WO2003102056A1 - Selbstreinigender kunststoffkörper und verfahren zu dessen herstellung - Google Patents

Selbstreinigender kunststoffkörper und verfahren zu dessen herstellung Download PDF

Info

Publication number
WO2003102056A1
WO2003102056A1 PCT/EP2003/005278 EP0305278W WO03102056A1 WO 2003102056 A1 WO2003102056 A1 WO 2003102056A1 EP 0305278 W EP0305278 W EP 0305278W WO 03102056 A1 WO03102056 A1 WO 03102056A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic body
body according
coating
plastic
curing
Prior art date
Application number
PCT/EP2003/005278
Other languages
English (en)
French (fr)
Inventor
Thomas Hasskerl
Rolf Neeb
Ghirmay Seyoum
Original Assignee
Röhm GmbH & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Röhm GmbH & Co. KG filed Critical Röhm GmbH & Co. KG
Priority to KR1020047019608A priority Critical patent/KR100976713B1/ko
Priority to AU2003227756A priority patent/AU2003227756A1/en
Priority to DE50302527T priority patent/DE50302527D1/de
Priority to CA2481802A priority patent/CA2481802C/en
Priority to JP2004510307A priority patent/JP2005533135A/ja
Priority to US10/508,844 priority patent/US7235305B2/en
Priority to EP20030725196 priority patent/EP1509565B1/de
Publication of WO2003102056A1 publication Critical patent/WO2003102056A1/de
Priority to HK05110351A priority patent/HK1078600A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31667Next to addition polymer from unsaturated monomers, or aldehyde or ketone condensation product

Definitions

  • the present invention relates to self-cleaning plastic bodies which have siloxane coatings with Ti0 2 particles.
  • Self-cleaning bodies become super-drophilic when exposed to UV light in the presence of water and are able to break down organic dirt down to carbon dioxide and water. This ability of the surface is generally achieved by the photocatalytic effect of titanium dioxide, which can be fixed on solid supports and, for example, can be firmly bonded to the substrate by baking at high temperatures.
  • titanium dioxide which can be fixed on solid supports and, for example, can be firmly bonded to the substrate by baking at high temperatures.
  • silicate glasses for self-cleaning windows as described in EP 850203 B1 by Rhodia Chemie.
  • Plastic substrates such as Acrylic glass or polycarbonate, which are used extensively as glazing material or for transparent noise barriers, should be as transparent and clean as possible for aesthetic reasons in order to give passengers on a train or motorists a clear view of the surrounding landscape. They are used primarily on bridges but also to loosen monotonous concrete noise barriers and are intended to help reduce driver fatigue.
  • Plastic bodies provided with self-cleaning siloxane coatings are also known.
  • Such substrates usually have a double layer of siloxane with different compositions, only the outer layer containing a photocatalytically active additive, for example Ti0 2 in anatase or brookite modification.
  • the publication EP-A-1 022318 describes coated plastic plates which have a photocatalytically active layer.
  • Such thin coatings show only a very low scratch resistance.
  • thicker layers can also be obtained. However, there is only an indication that thicker layers can be obtained by repeated application of siloxane coating agents. Without the use of additives, the siloxane layer containing TiO 2 does not adhere to the initially applied siloxane layer, which serves as a primer to protect the plastic body underneath.
  • inorganic-organic layers from siloxane networks can be used as an insulating layer for the plastic substrate.
  • the layers adhere much better than pure inorganic materials and, due to their hybrid character, are more resistant to the photocatalytic activity of titanium dioxide than purely organic layers.
  • Another object of the invention was that the plastic bodies have a high durability, in particular a high resistance to UV radiation or weathering.
  • the invention was based on the object of providing scratch-resistant, self-cleaning plastic bodies which can be produced in a particularly simple manner. So should produce Plastic bodies, in particular substrates, can be used, which are obtainable by extrusion, injection molding and by casting processes.
  • Another object of the present invention was to provide scratch-resistant, self-cleaning plastic bodies which have excellent mechanical properties. This property is particularly important for applications in which the plastic body is said to have high stability against impact.
  • the plastic body should have particularly good optical properties.
  • Another object of the present invention was to provide plastic bodies which can be easily adapted in size and shape to the requirements.
  • claim 22 provides a solution to the underlying problem. Characterized in that a) a siloxane coating (a) is applied and cured to a plastic substrate, b) the polar portion of the surface energy of the cured siloxane coating is increased to a value of at least 10 mN / m and c) a photocatalytically active TiO 2 particle containing coating (b) and hardens, it is possible to provide self-cleaning plastic bodies that have a particularly high scratch resistance.
  • the plastic bodies of the present invention are very insensitive to the formation of scratches on the surface.
  • the plastic bodies according to the invention show a high resistance to UV radiation.
  • plastic bodies show a particularly high level of self-cleaning even with low UV radiation.
  • plastic bodies of the present invention can be produced particularly inexpensively without the need to use expensive additives.
  • the present invention enables the production of self-cleaning coatings on plastic substrates already coated with siloxanes. This has in particular the Advantage that from the production of plastic bodies, which are provided with scratch-resistant coatings, plates can be removed and later can be provided with another coating that has self-cleaning properties.
  • the scratch resistant plastic bodies of the present invention can be adapted to certain requirements.
  • the size and shape of the plastic body can be varied within a wide range without impairing the scratch resistance or the self-cleaning property.
  • the present invention also provides plastic bodies with excellent optical properties.
  • the scratch-resistant plastic bodies of the present invention have good mechanical properties.
  • plastic bodies according to the invention can be obtained by coating plastic substrates.
  • Plastic substrates suitable for the purposes of the present invention are known per se.
  • Such substrates include in particular polycarbonates, polystyrenes, polyesters, for example polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), cycloolefinic polymers (COC) and / or poly (meth) acrylates.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • COC cycloolefinic polymers
  • Polycarbonates, cycloolefinic polymers and poly (meth) acrylates are preferred, poly (meth) acrylates being particularly preferred.
  • Polycarbonates are known in the art. Polycarbonates can be considered formally as polyesters from carbonic acid and aliphatic or aromatic dihydroxy compounds. They are easily accessible by reacting diglycols or bisphenols with phosgene or carbonic acid diesters in polycondensation or transesterification reactions.
  • bisphenols include, in particular, 2,2-bis (4-hydroxyphenyO-propane (bisphenol A), 2,2-bis (4-hydroxyphenyl) butane (bisphenol B), 1,1-bis (4-hydroxyphenyl) cyclohexane (bisphenol C), 2,2'-methylenediphenol (bisphenol F), 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane (tetrabromobisphenol A) and 2,2-bis (3,5-dimethyl -4-hydroxyphenyl) propane (tetramethylbisphenol A).
  • bisphenol A 2,2-bis (4-hydroxyphenyO-propane
  • bisphenol B 2,2-bis (4-hydroxyphenyl) butane
  • bisphenol C 1,1-bis (4-hydroxyphenyl) cyclohexane
  • bisphenol F 2,2'-methylenediphenol
  • 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane tetrabromobisphenol A
  • Such aromatic polycarbonates are usually produced by interfacial polycondensation or transesterification, details of which are given in Encycl. Polym. Be. Engng. 11, 648-718.
  • the bisphenols are emulsified as an aqueous, alkaline solution in inert organic solvents, such as, for example, methylene chloride, chlorobenzene or tetrahydrofuran, and reacted with phosgene in a step reaction.
  • organic solvents such as, for example, methylene chloride, chlorobenzene or tetrahydrofuran
  • Amines are used as catalysts, and phase transfer catalysts are also used for sterically hindered bisphenols.
  • the resulting polymers are soluble in the organic solvents used.
  • the properties of the polymers can be varied widely by the choice of the bisphenols. If different bisphenols are used at the same time, block polymers can also be built up in multi-stage polycondensation. Cycloolefinic polymers are polymers that can be obtained using cyclic olefins, in particular polycyclic olefins.
  • Cyclic olefins include, for example, monocyclic olefins, such as cyclopentene, cyclopentadiene, cyclohexene, cycloheptene, cyclooctene and alkyl derivatives of these monocyclic olefins having 1 to 3 carbon atoms, such as methyl, ethyl or propyl, such as methylcyclohexene or dimethylcyclohexene, and acrylate and / or methacrylate derivatives of these Links.
  • cycloalkanes with olefinic side chains can also be used as cyclic olefins, such as, for example, cyclopentyl methacrylate.
  • Bridged polycyclic olefin compounds are preferred. These polycyclic olefin compounds can have the double bond both in the ring, these are bridged polycyclic cycloalkenes, and in side chains. These are vinyl derivatives, allyloxycarboxy derivatives and (meth) acryloxy derivatives of polycyclic cycloalkane compounds. These compounds may also have alkyl, aryl or aralkyl substituents.
  • Exemplary polycyclic compounds are, without being restricted thereby, bicyclo [2.2.1] hept-2-ene (norbomene), bicyclo [2.2.1] hept-2,5-diene (2,5-norbomadiene), ethyl -bicyclo [2.2.1] hept-2-ene (ethylnorbornene), ethylidene bicyclo [2.2.1] hept-2-ene (ethylidene-2-norbornene), phenylbicyclo [2.2.1] hept-2-ene, bicyclo [4.3 .0] nona-3,8-diene, tricyclo [4.3.0.1 2 ' 5 ] -3-decene, tricyclo [4.3.0.1 2 ' 5 ] -3,8-decen- (3,8-dihydrodicyclopentadiene), tricyclo [4.4.0.1 2.5 ] -3-undecene, tetracyclo [
  • the cycloolefinic polymers are produced using at least one of the cycloolefinic compounds described above, in particular the polycyclic hydrocarbon compounds.
  • other olefins which can be copolymerized with the aforementioned cycloolefinic monomers can be used in the preparation of the cycloolefinic polymers. These include Ethylene, propylene, isoprene, butadiene, methylpentene, styrene and vinyl toluene.
  • olefins especially the cycloolefins and polycycloolefins, can be obtained commercially.
  • many cyclic and polycyclic olefins are available through Diels-Alder addition reactions.
  • the cycloolefinic polymers can be prepared in a known manner, as described, inter alia, in Japanese Patents 11818/1972, 43412/1983, 1442/1986 and 19761/1987 and Japanese Patent Application Laid-Open Nos. 75700/1975, 129434/1980, 127728 / 1983, 168708/1985, 271308/1986, 221118/1988 and 180976/1990 and in European patent applications EP-A-06610 851, EP-A-0 6485893, EP-A-06407870 and EP-A-06688 801 is.
  • the cycloolefinic polymers can be polymerized in a solvent, for example, using aluminum compounds, vanadium compounds, tungsten compounds or boron compounds as a catalyst.
  • the polymerization can take place with ring opening or with opening of the double bond.
  • Another preferred plastic substrate comprises poly (meth) acrylates. These polymers are generally obtained by free-radical polymerization of mixtures which contain (meth) acrylates.
  • the term (meth) acrylates encompasses methacrylates and acrylates and mixtures of the two.
  • (Meth) acrylates derived from saturated alcohols such as, for example, methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate and
  • Aryl (meth) acrylates such as benzyl (meth) acrylate or Phenyl (meth) acrylate, where the aryl radicals can in each case be unsubstituted or substituted up to four times;
  • Cycloalkyl (meth) acrylates such as 3-vinylcyclohexyl (meth) acrylate,
  • Glycol di (meth) acrylates such as 1,4-butanediol di (meth) acrylate,
  • Pentaerythritol tri (meth) acrylate Pentaerythritol tri (meth) acrylate.
  • these mixtures contain at least 40% by weight, preferably at least 60 % By weight and particularly preferably at least 80% by weight, based on the weight of the monomers, of methyl methacrylate.
  • compositions to be polymerized can also have further unsaturated monomers which are copolymerizable with methyl methacrylate and the aforementioned (meth) acrylates.
  • 1-alkenes such as 1-hexene, 1-heptene
  • branched alkenes such as, for example, vinylcyclohexane, 3,3-dimethyl-1-propene, 3-methyl-1-diisobutylene, 4-methylpentene-1;
  • Vinyl esters such as vinyl acetate; Styrene, substituted styrenes with an alkyl substituent in the side chain, such as. B. ⁇ -methylstyrene and ⁇ -ethylstyrene, substituted styrenes with an alkyl substituent on the ring, such as vinyltoluene and p-methylstyrene, halogenated styrenes such as monochlorostyrenes, dichlorostyrenes, tribromostyrenes and tetrabromostyrenes;
  • Heterocyclic vinyl compounds such as 2-vinylpyridine, 3-vinylpyridine, 2-methyl-5-vinylpyridine, 3-ethyl-4-vinylpyridine, 2,3-dimethyl-5-vinylpyridine, vinylpyrimidine, vinylpiperidine, 9-vinylcarbazole, 3-vinylcarbazole, 4-vinylcarbazole, 1-vinylimidazole, 2-methyl-1-vinylimidazole, N-vinylpyrrolidone, 2-vinylpyrrolidone, N-vinylpyrrolidine, 3-vinylpyrrolidine, N-vinylcaprolactam, N-vinylbutyrolactam, vinyloxolane, vinylfuran, vinylthiophene, vinylthiophene, vinylthiolthene hydrogenated vinylithiazoles, vinyloxazoles and hydrogenated vinyloxazoles;
  • Maleic acid derivatives such as maleic anhydride, methyl maleic anhydride, maleimide, methyl maleimide; and dienes such as divinylbenzene.
  • these comonomers are used in an amount of 0 to 60% by weight, preferably 0 to 40% by weight and particularly preferably 0 to 20% by weight, based on the weight of the monomers, the compounds being used individually or can be used as a mixture.
  • the polymerization is generally started with known radical initiators.
  • the preferred initiators include the azo initiators well known in the art, such as AIBN and 1,1-azobiscyclohexane carbonitrile, and peroxy compounds, such as methyl ethyl ketone peroxide, acetylacetone peroxide, dilauryl peroxide, tert-butyl per-2-ethylhexanoate, ketone peroxide, methyl isobutyl ketone peroxide, and tert-butyl peroxybenzoate, tert-butyl peroxyisopropyl carbonate, 2,5-bis (2-ethylhexanoyl-peroxy) -2,5-dimethylhexane, tert-butyl peroxy-2-ethylhexanoate, tert-butyl peroxy-3,5,5-trimethylhexanoate, Dicumyl peroxide, 1,1-bis (tert
  • These compounds are often used in an amount of from 0.01 to 10% by weight, preferably from 0.5 to 3% by weight, based on the weight of the monomers.
  • the aforementioned polymers can be used individually or as a mixture.
  • Various polycarbonates, poly (meth) acrylates or cycloolefinic polymers can also be used here, which differ, for example, in molecular weight or in the monomer composition.
  • the plastic substrates according to the invention can be produced, for example, from molding compositions of the aforementioned polymers. Thermoplastic molding processes, such as extrusion or injection molding, are generally used here.
  • the weight average molecular weight M w of the homopolymers and / or copolymers to be used according to the invention as a molding composition for the production of the plastic substrates can vary within wide limits, the molecular weight usually being matched to the intended use and processing mode of the molding composition. In general, however, it is in the range between 20,000 and 1,000,000 g / mol, preferably 50,000 to 500,000 g / mol and particularly preferably 80,000 to 300,000 g / mol, without any intention that this should impose a restriction.
  • the plastic substrates can be produced by casting processes.
  • suitable (meth) acrylic mixtures are given in a mold and polymerized.
  • Such (meth) acrylic mixtures generally have the (meth) acrylates set out above, in particular methyl methacrylate.
  • the (meth) acrylic mixtures can contain the copolymers set out above and, in particular for adjusting the viscosity, polymers, in particular poly (meth) acrylates.
  • the molding compositions to be used for the production of the plastic substrates and the acrylic resins may contain all kinds of conventional additives. These include, among others, antistatic agents, antioxidants, mold release agents, flame retardants, lubricants, dyes, flow improvers, fillers, light stabilizers and organic phosphorus compounds such as phosphites, phosphorinanes, phospholanes or phosphonates, pigments, weathering protection agents and Plasticizers.
  • additives include, among others, antistatic agents, antioxidants, mold release agents, flame retardants, lubricants, dyes, flow improvers, fillers, light stabilizers and organic phosphorus compounds such as phosphites, phosphorinanes, phospholanes or phosphonates, pigments, weathering protection agents and Plasticizers.
  • additives include, among others, antistatic agents, antioxidants, mold release agents, flame retardants, lubricants, dyes, flow improvers, fillers, light stabilizers and organic phosphorus compounds such as pho
  • molding compositions which include poly (meth) acrylates are commercially available from Degussa AG under the trade name PLEXIGLAS®.
  • Preferred molding compositions comprising cycloolefinic polymers can be obtained under the trade names ⁇ Topas from Ticona and ⁇ Zeonex from Nippon Zeon.
  • Polycarbonate molding compositions are available, for example, under the trade names ⁇ Makrolon from Bayer or ⁇ Lexan from General Electric.
  • the plastic substrate particularly preferably comprises at least 80% by weight, in particular at least 90% by weight, based on the total weight of the substrate, of poly (meth) acrylates, polycarbonates and / or cycloolefinic polymers.
  • the plastic substrates particularly preferably consist of polymethyl methacrylate, it being possible for the polymethyl methacrylate to contain customary additives.
  • plastic substrates can have an impact strength according to ISO 179/1 of at least 10 kJ / m 2 , preferably at least 15 kJ / m 2 .
  • the shape and size of the plastic substrate are not essential to the present invention.
  • plate-shaped or tabular substrates are often used, which have a thickness in the range from 1 mm to 200 mm, in particular 5 to 30 mm.
  • the plastic bodies of the present invention are first provided with a siloxane coating that counteracts the plastic substrate protects the photocatalytic degradation through the photocatalytic top layer.
  • Scratch-resistant siloxane lacquers which can be used to produce the coating (a) are known per se and are used to finish polymeric glazing materials. Due to their inorganic character, they are characterized by good resistance to UV radiation and weather influences. The production of such paints is described for example in EP-A-0073911. Among other things, varnishes that contain water and / or alcohol as a solvent in addition to the siloxane condensation products are common.
  • siloxane lacquers can be produced, inter alia, by condensation or hydrolysis of organic silicon compounds of the general formula (I)
  • R 1 nSiX 4 -n G in which R 1 is a group having 1 to 20 carbon atoms, X is an alkoxy radical with 1 to 20 carbon atoms or a halogen and n is an integer from 0 to 3, with different radicals X or R 1 in each case may be the same or different.
  • a group having 1 to 20 carbon denotes residues of organic compounds with 1 to 20 carbon atoms. It includes alkyl, cycloalkyl, aromatic groups, alkenyl groups and alkynyl groups with 1 to 20 carbon atoms, as well as heteroalipatic and heteroaromatic groups which, in addition to carbon and hydrogen atoms, have in particular oxygen, nitrogen, sulfur and phosphorus atoms.
  • the groups mentioned can be branched or non-branched, the radical R 1 being substituted or unsubstituted.
  • the substituents include in particular Halogens, 1 to 20 carbon groups, nitro, sulfonic acid, alkoxy, cycloalkoxy, alkanoyl, alkoxycarbonyl, sulfonic acid ester, sulfinic acid, sulfinic acid ester, thiol, cyanide, epoxy, (meth) acryloyl , Amino and hydroxy groups.
  • halogen denotes a fluorine, chlorine, bromine or iodine atom.
  • the preferred alkyl groups include the methyl, ethyl, propyl, isopropyl, 1-butyl, 2-butyl, 2-methylpropyl, tert-butyl, pentyl, 2-methylbutyl, 1,1 -Dimethylpropyl, hexyl, heptyl, octyl, 1,1,3,3-tetramethylbutyl, nonyl, 1-decyl, 2-decyl, undecyl, dodecyl, pentadecyl and the eicosyl group ,
  • the preferred cycloalkyl groups include the cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and the cyclooctyl group, which are optionally substituted by branched or unbranched alkyl groups.
  • the preferred alkenyl groups include the vinyl, allyl, 2-methyl-2-propene, 2-butenyl, 2-pentenyl, 2-decenyl and the 2-eicosenyl groups.
  • the preferred alkynyl groups include the ethynyl, propargyl, 2-methyl-2-propyne, 2-butynyl, 2-pentynyl and the 2-decynyl group.
  • the preferred alkanoyl groups include the formyl, acetyl, propionyl, 2-methylpropionyl, butyryl, valeroyl, pivaloyl, hexanoyl, decanoyl and dodecanoyl groups.
  • the preferred alkoxycarbonyl groups include the methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, tert-butoxycarbonyl, hexyloxycarbonyl, 2-methylhexyloxycarbonyl, decyloxycarbonyl or dodecyloxycarbonyl group.
  • the preferred alkoxy groups include the methoxy, ethoxy, propoxy, butoxy, tert-butoxy, hexyloxy, 2-methylhexyloxy, decyloxy or dodecyloxy group.
  • the preferred cycloalkoxy groups include cycloalkoxy groups whose hydrocarbon radical is one of the preferred cycloalkyl groups mentioned above.
  • the preferred heteroaliphatic groups include the abovementioned preferred cycloalkyl radicals in which at least one carbon unit has been replaced by O, S or a group NR 8 and R 8 is hydrogen, an alkyl having 1 to 6 carbon atoms and one having 1 to 6 carbon atoms Alkoxy or an aryl group means.
  • aromatic groups denote residues of mono- or polynuclear aromatic compounds with preferably 6 to 14, in particular 6 to 12, carbon atoms.
  • Heteroaromatic groups characterize aryl radicals in which at least one CH group has been replaced by N and / or at least two adjacent CH groups have been replaced by S, NH or O.
  • Aromatic or heteroaromatic groups preferred according to the invention are derived from benzene, naphthalene, biphenyl, diphenyl ether, diphenylmethane, diphenyldimethylmethane, bisphenone, diphenylsulfone, thiophene, furan, pyrrole, thiazole, oxazole, imidazole, isothiazole, isoxazole, 3,4-oxazole, pyrazole , 2,5-diphenyl-1, 3,4-oxadiazole, 1, 3,4-thiadiazole, 1, 3,4-triazole, 2,5-diphenyl-1, 3,4-triazole, 1, 2.5 Triphenyl-1, 3,4-triazole, 1, 2,4-oxadiazole, 1, 2,4-thiadiazole, 1, 2,4-triazole, 1, 2,3-triazole, 1, 2,3,4 -Tetrazole, benzo [b] thiophene, be
  • Preferred radicals R 1 can be represented by the formulas (II),
  • R 2 is methyl or hydrogen and r represents a number from 1 to 6.
  • the radical R 1 very particularly preferably represents a methyl or ethyl group.
  • the alkyl radical being the Alkoxy group can preferably also be represented by the formulas (II), (III) or (IV) set out above.
  • Group X is preferably a methoxy or ethoxy radical or a bromine or chlorine atom.
  • These compounds can be used individually or as a mixture to produce siloxane paints.
  • chains or branched siloxanes are formed from the silane compounds of the formula (I) by hydrolysis or condensation.
  • At least 60% by weight, in particular at least 80% by weight, of the silane compounds used preferably have at least three alkoxy groups or halogen atoms, based on the weight of the condensable silanes.
  • Tetraalkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane and tetra-n-butoxysilane;
  • Trialkoxysilanes include methyl-trimethoxysilane, methyl-triethoxysilane, ethyl-trimethoxysilane, n-propyl-trimethoxysilane, n-propyl-triethoxysilane, i-propyl-triethoxysilane, i-propyl-trimethoxysilane, i-propyl-tripropoxysilane, n-butyl-triethoxysilane, n-pentyl-trimethoxysilane, n-hexyl-trimethoxysilane, n-heptyl-trimethoxysilane, n-octyl-trimethoxysilane, vinyl-trimethoxysilane, vinyl-triethoxysilane, cyclohexyl-trimethoxysilane, phenyloxililylylyl, cyclohexylilylyly
  • Dialkoxysilanes include dimethyldimethoxysilane, dimethyl-diethoxysilane, diethyl-dimethoxysilane, diethyl-diethoxysilane, di-n-propyl-dimethoxysilane, di-n-propyldiethoxysilane, di-i-propyl-dimethoxysilane, di-n-propylane diet butyl-dimethoxysilane, di-n-butyldiethoxysilane, di-n-pentyl-dimethoxysilane, di-n-pentyl-diethoxysilane, di-n-hexyl-dimethoxysilane, di-n-hexyl-diethoxysilane, di-n-peptyl- dimethoxysilane, di-n-peptyl-diethoxysilane, di-n-octyl-dimethoxysilane, di-n
  • Methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane and ethyltriethoxysilane are particularly preferred.
  • the proportion of these particularly preferred alkyl trialkoxysilanes is at least 80% by weight, in particular at least 90% by weight, based on the weight of the silane compounds used.
  • siloxane paints which contain colloidally dissolved SiO 2 particles.
  • Such solutions can be made using the sol-gel process are obtained, in particular tetraalkoxysilanes and / or tetrahalosilanes being condensed.
  • Water-containing coating compositions are usually prepared from the aforementioned silane compounds by mixing organosilicon compounds with an amount of water sufficient for hydrolysis, i.e. > 0.5 mole of water per mole of the groups intended for hydrolysis, e.g. Alkoxy groups hydrolyzed, preferably with acid catalysis.
  • acids e.g. inorganic acids, such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, etc., or organic acids, such as carboxylic acids, organic sulfonic acids, etc., or acidic ion exchangers are added, the pH of the hydrolysis reaction generally being between 2 and 4.5, preferably at 3 lies.
  • reaction time is usually relatively short, it is usually less than one hour, for example 45 minutes.
  • the silane compounds can be condensed to give polymers which generally have a weight average molecular weight M w in the range from 100 to 20,000, preferably 200 to 10,000 and particularly preferably 500 to 1500 g / mol. This molar mass can be determined, for example, by NMR spectroscopy.
  • the condensation reaction can be stopped, for example, by cooling to temperatures below 0 ° C. or by increasing the pH with suitable bases, for example alkali metal or alkaline earth metal hydroxides.
  • part of the water-alcohol mixture and the volatile acids can be separated from the reaction mixture, for example by distillation.
  • organic solvents e.g. Alcohols such as ethanol, methanol, isopropanol, butanol, ethers such as diethyl ether, dioxane, ethers and esters of polyols such as e.g. Ethylene glycol, propylene glycol and ethers and esters of these compounds, hydrocarbons, e.g. aromatic hydrocarbons, ketones such as acetone, methyl ethyl ketone, the solids content to about 15-35 wt .-%, based on the total weight of the mixture. Ethanol and / or propanol-2 is particularly preferred as the solvent.
  • suitable organic solvents e.g. Alcohols such as ethanol, methanol, isopropanol, butanol, ethers such as diethyl ether, dioxane, ethers and esters of polyols such as e.g. Ethylene glycol, propylene glycol and
  • the coating compositions it has also proven to be advantageous to add to the coating compositions those solvents which normally dissolve the plastic provided as the substrate for the coating.
  • solvents such as toluene, acetone, tetrahydrofuran in amounts which make up 2 to 20% by weight, based on the total weight of the composition.
  • the water content is generally adjusted to 5-20% by weight, preferably 11 to 15% by weight, based on the total weight of the compositions.
  • the pH of the water-containing siloxane paints can be adjusted to a range from 3 to 6, preferably between 4.5 and 5.5.
  • additives in particular propionamide, which are described in EP-A-0 073 911.
  • the siloxane lacquers which can be used according to the invention can contain curing catalysts, for example in the form of zinc compounds and / or other metal compounds, such as cobalt, copper or calcium compounds, in particular their octoates or naphthenates.
  • the proportion of curing catalysts is generally 0.1-2.5% by weight, especially 0.2-2% by weight, based on the total siloxane lacquer, without any intention that this should impose a restriction.
  • Zinc naphthenate, octoate, acetate, sulfate, etc. are particularly mentioned.
  • siloxane paints described above can be obtained commercially from Röhm GmbH & Co. KG under the trade names ®Acriplex 100 and ⁇ Acriplex 180 SR.
  • siloxane paints described above can be applied to the plastic substrates using any known method. These include immersion processes, spray processes, doctor blades, flood coatings and roller or roller application.
  • the siloxane paints applied in this way can generally be in a relatively short time, for example within 2 to 6 hours, generally within about 3 to 5 hours and at a comparatively lower time Cure temperature, for example at 70 - 110 ° C, preferably at approx. 80 ° C to excellent scratch and adhesive coatings.
  • the layer thickness of the siloxane coating (a) is relatively uncritical. In general, however, this size after hardening is in a range from 1 to 50 ⁇ m, preferably 1.5 to 30 ⁇ m and particularly preferably 3 to 15 ⁇ m, without this being intended to impose any restriction.
  • the layer thicknesses of the coatings (a) and / or (b) can be determined by taking a scanning electron microscope (SEM).
  • the polar fraction of the surface energy after curing of the first siloxane layer is preferably at most 8 mN / m, particularly preferably at most 6 mN / m.
  • the proportion of silicon in the siloxane coating (a) after curing is at least 20% by weight, preferably at least 30% by weight, based on the total weight of the coating, without being restricted thereby should.
  • the proportion of carbon is preferably at most 36% by weight, in particular at most 25% by weight, based on the total weight of the coating.
  • the surface is activated by increasing the polar portion of the surface energy of the hardened siloxane coating to a value of at least 10 mN / m.
  • the polar fraction of the surface energy is particularly preferably increased to at least 15 mN / m.
  • the surface energy is determined using the Ownes-Wendt-Rabel & Kaelble method.
  • test liquids are water [SFT 72.1 mN / m], formamide [SFT 56.9 mN / m, diiodomethane [SFT 50.0 mN / m] and alpha- Bromonaphthalene [SFT 44.4 mN / m] can be used.
  • the measurement is carried out at 20 ° C. The surface tension and the polar and disperse portion of these test liquids are known and are used to calculate the surface energy of the substrate.
  • the surface energy can be determined with a contact angle measuring system G40 from Krüss, Hamburg, the implementation being described in the user manual of the contact angle measuring system G40, 1993.
  • calculation methods please refer to A. W. Neumann, About the measurement methodology for determining surface energy parameters, Part I, Zeitschrift für Phys. Chem., Vol. 41, pp. 339-352 (1964), and A. W. Neumann, About the Measurement Methodology for the Determination of Surface Energy Sizes, Part II, Zeitschrift für Phys. Chem., Vol. 43, pp. 71-83 (1964).
  • Various physical and chemical processes are suitable for activating the siloxane base coat. These include, among other things, treating the surface with chemical processes, in particular with alkalis, corona treatment, flame treatment, plasma or atmospheric plasma treatment. Chemical processes and corona treatment are preferred.
  • the activation can take place chemically, the substrate coated with the siloxane base lacquer being subjected to a treatment with preferably liquid reagents.
  • a treatment with preferably liquid reagents.
  • the surface is treated with an alkaline solution, the pH of which is at least 10, preferably at least 12.
  • the substrate coated with the siloxane lacquer can be treated with an aqueous and / or alcoholic solution of alkali metal hydroxides.
  • Preferred alcohols are methanol, ethanol, propanol and / or butanol.
  • concentration of the alkali metal hydroxides is preferably in the range from 1 to 20, in particular 2 to 10,% by weight, based on the weight of the etching solution.
  • Alkali metals are in particular lithium, sodium, potassium, rubidium and / or cesium. Of these, sodium and / or potassium are preferred.
  • the exposure time of the alkaline solution depends on the pH value and can therefore be in a wide range. In general, a few minutes are sufficient.
  • the exposure time of the alkaline solution is particularly preferably in the range from 30 seconds to 60 minutes, in particular 1 minute to 10 minutes.
  • This surface treatment can be interrupted, for example, by washing neutral or adding acids.
  • the alkaline solutions can be applied to the siloxane coating by any known method. These methods have been presented previously.
  • the polar portion of the surface energy can be increased by corona treatment.
  • This method is described for example in EP-A-1 180426.
  • the treatment time depends on the energy used and is preferably in a range from 1 to 20 seconds, in particular from 2 to 5 seconds.
  • One for Corona treatment of suitable generators can be obtained, for example, from Softal Electronic GmbH, Hamburg, which can be operated in the high-frequency range at 20 to 30 kHz (generator 3005).
  • a second layer containing TiO 2 particles is applied.
  • the lacquer for producing the second layer can essentially correspond to the first siloxane lacquer, although photocatalytically active TiO 2 particles must be introduced.
  • Such a lacquer can be produced, for example, by mixing a previously described siloxane lacquer with an aqueous and / or alcoholic composition containing TP particles.
  • Coating agents which contain colloidally dissolved SiO 2 particles are particularly suitable. These particles preferably have the same size as the Ti0 2 particles described below.
  • Such dispersions can be prepared by the sol-gel process, in particular tetraalkoxysilanes and / or tetrahalosilanes being condensed.
  • compositions containing T VParticles are known, inter alia, from EP-A-0 826 663, EP-A-0 850 203 and EP-1 022318. Furthermore, such compositions can be obtained commercially, for example, from Showa Denko Kabushiki Kaisha, Japan, under the trade name NTB 30A or Toto Ltd., Japan.
  • the TiO 2 particles are photocatalytically active. Accordingly, at least some of the TiO 2 particles are present in the brookite and / or anatase modification.
  • the particle size is not critical, but the transparency depends on the particle size.
  • the particles preferably have a size of at most 300 nm, they being in particular in a range from 1 to 200 nm, preferably 1 to 50 nm.
  • the second layer containing Ti0 2 particles can be applied and cured using the methods described above.
  • the T VParticles in the second coating are present in an amount in the range from 0.01 to 90% by weight, preferably 0.1 to 75% by weight, based on the total weight of the second coating after curing. available.
  • the layer thickness of the siloxane coating b) containing Ti0 2 particles is also not critical. In general, this size after curing is in the range from 0.05 to 2 ⁇ m, preferably 0.1 to 1 ⁇ m.
  • the total layer thickness of the coatings (a) and (b) after curing is in a range from 2 to 30 ⁇ m, in particular from 3 to 15 ⁇ m.
  • the plastic body provided with a photocatalytic coating of the present invention show a high abrasion resistance.
  • the abrasion resistance according to DIN 53778 is preferably greater than or equal to 10,000 cycles, in particular greater than or equal to 15,000 cycles and particularly preferably greater than or equal to 20,000 cycles.
  • the plastic body is transparent, the transparency To ⁇ s / io according to DIN 5033 being at least 70%, preferably at least 75%.
  • the plastic body preferably has an elastic modulus according to ISO 527-2 of at least 1000 MPa, in particular at least 1500 MPa, without this being intended to impose a restriction.
  • the plastic bodies according to the invention are generally very resistant to weathering.
  • the weather resistance according to DIN 53387 (Xenotest) is at least 5000 hours.
  • the yellow index according to DIN 6167 (D65 / 10) of preferred plastic bodies is less than or equal to 8, preferably less than or equal to 5, without this being intended to impose a restriction.
  • the plastic bodies of the present invention can be used, for example, in the construction sector, in particular for producing greenhouses or conservatories, or as a noise barrier.
  • PMMA sheets with a dimension of 150 * 350 * 3 mm were provided with a scratch-resistant lacquer ( ⁇ Acriplex 100 SR, Röhm GmbH & Co. KG), the layer thickness of the lacquer after curing being 7.5 ⁇ m.
  • the polar portion of the surface energy was 5.5 mN / m.
  • the surface was then treated for five minutes with a 5% KOH water / ethanol mixture (1: 3 parts by weight) and then washed neutral.
  • the surface energy was determined using a G40 contact angle measuring system from Krüss, Hamburg, the test liquids being water [SFT 72.1 mN / m], formamide [SFT 56.9 mN / m, diiodomethane [SFT 50.0 mN / m] and alpha-bromonaphthalene [SFT 44.4 mN / m] were used.
  • the polar portion of the surface energy was 15.3 mN / m.
  • a colloidal solution containing Ti0 2 particles and Si0 2 particles was applied by flood coating (3: 1 mixture of NTB 30A (Ti0 2 ) with NTB 30B (Si0 2 ) available from Showa-Denko). The course of the paint and the adhesion were good. The coating thus obtained was cured at 80 ° C for three hours.
  • Example 1 was essentially repeated, but using NaOH instead of KOH.
  • the polar portion of the surface energy was 12.8 mN / m.
  • the flow and adhesion of the second coating was also good, with a scratch resistance of 15,000 cycles being determined.
  • Example 1 was essentially repeated, but the first coating was activated by a corona treatment.
  • the plate was carried out four times at 1 m / min through a corona system (Softal Electronic GmbH, Hamburg, high-frequency range at 20 to 30 kHz).
  • Example 1 was essentially repeated, but using H 3 PO 4 instead of KOH.
  • the polar portion of the surface energy was 6.5 mN / m.
  • Example 1 was essentially repeated, but there was no activation.
  • the polar portion of the surface energy was 5.5 mN / m.
  • Example 1 was essentially repeated, but the first coating was incompletely cured.
  • the curing times were 0.5 to 2.0 hours at 80 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Multicomponent Fibers (AREA)
  • Detergent Compositions (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

Die vorliegende Erfindung betrifft selbstreinigende Kunststoffkörper, dadurch erhältlich, dass man auf ein Kunststoffsubstrat a) eine Siloxan-Beschichtung (a) aufbringt und aushärtet, b) den polaren Anteil der Oberflächenenergie der ausgehärteten Siloxanbeschichtung auf einen Wert von mindestens 10 mN/M erhöht und c) eine photokatalytisch aktive TiO2-Partikel enthaltende Beschichtung (b) aufbringt und aushärtet.

Description

Selbstreinigender Kunststoffkörper und Verfahren zu dessen Herstellung
Die vorliegende Erfindung betrifft selbstreinigende Kunststoffkörper, die Siloxanbeschichtungen mit Ti02-Partikeln aufweisen.
Selbstreinigende Körper werden durch Bestrahlung mit UV-Licht in der Gegenwart von Wasser super-drophil und sind in der Lage organischen Schmutz bis zu Kohlendioxid und Wasser abzubauen. Diese Fähigkeit der Oberfläche wird im allgemeinen durch den photokatalytischen Effekt von Titandioxid erzielt, das auf festen Trägern fixiert und zum Beispiel durch Einbrennen bei hohen Temperaturen fest an das Substrat gebunden werden kann. Ein Beispiel sind Silikatgläser für selbstreinigende Fenster wie sie in EP 850203 B1 von Rhodia Chemie beschrieben werden.
Kunststoffsubstrate wie z.B. Acrylglas oder Polycarbonat, die in großem Umfang als Verglasungsmaterial oder für transparente Lärmschutzwände eingesetzt werden, sollen aus ästhetischen Gründen möglichst transparent und sauber sein, um Fahrgästen in einem Zug oder Autofahrern eine klare Sicht auf die umliegende Landschaft zu ermöglichen. Sie werden vor allem auf Brücken aber auch zur Auflockerung von monotonen Beton-Lärmschutzwänden verwendet und sollen gegen die Ermüdung der Autofahrer beitragen.
Durch Autoabgase, Reifenabrieb, Staub und organischen Schmutz werden transparente Lärmschutzwände schnell unansehnlich und unästhetisch. Es wurden deshalb zahlreiche Versuche unternommen, transparente Kunststoffe mit selbstreinigenden Beschichtungen auszurüsten. Dabei galt es, die photokatalytische Aktivität des Titandioxids für die Zersetzung des an der Substratoberfläche anhaftenden Schmutzes zugänglich zu machen, andererseits aber das organische Substrat selbst vor der Zerstörung durch das Titandioxid zu schützen.
Mit selbstreinigenden Siloxanbeschichtungen versehene Kunststoffkörper sind ebenfalls bekannt. Üblicherweise weisen derartige Substrate eine Doppelschicht aus Siloxan mit unterschiedlicher Zusammensetzung auf, wobei lediglich die äußere Schicht einen photokatalytisch aktiven Zusatzstoff, beispielsweise Ti02 in Anatas- oder Brookit-Modifikation enthält.
Beispielsweise beschreibt die Druckschrift EP-A-1 022318 beschichtete Platten aus Kunststoff, die eine photokatalytisch wirksame Schicht aufweisen. In den Beispielen finden sich jedoch lediglich Platten oder Filme, die eine insgesamt 1 ,2 μm dünne Beschichtung aufweisen. Derartig dünne Beschichtungen zeigen jedoch nur eine sehr geringe Kratzfestigkeit.
Zwar wird in der Beschreibung dargelegt, daß auch dickere Schichten erhalten werden können. Allerdings findet sich lediglich der Hinweis, daß dickere Schichten durch wiederholtes Auftragen von Siloxanbeschichtungsmitteln erhalten werden können. Ohne die Verwendung von Zusatzstoffen haftet die Tiθ2 enthaltende Siloxanschicht jedoch nicht auf der zunächst aufgetragenen Siloxanschicht, die als Grundierung zum Schutz des darunter liegenden Kunststoffkörpers dient.
Um das Problem der unzureichenden Substrathaftung zu lösen, können anorganisch-organische Schichten aus Siloxannetzwerken als Isolierschicht für das Kunststoffsubstrat eingesetzt werden. Die Schichten haften bei geeigneter Zusammensetzung deutlich besser als rein anorganische Materialien und sind aufgrund ihres Hybridcharakters beständiger gegen die photokatalytische Aktivität des Titandioxids als rein organische Schichten.
Versuche haben jedoch gezeigt, daß durch Bewitterung, insbesondere durch UV-Bestrahlung, die Kratzfestigkeit von Kunststoffkörpern, die mit anorganisch-organische Schichten versehen sind, mit der Zeit abnimmt, wobei die Transparenz der Kunststoffkörper nachläßt. Darüber hinaus ist auch die Kratzfestigkeit unmittelbar nach der Herstellung nicht zufriedenstellend.
Problematisch an diesen Kunststoffkörpem des Standes der Technik ist daher ihre geringe Kratzfestigkeit oder ihre geringe Witterungsbeständigkeit. Durch Umwelteinflüsse wird daher die Beschichtung mit der Zeit abgetragen, so daß sie ihre Fähigkeit zur Selbstreinigung verlieren.
In Anbetracht des hierin angegebenen und diskutierten Standes der Technik war es mithin Aufgabe der vorliegenden Erfindung selbstreinigende Kunststoffkörper anzugeben, die eine besonders hohe Kratzfestigkeit aufweisen.
Eine weitere Aufgabe der Erfindung bestand darin, daß die Kunststoffkörper eine hohe Haltbarkeit, insbesondere eine hohe Beständigkeit gegen UV-Bestrahlung oder Bewitterung aufweisen.
Des weiteren lag der Erfindung die Aufgabe zugrunde, kratzfeste, selbstreinigende Kunststoffkörper zur Verfügung zu stellen, die besonders einfach hergestellt werden können. So sollten zur Herstellung der Kunststoffkörper insbesondere Substrate verwendet werden können, die durch Extrusion, Spritzguß sowie durch Gußverfahren erhältlich sind.
Darüber hinaus war es mithin Aufgabe der vorliegenden Erfindung, Kunststoff körper zu schaffen, die kostengünstig hergestellt werden können.
Eine weitere Aufgabe der vorliegenden Erfindung bestand darin, kratzfeste, selbstreinigende Kunststoffkörper anzugeben, die hervorragende mechanische Eigenschaften zeigen. Diese Eigenschaft ist insbesondere für Anwendungen wichtig, bei denen der Kunststoffkörper eine hohe Stabilität gegen Schlageinwirkung aufweisen soll.
Darüber hinaus sollten die Kunststoffkörper besonders gute optische Eigenschaften aufweisen.
Ein weiteres Ziel der vorliegenden Erfindung bestand darin, Kunststoffkörper bereitzustellen, die auf einfache Weise in Größe und Form den Anforderungen angepaßt werden können.
Gelöst werden diese Aufgaben sowie weitere, die zwar nicht wörtlich genannt werden, sich aber aus den hierin diskutierten Zusammenhängen wie selbstverständlich ableiten lassen oder sich aus diesen zwangsläufig ergeben, durch die in Anspruch 1 beschriebenen Kunststoff körper. Zweckmäßige Abwandlungen der erfindungsgemäßen Kunststoffkörper werden in den auf Anspruch 1 rückbezogenen Unteransprüchen unter Schutz gestellt.
Hinsichtlich Verfahren zur Herstellung liefert der Anspruch 22 eine Lösung der zugrunde liegenden Aufgabe. Dadurch, daß man auf ein Kunststoffsubstrat a) eine Siloxan-Beschichtung (a) aufbringt und aushärtet, b) den polaren Anteil der Oberflächenenergie der ausgehärteten Siloxanbeschichtung auf einen Wert von mindestens 10 mN/m erhöht und c) eine photokatalytisch aktive Tiθ2-Partikel enthaltende Beschichtung (b) aufbringt und aushärtet, gelingt es selbstreinigende Kunststoffkörper zur Verfügung zu stellen, die eine besonders hohe Kratzfestigkeit aufweisen.
Durch die erfindungsgemäßen Maßnahmen werden u.a. insbesondere folgende Vorteile erzielt:
D Die Kunststoffkörper der vorliegenden Erfindung sind gegenüber der Bildung von Kratzern auf der Oberfläche sehr unempfindlich.
D Die erfindungsgemäßen Kunststoffkörper zeigen eine hohe Beständigkeit gegen UV-Bestrahlung.
D Des weiteren zeigen Kunststoffkörper schon bei geringer UV- Bestrahlung eine besonders hohe Selbstreinigung.
D Darüber hinaus können die Kunststoffkörper der vorliegenden Erfindung besonders kostengünstig hergestellt werden, ohne daß teuere Additive verwendet werden müssen.
D Des weiteren ermöglicht die vorliegende Erfindung die Erzeugung von selbstreinigenden Beschichtungen auf schon mit Siloxanen beschichteten Kunststoffsubstraten. Dies hat insbesondere den Vorteil, daß aus der Produktion von Kunststoffkörpern, die mit kratzfesten Beschichtungen versehen sind, Platten herausgenommen werden können und später mit einer weiteren Beschichtung versehen werden können, die selbstreinigende Eigenschaften aufweist.
D Die kratzfesten Kunststoffkörper der vorliegenden Erfindung können auf bestimmte Erfordernisse angepaßt werden. Insbesondere kann die Größe und die Form des Kunststoffkörpers in weiten Bereichen variiert werden, ohne daß hierdurch die Kratzfestigkeit oder die selbstreinigende Eigenschaft beeinträchtigt wird. Des weiteren stellt die vorliegende Erfindung auch Kunststoffkörper mit hervorragenden optischen Eigenschaften zur Verfügung.
D Die kratzfesten Kunststoffkörper der vorliegenden Erfindung weisen gute mechanische Eigenschaften auf.
Die erfindungsgemäßen Kunststoffkörper sind durch Beschichtung von Kunststoffsubstraten erhältlich. Für die Zwecke der vorliegenden Erfindung geeignete Kunststoffsubstrat sind an sich bekannt. Derartige Substrate umfassen insbesondere Polycarbonate, Polystyrole, Polyester, beispielsweise Polyethylenterephthalat (PET) und Polybutylenterephthalat (PBT), cycloolefinische Polymere(COC) und/oder Poly(meth)acrylate. Bevorzugt sind hierbei Polycarbonate, cycloolefinische Polymere und Poly(meth)acrylate, wobei Poly(meth)acrylate besonders bevorzugt sind.
Polycarbonate sind in der Fachwelt bekannt. Polycarbonate können formal als Polyester aus Kohlensäure und aliphatischen oder aromatischen Dihydroxy-Verbindungen betrachtet werden. Sie sind leicht zugänglich durch Umsetzung von Diglykolen oder Bisphenolen mit Phosgen bzw. Kohlensäurediestern in Polykondensations- bzw. Umesterungsreaktionen.
Hierbei sind Polycarbonate bevorzugt, die sich von Bisphenolen ableiten. Zu diesen Bisphenolen gehören insbesondere 2,2-Bis-(4-hydroxyphenyO- propan (Bisphenol A), 2,2-Bis-(4-hydroxyphenyl)-butan (Bisphenol B), 1 ,1-Bis(4-hydroxyphenyl)cyclohexan (Bisphenol C), 2,2'-Methylendiphenol (Bisphenol F), 2,2-Bis(3,5-dibrom-4-hydroxyphenyl)propan (Tetrabrombisphenol A) und 2,2-Bis(3,5-dimethyl-4-hydroxyphenyl)propan (Tetramethylbisphenol A).
Üblich werden derartige aromatische Polycarbonate durch Grenzflächenpolykondensation oder Umesterung hergestellt, wobei Einzelheiten in Encycl. Polym. Sei. Engng. 11, 648-718 dargestellt sind.
Bei der Grenzflächenpolykondensation werden die Bisphenole als wäßrige, alkalische Lösung in inerten organischen Lösungsmitteln, wie beispielsweise Methylenchlorid, Chlorbenzol oder Tetrahydrofuran, emulgiert und in einer Stufenreaktion mit Phosgen umgesetzt. Als Katalysatoren gelangen Amine, bei sterisch gehinderten Bisphenolen auch Phasentransferkatalysatoren zum Einsatz. Die resultierenden Polymere sind in den verwendeten organischen Lösungsmitteln löslich.
Über die Wahl der Bisphenole können die Eigenschaften der Polymere breit variiert werden. Bei gleichzeitigem Einsatz unterschiedlicher Bisphenole lassen sich in Mehrstufen-Polykondensationen auch Block- Polymere aufbauen. Cycloolefinische Polymere sind Polymere, die unter Verwendung von cyclischen Olefinen, insbesondere von polycyclischen Olefinen erhältlich sind.
Cyclische Olefine umfassen beispielsweise monocyclische Olefine, wie Cyclopenten, Cyclopentadien, Cyclohexen, Cyclohepten, Cycloocten sowie Alkylderivate dieser monocyclischen Olefine mit 1 bis 3 Kohlenstoffatomen, wie Methyl, Ethyl oder Propyl, wie beispielsweise Methylcyclohexen oder Dimethylcyclohexen, sowie Acrylat- und/oder Methacrylatderivate dieser monocyclischen Verbindungen. Darüber hinaus können auch Cycloalkane mit olefinischen Seitenketten als cyclische Olefine verwendet werden, wie beispielsweise Cyclopentylmethacrylat.
Bevorzugt sind verbrückte, polycyclische Olefinverbindungen. Diese polycyclischen Olefinverbindungen können die Doppelbindung sowohl im Ring aufweisen, es handelt sich hierbei um verbrückte polycyclische Cycloalkene, als auch in Seitenketten. Hierbei handelt es sich um Vinylderivate, Allyloxycarboxyderivate und (Meth)acryloxyderivate von polycyclischen Cycloalkanverbindungen. Diese Verbindungen können des weiteren Alkyl-, Aryl- oder Aralkylsubstituenten aufweisen.
Beispielhafte polycyclische Verbindungen sind, ohne daß hierdurch eine Einschränkung erfolgen soll, Bicyclo[2.2.1]hept-2-en (Norbomen), Bicyclo[2.2.1]hept-2,5-dien (2,5-Norbomadien), Ethyl-bicyclo[2.2.1]hept-2- en (Ethylnorbornen), Ethylidenbicyclo[2.2.1]hept-2-en (Ethyliden- 2-norbornen), Phenylbicyclo[2.2.1]hept-2-en, Bicyclo[4.3.0]nona-3,8-dien, Tricyclo[4.3.0.12'5]-3-decen, Tricyclo[4.3.0.12'5]-3,8-decen- (3,8-dihydrodicyclopentadien), Tricyclo[4.4.0.12,5]-3-undecen, Tetracyclo[4.4.0.12'5,17'10]-3-dodecen, Ethyliden-tetracyclo[4.4.0.12,5.17,10]- 3-dodecen, Methyloxycarbonyltetracyclo[4.4.0.12'5,17,10]-3-dodecen, Ethyliden-9-ethyltetracyclo[4.4.0.12'5, 17'1 °]-3-dodecen , Pentacyclo[4.7.0.12,5A03,13,19-12]-3-pentadecen, Pentacyclo[6.1.13,6.02,7.09,13]-4-pentadecen, Hexacyclo[6.6.1.13,6.110'13.02'7.09'14]-4-heptadecen) Dimethylhexacyclo[6.6.1.13'6.110ι13.02,7.09,14]-4-hθptadecen> Bis(allyloxycarboxy)tricyclo[4.3.0.12'5]-decan,
Bis(methacryloxy)tricyclo[4.3.0.12,5]-decan, Bis(acryloxy)tricyclo[4.3.0.12'5]- decan.
Die cycloolefinischen Polymere werden unter Verwendung von zumindest einer der zuvor beschriebenen cycloolefinischen Verbindungen, insbesondere der polycyclischen Kohlenwasserstoffverbindungen hergestellt. Darüber hinaus können bei der Herstellung der cycloolefinischen Polymere weitere Olefine verwendet werden, die mit den zuvor genannten cycloolefinischen Monomeren copolymerisiert werden können. Hierzu gehören u.a. Ethylen, Propylen, Isopren, Butadien, Methylpenten, Styrol und Vinyltoluol.
Die meisten der zuvor genannten Olefine, insbesondere auch die Cycloolefine und Polycycloolefine, können kommerziell erhalten werden. Darüber hinaus sind viele cyclische und polycyclische Olefine durch Diels- Alder-Additionsreaktionen erhältlich.
Die Herstellung der cycloolefinischen Polymere kann auf bekannte Art und Weise erfolgen, wie dies u.a. in den japanischen Patentschriften 11818/1972, 43412/1983, 1442/1986 und 19761/1987 und den japanischen Offenlegungsschriften Nr. 75700/1975, 129434/1980, 127728/1983, 168708/1985, 271308/1986, 221118/1988 und 180976/1990 und in den Europäischen Patentanmeldungen EP-A-06610 851 , EP-A-0 6485893, EP-A-06407870 und EP-A-06688 801 dargestellt ist. Die cycloolefinischen Polymere können beispielsweise unter Verwendung von Aluminiumverbindungen, Vanadiumverbindungen, Wolframverbindungen oder Borverbindungen als Katalysator in einem Lösungsmittel polymerisiert werden.
Es wird angenommen, daß die Polymerisation je nach den Bedingungen, insbesondere dem eingesetzten Katalysator, unter Ringöffnung oder unter Öffnung der Doppelbindung erfolgen kann. Darüber hinaus ist es möglich, cycloolefinische Polymere durch radikalische Polymerisation zu erhalten, wobei Licht oder ein Initiator als Radikalbildner verwendet wird. Dies gilt insbesondere für die Acryloylderivate der Cycloolefine und/oder Cycloalkane. Diese Art der Polymerisation kann sowohl in Lösung als auch in Substanz erfolgen.
Ein weiteres bevorzugtes Kunststoffsubstrat umfaßt Poly(meth)acrylate. Diese Polymere werden im allgemeinen durch radikalische Polymerisation von Mischungen erhalten, die (Meth)acrylate enthalten. Der Ausdruck (Meth)acrylate umfaßt Methacrylate und Acrylate sowie Mischungen aus beiden.
Diese Monomere sind weithin bekannt. Zu diesen gehören unter anderem
(Meth)acrylate, die sich von gesättigten Alkoholen ableiten, wie beispielsweise Methylacrylat, Ethyl(meth)acrylat, Propyl(meth)acrylat, n-Butyl(meth)acrylat, tert.-Butyl(meth)acrylat, Pentyl(meth)acrylat und
2-Ethylhexyl(meth)acrylat;
(Meth)acrylate, die sich von ungesättigten Alkoholen ableiten, wie z. B.
Oleyl(meth)acrylat, 2-Propinyl(meth)acrylat, Allyl(meth)acrylat,
Vinyl(meth)acrylat;
Aryl(meth)acrylate, wie Benzyl(meth)acrylat oder Phenyl(meth)acrylat, wobei die Arylreste jeweils unsubstituiert oder bis zu vierfach substituiert sein können;
Cycloalkyl(meth)acrylate, wie 3-Vinylcyclohexyl(meth)acrylat,
Bomyl(meth)acrylat;
Hydroxylalkyl(meth)acrylate, wie
3-Hydroxypropyl(meth)acrylat,
3,4-Dihydroxybutyl(meth)acrylat,
2-Hydroxyethyl(meth)acrylat, 2-Hydroxypropyl(meth)acrylat;
Glycoldi(meth)acrylate, wie 1 ,4-Butandioldi(meth)acrylat,
(Meth)acrylate von Etheralkoholen, wie
Tetrahydrofurfuryl(meth)acrylat, Vinyloxyethoxyethyl(meth)acrylat;
Amide und Nitrile der (Meth)acrylsäure, wie
N-(3-Dimethylaminopropyl)(meth)acrylamid,
N-(Diethylphosphono)(meth)acrylamid,
1-Methacryloylamido-2-methyl-2-propanol; schwefelhaltige Methacrylate, wie
Ethylsulfinylethyl(meth)acrylat,
4-Thiocyanatobutyl(meth)acrylat,
Ethy Isu If onylethyl (meth)acrylat,
Thiocyanatomethyl(meth)acrylat,
Methylsulfinylmethyl(meth)acrylat,
Bis((meth)acryloyloxyethyi)sulfid; mehrwertige (Meth)acrylate, wie
Trimethyloylpropantri(meth)acrylat,
Pentaerythrittetra(meth)acrylat und
Pentaerythrittri(meth)acrylat.
Gemäß einem bevorzugten Aspekt der vorliegenden Erfindung enthalten diese Mischungen mindestens 40 Gew.-%, vorzugsweise mindestens 60 Gew.-% und besonders bevorzugt mindestens 80 Gew.-%, bezogen auf das Gewicht der Monomere, Methylmethacrylat.
Neben den zuvor dargelegten (Meth)acrylaten können die zu polymerisierenden Zusammensetzungen auch weitere ungesättigte Monomere aufweisen, die mit Methylmethacrylat und den zuvor genannten (Meth)acrylaten copolymerisierbar sind.
Hierzu gehören unter anderem 1 -Alkene, wie Hexen-1 , Hepten-1 ; verzweigte Alkene, wie beispielsweise Vinylcyclohexan, 3,3-Dimethyl-1 - propen, 3-Methyl-1-diisobutylen, 4-Methylpenten-1 ;
Acrylnitril; Vinylester, wie Vinylacetat; Styrol, substituierte Styrole mit einem Alkylsubstituenten in der Seitenkette, wie z. B. α-Methylstyrol und α-Ethylstyrol, substituierte Styrole mit einem Alkylsubstituenten am Ring, wie Vinyltoluol und p-Methylstyrol, halogenierte Styrole, wie beispielsweise Monochlorstyrole, Dichlorstyrole, Tribromstyrole und Tetrabromstyrole;
Heterocyclische Vinylverbindungen, wie 2-Vinylpyridin, 3-Vinylpyridin, 2- Methyl-5-vinylpyridin, 3-Ethyl-4-vinylpyridin, 2,3-Dimethyl-5-vinylpyridin, Vinylpyrimidin, Vinylpiperidin, 9-Vinylcarbazol, 3-Vinylcarbazol, 4-Vinylcarbazol, 1-Vinylimidazol, 2-Methyl-1 -vinylimidazol, N-Vinylpyrrolidon, 2-Vinylpyrrolidon, N-Vinylpyrrolidin, 3-Vinylpyrrolidin, N-Vinylcaprolactam, N-Vinylbutyrolactam, Vinyloxolan, Vinylfuran, Vinylthiophen, Vinylthiolan, Vinylthiazole und hydrierte Vinyithiazole, Vinyloxazole und hydrierte Vinyloxazole;
Vinyl- und Isoprenylether;
Maleinsäurederivate, wie beispielsweise Maleinsäureanhydrid, Methylmaleinsäureanhydrid, Maleinimid, Methylmaleinimid; und Diene, wie beispielsweise Divinylbenzol. Im allgemeinen werden diese Comonomere in einer Menge von 0 bis 60 Gew.-%, vorzugsweise 0 bis 40 Gew.-% und besonders bevorzugt 0 bis 20 Gew.-%, bezogen auf das Gewicht der Monomeren, eingesetzt, wobei die Verbindungen einzeln oder als Mischung verwendet werden können.
Die Polymerisation wird im allgemeinen mit bekannten Radikalinitiatoren gestartet. Zu den bevorzugten Initiatoren gehören unter anderem die in der Fachwelt weithin bekannten Azoinitiatoren, wie AIBN und 1 ,1-Azobiscyclohexancarbonitril, sowie Peroxyverbindungen, wie Methylethylketonperoxid, Acetylacetonperoxid, Dilaurylperoxyd, tert- Butylper-2-ethylhexanoat, Ketonperoxid, Methylisobutylketonperoxid, Cyclohexanonperoxid, Dibenzoylperoxid, tert.-Butylperoxybenzoat, tert.- Butylperoxyisopropylcarbonat, 2,5-Bis(2-ethylhexanoyl-peroxy)-2,5- dimethylhexan, tert.-Butylperoxy-2-ethylhexanoat, tert-Butylperoxy-3,5,5- trimethylhexanoat, Dicumylperoxid, 1 ,1 -Bis(tert.-butylperoxy)cyclohexan, 1 ,1 -Bis(tert.-butylperoxy)3,3,5-trimethylcyclohexan, Cumylhydroperoxid, tert.-Butylhydroperoxid, Bis(4-tert.-butylcyclohexyl)peroxydicarbonat, Mischungen von zwei oder mehr der vorgenannten Verbindungen miteinander sowie Mischungen der vorgenannten Verbindungen mit nicht genannten Verbindungen, die ebenfalls Radikale bilden können.
Diese Verbindungen werden häufig in einer Menge von 0,01 bis 10 Gew.-%, vorzugsweise von 0,5 bis 3 Gew.-%, bezogen auf das Gewicht der Monomeren, eingesetzt.
Die zuvor genannten Polymere können einzeln oder als Mischung verwendet werden. Hierbei können auch verschiedene Polycarbonate, Poly(meth)acrylate oder cycloolefinische Polymere eingesetzt werden, die sich beispielsweise im Molekulargewicht oder in der Monomerzusammensetzung unterscheiden. Die erfindungsgemäßen Kunststoffsubstrate können beispielsweise aus Formmassen der zuvor genannten Polymere hergestellt werden. Hierbei werden im allgemeinen thermoplastische Formgebungsverfahren eingesetzt, wie Extrusion oder Spritzguß.
Das Gewichtsmittel des Molekulargewichts Mw der erfindungsgemäß als Formmasse zur Herstellung der Kunststoffsubstrate zu verwendenden Homo- und/oder Copolymere kann in weiten Bereichen schwanken, wobei das Molekulargewicht üblicherweise auf den Anwendungszweck und die Verarbeitungsweise der Formmasse abgestimmt wird. Im allgemeinen liegt es aber im Bereich zwischen 20000 und 1 000000 g/mol, vorzugsweise 50000 bis 500 000 g/mol und besonders bevorzugt 80000 bis 300000 g/mol, ohne daß hierdurch eine Einschränkung erfolgen soll.
Des weiteren können die Kunststoffsubstrate durch GußkammeiNerfahren erzeugt werden. Hierbei werden beispielsweise geeignete (Meth)acrylmischungen in einer Form gegeben und polymerisiert. Derartige (Meth)acrylmischungen weisen im allgemeinen die zuvor dargelegten (Meth)acrylate, insbesondere Methylmethacrylat auf. Des weiteren können die (Meth)acrylmischungen die zuvor dargelegten Copolymere sowie, insbesondere zur Einstellung der Viskosität, Polymere, insbesondere Poly(meth)acrylate, enthalten.
Darüber hinaus können die zur Herstellungen der Kunststoffsubstrate zu verwendenden Formmassen sowie die Acrylharze übliche Zusatzstoffe aller Art enthalten. Hierzu gehören unter anderem Antistatika, Antioxidantien, Entformungsmittel, Flammschutzmittel, Schmiermittel, Farbstoffe, Fließverbesserungsmittel, Füllstoffe, Lichtstabilisatoren und organische Phosphorverbindungen, wie Phosphite, Phosphorinane, Phospholane oder Phosphonate, Pigmente, Verwitterungsschutzmittel und Weichmacher. Die Menge an Zusatzstoffen ist jedoch auf den Anwendungszweck beschränkt.
Besonders bevorzugte Formmassen, die Poly(meth)acrylate umfassen, sind unter dem Handelsnamen PLEXIGLAS® von der Fa. Degussa AG kommerziell erhältlich. Bevorzugte Formmassen, die cycloolefinische Polymere umfassen, können unter dem Handelsnamen ©Topas von Ticona und ©Zeonex von Nippon Zeon bezogen werden. Polycarbonat- Formmassen sind beispielsweise unter dem Handelsnamen ©Makrolon von Bayer oder ©Lexan von General Electric erhältlich.
Besonders bevorzugt umfaßt das Kunststoffsubstrat mindestens 80 Gew.-%, insbesondere mindestens 90 Gew.-%, bezogen auf das Gesamtgewicht des Substrats, Poly(meth)acrylate, Polycarbonate und/oder cycloolefinische Polymere. Besonders bevorzugt bestehen die Kunststoffsubstrate aus Polymethylmethacrylat, wobei das Polymethylmethacrylat übliche Additive enthalten kann.
Gemäß einer bevorzugten Ausführungsform können Kunststoffsubstrate eine Schlagzähigkeit gemäß ISO 179/1 von mindestens 10 kJ/m2, bevorzugt mindestens 15 kJ/m2 aufweisen.
Die Form sowie die Größe des Kunststoffsubstrats sind nicht wesentlich für die vorliegende Erfindung. Im allgemeinen werden häufig platten- oder tafelförmige Substrate eingesetzt, die eine Dicke im Bereich von 1 mm bis 200 mm, insbesondere 5 bis 30 mm aufweisen.
Die Kunststoffkörper der vorliegenden Erfindung werden zunächst mit einer Siloxanbeschichtung versehen, die das Kunststoffsubstrat gegen den photokatalytischen Abbau durch die photokatalytisch wirkende Deckschicht schützt.
Kratzfeste Siloxanlacke, die zur Herstellung der Beschichtung (a) dienen können, sind an sich bekannt und werden zur Ausrüstung von polymeren Verglasungsmaterialien eingesetzt. Sie zeichnen sich aufgrund ihres anorganischen Charakters durch gute Beständigkeit gegenüber UV- Strahlung und Witterungseinflüssen aus. Die Herstellung derartiger Lacke wird beispielsweise in EP-A-0073911 beschrieben. Üblich sind unter anderem Lacke, die neben den Siloxan-Kondensationsprodukten Wasser und/oder Alkohol als Lösungsmittel enthalten.
Diese Siloxanlacke können unter anderem durch Kondensation oder Hydrolyse von organischen Siliciumverbindungen der allgemeinen Formel (I)
R1nSiX4-n G), worin R1 eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe, X ein Alkoxyrest mit 1 bis 20 Kohlenstoffatomen oder ein Halogen und n eine ganze Zahl von 0 bis 3 darstellt, wobei verschiedene Reste X oder R1 jeweils gleich oder unterschiedlich sein können, erhalten werden.
Der Ausdruck "eine 1 bis 20 Kohlenstoff aufweisende Gruppe" kennzeichnet Reste organischer Verbindungen mit 1 bis 20 Kohlenstoffatomen. Er umfaßt Alkyl-, Cycloalkyl-, aromatische Gruppen, Alkenylgruppen und Alkinylgruppen mit 1 bis 20 Kohlenstoff atomen, sowie heteroalipatische und heteroaromatische Gruppen, die neben Kohlenstoff- und Wasserstoffatomen insbesondere Sauerstoff-, Stickstoff-, Schwefel- und Phosphoratome aufweisen. Dabei können die genannten Gruppen verzweigt oder nicht verzweigt sein, wobei der Rest R1 substituiert oder unsubstituiert sein kann. Zu den Substituenten gehören insbesondere Halogene, 1 bis 20 Kohlenstoff aufweisende Gruppen, Nitro-, Sulfonsäure- , Alkoxy-, Cycloalkoxy-, Alkanoyl-, Alkoxycarbonyl-, Sulfonsäureester-, Sulfinsäure-, Sulfinsäureester-, Thiol-, Cyanid-, Epoxy-, (Meth)acryloyl-, Amino- und Hydroxygruppen. Im Rahmen der vorliegenden Erfindung bezeichnet der Ausdruck "Halogen" ein Fluor-, Chlor-, Brom- oder lodatom.
Zu den bevorzugten Alkylgruppen gehören die Methyl-, Ethyl-, Propyl-, Isopropyl-, 1 -Butyl-, 2-Butyl-, 2-Methylpropyl-, tert.-Butyl-, Pentyl-, 2-Methylbutyl-, 1,1-Dimethylpropyl-, Hexyl-, Heptyl-, Octyl-, 1,1,3,3- Tetramethylbutyl-, Nonyl-, 1-Decyl-, 2-Decyl-, Undecyl-, Dodecyl-, Pentadecyl- und die Eicosyl-Gruppe.
Zu den bevorzugten Cycloalkylgruppen gehören die Cyclopropyl-, Cyclobutyl-, Cyclopentyl-, Cyclohexyl-, Cycloheptyl- und die Cyclooctyl- Gruppe, die gegebenenfalls mit verzweigten oder nicht verzweigten Alkylgruppen substituiert sind.
Zu den bevorzugten Alkenylgruppen gehören die Vinyl-, Allyl-, 2-Methyl-2- propen-, 2-Butenyl-, 2-Pentenyl-, 2-Decenyl- und die 2-Eicosenyl-Gruppe.
Zu den bevorzugten Alkinylgruppen gehören die Ethinyl-, Propargyl-, 2- Methyl-2- propin, 2-Butinyl-, 2-Pentinyl- und die 2-Decinyl-Gruppe.
Zu den bevorzugten Alkanoylgruppen gehören die Formyl-, Acetyl-, Propionyl-, 2-Methylpropionyl-, Butyryl-, Valeroyl-, Pivaloyl-, Hexanoyl-, Decanoyl- und die Dodecanoyl-Gruppe.
Zu den bevorzugten Alkoxycarbonylgruppen gehören die Methoxycarbonyl-, Ethoxycarbonyl-, Propoxycarbonyl-, Butoxycarbonyl-, tert.-Butoxycarbonyl-, Hexyloxycarbonyl-, 2-Methylhexyloxycarbonyl-, Decyloxycarbonyl- oder Dodecyloxycarbonyl-Gruppe.
Zu den bevorzugten Alkoxygruppen gehören die Methoxy-, Ethoxy-, Propoxy-, Butoxy-, tert.-Butoxy-, Hexyloxy-, 2-Methylhexyloxy-, Decyloxy- oder Dodecyloxy-Gruppe.
Zu den bevorzugten Cycloalkoxygruppen gehören Cycloalkoxygruppen, deren Kohlenwasserstoffrest eine der vorstehend genannten bevorzugten Cycloalkylgruppen ist.
Zu den bevorzugten heteroaliphatischen Gruppen gehören die vorstehend genannten bevorzugten Cycloalkylreste, in denen mindestens eine Kohlenstoff-Einheit durch O, S oder eine Gruppe NR8 ersetzt ist und R8 Wasserstoff, eine 1 bis 6 Kohlenstoffatome aufweisende Alkyl-, eine 1 bis 6 Kohlenstoffatome aufweisende Alkoxy- oder eine Arylgruppe bedeutet.
Erfindungsgemäß bezeichnen aromatische Gruppen Reste ein oder mehrkerniger aromatischer Verbindungen mit vorzugsweise 6 bis 14, insbesondere 6 bis 12 C-Atomen. Heteroaromatische Gruppen kennzeichnen Arylreste, worin mindestens eine CH-Gruppe durch N ersetzt ist und/oder mindestens zwei benachbarte CH-Gruppen durch S, NH oder O ersetzt sind. Erfindungsgemäß bevorzugte aromatische oder heteroaromatische Gruppen leiten sich von Benzol, Naphthalin, Biphenyl, Diphenylether, Diphenylmethan, Diphenyldimethylmethan, Bisphenon, Diphenylsulfon, Thiophen, Furan, Pyrrol, Thiazol, Oxazol, Imidazol, Isothiazol, Isoxazol, Pyrazol, 1 ,3,4-Oxadiazol, 2,5-Diphenyl-1 ,3,4- oxadiazol, 1 ,3,4-Thiadiazol, 1 ,3,4-Triazol, 2,5-Diphenyl-1 ,3,4-triazol, 1 ,2,5- Triphenyl-1 ,3,4-triazol, 1 ,2,4-Oxadiazol, 1 ,2,4-Thiadiazol, 1 ,2,4-Triazol, 1 ,2,3-Triazol, 1 ,2,3,4-Tetrazol, Benzo[b]thiophen, Benzo[b]furan, Indol, Benzo[c]thiophen, Benzo[c]furan, Isoindol, Benzoxazol, Benzothiazol, Benzimidazol, Benzisoxazol, Benzisothiazol, Benzopyrazol, Benzothiadiazol, Benzotriazol, Dibenzofuran, Dibenzothiophen, Carbazol, Pyridin, Pyrazin, Pyrimidin, Pyridazin, 1 ,3,5-Triazin, 1 ,2,4-Triazin, 1,2,4,5- Triazin, Chinolin, Isochinolin, Chinoxalin, Chinazolin, Cinnolin, 1 ,8- Naphthyridin, 1 ,5-Naphthyridin, 1 ,6-Naphthyridin, 1 ,7-Naphthyridin, Phthalazin, Pyridopyrimidin, Purin, Pteridin oder 4H-Chinolizin, Diphenylether, Anthracen und Phenanthren ab.
Bevorzugte Reste R1 lassen sich durch die Formeln (II),
-(CH2)mNH-[(CH2)n-NH]pH (II), worin m und n für eine Zahl von 1 bis 6, und p für null oder eins steht, oder die Formel (III)
Figure imgf000020_0001
worin q für eine Zahl von 1 bis 6 steht, oder die Formel (IV)
Figure imgf000020_0002
worin R2 Methyl oder Wasserstoff und r eine Zahl von 1 bis 6 bedeutet, darstellen.
Ganz besonders bevorzugt stellt der Rest R1 eine Methyl- oder Ethylgruppe dar.
Hinsichtlich der Definition der Gruppe X in Formel (I) bezüglich der Alkoxygruppe mit 1 bis 20 Kohlenstoffatome sowie des Halogens sei auf die zuvor genannte Definition verwiesen, wobei der Alkylrest der Alkoxygruppe bevorzugt ebenfalls durch die zuvor dargelegten Formeln (II), (III) oder (IV) darstellbar ist. Bevorzugt stellt die Gruppe X ein Methoxy- oder Ethoxyrest oder ein Brom- oder Chloratom dar.
Diese Verbindungen können einzeln oder als Mischung verwendet werden, um Siloxanlacke herzustellen.
Je nach Anzahl der Halogene oder über Sauerstoff an das Silicium gebundene Alkoxygruppen bilden sich Ketten oder verzweigte Siloxane durch Hydrolyse bzw. Kondensation aus den Silanverbindungen der Formel (I). Bevorzugt weisen mindestens 60 Gew.-%, insbesondere mindestens 80 Gew.-% der eingesetzten Silanverbindungen mindestens drei Alkoxygruppen oder Halogenatome auf, bezogen auf das Gewicht der kondensierbaren Silane.
Tetraalkoxysilane umfassen Tetramethoxysilan, Tetraethoxysilan, Tetra-n-propoxysilan, Tetra-i-propoxysilan und Tetra-n-butoxysilane;
Trialkoxysilane umfassen Methyl-trimethoxysilan, Methyl-triethoxysilan, Ethyl-trimethoxysilan, n-Propyl-trimethoxysilan, n-Propyl-triethoxysilan, i-Propyl-triethoxysilan, i-Propyl-trimethoxysilan, i-Propyl-tripropoxysilan, n-Butyl-trimethoxysilan, n-Butyl-triethoxysilan, n-Pentyl-trimethoxysilan, n-Hexyl-trimethoxysilan, n-Heptyl-trimethoxysilan, n-Octyl-trimethoxysilan, Vinyl-trimethoxysilan, Vinyl-triethoxysilan, Cyclohexyl-trimethoxysilan, Cyclohexyl-triethoxysilan, Phenyl-trimethoxysilan, 3-Chlorpropyl- trimethoxysilan, 3-Chlorpropyl-triethoxysilan, 3,3,3-Trifluorpropyl- trimethoxysilan, 3,3,3-Trifluorpropyl-triethoxysilan, 3-Aminopropyl- trimethoxysilan, 3-Aminopropyl-triethoxysilan, 2-Hydroxyethyl- trimethoxysilan, 2-Hydroxyethyl-triethoxysilan, 2-Hydroxypropyl-trimethoxysilan, 2-Hydroxypropyl-triethoxysilan, 3-Hydroxypropyl-trimethoxysilan, 3-Hydroxypropyl-triethoxysilan, 3-Mercaptopropyl-trimethoxysilan, 3-Mercaptopropyl-triethoxysilan, 3-lsocyanatopropyl-trimethoxysilan, 3-lsocianatopropyl-triethoxysilan, 3-Glycidoxypropyl-trimethoxysilan, 3-Glycidoxypropyl-triethoxysilan, 2-(3,4-Epoxycyclohexyl)ethyl-trimethoxysilan, 2-(3,4-Epoxycyclohexyl)ethyl-triethoxysilan, 3-(Meth)acryloxypropyl- trimethoxysilan, 3-(Meth)acryloxypropyl-triethoxysilan, 3-Ureidopropyl- trimethoxysilan und 3-Ureidopropyl-triethoxysilan;
Dialkoxysilane umfassen Dimethyldimethoxysilan, Dimethyl-diethoxysilan, Diethyl-dimethoxysilan, Diethyl-diethoxysilan, Di-n-propyl-dimethoxysilan, Di-n-propyldiethoxysilan, Di-i-propyl-dimethoxysilan, Di-i-propyl-diethoxysilan, Di-n-butyl-dimethoxysilan, Di-n-butyldiethoxysi- lan, Di-n-pentyl-dimethoxysilan, Di-n-pentyl-diethoxysilan, Di-n-hexyl-dimethoxysilan, Di-n-hexyl-diethoxysilan, Di-n- peptyl-dimethoxysilan, Di-n-peptyl-diethoxysilan, Di-n-octyl- dimethoxysilan, Di-n-octyl-diethoxysilan, Di-n-cyclohexyl-dimethoxysilan, Di-n-cyclohexyl-diethoxysilan, Diphenyl-dimethoxysilan und Diphenyl- diethoxysilan.
Besonders bevorzugt sind Methyltrimethoxysilan, Methyltriethoxysilan, Ethyltrimethoxysilan und Ethyltriethoxysilan. Gemäß einem besonderen Aspekt der vorliegenden Erfindung beträgt der Anteil dieser besonders bevorzugten Alkyltrialkoxysilanen mindestens 80 Gew.-%, insbesondere mindestens 90 Gew.-%, bezogen auf das Gewicht der eingesetzten Silanverbindungen.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung könne auch Siloxanlacke eingesetzt werden, die kolloidal gelöste Si02-Partikel enthalten. Derartige Lösungen können nach dem Sol-Gel-Verfahren erhalten werden, wobei insbesondere Tetraalkoxysilane und/oder Tetrahalogensilane kondensiert werden.
Üblich werden aus den zuvor genannten Silanverbindungen wasserhaltige Beschichtungsmittel dargestellt, indem man siliciumorganischen Verbindungen, mit einer zur Hydrolyse ausreichenden Menge Wasser, d.h. >, 0,5 Mol Wasser pro Mol der zur Hydrolyse vorgesehenen Gruppen, wie z.B. Alkoxygruppen hydrolysiert, vorzugsweise unter Säurekatalyse. Als Säuren können z.B. anorganische Säuren, wie Salzsäure, Schwefelsäure, Phosphorsäue, Salpetersäure usw., oder organische Säuren, wie Carbonsäuren, organische Sulfonsäuren usw., oder saure Ionenaustauscher zugesetzt werden, wobei der pH der Hydrolysereaktion in der Regel zwischen 2 und 4,5, vorzugsweise bei 3 liegt.
Im allgemeinen zeigt sich nach dem Zusammengeben der Reaktionspartner ein Temperaturanstieg. In gewissen Fällen kann es notwendig werden, zum Start der Reaktion von außen Wärme zuzuführen, beispielsweise durch Erwärmen des Ansatzes auf 40 - 50°C. Im allgemeinen wird darauf geachtet, daß die Reaktionstemperatur 55°C nicht überschreitet. Die Reaktionsdauer ist in der Regel relativ kurz, sie liegt üblich unter einer Stunde, beispielsweise bei 45 min.
Die Silanverbindungen können zu Polymeren kondensiert werden, die im allgemeinen ein Gewichtsmittel des Molekulargewichts Mw im Bereich von 100 bis 20000, bevorzugt 200 bis 10000 und besonders bevorzugt 500 bis 1500 g/Mol aufweisen. Diese Molmasse kann beispielsweise durch NMR-Spektroskopie bestimmt werden. Die Kondensationsreaktion kann beispielsweise durch Kühlen auf Temperaturen unter 0°C oder durch Erhöhen des pH-Wertes mit geeigneten Basen, beispielsweise Alkali- oder Erdalkalihydroxiden, abgebrochen werden.
Zur weiteren Bearbeitung kann ein Teil des Wasser-Alkoholgemisches und der flüchtigen Säuren aus der Reaktionsmischung abgetrennt werden, beispielsweise durch Destillation.
Anschließend kann mit geeigneten organischen Lösungsmitteln, wie z.B. Alkoholen, wie Ethanol, Methanol, Isopropanol, Butanol, Ethern, wie Diethylether, Dioxan, Ethern und Estern von Polyolen, wie z.B. Ethylenglykol, Propylenglykol sowie Ether und Estern dieser Verbindungen, Kohlenwasserstoffen, z.B. aromatischen Kohlenwasserstoffen, Ketonen, wie Aceton, Methylethylketon, der Feststoffgehalt auf ca. 15 - 35 Gew.-%, bezogen auf das Gesamtgewicht der Mischung, eingestellt werden. Besonders bevorzugt ist als Lösungsmittel Ethanol und/oder Propanol-2.
Es hat sich ferner als vorteilhaft erwiesen, den Beschichtungsmitteln solche Lösungsmittel zuzusetzen, die normalerweise den als Substrat der Beschichtung vorgesehenen Kunststoff anlösen. Im Falle von Polymethylmethacrylat (PMMA) als Substrat empfiehlt sich beispielsweise ein Zusatz von Lösungsmitteln, wie Toluol, Aceton, Tetrahydrofuran in Mengen, die 2 bis 20 Gew.-%, bezogen auf das Gesamtgewicht der Mittel, ausmachen. Der Wassergehalt wird im allgemeinen auf 5 - 20 Gew.-%, vorzugsweise auf 11 bis 15 Gew.-%, bezogen auf das Gesamtgewicht der Mittel, eingestellt. Zur Verbesserung der Lagerfähigkeit kann der pH-Wert der wasserhaltigen Siloxanlacke auf einen Bereich von 3 - 6 eingestellt werden, bevorzugt zwischen 4,5 und 5,5. Zu diesem Zweck können beispielsweise auch Additive, insbesondere Propionamid zugegeben werden, die in EP-A-0 073 911 beschrieben sind.
Die erfindungsgemäß einsetzbaren Siloxanlacke können Härtungskatalysatoren, beispielsweise in Form von Zinkverbindungen und/oder anderer Metallverbindungen, wie Kobalt-, Kupfer- oder Calciumverbindungen, insbesondere deren Octoate oder Naphthenate, enthalten. Der Anteil der Härtungskatalysatoren beträgt in der Regel 0,1 - 2,5 Gew.-%, speziell 0,2 - 2 Gew.-%, bezogen auf den gesamten Siloxanlack, ohne daß hierdurch eine Beschränkung erfolgen soll. Besonders genannt seien beispielsweise Zinknaphthenat, -octoat, -acetat, -sulfat usw.
Die zuvor beschriebenen Siloxanlacke können kommerziell unter dem Handelsnamen ®Acriplex 100 und ©Acriplex 180 SR von Röhm GmbH & Co. KG erhalten werden.
Die zuvor dargelegten Siloxanlacke können mit jeder bekannten Methode auf die Kunststoffsubstrate aufgebracht werden. Hierzu gehören unter anderem Tauchverfahren, Sprühverfahren, Rakeln, Flutbeschichtungen und Rollen- oder Walzenauftrag.
Die so aufgetragenen Siloxanlacke lassen sich im allgemeinen in relativ kurzer Zeit, beispielsweise innerhalb 2 bis 6 Stunden, in der Regel innerhalb ca. 3 bis 5 Stunden und bei vergleichsweise niedriger Temperatur, beispielsweise bei 70 - 110°C, vorzugsweise bei ca. 80°C zu hervorragend kratz- und haftfesten Beschichtungen aushärten.
Die Schichtdicke der Siloxan-Beschichtung (a) ist relativ unkritisch. Im allgemeinen liegt diese Größe nach der Härtung aber in einem Bereich von 1 bis 50 μm, bevorzugt 1 ,5 bis 30 μm und besonders bevorzugt 3 bis 15 μm, ohne daß hierdurch eine Beschränkung erfolgen soll. Die Schichtdicken der Beschichtungen (a) und/oder (b) kann durch eine Aufnahme eines Rasterelektronen-Mikroskops (REM) bestimmt werden.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung beträgt der polare Anteil der Oberflächenenergie nach dem Aushärten der ersten Siloxanschicht vorzugsweise höchstens 8 mN/m, besonders bevorzugt höchstens 6 mN/m.
Nach einer bevorzugten Ausführungsform der vorliegenden Erfindung beträgt der Anteil des Siliciums der Siloxan-Beschichtung (a) nach der Härtung mindestens 20 Gew.-%, bevorzugt mindestens 30 Gew.-%, bezogen auf das Gesamtgewicht der Beschichtung, ohne daß hierdurch eine Beschränkung erfolgen soll. Der Anteil des Kohlenstoffs beträgt bevorzugt höchstens 36 Gew.-%, insbesondere höchstens 25 Gew.-%, bezogen auf das Gesamtgewicht der Beschichtung. Diese Anteile können mittels einer Elementaranalyse nach J. Liebig oder durch Atomabsorptionsspektrokopie (AAS) bestimmt werden.
Nach dem Härten der ersten Siloxanbeschichtung wird die Oberfläche aktiviert, indem der polare Anteil der Oberflächenenergie der ausgehärteten Siloxanbeschichtung auf einen Wert von mindestens 10 mN/m erhöht wird. Besonders bevorzugt wird der polare Anteil der Oberflächenenergie auf mindestens 15 mN/m erhöht. Die Oberflächenenergie wird nach der Methode von Ownes-Wendt-Rabel & Kaelble bestimmt. Hierzu werden Messreihen mit der Standard-Serie nach Busscher durchgeführt, bei der als Testflüssigkeiten Wasser [SFT 72,1 mN/m], Formamid [SFT 56,9 mN/m, Dijodmethan [SFT 50,0 mN/m] und alpha-Bromnaphthalin [SFT 44,4 mN/m] eingesetzt werden. Die Messung wird bei 20°C durchgeführt. Die Oberflächenspannung und der polare und disperse Anteil dieser Testflüssigkeiten sind bekannt und werden zur Berechnung der Oberflächenenergie des Substrats eingesetzt.
Die Oberflächenenergie kann mit einem Kontaktwinkelmesssystem G40 der Fa. Krüss, Hamburg bestimmt werden, wobei die Durchführung im Benutzerhandbuch des Kontaktwinkelmesssystems G40, 1993 beschrieben ist. Hinsichtlich der Berechnungsmethoden sei auf A. W. Neumann, Über die Messmethodik zur Bestimmung grenzflächenenergetischer Größen, Teil I, Zeitschrift für Phys. Chem., Bd. 41, S. 339-352 (1964), und A. W. Neumann, Über die Messmethodik zur Bestimmung grenzflächenenergetischer Größen, Teil II, Zeitschrift für Phys. Chem., Bd. 43, S. 71-83 (1964) verwiesen.
Zur Aktivierung des Siloxangrundlacks sind verschiedene physikalische und chemische Verfahren geeignet. Hierzu gehören unter anderem eine Behandlung der Oberfläche mit chemischen Verfahren, insbesondere mit Laugen, Coronabehandlung, Beflammen, Plasma- oder Atmosphärenplasma-Behandlung. Hierbei sind chemische Verfahren und Coronabehandlung bevorzugt.
Die Aktivierung kann auf chemischem Wege erfolgen, wobei das mit dem Siloxangrundlack beschichtete Substrat einer Behandlung mit vorzugsweise flüssigen Reagenzien unterworfen wird. Hierbei werden bevorzugt nur die obersten Atomlagen des Siloxanlacks angeätzt. Gemäß einem besonderen Aspekt wird die Oberfläche mit einer alkalischen Lösung behandelt, deren pH-Wert mindestens 10, bevorzugt mindestens 12 beträgt.
Zum Beispiel kann das mit dem Siloxanlack beschichtete Substrat mit einer wäßrigen und/oder alkoholischen Lösung von Alkalimetallhydroxiden behandelt werden. Bevorzugte Alkohole sind Methanol, Ethanol, Propanol und/oder Butanol. Die Konzentration der Alkalimetallhydroxide liegt vorzugsweise im Bereich von 1 bis 20, insbesondere 2 bis 10 Gew.-%, bezogen auf das Gewicht der Ätzlösung. Alkalimetalle sind insbesondere Lithium, Natrium, Kalium, Rubidium und/oder Cäsium. Hiervon sind Natrium und/oder Kalium bevorzugt.
Die Einwirkzeit der alkalischen Lösung ist vom pH-Wert abhängig und kann daher in einem weiten Bereich liegen. Im allgemeinen genügen aber wenige Minuten. Besonders bevorzugt liegt die Einwirkzeit der alkalischen Lösung im Bereich von 30 Sekunden bis 60 Minuten, insbesondere 1 Minute bis 10 Minuten. Diese Oberflächenbehandlung kann beispielsweise durch Neutralwaschen oder Zugabe von Säuren abgebrochen werden.
Die alkalischen Lösungen können durch jede bekannte Methode auf die Siloxanbeschichtung aufgetragen werden. Diese Methoden wurden zuvor dargelegt.
Des weiteren kann der polare Anteil der Oberflächenenergie durch Coronabehandlung erhöht werden. Diese Methode ist beispielsweise in EP-A-1 180426 beschrieben. Die Behandlungsdauer richtet sich nach der eingesetzten Energie und liegt vorzugsweise in einem Bereich von 1 bis 20 Sekunden, insbesondere von 2 bis 5 Sekunden. Ein zur Coronabehandlung geeigneter Generator kann beispielsweise von der Fa. Softal Electronic GmbH, Hamburg bezogen werden, der im Hochfrequenzbereich bei 20 bis 30 kHz betrieben werden kann (Generator 3005).
Nach der Aktivierung der ersten Siloxanschicht, die keine photokatalytisch wirksame Anteile enthält, wird eine zweite, Tiθ2-Partikel enthaltende Schicht aufgetragen.
Der Lack zur Herstellung der zweiten Schicht kann im wesentlichen dem ersten Siloxanlack entsprechen, wobei jedoch photokatalytisch wirksame Tiθ2-Partikel eingebracht werden müssen.
Ein derartiger Lack kann beispielsweise hergestellt werden, indem man einen zuvor beschriebenen Siloxanlack mit einer wäßrigen und/oder alkoholischen T VPartikel enthaltenden Zusammensetzung mischt.
Besonders geeignet sind insbesondere Beschichtungsmittel, die kollodial gelöste Si02-Partikel enthalten. Diese Partikel weisen bevorzugt die gleiche Größe auf wie die nachfolgend beschriebenen Ti02-Partikel. Derartige Dispersionen können nach dem Sol-Gel-Verfahren hergestellt werden, wobei insbesondere Tetraalkoxysilane und/oder Tetrahalogensilane kondensiert werden.
Derartige T VPartikel enthaltenden Zusammensetzungen sind unter anderem aus EP-A-0 826 663, EP-A-0 850 203 und EP-1 022318 bekannt. Des weiteren können derartige Zusammensetzungen beispielsweise von Showa Denko Kabushiki Kaisha, Japan, unter dem Handelsnamen NTB 30A oder Toto Ltd., Japan kommerziell erhalten werden. Die Tiθ2-Partikel sind photokatalytisch aktiv. Dementsprechend liegt zumindest ein Teil der Tiθ2-Partikel in der Brookit und/oder Anatas- Modifikation vor. Die Partikelgröße ist unkritisch, wobei jedoch die Transparenz von der Partikelgröße abhängig ist. Bevorzugt weisen die Partikel höchstens eine Größe von 300 nm auf, wobei sie insbesondere in einem Bereich von 1 bis 200 nm, bevorzugt 1 bis 50 nm liegen.
Die zweite, Ti02-Partikel enthaltende Schicht kann mit den zuvor beschriebenen Methoden aufgebracht und ausgehärtet werden.
Gemäß einer besonderen Ausführungsform sind die T VPartikel in der zweiten Beschichtung in einer Menge im Bereich von 0,01 bis 90 Gew.-%, bevorzugt 0,1 bis 75 Gew.-%, bezogen auf das Gesamtgewicht der zweiten Beschichtung nach der Härtung, vorhanden.
Die Schichtdicke der Ti02-Partikel enthaltenden Siloxanbeschichtung b) ist ebenfalls unkritisch. Im allgemeinen liegt diese Größe nach der Härtung im Bereich von 0,05 bis 2 μm, bevorzugt 0,1 bis 1 μm.
Gemäß einer besonderen Ausführungsform des Kunststoffkörpers liegt die gesamte Schichtdicke der Beschichtungen (a) und (b) nach der Härtung in einem Bereich von 2 bis 30 μm, insbesondere von 3 bis 15 μm.
Die mit einer photokatalytischen Beschichtung versehenen Kunststoff körper der vorliegenden Erfindung zeigen eine hohe Scheuerfestigkeit. Bevorzugt ist die Scheuerfestigkeit gemäß DIN 53778 größer oder gleich 10000 Zyklen, insbesondere größer oder gleich 15 000 Zyklen und besonders bevorzugt größer oder gleich 20 000 Zyklen. Gemäß einem besonderen Aspekt der vorliegenden Erfindung ist der Kunststoff körper transparent, wobei die Transparenz Toβs/io gemäß DIN 5033 mindestens 70%, bevorzugt mindestens 75% beträgt.
Bevorzugt weist der Kunststoffkörper einen E-Modul nach ISO 527-2 von mindestens 1000 MPa, insbesondere mindestens 1500 MPa auf, ohne daß hierdurch eine Beschränkung erfolgen soll.
Die erfindungsgemäßen Kunststoffkörper sind im allgemeinen sehr beständig gegenüber Bewitterung. So ist die Bewitterungsbeständigkeit gemäß DIN 53387 (Xenotest) mindestens 5000 Stunden.
Auch nach einer langen UV-Bestrahlung von mehr als 5000 Stunden ist der Gelbindex gemäß DIN 6167 (D65/10) von bevorzugten Kunststoff körpern kleiner oder gleich 8, bevorzugt kleiner oder gleich 5, ohne daß hierdurch eine Beschränkung erfolgen soll.
Die Kunststoffkörper der vorliegenden Erfindung können beispielsweise im Baubereich, insbesondere zur Herstellung von Gewächshäusern oder Wintergärten, oder als Lärmschutzwand dienen.
Nachfolgend wird die Erfindung durch Beispiele und Vergleichsbeispiele eingehender erläutert, ohne daß die Erfindung auf diese Beispiele beschränkt werden soll. Beispiel 1
PMMA-Platten einer Dimension von 150*350*3 mmm wurden mit einem Kratzfestlack (©Acriplex 100 SR, Röhm GmbH & Co. KG) versehen, wobei die Schichtdicke des Lacks nach der Aushärtung 7,5 μm betrugt.
Nach der Aushärtung des Lacks betrug der polare Anteil der Oberflächenenergie 5,5 mN/m. Hiernach wurde die Oberfläche fünf Minuten mit einem 5% KOH Wasser/Ethanolgemisch (1 :3 Gewichtsteile) behandelt und anschließend neutral gewaschen. Die Oberflächenenergie wurde mit einem Kontaktwinkelmesssystem G40 der Fa. Krüss, Hamburg bestimmt, wobei als Testflüssigkeiten Wasser [SFT 72,1 mN/m], Formamid [SFT 56,9 mN/m, Dijodmethan [SFT 50,0 mN/m] und alpha- Bromnaphthalin [SFT 44,4 mN/m] eingesetzt wurden. Der polare Anteil der Oberflächenenergie betrug 15,3 mN/m.
Nach der Aktivierung wurde ein Ti02-Partikel und Si02-Partikel enthaltende kolloidale Lösung durch Flutbeschichtung aufgetragen (3:1 Mischung von NTB 30A (Ti02) mit NTB 30B (Si02) erhältlich von Showa- Denko). Der Verlauf des Lacks und die Haftung waren gut. Die so erhaltene Beschichtung wurde drei Stunden bei 80°C gehärtet.
Die Kratzfestigkeit der Beschichtung gemäß dem Nassscheuertest nach DIN 53778 wurde einem Nassscheuertestgerät der Fa. Gardner, Modell M 105/ A durchgeführt. Es wurde ein Wert von 20000 Zyklen bestimmt. Beispiel 2
Das Beispiel 1 wurde im wesentlichen wiederholt, wobei jedoch NaOH anstatt KOH eingesetzt wurde. Der polare Anteil der Oberflächenenergie betrug 12,8 mN/m.
Der Verlauf und die Haftung der zweiten Beschichtung war ebenfalls gut, wobei eine Kratzfestigkeit von 15000 Zyklen bestimmt wurde.
Beispiel 3
Das Beispiel 1 wurde im wesentlichen wiederholt, wobei jedoch die Aktivierung der ersten Beschichtung durch eine Coronabehandlung erfolgte. Hierbei wurde die Platte viermal mit 1 m/min durch eine Coronaanlage durchgeführt (Fa. Softal Electronic GmbH, Hamburg Hochfrequenzbereich bei 20 bis 30 kHz).
Der Verlauf und die Haftung der zweiten Beschichtung war ebenfalls gut, wobei eine Kratzfestigkeit von 12000 Zyklen bestimmt wurde.
Vergleichsbeispiel 1
Das Beispiel 1 wurde im wesentlichen wiederholt, wobei jedoch H3PO4 anstatt KOH eingesetzt wurde. Der polare Anteil der Oberflächenenergie betrug 6,5 mN/m.
Der Verlauf und die Haftung der zweiten Beschichtung war so schlecht, daß keine Kratzfestigkeit bestimmt werden konnte. Vergleichsbeispiel 2
Das Beispiel 1 wurde im wesentlichen wiederholt, wobei jedoch keine Aktivierung erfolgte. Der polare Anteil der Oberflächenenergie betrug 5,5 mN/m.
Der Verlauf und die Haftung der zweiten Beschichtung war so schlecht, daß keine Kratzfestigkeit bestimmt werden konnte.
Vergleichsbeispiel 3
Das Beispiel 1 wurde im wesentlichen wiederholt, wobei die erste Beschichtung jedoch unvollständig gehärtet wurde. Die Härtungszeiten betrug 0,5 bis 2,0 Stunden bei 80°C.
Der Verlauf der Beschichtungslösung auf der angehärteten Schicht war nicht zufriedenstellend und nach Aushärtung der zweiten Schicht erhielt man eine nicht mehr kratzfeste mechanisch instabile Beschichtung, die sich bereits durch Reiben mit einem Tuch beschädigen ließ. Die Kratzfestigkeit konnte nicht bestimmt werden.

Claims

Patentansprüche
1. Selbstreinigender Kunststoffkörper, dadurch erhältlich, daß man auf ein Kunststoffsubstrat a) eine Siloxan-Beschichtung (a) aufbringt und aushärtet, b) den polaren Anteil der Oberflächenenergie der ausgehärteten Siloxanbeschichtung auf einen Wert von mindestens 10 mN/m erhöht und c) eine photokatalytisch aktive Tiθ2-Partikel enthaltende Beschichtung (b) aufbringt und aushärtet.
2. Kunststoffkörper gemäß Anspruch 1 , dadurch gekennzeichnet, daß das Kunststoffsubstrat Cycloolefin-Copolymere, Polyethylenterephthalate, Polycarbonate und/oder Poly(meth)acrylate umfaßt.
3. Kunststoffkörper gemäß Anspruch 2, dadurch gekennzeichnet, daß das Kunststoffsubstrat aus Polymethylmethacrylat besteht.
4. Kunststoffkörper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Kunststoffsubstrat eine Schlagzähigkeit von mindestens 10 kJ/m2 gemäß ISO 179/1 aufweist.
5. Kunststoffkörper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Kunststoffsubstrat eine Dicke im Bereich von 1 mm bis 200 mm aufweist.
6. Kunststoff körper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Siloxan-Beschichtung durch Kondensation einer Zusammensetzung erhältlich ist, die mindestens 80 Gew.-% Alkyltrialkoxysilane, bezogen auf den Gehalt an kondensierbaren Silanen, umfaßt.
7. Kunststoffkörper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Siloxan-Beschichtung kondensierbare Polysiloxane umfaßt, die ein Molekulargewicht im Bereich von 500 bis 1500 g/Mol aufweisen.
8. Kunststoffkörper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Anteil des Siliciums der Siloxan-Beschichtung (a) mindestens 30 Gew.-%, bezogen auf das Gesamtgewicht der Beschichtung, beträgt.
9. Kunststoffkörper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man den polaren Anteil der Oberflächenenergie der Siloxan-Beschichtung (a) durch Härtung auf einen Wert kleiner oder gleich 6 mN/m erniedrigt, bevor man den polaren Anteil der Oberflächenenergie auf mindestens 10 mN/m erhöht.
10. Kunststoffkörper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man den polaren Anteil der Oberflächenenergie der Siloxan-Beschichtung (a) nach der Härtung durch eine Behandlung mit alkoholischer Kaliumhydroxid- Lösung erhöht.
11. Kunststoffkörper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die T VPartikel eine Größe im Bereich von 1 nm bis 300 nm aufweisen.
12. Kunststoffkörper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Ti02-Partikel in der zweiten Beschichtung (b) in einer Menge im Bereich von 0,01 bis 90 Gew.-%, bezogen auf das Gesamtgewicht der zweiten Beschichtung (b) nach der Härtung, vorhanden ist.
14. Kunststoffkörper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schichtdicke der Siloxan-Beschichtung (a) nach der Härtung im Bereich von 1 ,5 bis 30 μm liegt.
15. Kunststoffkörper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schichtdicke der Beschichtung (b) nach der Härtung im Bereich von 0,01 bis 2 μm liegt.
16. Kunststoff körper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schichtdicke der Beschichtungen (a) und (b) nach der Härtung im Bereich von 3 bis 15 μm liegt.
17. Kunststoff körper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Scheuerfestigkeit des Kunststoffkörpers gemäß DIN 53778 mindestens 15000 beträgt.
18. Kunststoffkörper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Kunststoff körper einen E-Modul nach ISO 527-2 von mindestens 1500 MPa aufweist.
19. Kunststoffkörper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Kunststoffkörper eine Bewitterungsbeständigkeit gemäß DIN 53387 von mindestens 5000 Stunden aufweist.
20. Kunststoff körper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Kunststoffkörper eine Transparenz gemäß DIN 5033 von mindestens 70% aufweist.
21. Kunststoff körper gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Kunststoffkörper einen Gelbindex kleiner oder gleich 5 nach 5000 Stunden UV-Bestrahlung aufweist.
22. Verfahren zur Herstellung von selbstreinigenden Kunststoffkörpern gemäß einem oder mehreren der Ansprüche 1 bis 21 , dadurch gekennzeichnet, daß man auf ein Kunststoffsubstrat a) eine Siloxan-Beschichtung (a) aufbringt und aushärtet, b) den polaren Anteil der Oberflächenenergie der ausgehärteten Siloxan-Beschichtung auf einen Wert von mindestens 10 mN/m erhöht und c) eine photokatalytisch aktive Ti02-Partikel enthaltende Beschichtung (b) aufbringt und aushärtet.
PCT/EP2003/005278 2002-06-04 2003-05-20 Selbstreinigender kunststoffkörper und verfahren zu dessen herstellung WO2003102056A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020047019608A KR100976713B1 (ko) 2002-06-04 2003-05-20 자정 합성체 및 이의 제조방법
AU2003227756A AU2003227756A1 (en) 2002-06-04 2003-05-20 Self-cleaning synthetic body and method for producing the same
DE50302527T DE50302527D1 (de) 2002-06-04 2003-05-20 Selbstreinigender kunststoffkörper und verfahren zu dessen herstellung
CA2481802A CA2481802C (en) 2002-06-04 2003-05-20 Self-cleaning plastics article and process for its production
JP2004510307A JP2005533135A (ja) 2002-06-04 2003-05-20 セルフクリーニングプラスチック品及びその製法
US10/508,844 US7235305B2 (en) 2002-06-04 2003-05-20 Self-cleaning synthetic body and method for producing the same
EP20030725196 EP1509565B1 (de) 2002-06-04 2003-05-20 Selbstreinigender kunststoffkörper und verfahren zu dessen herstellung
HK05110351A HK1078600A1 (en) 2002-06-04 2005-11-18 Self-cleaning synthetic body and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002124895 DE10224895A1 (de) 2002-06-04 2002-06-04 Selbstreinigender Kunststoffkörper und Verfahren zu dessen Herstellung
DE10224895.8 2002-06-04

Publications (1)

Publication Number Publication Date
WO2003102056A1 true WO2003102056A1 (de) 2003-12-11

Family

ID=29557543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/005278 WO2003102056A1 (de) 2002-06-04 2003-05-20 Selbstreinigender kunststoffkörper und verfahren zu dessen herstellung

Country Status (12)

Country Link
US (1) US7235305B2 (de)
EP (1) EP1509565B1 (de)
JP (1) JP2005533135A (de)
CN (1) CN1322037C (de)
AT (1) ATE318856T1 (de)
AU (1) AU2003227756A1 (de)
CA (1) CA2481802C (de)
DE (2) DE10224895A1 (de)
DK (1) DK1509565T3 (de)
ES (1) ES2256741T3 (de)
HK (1) HK1078600A1 (de)
WO (1) WO2003102056A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002768A1 (de) * 2004-07-02 2006-01-12 Rehau Ag+Co Multilagenschichtaufbau für polymere
JP2006035518A (ja) * 2004-07-23 2006-02-09 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂積層体およびその製造法
JP2006035519A (ja) * 2004-07-23 2006-02-09 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂積層体及びその製造方法
US20100204037A1 (en) * 2006-08-17 2010-08-12 Rudolf Gensler Self-cleaning surface coating (photocatalysis)
WO2011113692A1 (de) 2010-03-19 2011-09-22 Evonik Röhm Gmbh Beschichtetes flächiges kunststoffmaterial mit reduzierter neigung zur veralgung, verfahren zu dessen in linie herstellung sowie verwendung
CN111138893A (zh) * 2020-01-19 2020-05-12 广州市建桥音响配件有限公司 一种自清洁喇叭涂料

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10129374A1 (de) * 2001-06-20 2003-01-02 Roehm Gmbh Verfahren zur Herstellung von Formkörpern mit elektrisch-leitfähiger Beschichtung und Formkörper mit entsprechender Beschichtung
DE10141314A1 (de) * 2001-08-09 2003-02-27 Roehm Gmbh Kunststoffkörper mit niedriger Wärmeleitfähigkeit, hoher Lichttransmission und Absorption im nahen Infrarotbereich
DE10212458A1 (de) * 2002-03-20 2003-10-02 Roehm Gmbh Hagelbeständiges Verbund-Acrylglas und Verfahren zu seiner Herstellung
DE10224895A1 (de) 2002-06-04 2003-12-18 Roehm Gmbh Selbstreinigender Kunststoffkörper und Verfahren zu dessen Herstellung
DE10243062A1 (de) * 2002-09-16 2004-03-25 Röhm GmbH & Co. KG Heißwasserwechseltestbeständiges Sanitärmaterial aus PMMA-Formmasse oder schlagzäher PMMA-Formmasse
DE10259240A1 (de) * 2002-12-17 2004-07-08 Röhm GmbH & Co. KG Umformbare wasserspreitende Kunststoffkörper und Verfahren zu dessen Herstellung
DE10259238A1 (de) * 2002-12-17 2004-07-01 Röhm GmbH & Co. KG Wasserspreitende Kunststoffkörper und Verfahren zu dessen Herstellung
DE10260067A1 (de) * 2002-12-19 2004-07-01 Röhm GmbH & Co. KG Beschichtungsmittel zur Herstellung von umformbaren Kratzfestbeschichtungen mit schmutzabweisender Wirkung, kratzfeste umformbare schmutzabweisende Formkörper sowie Verfahrn zu deren Herstellung
DE10311639A1 (de) * 2003-03-14 2004-09-23 Röhm GmbH & Co. KG Antistatisch beschichteter Formkörper und Verfahren zu seiner Herstellung
US8906460B2 (en) * 2004-01-30 2014-12-09 Cristal Usa Inc. Composition for use as NOx removing translucent coating
US7922950B2 (en) * 2006-03-14 2011-04-12 3M Innovative Properties Company Monolithic building element with photocatalytic material
WO2009027536A1 (de) 2007-08-31 2009-03-05 Profine Gmbh Kunststoffprofil mit photokatalytisch wirksamer oberfläche
CN101430077B (zh) * 2007-11-06 2011-11-09 富士迈半导体精密工业(上海)有限公司 灯具
ITUB20150293A1 (it) * 2015-05-06 2016-11-06 Delta Srl Materiale composito autopulente per la produzione di articoli stampati per l'arredo cucina e bagno.
WO2017160242A1 (en) * 2016-03-14 2017-09-21 Chulalongkorn University Titanium dioxide catalyst supported on polymer film or membrane substrate and preparation method thereof
CN208327890U (zh) 2018-01-10 2019-01-04 3M创新有限公司 一种易清洁保护膜、一种基板组件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816466A1 (de) * 1995-03-20 1998-01-07 Toto Ltd. Photokatalytisches verfahren zum ultrahydrophil-machen der oberfläche eines basismaterials, basismaterial mit ultrahydrophiler und photokatalytischer oberfläche und verfahren zu dessen herstellung
EP1022318A2 (de) * 1999-01-19 2000-07-26 JSR Corporation Verfahren zur Herstellung von Photokatalysatoren-enthaltenden Beschichtungen und Photokatalysatoren-enthaltende Beschichtungsfilme
US20020023800A1 (en) * 2000-06-07 2002-02-28 Show A Denko K.K Transparent noise-barrier wall

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19501182C2 (de) * 1995-01-17 2000-02-03 Agomer Gmbh Copolymere zur Herstellung von Gußglas, Verfahren zur Herstellung wärmeformstabiler Gußglaskörper und Verwendung
CN1209153A (zh) * 1995-12-22 1999-02-24 东陶机器株式会社 使表面亲水性的光催化方法以及具有光催化亲水性表面的复合材料
WO2001095309A1 (fr) * 2000-06-07 2001-12-13 Showa Denko K.K. Barriere transparente auto-nettoyante de protection contre le bruit, et son procede de fabrication
GB0015622D0 (en) * 2000-06-26 2000-08-16 Dupont Teijin Films U S Limite Polymeric film
DE10129374A1 (de) * 2001-06-20 2003-01-02 Roehm Gmbh Verfahren zur Herstellung von Formkörpern mit elektrisch-leitfähiger Beschichtung und Formkörper mit entsprechender Beschichtung
US6743520B2 (en) * 2001-06-26 2004-06-01 Dupont Teijin Films Us Ltd. Partnership Polymeric film
DE10141314A1 (de) * 2001-08-09 2003-02-27 Roehm Gmbh Kunststoffkörper mit niedriger Wärmeleitfähigkeit, hoher Lichttransmission und Absorption im nahen Infrarotbereich
DE10212458A1 (de) * 2002-03-20 2003-10-02 Roehm Gmbh Hagelbeständiges Verbund-Acrylglas und Verfahren zu seiner Herstellung
DE10224895A1 (de) 2002-06-04 2003-12-18 Roehm Gmbh Selbstreinigender Kunststoffkörper und Verfahren zu dessen Herstellung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816466A1 (de) * 1995-03-20 1998-01-07 Toto Ltd. Photokatalytisches verfahren zum ultrahydrophil-machen der oberfläche eines basismaterials, basismaterial mit ultrahydrophiler und photokatalytischer oberfläche und verfahren zu dessen herstellung
EP1022318A2 (de) * 1999-01-19 2000-07-26 JSR Corporation Verfahren zur Herstellung von Photokatalysatoren-enthaltenden Beschichtungen und Photokatalysatoren-enthaltende Beschichtungsfilme
US20020023800A1 (en) * 2000-06-07 2002-02-28 Show A Denko K.K Transparent noise-barrier wall

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002768A1 (de) * 2004-07-02 2006-01-12 Rehau Ag+Co Multilagenschichtaufbau für polymere
US7862899B2 (en) 2004-07-02 2011-01-04 Rehau Ag & Co. Multilayer structure for polymers
JP2006035518A (ja) * 2004-07-23 2006-02-09 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂積層体およびその製造法
JP2006035519A (ja) * 2004-07-23 2006-02-09 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂積層体及びその製造方法
US20100204037A1 (en) * 2006-08-17 2010-08-12 Rudolf Gensler Self-cleaning surface coating (photocatalysis)
US8367579B2 (en) * 2006-08-17 2013-02-05 Siemens Aktiengesellschaft Self-cleaning surface coating (photocatalysis)
WO2011113692A1 (de) 2010-03-19 2011-09-22 Evonik Röhm Gmbh Beschichtetes flächiges kunststoffmaterial mit reduzierter neigung zur veralgung, verfahren zu dessen in linie herstellung sowie verwendung
CN111138893A (zh) * 2020-01-19 2020-05-12 广州市建桥音响配件有限公司 一种自清洁喇叭涂料

Also Published As

Publication number Publication date
AU2003227756A1 (en) 2003-12-19
CN1322037C (zh) 2007-06-20
JP2005533135A (ja) 2005-11-04
CN1643044A (zh) 2005-07-20
DE50302527D1 (de) 2006-04-27
EP1509565B1 (de) 2006-03-01
US20050118434A1 (en) 2005-06-02
CA2481802A1 (en) 2003-12-11
EP1509565A1 (de) 2005-03-02
ES2256741T3 (es) 2006-07-16
HK1078600A1 (en) 2006-03-17
ATE318856T1 (de) 2006-03-15
CA2481802C (en) 2011-09-20
DE10224895A1 (de) 2003-12-18
DK1509565T3 (da) 2006-07-10
US7235305B2 (en) 2007-06-26

Similar Documents

Publication Publication Date Title
EP1509565B1 (de) Selbstreinigender kunststoffkörper und verfahren zu dessen herstellung
WO2004056929A1 (de) Beschichtungsmittel zur herstellung von umformbaren kratzfestbeschichtungen mit schmutzabweisender wirkung, kratzfeste umformbare schmutzabweisende formkörper sowie verfahren zu deren herstellung
DE102010030074A1 (de) Kunststoff-Photovoltaik-Modul und Verfahren zu seiner Herstellung
WO2006089580A1 (de) Beschichtungsmittel zur herstellung von umformbaren kratzfestbeschichtungen mit schmutzabweisender wirkung, kratzfeste umformbare schmutzabweisende formkörper sowie verfahren zu deren herstellung
ZA200509151B (en) Coating agents and plastic body with an antigraffiti effect and method for the production thereof
EP1572787B1 (de) Wasserspreitende kunststoffkörper und verfahren zu dessen herstellung
WO2004069904A1 (de) Wasserspreitender, kratzfester und selbstreinigender kunststoffkörper und verfahren zu dessen herstellung
EP1572827A1 (de) Umformbare wasserspreitende kunststoffkörper und verfahren zu dessen herstellung
EP1572826B1 (de) Verfahren zur herstellung von wasserspreitenden kunststoffkoerpern
WO2006045400A1 (de) Beschichteter kunststoffformkörper
KR100976713B1 (ko) 자정 합성체 및 이의 제조방법
DE102004062773A1 (de) Beschichtungsmittel zur Herstellung von umformbaren Kratzfestbeschichtungen mit schmutzabweisender Wirkung, kratzfeste umformbare schmutzabweisende Formkörper sowie Verfahren zu deren Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003725196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038065835

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10508844

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2481802

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004510307

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047019608

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020047019608

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003725196

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003725196

Country of ref document: EP