elektrode oder Heizer und/oder dem Heizer der Zusatzstoff mit mindestens einem Metalloxid zugesetzt, dessen Metall eine Oxidationsstufe von größer vier aufweist.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert.
Figur 1 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Schichtaufbaus in Explosionszeichnung, Figur 2 zeigt das Ausführungsbeispiel des Schichtaufbaus nach einem Sinterprozess, und Figur 3 zeigt die Explosionszeichnung eines Sensorelements mit dem erfindungsgemäßen Schichtaufbau.
Beschreibung der Ausführungsbeispiele. Figur 1 und Figur 2 zeigen als Ausführungsbeispiel der Erfindung ein Schichtsystem 10 mit einer Festelektrolytschicht 11, einer weiteren Festelektrolytschicht 13 und einer zwischen den beiden Festelektrolytschichten 11, 13 angeordneten elektrisch leitenden Schicht 12. Die beiden Festelektrolytschichten 11, 13 bestehen aus mit Yttriumoxid stabilisiertem Zirkonoxid, wobei der Anteil des Yttriumoxids 8 Gewichtsprozent beträgt. Die elektrisch leitende Schicht 12 enthält vor dem Sintern 84 Gewichtsprozent Platin, ein Stützgerüst aus einer
Zirkonoxid enthaltenden Keramik (5 Gewichtsprozent) sowie als diffusionsaktiver Zusatzstoff 9 Gewichtsprozent Nioboxid. Das Stützgerüst der elektrisch leitenden Schicht 12 enthält neben Zirkonoxid einen Anteil an Yttriumoxid von weniger als 8 Gewichtsprozent, vorzugsweise 5
Gewichtsprozent, bezogen auf den Anteil des Zirkonoxids .
Das Schichtsystem 10 wird gefertigt, indem auf die ungesinterte Festelektrolytschicht 11 (Grünfolie) durch Siebdruck die elektrisch leitende Schicht 12 aufgebracht wird. Danach wird die Festelektrolytschicht 11 mit der elektrisch leitenden Schicht 12 und die weitere Festelektrolytschicht 13 zusammenlaminiert und anschließend gesintert. Während des Sinterns oder allgemein durch eine Wärmebehandlung diffundiert Niob in die die elektrisch leitende Schicht 12 umgebenden Bereiche 15 (im folgenden Diffusionsbereich 15) der beiden Festelektrolytschichten 11, 13. Figur 2 zeigt schematisch ein Schichtsystem 10 nach dem Sintern, bei dem die elektrisch leitende Schicht 12 vollständig vom Diffusionsbereich 15 umgeben und so elektrisch isoliert ist.
Anstelle des oder zusätzlich zum Nioboxid kann als diffusionsaktiver Zusatzstoff auch ein anderes Metalloxid verwendet werden, dessen Metall eine Oxidationsstufe von größer vier aufweist. Eine gute Isolationswirkung wurde beispielsweise auch mit Wolfram oder Tantal erreicht.
Figur 3 zeigt ein Ausführungsbeispiel eines Sensorelements 100, in dem der Schichtverbund gemäß Figur 1 und 2 realisiert ist. Das längliche, planare Sensorelement 100 weist eine erste, eine zweite, eine dritte und eine vierte Festelektrolytschicht 111, 112, 113, 114 mit einem Messbereich 161 und einem Zuleitungsbereich 162 auf. In die dritte Festelektrolytschicht 113 ist ein Referenzgaskanal
115 eingebracht, der über eine Öffnung im Zuleitungsbereich 162 des Sensorelements 100 mit der Außenluft verbunden ist.
Zwischen der ersten und der zweiten Festelektrolytschicht 111, 112 ist ein Heizer 141 mit zwei Heizerzuleitungen 142 angeordnet. Die Heizerzuleitungen 142 sind über Durchkontaktierungen mit auf der Außenfläche der ersten Festelektrolytschicht 111 angeordneten Kontaktflächen 143 elektrisch verbunden. Zwischen der dritten und der vierten Festelektrolytschicht 113, 114 ist eine erste Elektrode 121 mit Zuleitung 122 angeordnet und ebenfalls durch eine Durchkontaktierung mit einer Kontaktfläche 123 verbunden. Auf der Außenfläche der vierten Festelektrolytschicht 114 ist eine zweite Elektrode 131 mit Zuleitung 132 und Kontaktfläche 133 vorgesehen. Die zweite Elektrode 131 sowie bereichsweise die Zuleitung 132 zur zweiten Elektrode 131 sind durch eine Schutzschicht 134 abgedeckt. Heizer 141 und Elektroden 121, 131 sind im Messbereich 161, die entsprechenden Zuleitung 142, 122, 132 und Kontaktflächen 143, 123, 133 im Zuleitungsbereich 162 des Sensorelements 100 angeordnet.
Die erste und zweite Elektrode 121, 131 bilden zusammen mit der vierten Festelektrolytschicht 114 eine elektrochemische Zelle. Ein derartiger Sensor kann in dem Fachmann bekannter Weise zur Bestimmung des Sauerstoffgehalts in Abgasen von Verbrennungsmotoren eingesetzt werden (sogenannte Lambda- Sprungsonde) .
Im vorliegenden Ausführungsbeispiel sind der Heizer 141, die Heizerzuleitungen 142 und Kontaktflächen 143 des Heizers 141 mit den umgebenden Festelektrolytschichten 111, 112 wie der in Figur 1 und 2 dargestellte Schichtverbund 10 aufgebaut. Weiterhin können die Zuleitungen 122, 132 und Kontaktflächen 123, 133 zur ersten und zweiten Elektrode 121, 131 (einzeln oder in beliebiger Kombination) mit den jeweils benachbarten Festelektrolytschichten 111, 112, 113, 114 den in Figur 1 und 2 dargestellten Schichtverbund ergeben.
Die Erfindung ist nicht auf die in den Figuren dargestellten Ausführungsbeispiele beschränkt. Die elektrisch leitenden Schichten, insbesondere Heizer, Zuleitungen und/oder Kontaktflächen, können auch durch elektrisch isolierenden Schichten, beispielsweise aus Aluminiumoxid, von den umgebenden Festelektrolytschichten isoliert sein.
Weiterhin ergibt sich aus dem in Figur 3 dargestellten Ausführungsbeispiel anhand der zweiten Elektrode, dass die Erfindung auch in einem Schichtverbund realisiert ist, bei dem die elektrisch leitende Schicht auf einer Festelektrolytschicht aufgebracht ist, ohne dass die elektrisch leitende Schicht von einer weiteren Festelektrolytschicht abgedeckt wird.
In einem weiteren, nicht dargestellten Ausführungsbeispiel eines Sensorelements kann die zweite Festelektrolytschicht entfallen.
Es steht im Belieben des Fachmanns, den beschriebenen Schichtverbund auf Sensorelemente eines anderen Typs, beispielsweise auf Temperatursensoren oder auf Breitband- Lambda-Sonden sowie auf Sonden zum Nachweis von anderen Gasbestandteilen wie NOx, CO oder H2, zu übertragen.

Claims

Ansprüche
1. Schichtsystem (10) mit einer Sauerstoffionen leitenden, Zirkonoxid enthaltenden Festelektrolytschicht (11, 13) und einer elektrisch leitenden Schicht (12) , dadurch gekennzeichnet, dass die elektrisch leitende Schicht (12) vor dem Sintern einen Zusatzstoff enthält, der mindestens ein Metall mit einer Oxidationsstufe größer vier aufweist.
2. Schichtsystem nach Anspruch 1, dadurch gekennzeichnet, dass der Zusatzstoff das Metall mit einer Oxidationsstufe größer vier in Form eines Metalloxids enthält.
3. Schichtsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die elektrisch leitende Schicht (12) direkt an die Festelektrolytschicht (11, 13) angrenzt.
4. Schichtsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Zusatzstoff Niob und/oder Wolfram und/oder Tantal aufweist.
5. Schichtsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Festelektrolytschicht (11, 13) mit Yttriumoxid stabilisiertes Zirkonoxid aufweist, und dass die elektrisch leitende Schicht (12)
Platin und als Stützgerüst eine Zirkonoxid enthaltende Keramik aufweist.
6. Schichtsystem nach Anspruch 5, dadurch gekennzeichnet, dass das Stützgerüst der elektrisch leitenden Schicht (12) Yttriumoxid aufweist, und dass der Anteil des
Yttriumoxids bezogen auf das Zirkonoxid im Stützgerüst der elektrisch leitenden Schicht (12) geringer ist als in der Festelektrolytschicht (11, 13).
7. Schichtsystem nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass der Anteil des Metalloxids an der elektrisch leitenden Schicht (12) vor dem Sintern 1 bis 15 Gewichtsprozent, vorzugsweise 5 Gewichtsprozent, beträgt.
8. Schichtsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein an die elektrisch leitende Schicht (12) angrenzender Bereich (15) der Festelektrolytschicht (11, 13) mit dem Metall mit einer Oxidationsstufe größer vier dotiert ist, indem das in der elektrisch leitenden Schicht (12) enthaltende Metall mit einer Oxidationsstufe größer vier zumindest teilweise während einer Wärmebehandlung aus der elektrisch leitenden Schicht (12) in den an die elektrisch leitende Schicht (12) angrenzenden Bereich (15) der
Festelektrolytschicht (11, 13) diffundiert.
9. Sensorelement (100) mit einem Schichtsystem (10) nach einem der vorhergehenden Ansprüche, insbesondere zur Bestimmung einer physikalischen Größe eines Messgases, vorzugsweise zur Bestimmung der Konzentration einer Abgaskomponente oder der Temperatur des Abgases eines Verbrennungsmotors, wobei das Sensorelement (100) einen Messbereich (161) und einen Zuleitungsbereich (162) aufweist, und wobei mindestens ein elektrisches Element
(121, 131, 141) im Messbereich (161) durch eine Zuleitung (122, 132, 142) mit einer Kontaktfläche (123, 133, 143) elektrisch verbunden ist, dadurch gekennzeichnet, dass mindestens eine Zuleitung (122, 132, 142) und/oder mindestens eine Kontaktfläche (123, 133, 143) und/oder mindestens ein elektrisches Element (141) die elektrisch leitende Schicht ist, die den Zusatzstoff enthält.
10. Sensorelement nach Anspruch 9, dadurch gekennzeichnet, dass das elektrische Element im Messbereich (161) des Sensorelements (100) eine Elektrode (121, 131) oder ein
Heizer (141) ist.
11. Sensorelement nach Anspruch 10, dadurch gekennzeichnet, dass der Heizer (141) und/oder die Zuleitungen (142) zum Heizer (141) den Zusatzstoff enthalten.
12. Verfahren zur Herstellung eines Schichtsystems (10) mit einer Sauerstoffionen leitenden, Zirkonoxid enthaltenden Festelektrolytschicht (11, 13) und einer elektrisch leitenden Schicht (12), wobei die elektrisch leitende
•Schicht (12) auf die Festelektrolytschicht (11, 13) aufgebracht wird und das so entstandene Schichtsystem (10) einem Sinterprozess unterzogen wird, dadurch gekennzeichnet, dass die elektrisch leitende Schicht (12) mindestens ein Metall mit einer Oxidationsstufe größer vier enthält, und dass das Metall mit der Oxidationsstufe größer vier während des Sinterprozesses zumindest teilweise aus der elektrisch leitenden Schicht (12) in den an die elektrisch leitende Schicht (12) angrenzenden Bereich (15) der Festelektrolytschicht (11, 13) diffundiert.
13. Verfahren zur Herstellung eines Schichtsystems nach
Anspruch 12, dadurch gekennzeichnet, dass die elektrisch leitende Schicht (12) direkt auf die Festelektrolytschicht (11, 13) aufgebracht wird.
14. Verfahren zur Herstellung eines Schichtsystems nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass das Metall mit einer Oxidationsstufe größer vier in die elektrisch leitende Schicht (12) in Form eines Metalloxids eingebracht wird.
15. Verfahren zur Herstellung eines Schichtsystems nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass das
Metall mit einer Oxidationsstufe größer vier Niob und/oder Wolfram und/oder Tantal ist.
16. Verfahren zur Herstellung eines Schichtsystems nach Anspruch 14, dadurch gekennzeichnet, dass vor dem
Sinterprozess der Anteil des Metalloxids an der elektrisch leitenden Schicht (12) 1 bis 18 Gewichtsprozent, vorzugsweise 9 Gewichtsprozent, beträgt.
PCT/DE2003/001577 2002-05-29 2003-05-15 Schichtsystem sowie verfahren zur herstellung eines schichtsystems WO2003102569A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10223878.2 2002-05-29
DE10223878A DE10223878A1 (de) 2002-05-29 2002-05-29 Schichtsystem sowie Verfahren zur Herstellung eines Schichtsystems

Publications (1)

Publication Number Publication Date
WO2003102569A1 true WO2003102569A1 (de) 2003-12-11

Family

ID=29432419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/001577 WO2003102569A1 (de) 2002-05-29 2003-05-15 Schichtsystem sowie verfahren zur herstellung eines schichtsystems

Country Status (2)

Country Link
DE (1) DE10223878A1 (de)
WO (1) WO2003102569A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104391008A (zh) * 2014-11-14 2015-03-04 无锡信大气象传感网科技有限公司 一种传感器元件的制造方法
WO2015154905A1 (de) * 2014-04-10 2015-10-15 Robert Bosch Gmbh Sensorelement zur erfassung mindestens einer eigenschaft eines messgases in einem messgasraum und verfahren zum herstellen desselben

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3726479A1 (de) * 1987-08-08 1989-02-16 Bosch Gmbh Robert Verfahren zur erzeugung von elektrisch-isolierenden bereichen oder schichten in oder auf o(pfeil hoch)2(pfeil hoch)(pfeil hoch)-(pfeil hoch)-ionen leitenden festelektrolytsubstraten sowie zusammensetzung zur durchfuehrung des verfahrens
DE3833541C1 (de) * 1988-10-01 1990-03-22 Robert Bosch Gmbh, 7000 Stuttgart, De
DE3834987A1 (de) * 1988-10-14 1990-04-19 Bosch Gmbh Robert Sensorelement fuer grenzstromsensoren zur bestimmung des (lambda)-wertes von gasgemischen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3726479A1 (de) * 1987-08-08 1989-02-16 Bosch Gmbh Robert Verfahren zur erzeugung von elektrisch-isolierenden bereichen oder schichten in oder auf o(pfeil hoch)2(pfeil hoch)(pfeil hoch)-(pfeil hoch)-ionen leitenden festelektrolytsubstraten sowie zusammensetzung zur durchfuehrung des verfahrens
DE3833541C1 (de) * 1988-10-01 1990-03-22 Robert Bosch Gmbh, 7000 Stuttgart, De
DE3834987A1 (de) * 1988-10-14 1990-04-19 Bosch Gmbh Robert Sensorelement fuer grenzstromsensoren zur bestimmung des (lambda)-wertes von gasgemischen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015154905A1 (de) * 2014-04-10 2015-10-15 Robert Bosch Gmbh Sensorelement zur erfassung mindestens einer eigenschaft eines messgases in einem messgasraum und verfahren zum herstellen desselben
US10215726B2 (en) 2014-04-10 2019-02-26 Robert Bosch Gmbh Sensor element for detecting at least one property of a measured gas in a measured gas chamber, and method for manufacturing the same
CN104391008A (zh) * 2014-11-14 2015-03-04 无锡信大气象传感网科技有限公司 一种传感器元件的制造方法

Also Published As

Publication number Publication date
DE10223878A1 (de) 2003-12-11

Similar Documents

Publication Publication Date Title
DE102012202944B4 (de) Gassensorelement und Gassensor
DE3907312A1 (de) Keramische widerstandsheizeinrichtung mit untereinander verbundenen waermeentwickelnden leitern und eine derartige heizeinrichtung verwendendes elektrochemisches element oder analysiergeraet
DE102010040224B4 (de) Laminiertes Gassensorelement, Gassensor mit einem laminierten Gassensorelement und Verfahren zum Herstellen eines laminierten Gassensorelements
EP2108119B1 (de) Gassensor mit innen liegender pumpzelle
DE4231966A1 (de) Planare polarograhische Sonde zur Bestimmung des Lambda-Wertes von Gasgemischen
DE102019001790A1 (de) Gassensor
WO1989009933A1 (fr) SONDE POLAROGRAPHIQUE PLANE POUR LA DETERMINATION DE LA VALEUR lambda D'UN MELANGE DE GAZ
DE102006035383A1 (de) Gasmessfühler und Herstellungsverfahren dafür
DE19715193A1 (de) Luft/Kraftstoff-Verhältnissensor
DE10129258A1 (de) Vielschichtiger Gasmessfühler, verwendbar in einem Abgassystem einer internen Verbrennungsmaschine, und dessen Herstellungsverfahren
DE102019001514A1 (de) Sensorelement und Gassensor
WO2002042760A2 (de) Sensorelement eines gassensors
DE102019001574A1 (de) Gassensor
DE10121889C2 (de) Sensorelement
EP1046319A1 (de) Keramisches schichtsystem und verfahren zur herstellung einer keramischen heizeinrichtung
DE19746516C2 (de) Planares Sensorelement
EP2449375B2 (de) Sensorelement zur bestimmung einer eigenschaft eines gases
DE19827253A1 (de) Mehrschichtiger Luft/Kraftstoff-Verhältnis-Sensor
WO2003102569A1 (de) Schichtsystem sowie verfahren zur herstellung eines schichtsystems
DE102018004596A1 (de) Verfahren zur Untersuchung einer in einem Gassensorelement bereitgestellten Elektrode
DE10058643A1 (de) Heizeinrichtung
DE102013203639A1 (de) Gassensor
DE112020001614T5 (de) Sensorelement für Gassensor
DE10020913A1 (de) Sauerstoffsensor für einen Verbrennungsmotor
DE112018005236T5 (de) Festelektrolyt, dessen Herstellungsverfahren und Gassensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP