WO2003102557A1 - Method of measuring electric characteristics of flat substrate using terahertz light - Google Patents

Method of measuring electric characteristics of flat substrate using terahertz light Download PDF

Info

Publication number
WO2003102557A1
WO2003102557A1 PCT/JP2003/006887 JP0306887W WO03102557A1 WO 2003102557 A1 WO2003102557 A1 WO 2003102557A1 JP 0306887 W JP0306887 W JP 0306887W WO 03102557 A1 WO03102557 A1 WO 03102557A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
terahertz
time
substrate
flat substrate
Prior art date
Application number
PCT/JP2003/006887
Other languages
French (fr)
Japanese (ja)
Inventor
Ryoichi Fukasawa
Toshiyuki Iwamoto
Original Assignee
Nikon Corporation
Tochigi Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation, Tochigi Nikon Corporation filed Critical Nikon Corporation
Priority to AU2003241695A priority Critical patent/AU2003241695A1/en
Publication of WO2003102557A1 publication Critical patent/WO2003102557A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Definitions

  • the present invention relates to a method for measuring electric characteristics of a flat substrate using terahertz time-domain spectroscopy.
  • 2000-282497 discloses a method of measuring a time-series waveform using terahertz time-domain spectroscopy, performing a Fourier transform on the time-series waveform, and performing spectral reflectance or spectral transmission of a semiconductor material.
  • the electrical characteristics parameters are calculated based on this value. Disclosure of the invention
  • the cross-sectional shape in the thickness direction of the board is made to be wedge-shaped, or the backside of the board is made rough and diffusely reflected. I was working to eliminate the returning light.
  • processing a semiconductor sample to be measured in a semiconductor manufacturing process is not desirable because it cannot be used as a product and processing is troublesome. Therefore, there is a demand for the development of a simple measuring method for measuring these electrical characteristics without processing a semiconductor sample in the semiconductor device manufacturing process.
  • An object of the present invention is to provide a method for simply measuring the electrical characteristics of a semiconductor sample without being affected by a thousand fringes caused by multiple reflection inside a semiconductor substrate.
  • the method for measuring the electrical characteristics of a flat substrate using terahertz light is a method for repeatedly irradiating a terahertz pulsed light to a flat substrate and receiving reflected light or transmitted light from the flat substrate.
  • a time domain for detecting terahertz pulse light from the flat substrate is set, and time domain spectroscopy is used.
  • the time series waveform of the electric field intensity of the detected light is measured, and the electrical characteristic parameters of the flat substrate are calculated from the spectral reflectance or the spectral transmittance obtained based on the time series waveform.
  • the method for measuring electrical characteristics of a flat substrate using terahertz light includes: irradiating a terahertz pulse light repeatedly to a flat substrate; receiving reflected light or transmitted light from the flat substrate; Using time-domain spectroscopy, measure the time-series waveform of the electric field intensity of the received light, and Fourier transform only a predetermined time range on the time-series waveform to obtain the spectral reflectance or spectral transmittance. This is to calculate the electrical characteristics and parameters of the flat substrate from the spectral reflectance or spectral transmittance.
  • an apparatus for measuring electrical properties of a flat substrate using terahertz light comprising: a laser light source that emits light pulses; A terahertz light source for irradiating a plate, a terahertz photodetector for receiving reflected light or transmitted light from a flat substrate, a light pulse, and one is guided to the terahertz light source, and the other is guided to the terahertz light source.
  • An apparatus for measuring electrical characteristics of a planar substrate using terahertz light includes a laser light source that emits a light pulse, and a terahertz light source that repeatedly irradiates a planar substrate with terahertz pulsed light.
  • a terahertz photodetector that receives reflected light or transmitted light from a planar substrate; and an optical system that splits an optical pulse and guides one to the terahertz light source and the other to the terahertz light detector. And an arithmetic unit that measures the time-series waveform of the terahertz pulse light from the flat substrate received by the terahertz photodetector and performs a Fourier transform on only a predetermined time range on the time-series waveform.
  • FIG. 1 is a schematic configuration diagram of an electric characteristic measuring device used in the electric characteristic measuring method according to the embodiment of the present invention.
  • Figure 2 shows a time-series waveform
  • FIG. 3 is a schematic diagram showing a state of multiple reflection of light inside the semiconductor substrate.
  • FIG. 4 is a reflectance spectrum obtained from the time-series waveform of FIG.
  • FIG. 5 is a time-series waveform according to the embodiment of the present invention.
  • FIG. 6 is a reflectance spectrum obtained from the time-series waveform of FIG.
  • FIG. 7 is a measured value of the reflectance spectrum excluding the influence of interference fringes according to the embodiment of the present invention.
  • FIG. 8 is a calculated value of the reflectance spectrum excluding the influence of Chikko Fringe.
  • FIG. 9 is a graph showing the relationship between the carrier concentration obtained by the electrical characteristic measuring method according to the embodiment of the present invention and the carrier concentration obtained from the film forming conditions.
  • FIG. 10 shows the relationship between the carrier concentration and the mobility obtained by the electrical property measurement method according to the embodiment of the present invention, and the relationship between the carrier concentration and the mobility obtained from the electrical measurement. It is a graph which shows a comparison.
  • FIG. 11 is a flowchart showing the procedure of the electrical characteristic measuring method according to the embodiment of the present invention.
  • Terahertz time-domain spectroscopy measures the time-series waveform E (t) of the electric field intensity of the terahertz pulse light, and performs Fourier transform on the time-series waveform to obtain a reflectance spectrum or a transmittance spectrum. This is the spectroscopy that gives Based on the spectral reflectance or the spectral transmittance, the electrical characteristics of the planar substrate, that is, physical properties such as carrier concentration, mobility, resistivity, and electrical conductivity can be obtained.
  • FIG. 1 is a schematic configuration diagram of an electric characteristic measuring apparatus using terahertz light of the present invention, and is also a diagram for explaining time-domain spectroscopy.
  • the light pulse emitted from the femtosecond pulse laser 1 passes through the beam splitter 2 and is divided into a pump pulse L1 and a probe pulse L2.
  • the pump pulse L1 is guided to the terahertz light source 3, and irradiates the terahertz light source 3 to generate the terahertz pulse light L3.
  • the probe pulse L 2 is guided to the terahertz photodetector 4 to receive (detect) the terahertz pulse light that has passed through the semiconductor sample (semiconductor substrate) 5.
  • a movable mirror 6 is provided on the optical path for guiding the probe pulse L2, and moving the movable mirror 6 in the direction indicated by the arrow changes the time for the probe pulse L2 to reach the terahertz photodetector 4. Can be done.
  • the movable mirror 6 and the drive mechanism 7 for displacing the movable mirror 6 in the direction of the arrow are called a time delay device.
  • the pulse width of the light pulses emitted from Fuemuto second pulse laser 1 is about lOOfsec (1 X 1 0- 1 3 sec), the repetition period is several tens MH z. Therefore, the emitted terahertz pulse light L 3 is also emitted at a repetition of several tens of MHz.
  • the waveform of the terahertz pulse light cannot be measured instantaneously as it is. Therefore, this measurement method utilizes the fact that the terahertz pulse light L4 of the same waveform arrives at the terahertz photodetector 4 at a repetition rate of several tens of MHz.
  • the pump-probe method is used to measure the terahertz pulse light waveform with a time delay between the two. That is, by delaying the timing of the probe pulse L 2 for operating the terahertz light detector 4 by ⁇ t seconds with respect to the pump pulse L 1 for operating the terahertz light source 3, the time delayed by ⁇ t seconds The electric field intensity of the terahertz pulse light L4 can be measured. In other words, the probe pulse L 2 gates the terahertz photodetector 4. Also, moving the movable mirror 6 gradually is nothing more than gradually changing the time ⁇ t.
  • the terahertz pulse light L4 that repeatedly arrives is detected while shifting the timing of applying a gate by a time delay device, and these terahertz pulse lights L4 are spliced to reproduce one waveform. is there.
  • the time-series waveform E (t) of the electric field of the terahertz light can be measured.
  • the terahertz photodetector 4 generates a carrier according to the incidence of the probe pulse L2. If a terahertz pulse light L4 is incident at the same time as the probe pulse L2 is incident and an electric field is generated, a photoconductive current proportional to the electric field flows.
  • the current J (t) measured at this time is expressed by the convolution of the electric field strength E (t) of the terahertz pulse light and the optical conductivity g (te1 t) of the photoexcited carrier as shown in equation (1).
  • FIG. 2 is a time-series waveform of the electric field E (t) of the terahertz pulse light obtained in this manner.
  • This time-series waveform is a result of actually measuring the semiconductor sample 5 using the terahertz time-domain spectroscopy with the electric characteristic measuring apparatus of FIG. In this measurement, 1024 points were measured at a sampling interval ⁇ t of time-series waveform data of 0.06667 ps.
  • FIG. 3 is a schematic diagram showing a state of multiple reflection inside the semiconductor substrate 5.
  • Semiconduct An epitaxy film 8 is formed on the substrate 5, and a part of the incident light incident from the epitaxy film 8 side is reflected on the substrate surface (that is, the epitaxy film 8), and a part of the light is reflected inside the substrate. Through. A part of the light transmitted through the inside of the substrate is reflected on the back surface of the substrate, and the light is transmitted through the inside of the substrate again, emitted from the surface of the substrate, and returned to the inside of the substrate again. Such repetitive reflection is called multiple reflection.
  • the first peak P 1 is caused by the reflection of the terahertz pulse light on the surface of the semiconductor substrate 5, and the second peak P 2 is caused by the reflection of the terahertz pulse light on the back surface of the substrate 5. are doing.
  • peak P 3 is caused by two reflections on the back surface of substrate 5, and peak P 4 is caused by reflection three times on the back surface of substrate 5.
  • the numbers of the multiple reflections in FIG. 3 correspond to the peak numbers of the time-series waveform in FIG. 2, respectively.
  • FIG. 4 is a graph of a reflectance spectrum obtained by Fourier-transforming the time-series waveform of FIG. 2, in which the vertical axis represents the reflectance and the horizontal axis represents the frequency.
  • repetition of the magnitude of the reflectance that is, intense chikko fringe is observed.
  • Such a fringe affects the shape of the entire reflectance spectrum, complicating the analysis of the spectrum and complicating the accurate physical properties of the thin film such as an epitaxial film formed on the substrate. It is extremely difficult to determine the value.
  • the above problem is solved by stopping the measurement before the reflected light (see FIG. 3) from the back surface of the substrate returns when measuring the time-series waveform. That is, as shown in FIG. 1, the control mechanism 8 controls the drive mechanism 7 Then, the stroke range for displacing the movable mirror 6 in the direction of the arrow is changed from the long setting indicated by S1 to the short setting indicated by S2. As a result, the measurement is stopped before the reflected light from the back surface of the substrate returns. In this way, the reflectance spectrum can be measured without being affected by a thousand fringes due to multiple reflections inside the substrate, and accurate physical properties of the film on the substrate can be obtained from the analysis. .
  • the present invention is a measurement technique utilizing the features of terahertz time-domain spectroscopy, and such measurement could not be performed by conventional spectroscopy.
  • This measurement method is extremely effective when measuring the optical constant of a film on a substrate, because the influence of interference fringes can be eliminated.
  • Fig. 5 shows the time-series waveform of the electric field E (t) of the terahertz pulsed light obtained in this manner.
  • the semiconductor sample which is the sample, is the same as that obtained when the time-series waveform of FIG. 2 was obtained.
  • the sampling interval ⁇ t of the time-series waveform data was measured at 256 points at 0.06667 ps, which is 1 to 4 times the measurement time compared to the 1024 points measurement in FIG.
  • the peak appearing on the time-series waveform in FIG. 5 is only P1 reflected on the surface of the semiconductor substrate 5, and the peak P2 and below are removed.
  • the reflectance spectrum is measured without being affected by interference fringes due to multiple reflections inside the substrate, and from the analysis, the reflectance spectrum of the film on the substrate is determined. Accurate physical property values can be obtained.
  • FIG. 6 is a reflectance spectrum obtained by Fourier-transforming the time-series waveform of FIG. 5, and is a graph corresponding to FIG. Comparing the reflectance spectrum of Fig. 6 with that of Fig. 4, it is clear that the influence of interference fringes due to multiple reflection inside the substrate has been removed.
  • the advantages of the measurement method of the present invention are that (1) a spectrum that is not affected by the fringe is obtained, and (2) the measurement time can be reduced because the number of data points is reduced.
  • step 5 detection data is acquired until the stroke amount of the movable mirror 6 becomes S2, and in step 6, a time-series waveform is measured.
  • step 5 detection data is acquired until the stroke amount of the movable mirror 6 becomes S1
  • step 9 a time-series waveform is measured.
  • step 10 a time range for performing Fourier transform on the time-series waveform is set, and in step 7, only this time range is subjected to Fourier transform.
  • n-type GaAs films with four different carrier concentrations used for the measurement were formed by molecular beam epitaxy on a semi-insulating GaAs substrate (thickness: 625 ⁇ ). is there. The thickness of the film is 2. Kiyaria concentration of guaranteed value of n-type G a A s layer that is determined from the film formation conditions, respectively 3 X 1 0 1 5, 1 X 1 0 1 6, 4 X 1 0 1 6, 1 X 1 0 1 7 is a cm _ 3.
  • FIG. 7 is a reflectance spectrum that does not include the influence of interference fringes due to multiple reflection, and is obtained by the terahertz time-domain spectrometry of the present invention.
  • FIG. 8 is a reflectance spectrum calculated by a theory that does not consider the reflection from the back surface of the substrate. Looking at the reflectance spectra in Figs. 7 and 8, it can be seen that the measured and theoretical values agree very well.
  • FIG. 9 is a graph illustrating the reliability of the terahertz time domain measurement method of the present invention with respect to the carrier concentration that best reproduces the shape of the observed reflectance spectrum.
  • Figure 9 shows the results of plotting the relationship between the carrier concentration determined by the non-linear optimization method from the reflectance spectrum obtained by the spectroscopic measurement of the present invention and the carrier concentration determined from the epitaxial film formation conditions. Is shown. Both are roughly on the proportional straight line, and are in good agreement.
  • FIG. 10 shows the reflectance spectrum obtained by the terahertz time-domain spectrometry of the present invention. This is the result of plotting the carrier concentration and mobility determined from the torque on a graph showing the relationship between the carrier concentration and mobility determined from electrical measurements.
  • the point indicating the relationship between carrier concentration and mobility obtained from terahertz time-domain spectroscopy is the point indicating the relationship between carrier concentration and mobility determined from electrical measurements. (Indicated by a square mark in the figure). Therefore, it can be seen that the values obtained from terahertz time-domain spectroscopy almost match the values obtained from electrical measurements.
  • the method of measuring physical properties according to the present embodiment is based on HI-V compound semiconductors such as p-type GaAs, n-type AlGaAs, and p-type A1GaAs on a semiconductor substrate. — It is also applicable to thin films of Group VI compound semiconductors and IV—VI compound semiconductors.
  • the method for measuring the parameter of the electrical characteristics of the semiconductor thin film on the semiconductor substrate has been described.
  • the measurement of the reflectance spectrum of the ion-implanted layer formed on the semiconductor substrate is also described in this embodiment.
  • the invention is applicable.
  • the present invention is also applicable to reflectance spectrum measurement of thin films other than semiconductor thin films such as dielectrics and superconductors.
  • the embodiments of the present invention have been described above, but the present invention is not limited to these embodiments. Other modes that can be considered within the technical idea of the present invention are also included in the scope of the present invention.

Abstract

A terahertz light L3 is repeatedly applied to a semiconductor substrate (5) to receive a reflection light L4 from the substrate (5). The reflection light L4 includes a multiple-reflection light occurred in the substrate (5). When the reflection light L4 is received, a delay time length required to lead a probe pulse light L2 to a terahertz light detector (4) is set so as not detect at the terahertz light detector (4) the reflection light L4 reaching via surfaces other than the illuminated surface of the semiconductor substrate (5). A time region spectrometry method is used to measure the time-series waveform of the field intensity of the detected reflection light L4, and the electric characteristic parameters of the substrate (5) are calculated from a spectral reflectance determined based on the time-series waveform.

Description

明 細 書  Specification
テラへルツ光を用いた平面基板の電気特性測定方法 本出願は、 次の出願を基礎とし、 その内容は引用文としてここに組み込まれる。 日本国特許出願 2002年第 1 6 1 085号 (2002年 6月 3日出願) 技術分野  Method for Measuring Electrical Characteristics of Flat Substrate Using Terahertz Light This application is based on the following application, the contents of which are incorporated herein by reference. Japanese patent application 2002 No. 161085 (filed on June 3, 2002)
本発明は、 テラへルツ時間領域分光法を用いた平面基板の電気特性測定方法に 関する。 背景技術  The present invention relates to a method for measuring electric characteristics of a flat substrate using terahertz time-domain spectroscopy. Background art
半導体デバイス産業において、 半導体材料の電気特性に関わる物性値、 例えば、 キャリア濃度、 移動度、 抵抗率、 電気伝導度は、 半導体デバイスの性能を左右す る重要な因子である。 半導体基板上に成膜したェピタキシャル膜のキヤリア濃度 や移動度などの物性値も、 デバイス特性を決める重要な因子である。 光学的な厚 みのある半導体基板の場合には、 遠赤外領域における分光特性の解析から電気的 特性パラメ一夕を評価する手法が知られており、 この手法は、 半導体基板に対し 非破壊かつ非接触で実施する手法である。 更に、 特開 2000— 28249 7号 公報に開示されているものは、 テラへルツ時間領域分光法を用いて時系列波形を 測定し、 これをフーリエ変換して半導体材料の分光反射率又は分光透過率を得て、 この値に基づいて電気的特性パラメ一夕を算出している。 発明の開示  In the semiconductor device industry, physical properties related to the electrical properties of semiconductor materials, such as carrier concentration, mobility, resistivity, and electrical conductivity, are important factors influencing the performance of semiconductor devices. Physical properties such as carrier concentration and mobility of an epitaxial film formed on a semiconductor substrate are also important factors that determine device characteristics. In the case of a semiconductor substrate having an optical thickness, a method of evaluating the electrical characteristic parameters by analyzing the spectral characteristics in the far-infrared region is known. It is a technique that is implemented without contact. Further, Japanese Unexamined Patent Application Publication No. 2000-282497 discloses a method of measuring a time-series waveform using terahertz time-domain spectroscopy, performing a Fourier transform on the time-series waveform, and performing spectral reflectance or spectral transmission of a semiconductor material. The electrical characteristics parameters are calculated based on this value. Disclosure of the invention
半導体基板に対し非破壊かつ非接触で電気的特性パラメ一夕を評価するときに, 半導体基板内部での多重反射が生じると、 千涉フリンジとなって反射率スぺク ト ル上に現れる。 この場合、 反射率スペク トルが複雑になり、 分光特性の解析を困 難にする。 また、 半導体基板上に形成されたェピタキシャル膜の分光反射率特性 を測定する場合も同様に、 基板裏面の反射が重畳するために、 正しい分光反射率 特性が得られない。 さらに、 半導体基板内部の多重反射に起因する千渉フリンジ は、 反射率スぺク トルの形状を歪ませるためにスぺク トル形状から物性値を評価 することを極めて難しくする。 When evaluating the electrical characteristics of a semiconductor substrate in a non-destructive and non-contact manner, if multiple reflections occur inside the semiconductor substrate, they appear as a thousand fringes on the reflectance spectrum. In this case, the reflectance spectrum becomes complicated, and it becomes difficult to analyze the spectral characteristics. Similarly, when measuring the spectral reflectance characteristics of an epitaxial film formed on a semiconductor substrate, the reflection on the back surface of the substrate is superimposed, so that correct spectral reflectance characteristics cannot be obtained. Furthermore, the Chihatsu fringe caused by multiple reflection inside the semiconductor substrate This makes it extremely difficult to evaluate physical properties from the spectral shape in order to distort the shape of the reflectance spectrum.
従来は、 最も強く干渉フリンジを引き起こす基板裏面からの反射の影響を取り 除くために、 基板の厚さ方向の断面形状を楔型にしたり、 あるいは、 基板の裏面 を粗い面にして乱反射するようにして、 戻り光を排除するための加工をしていた。 しかし、 半導体製造工程において、 測定すべき半導体試料を加工することは、 そ れが製品として使用できなくなるし、 加工に手間がかかるために、 望ましくない。 従って、 半導体デバイス製造工程において、 これらの電気的特性パラメ一夕を測 定する際に、 半導体試料を加工することなしに測定する簡便な測定法の開発が望 まれている。  Conventionally, in order to eliminate the influence of reflection from the backside of the board that causes the strongest interference fringe, the cross-sectional shape in the thickness direction of the board is made to be wedge-shaped, or the backside of the board is made rough and diffusely reflected. I was working to eliminate the returning light. However, processing a semiconductor sample to be measured in a semiconductor manufacturing process is not desirable because it cannot be used as a product and processing is troublesome. Therefore, there is a demand for the development of a simple measuring method for measuring these electrical characteristics without processing a semiconductor sample in the semiconductor device manufacturing process.
本発明は、 半導体基板内部の多重反射に起因する千涉フリンジの影響を全く受 けることなく、 簡便に半導体試料の電気的特性パラメ一夕を測定する方法を提供 するものである。  An object of the present invention is to provide a method for simply measuring the electrical characteristics of a semiconductor sample without being affected by a thousand fringes caused by multiple reflection inside a semiconductor substrate.
本発明の第 1の態様によるテラへルツ光を用いた平面基板の電気特性測定方法 は、 テラへルツパルス光を繰り返し平面基板に照射し、 平面基板からの反射光又 は透過光を受光する際に、 平面基板の被照射面以外の面を経由して到来する光を 検出しないように、 平面基板からのテラへルツパルス光を検出する時間領域を設 定し、 時間領域分光法を用いて、 検出された光の電場強度の時系列波形を測定し、 時系列波形に基づいて求められた分光反射率又は分光透過率から平面基板の電気 的特性パラメ一夕を算出するものである。  The method for measuring the electrical characteristics of a flat substrate using terahertz light according to the first aspect of the present invention is a method for repeatedly irradiating a terahertz pulsed light to a flat substrate and receiving reflected light or transmitted light from the flat substrate. In order to prevent the detection of light arriving via a surface other than the irradiated surface of the flat substrate, a time domain for detecting terahertz pulse light from the flat substrate is set, and time domain spectroscopy is used. The time series waveform of the electric field intensity of the detected light is measured, and the electrical characteristic parameters of the flat substrate are calculated from the spectral reflectance or the spectral transmittance obtained based on the time series waveform.
本発明の第 2の態様によるテラへルツ光を用いた平面基板の電気特性測定方法 は、 テラへルツパルス光を繰り返し平面基板に照射し、 平面基板からの反射光又 は透過光を受光し、 時間領域分光法を用いて、 受光された光の電場強度の時系列 波形を測定し、 時系列波形上の所定の時間範囲のみをフ一リェ変換して分光反射 率又は分光透過率を求め、 分光反射率又は分光透過率から平面基板の電気的特性 パラメ一夕を算出するものである。  The method for measuring electrical characteristics of a flat substrate using terahertz light according to the second aspect of the present invention includes: irradiating a terahertz pulse light repeatedly to a flat substrate; receiving reflected light or transmitted light from the flat substrate; Using time-domain spectroscopy, measure the time-series waveform of the electric field intensity of the received light, and Fourier transform only a predetermined time range on the time-series waveform to obtain the spectral reflectance or spectral transmittance. This is to calculate the electrical characteristics and parameters of the flat substrate from the spectral reflectance or spectral transmittance.
本発明の第 3の態様によるテラへルツ光を用いた平面基板の電気特性測定装置 は、 光パルスを放射するレーザー光源と、 テラへルツパルス光を繰り返し平面基 板に照射するテラへルツ光源と、 平面基板からの反射光又は透過光を受光するテ ラヘルツ光検出器と、 光パルスを分岐して、 一方を前記テラへルツ光源へ導き、 他方を前記テラへルツ光検出器へ導く光学系と、 テラへルツ光検出器が平面基板 の被照射面以外の面を経由して到来する光を検出しないように、 平面基板からの テラへルツパルス光を検出する時間領域を制限する制御部とを備えるものである。 本発明の第 4の態様によるテラへルツ光を用いた平面基板の電気特性測定装置 は、 光パルスを放射するレーザー光源と、 テラへルツパルス光を繰り返し平面基 板に照射するテラへルツ光源と、 平面基板からの反射光又は透過光を受光するテ ラヘルツ光検出器と、 光パルスを分岐して、 一方を前記テラへルツ光源へ導き、 他方を前記テラへルツ光検出器へ導く光学系と、 テラへルツ光検出器が受光した 平面基板からのテラへルツパルス光の時系列波形を測定し、 時系列波形上の所定 の時間範囲のみをフーリェ変換する演算部とを備えるものである。 図面の簡単な説明 According to a third aspect of the present invention, there is provided an apparatus for measuring electrical properties of a flat substrate using terahertz light, comprising: a laser light source that emits light pulses; A terahertz light source for irradiating a plate, a terahertz photodetector for receiving reflected light or transmitted light from a flat substrate, a light pulse, and one is guided to the terahertz light source, and the other is guided to the terahertz light source. Detects terahertz pulse light from a flat substrate so that the optical system leading to the Hertz photodetector and the terahertz photodetector do not detect light arriving via a surface other than the irradiated surface of the flat substrate And a control unit for limiting a time region to be used. An apparatus for measuring electrical characteristics of a planar substrate using terahertz light according to a fourth aspect of the present invention includes a laser light source that emits a light pulse, and a terahertz light source that repeatedly irradiates a planar substrate with terahertz pulsed light. A terahertz photodetector that receives reflected light or transmitted light from a planar substrate; and an optical system that splits an optical pulse and guides one to the terahertz light source and the other to the terahertz light detector. And an arithmetic unit that measures the time-series waveform of the terahertz pulse light from the flat substrate received by the terahertz photodetector and performs a Fourier transform on only a predetermined time range on the time-series waveform. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施形態に係る電気特性測定方法に用いられる電気特性測定 装置の概略構成図である。  FIG. 1 is a schematic configuration diagram of an electric characteristic measuring device used in the electric characteristic measuring method according to the embodiment of the present invention.
図 2は、 時系列波形である。  Figure 2 shows a time-series waveform.
図 3は、 半導体基板内部での光の多重反射の様子を示す模式図である。  FIG. 3 is a schematic diagram showing a state of multiple reflection of light inside the semiconductor substrate.
図 4は、 図 2の時系列波形から得られた反射率スぺク トルである。  FIG. 4 is a reflectance spectrum obtained from the time-series waveform of FIG.
図 5は、 本発明の実施形態に係る時系列波形である。  FIG. 5 is a time-series waveform according to the embodiment of the present invention.
図 6は、 図 5の時系列波形から得られた反射率スぺクトルである。  FIG. 6 is a reflectance spectrum obtained from the time-series waveform of FIG.
図 7は、 本発明の実施形態に係る、 干渉フリンジの影響を除いた反射率スぺク トルの測定値である。  FIG. 7 is a measured value of the reflectance spectrum excluding the influence of interference fringes according to the embodiment of the present invention.
図 8は、 千渉フリンジの影響を除いた反射率スぺク トルの計算値である。  FIG. 8 is a calculated value of the reflectance spectrum excluding the influence of Chikko Fringe.
図 9は、 本発明の実施形態に係る電気特性測定方法により得られたキヤリァ濃 度と、 成膜条件から得られたキヤリア濃度の関係を示すグラフである。  FIG. 9 is a graph showing the relationship between the carrier concentration obtained by the electrical characteristic measuring method according to the embodiment of the present invention and the carrier concentration obtained from the film forming conditions.
図 1 0は、 本発明の実施形態に係る電気特性測定方法により得られたキャリア 濃度と移動度の関係と、 電気測定から得られたキャリア濃度と移動度の関係との 対比を示すグラフである。 FIG. 10 shows the relationship between the carrier concentration and the mobility obtained by the electrical property measurement method according to the embodiment of the present invention, and the relationship between the carrier concentration and the mobility obtained from the electrical measurement. It is a graph which shows a comparison.
図 1 1は、 本発明の実施形態に係る電気特性測定方法の手順を示すフローチヤ 一卜である。 発明を実施するための最良の形態  FIG. 11 is a flowchart showing the procedure of the electrical characteristic measuring method according to the embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
はじめに、 テラへルツパルス光の計測技術として現在確立されているテラヘル ッ時間領域分光法について述べる。 テラへルツ時間領域分光は、 テラへルツパル ス光の電場強度の時系列波形 E (t)を計測し、 時系列波形をフーリエ変換すること により反射率スぺク トル又は透過率スぺク トルを得る分光法である。 分光反射率 又は分光透過率に基づいて平面基板の電気特性、 すなわちキャリア濃度、 移動度、 抵抗率、 電気伝導度などの物性値が得られる。  First, terahertz time-domain spectroscopy, which is currently established as a technique for measuring terahertz pulsed light, is described. Terahertz time-domain spectroscopy measures the time-series waveform E (t) of the electric field intensity of the terahertz pulse light, and performs Fourier transform on the time-series waveform to obtain a reflectance spectrum or a transmittance spectrum. This is the spectroscopy that gives Based on the spectral reflectance or the spectral transmittance, the electrical characteristics of the planar substrate, that is, physical properties such as carrier concentration, mobility, resistivity, and electrical conductivity can be obtained.
図 1は、 本発明のテラへルツ光を用いた電気特性測定装置の概略構成図であり、 時間領域分光を説明するための図でもある。  FIG. 1 is a schematic configuration diagram of an electric characteristic measuring apparatus using terahertz light of the present invention, and is also a diagram for explaining time-domain spectroscopy.
フエムト秒パルスレーザー 1から放射された光パルスは、 ビームスプリッター 2を経てポンプパルス L 1とプローブパルス L 2に分けられる。 ポンプパルス L 1は、 テラへルツ光源 3へと導かれ、 テラへルツ光源 3を照射してテラへルツパ ルス光 L 3を発生させる。 一方、 プローブパルス L 2は、 半導体試料 (半導体基 板) 5を経由してきたテラへルツパルス光を受光 (検出) するためにテラへルツ 光検出器 4へと導かれる。 プローブパルス L 2を導く光路上には可動鏡 6が設け られ、 可動鏡 6を矢印で示される方向に移動させることにより、 プローブパルス L 2がテラへルツ光検出器 4へ到達する時間を変化させることができる。 可動鏡 6とこれを矢印方向に変位させるための駆動機構 7を併せて時間遅延装置と呼ん でいる。  The light pulse emitted from the femtosecond pulse laser 1 passes through the beam splitter 2 and is divided into a pump pulse L1 and a probe pulse L2. The pump pulse L1 is guided to the terahertz light source 3, and irradiates the terahertz light source 3 to generate the terahertz pulse light L3. On the other hand, the probe pulse L 2 is guided to the terahertz photodetector 4 to receive (detect) the terahertz pulse light that has passed through the semiconductor sample (semiconductor substrate) 5. A movable mirror 6 is provided on the optical path for guiding the probe pulse L2, and moving the movable mirror 6 in the direction indicated by the arrow changes the time for the probe pulse L2 to reach the terahertz photodetector 4. Can be done. The movable mirror 6 and the drive mechanism 7 for displacing the movable mirror 6 in the direction of the arrow are called a time delay device.
フエムト秒パルスレーザー 1から放射される光パルスのパルス幅は約 lOOfsec ( 1 X 1 0—1 3秒) で、 繰り返し周期は数十 M H zである。 従って、 放射されるテ ラヘルツパルス光 L 3も数十 M H zの繰り返しで放射される。 現在のテラへルツ 光検出器では、 テラへルツパルス光の波形を瞬時に、 その形状のまま計測するこ とはできない。 そこで、 本計測法では、 同じ波形のテラへルツパルス光 L 4が数十 MHzの繰 り返しでテラへルツ光検出器 4へ到来することを利用して、 ポンプパルス L 1と プローブパルス L 2の間に時間遅延を設けて、 テラへルツパルス光の波形を計測 するポンプ · プローブ法をとる。 すなわち、 テラへルツ光源 3を作動させるボン プパルス L 1に対して、 テラへルツ光検出器 4を作動させるプローブパルス L 2 のタイミングを Δ t秒だけ遅らせることにより、 Δ t秒だけ遅れた時間でのテラ ヘルツパルス光 L 4の電場強度が測定できる。 言い換えれば、 プローブパルス L 2はテラへルツ光検出器 4に対してゲートをかけていることになる。 また、 可動 鏡 6を徐々に移動させることは、 時間 Δ tを徐々に変えていることにほかならな い。 The pulse width of the light pulses emitted from Fuemuto second pulse laser 1 is about lOOfsec (1 X 1 0- 1 3 sec), the repetition period is several tens MH z. Therefore, the emitted terahertz pulse light L 3 is also emitted at a repetition of several tens of MHz. With the current terahertz photodetector, the waveform of the terahertz pulse light cannot be measured instantaneously as it is. Therefore, this measurement method utilizes the fact that the terahertz pulse light L4 of the same waveform arrives at the terahertz photodetector 4 at a repetition rate of several tens of MHz. The pump-probe method is used to measure the terahertz pulse light waveform with a time delay between the two. That is, by delaying the timing of the probe pulse L 2 for operating the terahertz light detector 4 by Δt seconds with respect to the pump pulse L 1 for operating the terahertz light source 3, the time delayed by Δt seconds The electric field intensity of the terahertz pulse light L4 can be measured. In other words, the probe pulse L 2 gates the terahertz photodetector 4. Also, moving the movable mirror 6 gradually is nothing more than gradually changing the time Δt.
本計測法は、 時間遅延装置によってゲートをかける夕イミングをずらしながら 繰り返し到来するテラへルツパルス光 L 4を検出し、 これらのテラへルツパルス 光 L 4を継ぎ合わせて一つの波形を再現するものである。 このようにしてテラへ ルツ光の電場の時系列波形 E(t)を測定することができる。  In this measurement method, the terahertz pulse light L4 that repeatedly arrives is detected while shifting the timing of applying a gate by a time delay device, and these terahertz pulse lights L4 are spliced to reproduce one waveform. is there. Thus, the time-series waveform E (t) of the electric field of the terahertz light can be measured.
テラへルツ光検出器 4は、 プローブパルス L 2の入射に応じてキヤリアを生ず る。 プローブパルス L 2が入射すると同時にテラへルツパルス光 L 4が入射して 電場が発生していれば、 その電場に比例した光伝導電流が流れる。 このとき測定 される電流 J (t)は、 テラへルツパルス光の電場強度 E(t)と光励起キヤリァの光伝 導度 g (て一 t) のコンボリューシヨンの形で式 (1) のように表せる。  The terahertz photodetector 4 generates a carrier according to the incidence of the probe pulse L2. If a terahertz pulse light L4 is incident at the same time as the probe pulse L2 is incident and an electric field is generated, a photoconductive current proportional to the electric field flows. The current J (t) measured at this time is expressed by the convolution of the electric field strength E (t) of the terahertz pulse light and the optical conductivity g (te1 t) of the photoexcited carrier as shown in equation (1). Can be expressed as
J ( t) oc S E ) g — t) dて * · · · (1)  J (t) oc S E) g — t) d
光伝導度 g (て一 t) がデルタ関数に近いものならば、 測定される電流値は、 到来するテラへルツパルス光の電場の振幅 I E(t) Iに比例したものになる。 図 2は、 このようにして得られたテラへルツパルス光の電場 E(t)の時系列波形 である。 この時系列波形は、 図 1の電気特性測定装置でテラへルツ時間領域分光 方法を用いて半導体試料 5を実測した結果であり、 縦軸が電場強度、 横軸が時間 である。 この測定においては、 時系列波形のデータのサンプリング間隔 Δ tは 0.06667psで 1024点測定している。  If the photoconductivity g is close to the delta function, the measured current will be proportional to the amplitude of the electric field I E (t) I of the incoming terahertz pulsed light. FIG. 2 is a time-series waveform of the electric field E (t) of the terahertz pulse light obtained in this manner. This time-series waveform is a result of actually measuring the semiconductor sample 5 using the terahertz time-domain spectroscopy with the electric characteristic measuring apparatus of FIG. In this measurement, 1024 points were measured at a sampling interval Δt of time-series waveform data of 0.06667 ps.
図 3は、 半導体基板 5の内部での多重反射の様子を示した模式図である。 半導 体基板 5にはェピタキシャル膜 8が形成されており、 ェピ夕キシャル膜 8側から 入射した入射光の一部が基板表面 (つまり、 ェピタキシャル膜 8 ) で反射し、 一 部が基板内部を透過する。 基板内部を透過した光の一部が基板裏面で反射し、 そ れが再度基板内部を透過して基板表面から射出する光と再度基板内部に戻ってゆ く光になる。 このような繰り返し反射が多重反射と呼ばれるものである。 FIG. 3 is a schematic diagram showing a state of multiple reflection inside the semiconductor substrate 5. Semiconduct An epitaxy film 8 is formed on the substrate 5, and a part of the incident light incident from the epitaxy film 8 side is reflected on the substrate surface (that is, the epitaxy film 8), and a part of the light is reflected inside the substrate. Through. A part of the light transmitted through the inside of the substrate is reflected on the back surface of the substrate, and the light is transmitted through the inside of the substrate again, emitted from the surface of the substrate, and returned to the inside of the substrate again. Such repetitive reflection is called multiple reflection.
再び、 図 2を参照すると、 時系列波形には幾つかのピークが現れている。 一番 目のピーク P 1はテラへルツパルス光が半導体基板 5の表面で反射されたことに 起因し、 二番目のピーク P 2はテラへルツパルス光が基板 5の裏面で反射された ことに起因している。 同様に、 ピーク P 3は基板 5の裏面で 2回反射、 ピーク P 4は基板 5の裏面で 3回反射されたことに起因している。 図 3中の多重反射の番 号は、 図 2の時系列波形のピークの番号にそれぞれ対応している。  Referring again to FIG. 2, several peaks appear in the time-series waveform. The first peak P 1 is caused by the reflection of the terahertz pulse light on the surface of the semiconductor substrate 5, and the second peak P 2 is caused by the reflection of the terahertz pulse light on the back surface of the substrate 5. are doing. Similarly, peak P 3 is caused by two reflections on the back surface of substrate 5, and peak P 4 is caused by reflection three times on the back surface of substrate 5. The numbers of the multiple reflections in FIG. 3 correspond to the peak numbers of the time-series waveform in FIG. 2, respectively.
従来の分光法では、 多重反射によって反射してくる反射光のすべてを同時に観 測しているが、 テラへルツ時間領域分光法では、 反射光が光検出器に到来する時 間を時系列波形として時間分解して観測している点が原理的に異なる。 従って、 基板内部における反射回数が多いほど反射に^因したピークが時間的に遅れて現 れてくる。  In conventional spectroscopy, all the reflected light reflected by multiple reflections is observed at the same time.In terahertz time-domain spectroscopy, the time when the reflected light arrives at the photodetector is represented by a time-series waveform. The point is that the observation is performed in a time-resolved manner. Therefore, as the number of reflections inside the substrate increases, the peak due to the reflection appears with a time delay.
テラへルツ時間領域分光法を用いて反射率スぺク トルを得る際には、 時系列波 形をフーリエ変換する。 基板内部で起こる光の多重反射に起因したピークは、 反 射率スぺク トル全体の形状を複雑にする。  When obtaining a reflectance spectrum using terahertz time-domain spectroscopy, a Fourier transform is performed on a time-series waveform. Peaks caused by multiple reflections of light inside the substrate complicate the shape of the entire reflectivity spectrum.
図 4は、 図 2の時系列波形をフーリエ変換することによって得られた反射率ス ベク トルのグラフであり、 縦軸が反射率、 横軸が周波数である。 一見して分かる ことは、 反射率の大小の繰り返し、 すなわち激しい千渉フリンジが観測されてい ることである。 このような千渉フリンジは、 反射率スペク トル全体の形状に影響 を及ぼすため、 スぺク トルの解析を複雑にして基板上に形成されたェピ夕キシャ ル膜などの薄膜に関する正確な物性値を求めることは極めて困難となる。  FIG. 4 is a graph of a reflectance spectrum obtained by Fourier-transforming the time-series waveform of FIG. 2, in which the vertical axis represents the reflectance and the horizontal axis represents the frequency. At a glance, it can be seen that repetition of the magnitude of the reflectance, that is, intense chikko fringe is observed. Such a fringe affects the shape of the entire reflectance spectrum, complicating the analysis of the spectrum and complicating the accurate physical properties of the thin film such as an epitaxial film formed on the substrate. It is extremely difficult to determine the value.
本実施の形態では、 時系列波形を測定する際に、 基板裏面からの反射光 (図 3 参照) が戻ってくる手前の時間で測定を止めることにより、 上記問題を解決して いる。 すなわち、 図 1に示すように、 制御ノ演算部 8によって駆動機構 7を制御 し、 可動鏡 6を矢印方向に変位させるストローク範囲を S 1で示される長い設定 から S 2で示される短い設定にする。 これによつて、 基板裏面からの反射光が戻 つてくる手前の時間で測定を止める。 このようにすれば、 基板内部での多重反射 による千涉フリンジの影響を受けることなく反射率スぺク トルを測定し、 その解 祈から基板上の膜の正確な物性値を得ることができる。 In the present embodiment, the above problem is solved by stopping the measurement before the reflected light (see FIG. 3) from the back surface of the substrate returns when measuring the time-series waveform. That is, as shown in FIG. 1, the control mechanism 8 controls the drive mechanism 7 Then, the stroke range for displacing the movable mirror 6 in the direction of the arrow is changed from the long setting indicated by S1 to the short setting indicated by S2. As a result, the measurement is stopped before the reflected light from the back surface of the substrate returns. In this way, the reflectance spectrum can be measured without being affected by a thousand fringes due to multiple reflections inside the substrate, and accurate physical properties of the film on the substrate can be obtained from the analysis. .
本発明は、 テラへルツ時間領域分光法の特徴を利用した測定手法であり、 従来 の分光法においてこのような測定はできなかった。 この測定手法は、 基板上の膜 の光学定数を測定するときにも、 干渉フリンジの影響を取り除けるので極めて有 効である。  The present invention is a measurement technique utilizing the features of terahertz time-domain spectroscopy, and such measurement could not be performed by conventional spectroscopy. This measurement method is extremely effective when measuring the optical constant of a film on a substrate, because the influence of interference fringes can be eliminated.
図 5は、 このようにして得られたテラへルツパルス光の電場 E (t)の時系列波形 である。 サンプルである半導体試料は、 図 2の時系列波形を得たときのものと同 じものである。 しかし、 この測定においては、 時系列波形のデータのサンプリン グ間隔 Δ tは 0.06667psで 256点測定しており、 図 2における 1024点測定と比 較すると 1ノ 4の測定時間になっている。 図 5の時系列波形上に現れるピークは、 半導体基板 5の表面で反射された P 1のみであり、 ピーク P 2以下は除去されて いる。 このように、 時系列波形の所定範囲の時間を選択することによって、 基板 内部での多重反射による干渉フリンジの影響を受けることなく反射率スぺクトル を測定し、 その解析から基板上の膜の正確な物性値を得ることができる。  Fig. 5 shows the time-series waveform of the electric field E (t) of the terahertz pulsed light obtained in this manner. The semiconductor sample, which is the sample, is the same as that obtained when the time-series waveform of FIG. 2 was obtained. However, in this measurement, the sampling interval Δt of the time-series waveform data was measured at 256 points at 0.06667 ps, which is 1 to 4 times the measurement time compared to the 1024 points measurement in FIG. The peak appearing on the time-series waveform in FIG. 5 is only P1 reflected on the surface of the semiconductor substrate 5, and the peak P2 and below are removed. In this way, by selecting the time within a predetermined range of the time-series waveform, the reflectance spectrum is measured without being affected by interference fringes due to multiple reflections inside the substrate, and from the analysis, the reflectance spectrum of the film on the substrate is determined. Accurate physical property values can be obtained.
図 6は、 図 5の時系列波形をフーリェ変換することにより得られた反射率スぺ クトルであり、 図 4に対応するグラフである。 図 6の反射率スペク トルを図 4の それと比較すると、 明らかに基板内部の多重反射に起因した干渉フリンジの影響 が取り除かれているのが分かる。  FIG. 6 is a reflectance spectrum obtained by Fourier-transforming the time-series waveform of FIG. 5, and is a graph corresponding to FIG. Comparing the reflectance spectrum of Fig. 6 with that of Fig. 4, it is clear that the influence of interference fringes due to multiple reflection inside the substrate has been removed.
本発明の測定方法の長所は、 (1)千渉フリンジに影響されないスぺク トルが得ら れる、 (2)データ点数が少なくなるので測定時間の短縮化ができる、 という点にあ る。  The advantages of the measurement method of the present invention are that (1) a spectrum that is not affected by the fringe is obtained, and (2) the measurement time can be reduced because the number of data points is reduced.
また、 多重反射を含む図 2の時系列波形において、 第 1のピーク P 1が存在す る時間範囲を選択してフーリエ変換しても、 上記 (1)と同様、 千涉フリンジに影響 されないスぺクトルが得られる。 フーリエ変換や波形の解析等も図 1に示す制御 ノ演算部 8で行われる。 In addition, in the time series waveform of FIG. 2 including multiple reflections, even if the time range in which the first peak P1 exists is selected and Fourier-transformed, as in (1) above, a pulse that is not affected by a thousand fringes is obtained. Vector is obtained. The control shown in Fig. 1 includes Fourier transform and waveform analysis. The calculation is performed by the calculation unit 8.
次に、 図 1 1を参照しながら、 本発明の測定方法の手順のポイントを説明する。 本発明の第 1の態様では, ステップ 5において、 可動鏡 6のストローク量が S 2 となる時まで検出データを取得し、 ステップ 6において時系列波形を測定する。 一方、 本発明の第 2の態様では、 ステップ 5において, 可動鏡 6のストローク量 が S 1 となる時まで検出データを取得し、 ステップ 9において時系列波形を測定 する。 ステップ 1 0において、 時系列波形上でフーリエ変換すべき時間範囲を設 定し、 ステップ 7において、 この時間範囲のみフーリエ変換する。  Next, the points of the procedure of the measurement method of the present invention will be described with reference to FIG. In the first embodiment of the present invention, in step 5, detection data is acquired until the stroke amount of the movable mirror 6 becomes S2, and in step 6, a time-series waveform is measured. On the other hand, in the second embodiment of the present invention, in step 5, detection data is acquired until the stroke amount of the movable mirror 6 becomes S1, and in step 9, a time-series waveform is measured. In step 10, a time range for performing Fourier transform on the time-series waveform is set, and in step 7, only this time range is subjected to Fourier transform.
続いて、 本発明の測定方法を用いて、 半導体基板上に成膜したェピタキシャル 膜の物性値の定量測定について具体的に説明する。 ここでは、 ェピタキシャル膜 の重要な電気特性パラメ一夕であるキヤリァ濃度と移動度を算出した。 測定に用 いた 4種類のキヤリァ濃度を有する n型 G a A s膜は、 半絶縁性の G a A s基板 上(厚さ 625 μ ηι)に分子線エピタキシー結晶成長法によって成膜したものである。 膜の厚みは 2 である。 成膜条件から決められた n型 G a A s層のキヤリァ濃 度の保証値は、 それぞれ 3 X 1 0 1 5、 1 X 1 0 1 6、 4 X 1 0 1 6、 1 X 1 0 1 7 c m _ 3である。 Subsequently, quantitative measurement of physical property values of an epitaxial film formed on a semiconductor substrate using the measurement method of the present invention will be specifically described. Here, the carrier concentration and mobility, which are important parameters of the electrical characteristics of the epitaxial film, were calculated. The n-type GaAs films with four different carrier concentrations used for the measurement were formed by molecular beam epitaxy on a semi-insulating GaAs substrate (thickness: 625 μηι). is there. The thickness of the film is 2. Kiyaria concentration of guaranteed value of n-type G a A s layer that is determined from the film formation conditions, respectively 3 X 1 0 1 5, 1 X 1 0 1 6, 4 X 1 0 1 6, 1 X 1 0 1 7 is a cm _ 3.
図 7は、 多重反射による干渉フリンジの影響を含まない反射率スぺク トルであ り、 本発明のテラヘルッ時間領域分光測定により得られたものである。  FIG. 7 is a reflectance spectrum that does not include the influence of interference fringes due to multiple reflection, and is obtained by the terahertz time-domain spectrometry of the present invention.
図 8は、 基板裏面からの反射を考慮しない理論によって計算された反射率スぺ クトルである。 図 7と図 8の反射率スペク トルをみると、 測定値と理論値は大変 良く一致しているのが分かる。  FIG. 8 is a reflectance spectrum calculated by a theory that does not consider the reflection from the back surface of the substrate. Looking at the reflectance spectra in Figs. 7 and 8, it can be seen that the measured and theoretical values agree very well.
図 9は、 観測された反射率スぺクトルの形状を最もよく再現するキヤリア濃度 について、 本発明のテラへルツ時間領域測定方法の信頼性を例示するグラフであ る。 図 9は、 本発明の分光測定により得られた反射率スペク トルから非線型最適 化法により求めたキヤリァ濃度と、 ェピタキシャル成膜条件から決められたキヤ リア濃度との関係をプロッ トした結果を示している。 両者は、 比例直線に大体載 つており、 良く一致していることが分かる。  FIG. 9 is a graph illustrating the reliability of the terahertz time domain measurement method of the present invention with respect to the carrier concentration that best reproduces the shape of the observed reflectance spectrum. Figure 9 shows the results of plotting the relationship between the carrier concentration determined by the non-linear optimization method from the reflectance spectrum obtained by the spectroscopic measurement of the present invention and the carrier concentration determined from the epitaxial film formation conditions. Is shown. Both are roughly on the proportional straight line, and are in good agreement.
図 1 0は、 本発明のテラへルツ時間領域分光測定により得られた反射率スぺク トルから求められたキヤリア濃度と移動度を、 電気測定から決められたキヤリア 濃度と移動度の関係を示すグラフ上にプロッ 卜した結果である。 テラへルツ時間 領域分光測定から得られたキャリア濃度と移動度の関係を示す点 (図中、 三角マ ークで表記) は、 電気測定から決められたキャリア濃度と移動度の関係を示す点 (図中、 四角マークで表記) を結んだ曲線に近接している。 従って、 テラへルツ 時間領域分光測定から得られた値は、 電気測定から得られた値とほぼ一致してい ることが分かる。 FIG. 10 shows the reflectance spectrum obtained by the terahertz time-domain spectrometry of the present invention. This is the result of plotting the carrier concentration and mobility determined from the torque on a graph showing the relationship between the carrier concentration and mobility determined from electrical measurements. The point indicating the relationship between carrier concentration and mobility obtained from terahertz time-domain spectroscopy (indicated by a triangle in the figure) is the point indicating the relationship between carrier concentration and mobility determined from electrical measurements. (Indicated by a square mark in the figure). Therefore, it can be seen that the values obtained from terahertz time-domain spectroscopy almost match the values obtained from electrical measurements.
本実施の形態による物性値の測定法は、 半導体基板上の p型 G a A s 、 n型 A l G a A s 、 p型 A 1 G a A s等の HI一 V族化合物半導体、 Π— VI族化合物半導 体および IV— VI族化合物半導体の薄膜についても適用できる。  The method of measuring physical properties according to the present embodiment is based on HI-V compound semiconductors such as p-type GaAs, n-type AlGaAs, and p-type A1GaAs on a semiconductor substrate. — It is also applicable to thin films of Group VI compound semiconductors and IV—VI compound semiconductors.
また、 本実施形態では、 半導体基板上の半導体薄膜の電気特性パラメ一夕を測 定する方法を述べたが、 半導体基板に形成されたイオン注入層の反射率スぺク ト ル測定についても本発明は応用可能である。 更に、 半導体薄膜以外でも誘電体や 超伝導体などの薄膜の反射率スぺクトル測定についても本発明は応用可能である。 以上、 本発明の実施の形態について説明したが、 本発明はこれらの実施の形態 に限定されるものではない。 本発明の技術思想の範囲内で考えられるその他の態 様も本発明の範囲内に含まれる。  In this embodiment, the method for measuring the parameter of the electrical characteristics of the semiconductor thin film on the semiconductor substrate has been described. However, the measurement of the reflectance spectrum of the ion-implanted layer formed on the semiconductor substrate is also described in this embodiment. The invention is applicable. Further, the present invention is also applicable to reflectance spectrum measurement of thin films other than semiconductor thin films such as dielectrics and superconductors. The embodiments of the present invention have been described above, but the present invention is not limited to these embodiments. Other modes that can be considered within the technical idea of the present invention are also included in the scope of the present invention.

Claims

請求の範囲 The scope of the claims
1 . テラへルツ光を用いた平面基板の電気特性測定方法は、  1. The method of measuring the electrical characteristics of a flat substrate using terahertz light
テラへルツパルス光を繰り返し平面基板に照射し、  Terahertz pulse light is repeatedly irradiated on the flat substrate,
前記平面基板からの反射光又は透過光を受光する際に、 前記平面基板の被照射 面以外の面を経由して到来する光を検出しないように、 前記平面基板からのテラ ヘルツパルス光を検出する時間領域を設定し、  When receiving reflected light or transmitted light from the planar substrate, detect terahertz pulse light from the planar substrate so as not to detect light arriving via a surface other than the irradiated surface of the planar substrate. Set the time domain to
時間領域分光法を用いて、 前記検出された光の電場強度の時系列波形を測定し、 前記時系列波形に基づいて求められた分光反射率又は分光透過率から前記平面 基板の電気的特性パラメ一夕を算出する。  Using a time-domain spectroscopy, a time-series waveform of the electric field intensity of the detected light is measured, and an electrical characteristic parameter of the flat substrate is obtained from a spectral reflectance or a spectral transmittance obtained based on the time-series waveform. Calculate overnight.
2 . クレーム 1の電気特性測定方法において、  2. In the method for measuring electrical characteristics of claim 1,
前記時間領域は、 前記平面基板からのテラへルツパルス光を検出するために必 要な光パルスをテラへルツ光検出器に導く光路長範囲により設定される。  The time region is set by an optical path length range that guides an optical pulse necessary for detecting the terahertz pulse light from the planar substrate to the terahertz photodetector.
3 . テラへルツ光を用いた平面基板の電気特性測定方法は、 3. The method for measuring the electrical characteristics of a flat substrate using terahertz light
テヲヘルツパルス光を繰り返し平面基板に照射し、  Irradiate the planar substrate repeatedly with terahertz pulse light,
前記平面基板からの反射光又は透過光を受光し、  Receiving reflected light or transmitted light from the flat substrate,
時間領域分光法を用いて、 前記受光された光の電場強度の時系列波形を測定し、 前記時系列波形上の所定の時間範囲のみをフーリエ変換して分光反射率又は分 光透過率を求め、  Using time domain spectroscopy, a time series waveform of the electric field intensity of the received light is measured, and only a predetermined time range on the time series waveform is subjected to Fourier transform to obtain a spectral reflectance or a spectroscopic transmittance. ,
前記分光反射率又は分光透過率から前記平面基板の電気的特性パラメ一夕を算 出する。  An electrical characteristic parameter of the flat substrate is calculated from the spectral reflectance or the spectral transmittance.
4 . クレーム 3の電気特性測定方法において、  4. In the method for measuring electrical characteristics of claim 3,
前記所定の時間範囲は、 前記平面基板からのテラへルツパルス光を検出するた めに必要な光パルスをテラへルツ光検出器に導く光路長範囲に対応するように設 定される。  The predetermined time range is set so as to correspond to an optical path length range for guiding a light pulse necessary for detecting terahertz pulse light from the flat substrate to the terahertz photodetector.
5 . クレーム 1〜4の電気特性測定方法において、  5. In the method for measuring electrical characteristics of claims 1 to 4,
測定対象は、 前記平面基板に代えて平面基板上の薄膜である。  The measurement target is a thin film on a flat substrate instead of the flat substrate.
6 . クレーム 5の電気特性測定方法において、 前記薄膜は、 半導体、 誘電体または超伝導体である。 6. In the method of measuring electrical properties of claim 5, The thin film is a semiconductor, a dielectric, or a superconductor.
7 . テラへルツ光を用いた平面基板の電気特性測定装置は、  7. The device for measuring electrical properties of flat substrates using terahertz light
光パルスを放射するレーザー光源と、  A laser light source that emits light pulses;
テラへルツパルス光を繰り返し平面基板に照射するテラへルツ光源と、 前記平面基板からの反射光又は透過光を受光するテラへルツ光検出器と、 前記光パルスを分岐して、 一方を前記テラへルツ光源へ導き、 他方を前記テラ ヘルツ光検出器へ導く光学系と、  A terahertz light source that repeatedly irradiates a terahertz pulse light to a planar substrate; a terahertz light detector that receives reflected light or transmitted light from the planar substrate; An optical system for guiding to a Hertz light source and for guiding the other to the terahertz photodetector;
前記テラへルツ光検出器が前記平面基板の被照射面以外の面を経由して到来す る光を検出しないように、 前記平面基板からのテラへルツパルス光を検出する時 間領域を制限する制御部とを備える。  A time region for detecting terahertz pulse light from the flat substrate is limited so that the terahertz light detector does not detect light arriving via a surface other than the irradiated surface of the flat substrate. A control unit.
8 . クレーム 7の電気特性測定装置において、  8. In the electrical characteristic measuring device of claim 7,
前記光学系は、 前記テラヘルッ光源へ導かれる光パルスと前記テラへルツ光検 出器へ導かれる光パルスとの間に前記時間領域に相当する距離だけ光路長差を与 えるための可動鏡を有する。  The optical system includes a movable mirror for providing an optical path length difference by a distance corresponding to the time domain between the light pulse guided to the terahertz light source and the light pulse guided to the terahertz light detector. Have.
9 . テラへルツ光を用いた平面基板の電気特性測定装置は、  9. An apparatus for measuring electrical characteristics of flat substrates using terahertz light
光パルスを放射するレーザー光源と、  A laser light source that emits light pulses;
テラへルツパルス光を繰り返し平面基板に照射するテラへルツ光源と、 前記平面基板からの反射光又は透過光を受光するテラへルツ光検出器と、 前記光パルスを分岐して、 一方を前記テラへルツ光源へ導き、 他方を前記テラ ヘルツ光検出器へ導く光学系と、  A terahertz light source that repeatedly irradiates a terahertz pulse light to a planar substrate; a terahertz light detector that receives reflected light or transmitted light from the planar substrate; An optical system for guiding to a Hertz light source and for guiding the other to the terahertz photodetector;
前記テラへルツ光検出器が受光した前記平面基板からのテラへルツパルス光の 時系列波形を測定し、 前記時系列波形上の所定の時間範囲のみをフーリエ変換す る演算部とを備える。  An arithmetic unit that measures a time-series waveform of the terahertz pulse light from the flat substrate received by the terahertz light detector and performs a Fourier transform only on a predetermined time range on the time-series waveform.
1 0 . クレーム 7〜9の電気特性測定装置において、  10. In the electrical characteristic measuring device of claims 7 to 9,
測定対象は、 前記平面基板に代えて平面基板上の薄膜である。  The measurement target is a thin film on a flat substrate instead of the flat substrate.
1 1 . クレーム 1 0の電気特性測定方法において、  1 1. In the method for measuring electrical characteristics of claim 10,
前記薄膜は、 半導体、 誘電体または超伝導体である。  The thin film is a semiconductor, a dielectric, or a superconductor.
PCT/JP2003/006887 2002-06-03 2003-05-30 Method of measuring electric characteristics of flat substrate using terahertz light WO2003102557A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003241695A AU2003241695A1 (en) 2002-06-03 2003-05-30 Method of measuring electric characteristics of flat substrate using terahertz light

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-161085 2002-06-03
JP2002161085A JP2004003902A (en) 2002-06-03 2002-06-03 Electric characteristic measuring method of plane substrate using terahertz light

Publications (1)

Publication Number Publication Date
WO2003102557A1 true WO2003102557A1 (en) 2003-12-11

Family

ID=29706568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006887 WO2003102557A1 (en) 2002-06-03 2003-05-30 Method of measuring electric characteristics of flat substrate using terahertz light

Country Status (3)

Country Link
JP (1) JP2004003902A (en)
AU (1) AU2003241695A1 (en)
WO (1) WO2003102557A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662249A1 (en) * 2003-08-22 2006-05-31 Japan Science and Technology Agency Optical path difference compensation mechanism for acquiring time-series signal of time-series conversion pulse spectrometer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5371293B2 (en) * 2007-08-31 2013-12-18 キヤノン株式会社 Apparatus and method for obtaining information about terahertz waves
EP2031374B1 (en) 2007-08-31 2012-10-10 Canon Kabushiki Kaisha Apparatus and method for obtaining information related to terahertz waves
JP5063325B2 (en) * 2007-12-14 2012-10-31 独立行政法人理化学研究所 Carrier concentration measuring apparatus and carrier concentration measuring method
JP5717335B2 (en) 2009-01-23 2015-05-13 キヤノン株式会社 Analysis equipment
JP6524125B2 (en) * 2017-02-13 2019-06-05 シャープ株式会社 Spectrum analyzer and spectrum analysis method
KR102506803B1 (en) * 2018-11-23 2023-03-07 삼성전자주식회사 Method of testing an interconnection substrate and apparatus for performing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027374A1 (en) * 1997-11-21 1999-06-03 Sela Semiconductor Engineering Laboratories Ltd. Remote resistivity measurement
US20010029436A1 (en) * 2000-03-27 2001-10-11 Tochigi Nikon Corporation, Nikon Corporation Semiconductor electrical characteristics evaluation apparatus and semiconductor electrical characteristics evaluation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027374A1 (en) * 1997-11-21 1999-06-03 Sela Semiconductor Engineering Laboratories Ltd. Remote resistivity measurement
US20010029436A1 (en) * 2000-03-27 2001-10-11 Tochigi Nikon Corporation, Nikon Corporation Semiconductor electrical characteristics evaluation apparatus and semiconductor electrical characteristics evaluation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DUVILLARET LIONEL ET AL.: "A reliable method for extraction of material parameters in terahertz time-domain spectroscopy", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 2, no. 3, September 1996 (1996-09-01), pages 739 - 746, XP002951810 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662249A1 (en) * 2003-08-22 2006-05-31 Japan Science and Technology Agency Optical path difference compensation mechanism for acquiring time-series signal of time-series conversion pulse spectrometer
EP1662249A4 (en) * 2003-08-22 2008-02-13 Japan Science & Tech Agency Optical path difference compensation mechanism for acquiring time-series signal of time-series conversion pulse spectrometer
US7507966B2 (en) 2003-08-22 2009-03-24 Japan Science And Technology Agency Optical-path-difference compensation mechanism for acquiring wave form signal of time-domain pulsed spectroscopy apparatus
US7705311B2 (en) 2003-08-22 2010-04-27 Japan Science And Technology Agency Optical-path-difference compensation mechanism for acquiring wave from signal of time-domain pulsed spectroscopy apparatus

Also Published As

Publication number Publication date
AU2003241695A8 (en) 2003-12-19
AU2003241695A1 (en) 2003-12-19
JP2004003902A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
KR101512783B1 (en) Film thickness measurement method
JP3550381B2 (en) Polarization analyzer and polarization analysis method
JP5173850B2 (en) Inspection device
US8514399B2 (en) Compensation in terahertz time domain spectroscopy having two delays
KR101590389B1 (en) Rotating-element spectroscopic ellipsometer and method for measurement precision prediction of rotating-element spectroscopic ellipsometer, and recording medium storing program for executing the same, and recording medium storing program for executing the same
US5344236A (en) Method for evaluation of quality of the interface between layer and substrate
US20150029517A1 (en) Method for measuring thickness of object
US7027142B2 (en) Optical technique for detecting buried defects in opaque films
JP3782481B2 (en) Modulation spectroscopic ellipsometer
US7982867B2 (en) Methods for depth profiling in semiconductors using modulated optical reflectance technology
US7847937B1 (en) Optical measurment systems and methods
JP2004028618A (en) Paint membrane measuring method and device
JP2012032239A (en) Sample inspection device and sample inspection method
WO2016132452A1 (en) Terahertz wave measurement device, terahertz wave measurement method, and computer program
US20130077084A1 (en) Object characteristic measuring system
KR20160025865A (en) Apparatus for measuring thickness of thin film, measuring system comprising the same, and method for measuring thickness of thin film
WO2003102557A1 (en) Method of measuring electric characteristics of flat substrate using terahertz light
JP3896532B2 (en) Terahertz complex permittivity measurement system
US7787122B2 (en) Optical waveform measurement device and measurement method thereof, complex refractive index measurement device and measurement method thereof, and computer program recording medium containing the program
JP2001507127A (en) In-situ observation of electronic properties by ellipsometry
JP4031712B2 (en) Spectroscopic measurement method and spectroscopic measurement apparatus for semiconductor multilayer film
EP1640709B1 (en) Optical waveform measurement device and measurement method thereof, complex refractive index measurement device and measurement method thereof, and computer program recording medium containing the program
US6411388B1 (en) System and method for frequency domain interferometric second harmonic spectroscopy
KR20200126558A (en) Method for measuring the light intensity of continuous rotation of a polarizer
JP2012208098A (en) Physical property measuring device and physical property measuring method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase