WO2003098239A1 - Electromagnetic irradiation distribution measurement device - Google Patents

Electromagnetic irradiation distribution measurement device Download PDF

Info

Publication number
WO2003098239A1
WO2003098239A1 PCT/JP2003/005849 JP0305849W WO03098239A1 WO 2003098239 A1 WO2003098239 A1 WO 2003098239A1 JP 0305849 W JP0305849 W JP 0305849W WO 03098239 A1 WO03098239 A1 WO 03098239A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic field
electromagnetic
level
detection
radiation distribution
Prior art date
Application number
PCT/JP2003/005849
Other languages
French (fr)
Japanese (ja)
Inventor
Yutaka Saito
Yoshio Koyanagi
Koichi Ogawa
Shoichi Kajiwara
Akihiro Ozaki
Yoshitaka Asayama
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU2003235923A priority Critical patent/AU2003235923A1/en
Publication of WO2003098239A1 publication Critical patent/WO2003098239A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning

Definitions

  • the present invention relates to an apparatus for measuring electromagnetic radiation characteristics, and more particularly to an electromagnetic radiation distribution measuring apparatus for measuring a near electromagnetic field distribution radiated from a wireless communication device such as a mobile phone.
  • a wireless communication device such as a mobile phone
  • EMC measures it is important for the design of the device and EMC measures to know the nearby electromagnetic field distribution that indicates the intensity of the electromagnetic wave emitted from which part of the device. .
  • a device for measuring a near electromagnetic field distribution for example, a device disclosed in Japanese Patent Application Laid-Open No. Sho 62-237363 is known.
  • This apparatus is a sequential selection type measuring apparatus in which about 100 micro loop elements are arranged in a grid in a plane, and the detected signals are sequentially selected by a switching diode.
  • Japanese Patent Application Laid-Open No. 9-304456 discloses a configuration in which a plurality of antenna elements arranged in a row and a frequency selection level detection circuit are connected to each other, and the detected signals are stored simultaneously.
  • a parallel detection type measuring device for processing is disclosed. According to this, it is possible to measure the planar distribution of the near electromagnetic field by moving a plurality of antenna elements in a predetermined direction.
  • the conventional sequential-selection-type measuring device described above sequentially selects and measures about 100,000 micro loop elements, so that it takes a lot of time to complete all the measurements. There was a problem.
  • the detection sensitivity decreases and the isolation between adjacent small loop elements deteriorates, especially in a high frequency band, for example, the 2 GHz band. There was a point.
  • the conventional parallel detection type measuring device detection signals from a plurality of antenna elements are used.
  • the advantage is that the measurement time is short because the processing is performed in parallel, but no consideration has been given to the measurement of DUTs with small and complex shapes such as mobile phones.
  • the antenna element and the level detection unit and between the wireless communication device and the frequency selection level Electromagnetic shielding between the detector and the circuit was not sufficiently considered.
  • the above two conventional measuring devices set a level detection frequency necessary for measuring an electromagnetic field near the transmission frequency when a wireless communication device such as a mobile phone performs a transmitting operation, No consideration was given to measurement during intermittent transmission. Furthermore, no measures have been taken to improve the measurement accuracy by correcting the variation in detection sensitivity of each minute loop element or antenna element and the variation in circuit characteristics in the level detection unit or the frequency selection level detection circuit.
  • these conventional measuring devices are premised on measuring near-field electromagnetic fields having a relatively low frequency of 1 GHz or less leaking from a flat device under test such as an electronic circuit board. In the measurement of near-field electromagnetic fields at high frequencies such as the 2 GHz band, the isolation between small loop elements and antenna elements was not sufficient.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to measure a nearby electromagnetic field distribution radiated from a small wireless communication device such as a mobile phone with high speed and high accuracy.
  • An object of the present invention is to provide an electromagnetic radiation distribution measuring device.
  • An electromagnetic radiation distribution measuring device is an electromagnetic radiation distribution measuring device that measures a near electromagnetic field distribution radiated from a wireless communication device, and is arranged in a row to reduce an electromagnetic field radiated from the wireless communication device.
  • a plurality of electromagnetic field detecting means for outputting a corresponding electric signal; and a level detecting means for detecting a level of an electric signal obtained by each of the plurality of electromagnetic field detecting means, which is connected correspondingly to each of the plurality of electromagnetic field detecting means.
  • An electromagnetic shielding unit disposed between the electromagnetic field detection unit and the wireless communication device and the level detection unit; and a relative position on a measurement surface between the electromagnetic field detection unit and the wireless communication device.
  • the plurality of electromagnetic field detecting means has a printed circuit board on which a plurality of loop elements formed by forming conductors in a loop shape are arranged in a row, and the printed circuit board has one-to-one correspondence with the plurality of loop elements. And a plurality of ground patterns each connected to one end of the loop element.
  • the electromagnetic shielding means is configured by an electromagnetic wave absorber provided on one surface of a holding substrate that holds the plurality of electromagnetic field detecting means.
  • an electromagnetic shielding means is provided between the adjacent loop elements.
  • the apparatus further includes a local oscillation unit that generates a local oscillation signal, wherein the level detection unit detects an electromagnetic field level at a specific frequency by mixing the electric signal obtained by the electromagnetic field detection unit with the local oscillation signal. It is characterized by doing.
  • the wireless communication apparatus further includes control means for controlling a measurement operation in accordance with a transmission operation of the wireless communication apparatus, wherein the arithmetic processing means performs an intermittent transmission operation of the wireless communication apparatus based on control of the control means.
  • the electromagnetic field level detected by the level detection means is stored in synchronization with the transmission timing.
  • the near-field radiated from the wireless device that is performing intermittent transmission can be obtained.
  • the near electromagnetic field distribution can be measured with high accuracy.
  • the arithmetic processing means integrates or averages the electromagnetic field level detected by the level detection means during a detection period corresponding to a predetermined number of intermittent transmission operations of the wireless communication device, and stores the integrated electromagnetic field level. It is characterized by the following.
  • a plurality of measurement systems including the plurality of electromagnetic field detection units and the level detection unit; and a correction data obtaining unit for obtaining the detection sensitivity of each of the measurement systems and obtaining correction data.
  • a correction means for correcting an electromagnetic field level as a detection result of the means by the correction data.
  • the correction data based on the characteristics of the individual measurement systems is obtained in advance, and the detected electromagnetic field level is corrected using the correction data, so that the measurement accuracy of the near electromagnetic field distribution radiated from the wireless communication device is measured. Can be improved.
  • the correction data obtaining means includes: a reference signal generating means for generating a reference signal having a variable frequency; and a reference electromagnetic field based on the reference signal, which is arranged corresponding to each of the plurality of electromagnetic field detecting means.
  • the arithmetic processing means stores detection levels of the plurality of measurement systems and the reference electromagnetic field in each of the plurality of measurement systems in association with a frequency.
  • the frequency characteristic of each measurement system is obtained, and the electromagnetic field level detected by the correction data based on the frequency characteristic is corrected, so that the near electromagnetic field is adjusted in accordance with the transmission frequency radiated from the wireless communication device. It is possible to improve the distribution measurement accuracy.
  • FIG. 1 is an explanatory diagram showing a configuration of an electromagnetic radiation distribution measuring device according to a first embodiment of the present invention, (a) is a front view, (b) is a side view,
  • FIG. 2 is a configuration diagram of an electromagnetic wave absorber that electromagnetically shields loop elements that can be arranged in the electromagnetic radiation distribution measuring device of the present embodiment
  • FIG. 3 is a side view showing the configuration of the electromagnetic radiation distribution measuring device according to the second embodiment of the present invention.
  • FIG. 4 is an evening timing chart showing a measurement operation associated with intermittent transmission of a mobile phone in the second embodiment.
  • FIG. 5 is an explanatory diagram showing a configuration of an electromagnetic radiation distribution measuring device according to a third embodiment of the present invention, wherein (a) is a front view, (b) is a side view,
  • FIG. 6 is an explanatory diagram showing detection level frequency characteristic data obtained in the third embodiment.
  • la to ln are loop elements
  • 2 is a printed circuit board
  • 3 a to 3 n is a ground pattern
  • 5 is a holding board
  • 6, 40 a to 40 n are electromagnetic wave absorbing sheets
  • 8a to 8n is a mixer
  • 9a to 9n is a bandpass filter
  • 10a to: L0n is a logarithmic detector
  • 11a to 11n is a DC voltage signal
  • 1 2 a to l 2 n are local oscillation signals
  • 13 is a distributor
  • 14 is a local oscillator
  • 15 is an AD converter
  • 16 is an arithmetic processing unit
  • 17 is a mobile phone
  • 18 is a movable base
  • 28 a to 28 n is a strip line
  • 29 is a ground pattern
  • 30 a to 30 n is a termination resistor
  • 31 is a reference signal source
  • 32 is
  • FIG. 1 is an explanatory view showing a configuration of an electromagnetic radiation distribution measuring device according to a first embodiment of the present invention, where FIG. 1 (a) is a front view and FIG. 1 (b) is a side view.
  • the electromagnetic radiation distribution measuring device consists of n loop elements 1 a to 1 n, coaxial cables 4 a to 4 n, level detectors 7 a to 7 n, holding board 5, distributor 13 and local It comprises an oscillator 14, an AD converter 15 and an arithmetic processing unit 16. Then, a near electromagnetic field distribution radiated from the mobile phone 17 mounted on the movable base 18 arranged above the loop elements 1a to 1n is measured.
  • the number n of the measurement systems including the loop elements 1 a to 1 n and the level detection units 7 a to 7 n is, for example, 9 or the like, and generally around 10 is selected.
  • the loop elements 1a to 1n corresponding to the electromagnetic field detecting means are formed by shaping a copper wire having a diameter of, for example, 0.5 mm into a U-shape having a side of 3 mm. Then, they are mounted in one row so that each loop surface is parallel and perpendicular to the printed circuit board 2.
  • the interval between the loop elements 1a to In is set to, for example, 5 mm.
  • each of the loop elements 1 a to 1 n is connected to a corresponding one of the ground patterns 3 a to 3 n which are printed and wired independently on the printed circuit board 2, and the other end is a coaxial line constituting a transmission line.
  • Each of the cables 4a to 4n is connected to the center conductor.
  • the outer conductors of the coaxial cables 4a to 4n are connected to the ground patterns 3a to 3n, respectively.
  • the coaxial cables 4a to 4n penetrate the holding substrate 5 and are fixed by fixing means such as bonding, so that the printed circuit board 2 on which the loop elements 1a to 1n are mounted is coaxial cable 3a to It is held by the holding substrate 5 via 3 n.
  • the holding substrate 5 is formed of a non-magnetic member, for example, a resin plate of 5 mm thick acrylic or the like so as not to affect the nearby electromagnetic field radiated from the mobile phone 17.
  • a non-magnetic member for example, a resin plate of 5 mm thick acrylic or the like so as not to affect the nearby electromagnetic field radiated from the mobile phone 17.
  • an electromagnetic wave absorbing sheet 6 for absorbing and attenuating electromagnetic waves which is equivalent to an electromagnetic shielding means made of, for example, a ferrite-based / alloy-based magnetic material, is attached. Electromagnetic shielding between 1 a to ln and the level detectors 7 a to 7 n is achieved.
  • the level detection units 7a to 7n corresponding to the level detection means include mixers 8a to 8n, band-pass filters 9a to 9n, and logarithmic detectors 10a to 10n. Detects the level of a specific frequency component of the electromagnetic field by the loop elements 1a to 1n input through the coaxial cables 4a to 4n, converts the level into a DC voltage signal 1la to 1In, and outputs the signal.
  • the mixers 8a to 8n mix the electromagnetic field signal of a specific frequency detected by the minute loop element with the local oscillation signals 12a to l2n and convert it to an intermediate frequency signal having a frequency corresponding to the difference between the two signals. I do. For example, when the transmission frequency of the mobile phone 17 is 2000 MHz, by setting the frequency of the local oscillation signals 12a to 12n to 220 MHZ, n intermediate frequency signals having a frequency of 200 MHz can be obtained.
  • the bandpass filters 9a to 9n are, for example, S AW filters and ceramic filters. And the like, and passes the intermediate frequency signal with a predetermined bandwidth.
  • the logarithmic detectors 10a to 10n are generally composed of logarithmic output type multistage amplifiers, and have a DC voltage signal 11a to 11n that has a linear level with respect to the decibel value of the intermediate frequency signal. Is output.
  • the distributor 13 outputs the local oscillation signals input from the local oscillator (local oscillation means) 14 as local oscillation signals 12 a to l 2 n of the same level, and distributes them to the mixers 8 a to 8 n It is.
  • the local oscillator 14 is a circuit that generates a local oscillation signal ′ necessary for generating n intermediate frequency signals in the mixers 8 a to 8 n, and the oscillation frequency is the frequency of the electromagnetic field to be measured. Therefore, it is set higher by the frequency of the intermediate frequency signal.
  • the AD converter 15 is controlled by the arithmetic processing unit 16 and converts the n-system DC voltage signals 1 la to l 1 n, which are analog signals, into digital data in parallel.
  • the arithmetic processing unit 16 corresponding to the arithmetic processing means inputs and stores the digital data of the electromagnetic field signal level, performs arithmetic processing on the input digital data, and outputs the measurement results to an external monitor or printer. Output to an output device such as evening.
  • a movable base 18 for supporting a mobile phone 17, which is an object to be measured, supported by four wheels 19 is installed on the upper part of the holding substrate 5, as a moving means.
  • the movable table 18 is made of a non-magnetic material, for example, acrylic resin, so as not to affect a nearby electromagnetic field radiated from the mobile phone 17, and is mounted on the holding substrate 5 via wheels 19. You can move in the X direction in the figure.
  • the operation of the electromagnetic radiation distribution measuring device of the present embodiment configured as described above will be described.
  • a case is described in which an electromagnetic field of a specific frequency radiated from the mobile phone 17 as the device under test is measured.
  • the local oscillator 1 The operation described below is repeated while controlling and setting the oscillation frequency of 4, for example, by the arithmetic processing unit 16.
  • the loop elements l a to l n operate as a loop antenna that generates an induced voltage mainly due to the magnetic field in the Y direction among the near electromagnetic fields radiated from the mobile phone 17 mounted on the movable base 18.
  • the detected magnetic field signal is input to the level detectors 7a to 7n via the coaxial cables 4a to 4n, and the detection level of the magnetic field component at each position of the loop elements 1a to 1n Are output.
  • the DC voltage signals 11 a to 1 In are converted into digital data in the AD converter 15 and stored in the arithmetic processing unit 16.
  • the obtained digital data is a nearby electromagnetic field distribution in the Y direction of the mobile phone 17 in a state where the movable base 18 is fixed at the predetermined position X1 in the X direction.
  • the resolution of the electromagnetic field detection is determined by the arrangement interval of the loop elements 1a to ln, and is, for example, 5 mm.
  • the movable table 18 is moved in the X direction by a predetermined distance, for example, 5 mm. Then, digital data indicating the detection level of the magnetic field component at the position of X2 of the mobile phone 17 is acquired in the same procedure as described above, and stored in the arithmetic processing unit 16.
  • a distribution diagram of a nearby electromagnetic field composed of m ⁇ n points arranged two-dimensionally is obtained. For example, a measurement system including nine loop elements and a level detector is provided, and the near field is measured at nine locations while moving the movable table 18. Is obtained.
  • a plurality of loop elements 1 a to 1 n arranged in a line at a predetermined interval detect a nearby electromagnetic field level at each point in the Y direction, and convert this to digital data. Then, the data is stored in parallel in the arithmetic processing unit 16 and this operation is repeated m times. This makes it possible to measure the near-field distribution radiated from the mobile phone 17 at high speed.
  • the electromagnetic wave absorbing sheet 6 is attached to the lower surface of the holding substrate 5, so that the electromagnetic wave radiated from the mobile phone 17 due to the electromagnetic shielding effect of the electromagnetic wave absorbing sheet 6 is reduced. Effective shielding can be achieved, and leakage of electromagnetic waves to the level detectors 7a to 7n can be prevented. As a result, the S / N in the measurement of the near electromagnetic radiation distribution is improved, and the measurement accuracy can be increased.
  • the printed circuit board 2 is provided with ground patterns 3a to 3n independently for each of the loop elements 1a to 1n, and the other ends of the loop elements 1a to 1n and the coaxial cable 4a.
  • ⁇ 4n external conductors are connected to the ground patterns 3a ⁇ 3n correspondingly, so isolation by electromagnetic coupling of each loop element and signal line (Electromagnetic shielding) can be prevented from deteriorating, and measurement accuracy can be improved.
  • an electromagnetic Electromagnetic wave absorbing sheets 40a to 40n may be provided as shielding means.
  • Each of the electromagnetic wave absorbing sheets 40a to 40n has a layered structure, and the metal plate 42 is formed by two magnetic thin films 41 having a thickness of about 0.5 mm that absorb and attenuate electromagnetic waves. It is sandwiched between them.
  • the electromagnetic wave absorbing sheets 40a to 40n are arranged between two adjacent loop elements. As a result, the electromagnetic coupling between adjacent loop elements can be weakened, so that the isolation can be increased and the positional resolution when measuring the near electromagnetic field distribution can be improved.
  • the electromagnetic shielding means interposed between the loop elements 1a to ln may be a fixed electromagnetic wave absorber such as a magnetic body or a conductor plate such as a metal plate. The effect is obtained. For this reason, the electromagnetic wave absorbing sheet 40 a to 40 n between the loop elements 1 a to 1 n and the electromagnetic wave absorption provided on the lower surface of the holding substrate 5 are provided within a range that does not affect the nearby electromagnetic field radiated by the mobile phone 17.
  • the sheet 6 and the like can be formed at low cost using only the electromagnetic wave absorber or only the conductor plate.
  • the configuration and dimensions of the loop elements 1a to 1n are not limited to those of the present embodiment.
  • a shielded loop antenna may be used, and the dimensions are large enough to secure a desired detection sensitivity at a measurement frequency. That's fine.
  • the loop element shown in the present embodiment mainly detects a magnetic field component.
  • a micro dipole element or a micro monopole element it is possible to mainly measure an electric field component.
  • the mobile phone 18 is manually moved, and the mobile phone 17 placed on the mobile board 18 is two-dimensionally scanned to measure the electromagnetic radiation distribution.
  • a driving means such as a stepping motor may be used as the moving means 8 and the movable table 18 may be driven by operating under the control of the arithmetic processing unit 16.
  • the measurement operation can be automated, and the near-field distribution radiated from the mobile phone 17 can be measured at higher speed.
  • FIG. 3 is a side view showing the configuration of the electromagnetic radiation distribution measuring device according to the second embodiment of the present invention.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • intermittent transmission is performed to cut the transmission radio wave when there is no transmission voice in order to extend the talkable time by minimizing battery consumption. Therefore, when measuring the near electromagnetic field radiated from the mobile phone, it is desirable that the intermittent transmission state be set according to the actual use.
  • the present embodiment shows a configuration of an electromagnetic radiation distribution measuring device that measures a near electromagnetic field in a mobile phone in an intermittent transmission state.
  • the electromagnetic radiation distribution measuring device includes a control unit 22 that controls a measuring operation.
  • the connector 20 is a connection terminal for inputting a control signal for externally controlling the operation of the mobile phone 17.
  • the control unit 22 generates a control signal 23 consisting of a pulse train output at a predetermined cycle (four times in the figure) intermittent transmission timing at a predetermined cycle as shown in FIG. 4 (a). Then, the control signal 23 is output to the mobile phone 17 via the cable 21 connected to the connector 20, and is similarly output to the arithmetic processing unit 16 via the cable 24.
  • the mobile phone 17 performs the transmission operation during the high voltage level period (H period) of the control signal 23 shown in FIG. As a result, the transmission power 24 of the mobile phone 17 becomes high in synchronization with the H period as shown in FIG. 4 (b). '
  • the loop elements l a to l n detect the level of the near electromagnetic field radiated with the transmission of the mobile phone 17, and output DC voltage signals 1 l a to l 1 n in the level detectors 7 a to 7 n. Then, the AD converter 15 converts the DC voltage signals 11a to l1n into digital data.
  • the arithmetic processing unit 16 inputs the digital data of the detected near electromagnetic field level in synchronization with the H period of the control signal 25 as shown in FIG. 4 (c), and stores it in an internal memory. In addition, the arithmetic processing unit 16 receives the digitized data of the near electromagnetic field level and stores the near electromagnetic field level 26 integrated or averaged over a predetermined period as shown in FIG. 4D. As a result, when the mobile phone 17 is performing the intermittent transmission operation Then, a value obtained by integrating or averaging the transmission power within a predetermined period is obtained.
  • the vicinity electromagnetic field distribution can be accurately measured during a period in which a predetermined transmission power is obtained.
  • control unit 22 is configured to control the intermittent transmission of the mobile phone 17 and the processing and storage of the detection data in the arithmetic processing unit 16. The same effect can be obtained by detecting the intermittent transmission timing by the control unit 22 and generating a control signal based on this to control the processing and storage operations of the arithmetic processing unit 16.
  • FIG. 5 is an explanatory view showing a configuration of an electromagnetic radiation distribution measuring device according to a third embodiment of the present invention.
  • FIG. 5 (a) is a front view
  • FIG. 5 (b) is a side view.
  • the same components as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
  • the detection sensitivity of the loop elements la to ln generally varies depending on the dimensional accuracy during processing.
  • the characteristics of the circuit components constituting the level detectors 7a to 7n are not always the same, and the detection sensitivity varies and the frequency characteristics also change.
  • the third embodiment shows an example in which the electromagnetic radiation distribution measurement device described in the first and second embodiments has a measurement data calibration function for calibrating detection sensitivity and frequency characteristics.
  • a printed circuit board 27 constituting the correction data acquisition means is arranged at the position of the mobile phone above the loop elements 1 a to ln.
  • strip lines 28a to 28n corresponding to electromagnetic field generating means are formed on the lower surface, and ground patterns 29 are formed on the upper surface by printing or the like, and wired.
  • One end of each strip line 28a to 28n is terminated by a termination resistor 30a to 30n equal to the characteristic impedance (generally 50 ⁇ ), and the other end is a reference signal source (reference signal generation means). It is connected to the distribution circuit 32 to which the output signal of 31 is supplied.
  • the positions of the strip lines 28 a to 28 n in the Y direction are arranged so as to face the loop elements 1 a to 1 n, respectively.
  • the stripline 28 a ⁇ 28 Near-fields emitted from n are detected by the loop elements 1a to ln, respectively.
  • a reference signal of a predetermined frequency is supplied from the reference signal source 31 to the distribution circuit 32.
  • the distribution circuit 32 distributes the reference signal to the strip lines 28a to 28n.
  • the strip lines 28a to 28n each emit an electromagnetic field based on the reference signal.
  • the loop element 1 a ⁇ 1 n is constant with electromagnetic radiation of the already known are excited from the string Uz flop line 2 8 a ⁇ 2 8 n, the electromagnetic field is detected by the excitation.
  • the detection levels of the loop elements 1 a to 1 n are converted into digital data and stored in the arithmetic processing unit 16.
  • the frequency of the reference signal output from the reference signal source 31 is changed from f1 to f2, and the change in the near electromagnetic field detection level at this time is detected and stored in the arithmetic processing unit 16 .
  • the reference signal source 31 generates a reference signal by changing the frequency from f 1 to f 2 while changing the frequency from f 1, and detects the level of the near electromagnetic field at each frequency for each of the loop elements 1 a to 1 n. Perform the measurement. Then, all of the detection levels are stored in the arithmetic processing device 16 in the form of digital data. As a result, the arithmetic processing unit 16 obtains the frequency characteristic data 33 a to 33 n of the near electromagnetic field detection level as shown in FIG. 6, and stores this.
  • the detection level frequency characteristic data 33 a to 33 n obtained as described above is used to The digital data of the measurement result is corrected. This makes it possible to calibrate the variation in detection sensitivity due to the frequency in a plurality of systems.
  • the frequency characteristics of the detection sensitivity of each of the measurement systems of the loop elements 1 a to 1 n and the level detection units 7 a to 7 n are converted into the reference signal source 3 1 capable of generating a frequency-variable reference signal. And can be stored in the arithmetic processing unit 16 as the detection level frequency characteristic data 33 a to 33 ⁇ .
  • the device can be calibrated, and the accuracy of the measurement is remarkably improved.
  • the strip lines 28 a to 28 n which are excited by the reference signal generated by the reference signal source 31 are used as a means for generating the near-field electromagnetic field serving as a reference.
  • a reference antenna such as a pole or a loop may be used.
  • a mobile phone whose nearby electromagnetic field is known by measurement in advance may be used.
  • the near-field distribution radiated from a small wireless communication device such as a mobile phone can be measured at high speed and with high accuracy.
  • an electromagnetic radiation distribution measuring device capable of measuring a near electromagnetic field distribution radiated from a small wireless communication device such as a mobile phone at high speed and with high accuracy. it can.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measurement Of Radiation (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

It is possible to measure a neighboring electromagnetic field distribution irradiated from a small-size radio communication device such as a mobile telephone with a high accuracy at a high speed. An electromagnetic irradiation distribution measurement device includes a plurality of U-shaped loop elements (1a to 1n) mounted at a predetermined interval on a printed circuit board (2), a holding substrate (5) having on its lower surface an electromagnetic wave absorption sheet (6), and level detection sections (7a to 7n) to which the loop elements (1a to 1n) are connected via coaxial cables (4a to 4n) fixed to the holding substrate (5). Neighboring electromagnetic field signals detected by the loop elements (1a to 1n) are converted into DC voltage signals (11a to 11n) in the level detection sections (7a to 7n) and output. The signals are converted into digital data by an AD converter (15) and the measurement data on the neighboring electromagnetic field level obtained by detection of a magnetic field component is stored in a processing section (16).

Description

明 細 書 電磁放射分布測定装置 <技術分野 >  Description Electromagnetic radiation distribution measuring device <Technical field>
本発明は、 電磁放射特性を測定する装置に関し、 詳しくは、 携帯電話機等の無 線通信装置から放射される近傍電磁界分布を測定する電磁放射分布測定装置に関 する。 <背景技術 >  The present invention relates to an apparatus for measuring electromagnetic radiation characteristics, and more particularly to an electromagnetic radiation distribution measuring apparatus for measuring a near electromagnetic field distribution radiated from a wireless communication device such as a mobile phone. <Background technology>
一般に、 携帯電話機等の無線通信装置において、 装置のどの部分からどの程度 の強度で電磁波が放射されているかという近傍電磁界分布を知ることは、 機器の 設計上および E M C対策にとって重要なことである。 従来、 近傍電磁界分布を測 定する装置として、 例えば、 特開昭 6 2— 2 3 7 3 6 3号公報に開示されたもの が知られている。 この装置は、 平面に 1 0 0 0個程度の微小ループ素子を格子状 に配置し、 検出された信号をスイッチングダイォードにより順次選択するように 構成した順次選択式の測定装置である。  In general, in a wireless communication device such as a mobile phone, it is important for the design of the device and EMC measures to know the nearby electromagnetic field distribution that indicates the intensity of the electromagnetic wave emitted from which part of the device. . 2. Description of the Related Art Conventionally, as a device for measuring a near electromagnetic field distribution, for example, a device disclosed in Japanese Patent Application Laid-Open No. Sho 62-237363 is known. This apparatus is a sequential selection type measuring apparatus in which about 100 micro loop elements are arranged in a grid in a plane, and the detected signals are sequentially selected by a switching diode.
また、 特開平 9— 3 0 4 4 5 6号公報には、 列状に配置した複数のアンテナ素 子それそれに周波数選択レベル検出回路を接続して構成し、 検出した信号を同時 に記憶して処理する並列検出式の測定装置が開示されている。 これによると、 複 数のアンテナ素子を所定の方向に移動することにより、 近傍電磁界の平面的な分 布を測定することが可能である。  Also, Japanese Patent Application Laid-Open No. 9-304456 discloses a configuration in which a plurality of antenna elements arranged in a row and a frequency selection level detection circuit are connected to each other, and the detected signals are stored simultaneously. A parallel detection type measuring device for processing is disclosed. According to this, it is possible to measure the planar distribution of the near electromagnetic field by moving a plurality of antenna elements in a predetermined direction.
しかしながら、 上記従来の順次選択式の測定装置では、 約 1 0 0 0個に及ぶ微 小ループ素子を順次選択して測定するので、 全ての測定を完了するまでには多く の時間を必要とするという問題点があった。 また、 スイッチングダイオードの端 子間容量や伝送線路の周波数特性により、 特に高い周波数帯域、 例えば 2 G H z 帯において、 検出感度の低下や隣接する微小ループ素子相互間のアイソレーショ ンが劣化するという問題点があった。  However, the conventional sequential-selection-type measuring device described above sequentially selects and measures about 100,000 micro loop elements, so that it takes a lot of time to complete all the measurements. There was a problem. In addition, due to the capacitance between the terminals of the switching diode and the frequency characteristics of the transmission line, the detection sensitivity decreases and the isolation between adjacent small loop elements deteriorates, especially in a high frequency band, for example, the 2 GHz band. There was a point.
また、 従来の並列検出式の測定装置では、 複数のアンテナ素子からの検出信号 を並列に処理するため測定時間が短くて済むという利点があるが、 携帯電話機な どのように小型かつ複雑な形状の被測定物の測定に対する考慮がなされていなか つた。 さらに、 携帯電話機等の無線通信装置のアンテナから放射される高いレべ ルの近傍電磁界を測定する際に問題となる、アンテナ素子とレベル検出部との間、 及び無線通信装置と周波数選択レベル検出回路との間における電磁的遮蔽が十分 に考慮されていなかった。 In the conventional parallel detection type measuring device, detection signals from a plurality of antenna elements are used. The advantage is that the measurement time is short because the processing is performed in parallel, but no consideration has been given to the measurement of DUTs with small and complex shapes such as mobile phones. Furthermore, when measuring near-level electromagnetic fields at a high level radiated from an antenna of a wireless communication device such as a mobile phone, there is a problem between the antenna element and the level detection unit and between the wireless communication device and the frequency selection level. Electromagnetic shielding between the detector and the circuit was not sufficiently considered.
また、 上記 2例の従来の測定装置は、 携帯電話機等の無線通信装置が送信動作 を行っている際、 送信周波数の近傍電磁界を測定するために必要となるレベル検 出周波数の設定や、 間欠送信の際の測定に対する配慮がなされていなかった。 さ らに、 各微小ループ素子又はアンテナ素子の検出感度ばらつきや、 レベル検出部 又は周波数選択レベル検出回路における回路特性のばらつきを補正して、 測定精 度の向上を図る対策がなされていなかった。  In addition, the above two conventional measuring devices set a level detection frequency necessary for measuring an electromagnetic field near the transmission frequency when a wireless communication device such as a mobile phone performs a transmitting operation, No consideration was given to measurement during intermittent transmission. Furthermore, no measures have been taken to improve the measurement accuracy by correcting the variation in detection sensitivity of each minute loop element or antenna element and the variation in circuit characteristics in the level detection unit or the frequency selection level detection circuit.
また、 これら従来の測定装置は、 電子回路基板などフラットな被測定物から漏 洩する 1 G H z以下の比較的低い周波数の近傍電磁界を測定することを前提とし ており、 例えば携帯電話機の送信周波数である 2 G H z帯のような高い周波数の 近傍電磁界測定においては、 微小ループ素子やアンテナ素子相互間のアイソレー シヨンが十分ではなかった。  In addition, these conventional measuring devices are premised on measuring near-field electromagnetic fields having a relatively low frequency of 1 GHz or less leaking from a flat device under test such as an electronic circuit board. In the measurement of near-field electromagnetic fields at high frequencies such as the 2 GHz band, the isolation between small loop elements and antenna elements was not sufficient.
本発明は、 上記事情に鑑みてなされたものであり、 その目的は、 携帯電話機等 の小型の無線通信装置から放射される近傍電磁界分布を、 高速、 かつ高精度で測 定することができる電磁放射分布測定装置を提供することにある。  The present invention has been made in view of the above circumstances, and an object of the present invention is to measure a nearby electromagnetic field distribution radiated from a small wireless communication device such as a mobile phone with high speed and high accuracy. An object of the present invention is to provide an electromagnetic radiation distribution measuring device.
<発明の開示 > <Disclosure of Invention>
本発明の電磁放射分布測定装置は、 無線通信装置から放射される近傍電磁界分 布を測定する電磁放射分布測定装置であって、 列状に配置され前記無線通信装置 から放射される電磁界に応じた電気信号を出力する複数の電磁界検出手段と、 前 記複数の電磁界検出手段のそれそれに対応して接続され各電磁界検出手段で得ら れる電気信号のレベルを検出するレベル検出手段と、 前記電磁界検出手段及び前 記無線通信装置と前記レベル検出手段との間に配置された電磁的遮蔽手段と、 前 記電磁界検出手段と前記無線通信装置との測定面における相対位置を変化させる 移動手段と、 前記レベル検出手段の検出結果である電磁界レベルと前記相対位置 とを対応づけて記憶、 処理する演算処理手段と、 を備えたことを特徴とする。 上記構成によれば、 携帯電話機などの無線通信装置から放射される高いレベル の近傍電磁界分布を、 高速かつ高精度に測定することが可能となる。 An electromagnetic radiation distribution measuring device according to the present invention is an electromagnetic radiation distribution measuring device that measures a near electromagnetic field distribution radiated from a wireless communication device, and is arranged in a row to reduce an electromagnetic field radiated from the wireless communication device. A plurality of electromagnetic field detecting means for outputting a corresponding electric signal; and a level detecting means for detecting a level of an electric signal obtained by each of the plurality of electromagnetic field detecting means, which is connected correspondingly to each of the plurality of electromagnetic field detecting means. An electromagnetic shielding unit disposed between the electromagnetic field detection unit and the wireless communication device and the level detection unit; and a relative position on a measurement surface between the electromagnetic field detection unit and the wireless communication device. Change A moving means; and an arithmetic processing means for storing and processing the electromagnetic field level, which is a detection result of the level detecting means, and the relative position in association with each other. According to the above configuration, it is possible to measure a high-level near-field distribution radiated from a wireless communication device such as a mobile phone at high speed and with high accuracy.
また、 前記複数の電磁界検出手段は、 導体をループ状に形成してなる複数のル ープ素子を列状に実装したプリント基板を有し、 このプリント基板に前記複数の ループ素子に一対一に対応して該ループ素子の一端がそれそれ接続される複数の グランドパターンを設けて構成されることを特徴とする。  Further, the plurality of electromagnetic field detecting means has a printed circuit board on which a plurality of loop elements formed by forming conductors in a loop shape are arranged in a row, and the printed circuit board has one-to-one correspondence with the plurality of loop elements. And a plurality of ground patterns each connected to one end of the loop element.
この構成により、 電磁界検出手段を構成する各ループ素子の電磁的な結合によ るアイソレーション (電磁的遮蔽) の劣化を防止でき、 無線通信装置から放射さ れる高い周波数の近傍電磁界の測定精度を向上させることが可能となる。  With this configuration, it is possible to prevent the isolation (electromagnetic shielding) from deteriorating due to the electromagnetic coupling of each loop element constituting the electromagnetic field detecting means, and to measure the high frequency near electromagnetic field radiated from the wireless communication device. Accuracy can be improved.
また、 前記電磁的遮蔽手段は、 前記複数の電磁界検出手段を保持する保持基板 の一面に設けた電磁波吸収体により構成されることを特徴とする。 この構成によ り、複数の電磁界検出手段とレベル検出手段との間のアイソレーシヨンが向上し、 近傍電磁界の検出精度が高まる。  Further, the electromagnetic shielding means is configured by an electromagnetic wave absorber provided on one surface of a holding substrate that holds the plurality of electromagnetic field detecting means. With this configuration, the isolation between the plurality of electromagnetic field detecting means and the level detecting means is improved, and the detection accuracy of the near electromagnetic field is enhanced.
また、 前記複数の電磁界検出手段において、 隣接する前記ループ素子の間に電 磁的遮蔽手段を設けたことを特徴とする。 この構成により、 電磁界検出手段を構 成するループ素子相互間のアイソレーシヨンが向上し、 無線通信装置から放射さ れる高い周波数の近傍電磁界分布を精度良く測定可能となる。  Further, in the plurality of electromagnetic field detecting means, an electromagnetic shielding means is provided between the adjacent loop elements. With this configuration, the isolation between the loop elements constituting the electromagnetic field detecting means is improved, and the near-field distribution of a high frequency radiated from the wireless communication device can be accurately measured.
また、 局部発振信号を発生する局部発振手段を備え、 前記レベル検出手段は、 前記電磁界検出手段で得られる電気信号と前記局部発振信号とを混合することに より特定周波数における電磁界レベルを検出することを特徴とする。  The apparatus further includes a local oscillation unit that generates a local oscillation signal, wherein the level detection unit detects an electromagnetic field level at a specific frequency by mixing the electric signal obtained by the electromagnetic field detection unit with the local oscillation signal. It is characterized by doing.
この構成により、 無線通信装置から放射される送信周波数に対応する任意の周 波数の近傍電磁界分布を高速、 高精度で測定可能となる。  With this configuration, it is possible to measure the near-field distribution at an arbitrary frequency corresponding to the transmission frequency radiated from the wireless communication device at high speed and with high accuracy.
また、 前記無線通信装置の送信動作に応じて測定動作を制御する制御手段を備 え、 前記演算処理手段は、 前記制御手段の制御に基づき、 前記無線通信装置が間 欠的な送信動作を行っている場合に送信タイミングに同期して前記レベル検出手 段により検出された電磁界レベルを記憶することを特徴とする。  The wireless communication apparatus further includes control means for controlling a measurement operation in accordance with a transmission operation of the wireless communication apparatus, wherein the arithmetic processing means performs an intermittent transmission operation of the wireless communication apparatus based on control of the control means. In this case, the electromagnetic field level detected by the level detection means is stored in synchronization with the transmission timing.
この構成により、 間欠送信を行っている状態の無線装置装置から放射される近 傍電磁界分布を精度良く測定可能となる。 With this configuration, the near-field radiated from the wireless device that is performing intermittent transmission can be obtained. The near electromagnetic field distribution can be measured with high accuracy.
また、 前記演算処理手段は、 前記無線通信装置の間欠的な送信動作の所定の回 数分に相当する検出期間において、 前記レベル検出手段により検出された電磁界 レベルを積分又は平均して記憶することを特徴とする。  Also, the arithmetic processing means integrates or averages the electromagnetic field level detected by the level detection means during a detection period corresponding to a predetermined number of intermittent transmission operations of the wireless communication device, and stores the integrated electromagnetic field level. It is characterized by the following.
この構成により、 間欠送信を行っている状態の無線装置装置から放射される近 傍電磁界分布を精度良く測定可能となる。  With this configuration, it is possible to accurately measure the near-field distribution radiated from the wireless device that is performing intermittent transmission.
また、 前記複数の電磁界検出手段及びレベル検出手段を含む複数の測定系統そ れそれの検出感度を取得し補正データを得るための補正データ取得手段を備え、 前記演算処理手段は、 前記レベル検出手段の検出結果である電磁界レベルを前記 補正データによって補正する補正手段を有することを特徴とする。  A plurality of measurement systems including the plurality of electromagnetic field detection units and the level detection unit; and a correction data obtaining unit for obtaining the detection sensitivity of each of the measurement systems and obtaining correction data. A correction means for correcting an electromagnetic field level as a detection result of the means by the correction data.
この構成により、 個々の測定系統の特性による補正デ一夕を予め取得し、 検出 された電磁界レベルを補正データによって補正することで、 無線通信装置から放 射される近傍電磁界分布の測定精度を向上させることが可能となる。  With this configuration, the correction data based on the characteristics of the individual measurement systems is obtained in advance, and the detected electromagnetic field level is corrected using the correction data, so that the measurement accuracy of the near electromagnetic field distribution radiated from the wireless communication device is measured. Can be improved.
また、 前記補正データ取得手段は、 周波数が可変の基準信号を発生する基準信 号発生手段と、 前記複数の電磁界検出手段にそれそれ対応して配置され前記基準 信号に基づき基準電磁界を発生する電磁界発生手段とを有し、 前記演算処理手段 は、 前記複数の測定系統それそれにおける前記基準電磁界に対する検出レベルを 周波数に対応づけて記憶することを特徴とする。  Further, the correction data obtaining means includes: a reference signal generating means for generating a reference signal having a variable frequency; and a reference electromagnetic field based on the reference signal, which is arranged corresponding to each of the plurality of electromagnetic field detecting means. The arithmetic processing means stores detection levels of the plurality of measurement systems and the reference electromagnetic field in each of the plurality of measurement systems in association with a frequency.
この構成により、 個々の測定系統における周波数特性を求め、 この周波数特性 に基づく補正データによって検出された電磁界レベルを補正することで、 無線通 信装置から放射される送信周波数に合わせて近傍電磁界分布の測定精度を向上さ せることが可能となる。  With this configuration, the frequency characteristic of each measurement system is obtained, and the electromagnetic field level detected by the correction data based on the frequency characteristic is corrected, so that the near electromagnetic field is adjusted in accordance with the transmission frequency radiated from the wireless communication device. It is possible to improve the distribution measurement accuracy.
<図面の簡単な説明 > <Brief description of drawings>
図 1は、 本発明の第 1実施形態に係る電磁放射分布測定装置の構成を示す説明 図であり、 (a ) は正面図、 (b ) は側面図であり、  FIG. 1 is an explanatory diagram showing a configuration of an electromagnetic radiation distribution measuring device according to a first embodiment of the present invention, (a) is a front view, (b) is a side view,
図 2は、 本実施形態の電磁放射分布測定装置において配設可能なループ素子相 互の電磁的遮蔽を行う電磁波吸収体の構成図であり、  FIG. 2 is a configuration diagram of an electromagnetic wave absorber that electromagnetically shields loop elements that can be arranged in the electromagnetic radiation distribution measuring device of the present embodiment,
図 3は、 本発明の第 2実施形態に係る電磁放射分布測定装置の構成を示す側面 図であり、 FIG. 3 is a side view showing the configuration of the electromagnetic radiation distribution measuring device according to the second embodiment of the present invention. FIG.
図 4は、 第 2実施形態における携帯電話機の間欠送信に伴う測定動作を示す夕 イミングチャートであり、  FIG. 4 is an evening timing chart showing a measurement operation associated with intermittent transmission of a mobile phone in the second embodiment.
図 5は、 本発明の第 3実施形態に係る電磁放射分布測定装置の構成を示す説明 図であり、 (a) は正面図、 (b) は側面図であり、  FIG. 5 is an explanatory diagram showing a configuration of an electromagnetic radiation distribution measuring device according to a third embodiment of the present invention, wherein (a) is a front view, (b) is a side view,
図 6は、 第 3実施形態において得られる検出レベル周波数特性データを示す説 明図である。  FIG. 6 is an explanatory diagram showing detection level frequency characteristic data obtained in the third embodiment.
なお、 図中の符号、 l a〜 l nはループ素子、 2はプリント基板、 3 a〜3 n はグランドパターン、 5は保持基板、 6 , 40 a〜40 nは電磁波吸収シート、 7 a〜 7 nはレベル検出部、 8 a〜8 nはミキサ、 9 a〜 9 nは帯域通過フィル 夕、 1 0 a〜: L 0 nは対数検波器、 1 1 a〜 1 1 nは直流電圧信号、 1 2 a〜 l 2 nは局部発振信号、 1 3は分配器、 14は局部発振器、 1 5は AD変換器、 1 6は演算処理部、 1 7は携帯電話機、 1 8は可動台、 2 2は制御部、 2 8 a〜2 8 nはストリップ線路、 29はグランドパターン、 30 a~30 nは終端抵抗、 3 1は基準信号源、 32は分配回路、 33 a〜33 nは検出レベル周波数特性デ 一夕である。 く発明を実施するための最良の形態 >  The symbols in the figure, la to ln are loop elements, 2 is a printed circuit board, 3 a to 3 n is a ground pattern, 5 is a holding board, 6, 40 a to 40 n are electromagnetic wave absorbing sheets, 7 a to 7 n Is a level detector, 8a to 8n is a mixer, 9a to 9n is a bandpass filter, 10a to: L0n is a logarithmic detector, 11a to 11n is a DC voltage signal, 1 2 a to l 2 n are local oscillation signals, 13 is a distributor, 14 is a local oscillator, 15 is an AD converter, 16 is an arithmetic processing unit, 17 is a mobile phone, 18 is a movable base, 2 2 Is a control unit, 28 a to 28 n is a strip line, 29 is a ground pattern, 30 a to 30 n is a termination resistor, 31 is a reference signal source, 32 is a distribution circuit, 33 a to 33 n is a detection level frequency Characteristic de overnight. BEST MODE FOR CARRYING OUT THE INVENTION>
以下、 図面を参照して本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第 1実施形態)  (First Embodiment)
図 1は本発明の第 1実施形態に係る電磁放射分布測定装置の構成を示す説明図 であり、 図 1 (a) は正面図、 図 1 (b) は側面図である。 電磁放射分布測定装 置は、 それそれ n個からなるループ素子 1 a〜 1 n、 同軸ケーブル 4 a〜4 n、 レベル検出部 7 a〜7 nと、 保持基板 5、 分配器 1 3、 局部発振器 14、 AD変 換器 1 5、 演算処理部 1 6とを有して構成される。 そして、 ループ素子 1 a〜 1 nの上部に配置された可動台 18に載置した携帯電話機 17から放射される近傍 電磁界分布を測定するようになっている。 ここで、 ループ素子 1 a〜 1 n及びレ ベル検出部 7 a〜 7 nを含む測定系統の数 nは、 例えば 9などであり、 一般的に 1 0前後が選ばれる。 電磁界検出手段に相当するループ素子 1 a〜 1 nは、 直径が例えば 0. 5mm の銅線を 1辺 3mmのコの字状に成形してループ面が形成される。 そして、 各ル 一プ面を平行にかつプリント基板 2に対して垂直となるよう 1列に実装される。 また、 ループ素子 1 a〜 Inの間隔は、 例えば 5 mmに設定される。 FIG. 1 is an explanatory view showing a configuration of an electromagnetic radiation distribution measuring device according to a first embodiment of the present invention, where FIG. 1 (a) is a front view and FIG. 1 (b) is a side view. The electromagnetic radiation distribution measuring device consists of n loop elements 1 a to 1 n, coaxial cables 4 a to 4 n, level detectors 7 a to 7 n, holding board 5, distributor 13 and local It comprises an oscillator 14, an AD converter 15 and an arithmetic processing unit 16. Then, a near electromagnetic field distribution radiated from the mobile phone 17 mounted on the movable base 18 arranged above the loop elements 1a to 1n is measured. Here, the number n of the measurement systems including the loop elements 1 a to 1 n and the level detection units 7 a to 7 n is, for example, 9 or the like, and generally around 10 is selected. The loop elements 1a to 1n corresponding to the electromagnetic field detecting means are formed by shaping a copper wire having a diameter of, for example, 0.5 mm into a U-shape having a side of 3 mm. Then, they are mounted in one row so that each loop surface is parallel and perpendicular to the printed circuit board 2. The interval between the loop elements 1a to In is set to, for example, 5 mm.
ループ素子 1 a〜 1 nの一端は、 プリント基板 2にそれそれ独立して印刷配線 されたグランドパターン 3 a〜 3 nにそれそれ対応して接続され、 他端は伝送線 路を構成する同軸ケーブル 4 a〜4 nの中心導体にそれそれ接続される。 また、 同軸ケーブル 4 a〜4 nの外部導体は、 グランドパターン 3 a〜3 nにそれそれ 接 れ o  One end of each of the loop elements 1 a to 1 n is connected to a corresponding one of the ground patterns 3 a to 3 n which are printed and wired independently on the printed circuit board 2, and the other end is a coaxial line constituting a transmission line. Each of the cables 4a to 4n is connected to the center conductor. The outer conductors of the coaxial cables 4a to 4n are connected to the ground patterns 3a to 3n, respectively.
同軸ケーブル 4 a〜4 nは、 保持基板 5を貫通して接着等の固定手段により固 定され、 これによりループ素子 1 a〜 1 nが実装されたプリント基板 2は同軸ケ 一ブル 3 a〜 3 nを介して保持基板 5に保持される。  The coaxial cables 4a to 4n penetrate the holding substrate 5 and are fixed by fixing means such as bonding, so that the printed circuit board 2 on which the loop elements 1a to 1n are mounted is coaxial cable 3a to It is held by the holding substrate 5 via 3 n.
保持基板 5は、 携帯電話機 17から放射される近傍電磁界に影響を及ぼさない ようにするため、 非磁性体の部材、 例えば厚さが 5mmのアクリル等の樹脂板か ら形成される。また、保持基板 5の下面には、電磁波を吸収、減衰させるための、 例えばフェライ ト系ゃ合金系の磁性材料からなる電磁的遮蔽手段に相当する電磁 波吸収シート 6が貼り付けられ、 ループ素子 1 a〜l nとレベル検出部 7 a〜7 nとの間の電磁的遮蔽を図っている。  The holding substrate 5 is formed of a non-magnetic member, for example, a resin plate of 5 mm thick acrylic or the like so as not to affect the nearby electromagnetic field radiated from the mobile phone 17. On the lower surface of the holding substrate 5, an electromagnetic wave absorbing sheet 6 for absorbing and attenuating electromagnetic waves, which is equivalent to an electromagnetic shielding means made of, for example, a ferrite-based / alloy-based magnetic material, is attached. Electromagnetic shielding between 1 a to ln and the level detectors 7 a to 7 n is achieved.
レベル検出手段に相当するレベル検出部 7 a〜 7 nは、 ミキサ 8 a~8n、 帯 域通過フィルタ 9 a〜9 n及び対数検波器 10 a〜 10 nを有して構成されてお り、 同軸ケーブル 4 a〜 4 nを介して入力されたループ素子 1 a〜 1 nによる電 磁界の特定周波数成分のレベルを検出し、 直流電圧信号 1 l a〜l Inに変換し て出力する。  The level detection units 7a to 7n corresponding to the level detection means include mixers 8a to 8n, band-pass filters 9a to 9n, and logarithmic detectors 10a to 10n. Detects the level of a specific frequency component of the electromagnetic field by the loop elements 1a to 1n input through the coaxial cables 4a to 4n, converts the level into a DC voltage signal 1la to 1In, and outputs the signal.
ミキサ 8 a〜8 nは、 微小ループ素子で検出した特定周波数の電磁界信号を局 部発振信号 12 a〜l 2nと混合し、 両信号の差に相当する周波数をもつ中間周 波信号に変換する。 例えば、 携帯電話機 17の送信周波数が 2000MHzとし た場合、 局部発振信号 12 a〜 12 nの周波数を 220 OMH zに設定すること により、 周波数が 200MHzである n系統の中間周波信号が得られる。  The mixers 8a to 8n mix the electromagnetic field signal of a specific frequency detected by the minute loop element with the local oscillation signals 12a to l2n and convert it to an intermediate frequency signal having a frequency corresponding to the difference between the two signals. I do. For example, when the transmission frequency of the mobile phone 17 is 2000 MHz, by setting the frequency of the local oscillation signals 12a to 12n to 220 MHZ, n intermediate frequency signals having a frequency of 200 MHz can be obtained.
帯域通過フィル夕 9 a〜9 nは、 例えば S AWフィルタやセラミックフィル夕 等から構成され、 中間周波信号を所定の帯域幅で通過させる。 対数検波器 1 0 a 〜 1 0 nは、 一般に対数出力型の多段アンプで構成され、 中間周波信号のデシべ ル値に対して直線的なレベルとなる直流電圧信号 1 1 a〜 1 1 nを出力する。 分配器 1 3は、 局部発振器 (局部発振手段) 1 4から入力された局部発振信号 を同一レベルの局部発振信号 1 2 a〜l 2 nとして出力し、 ミキサ 8 a ~ 8 nに 分配するものである。 局部発振器 1 4は、 ミキサ 8 a〜 8 nにおいて n系統の中 間周波信号を生成するのに必要な局部発振信号'を発生する回路であり、 その発振 周波数は測定しょうとする電磁界の周波数より、 中間周波信号の周波数分だけ高 く設定される。 The bandpass filters 9a to 9n are, for example, S AW filters and ceramic filters. And the like, and passes the intermediate frequency signal with a predetermined bandwidth. The logarithmic detectors 10a to 10n are generally composed of logarithmic output type multistage amplifiers, and have a DC voltage signal 11a to 11n that has a linear level with respect to the decibel value of the intermediate frequency signal. Is output. The distributor 13 outputs the local oscillation signals input from the local oscillator (local oscillation means) 14 as local oscillation signals 12 a to l 2 n of the same level, and distributes them to the mixers 8 a to 8 n It is. The local oscillator 14 is a circuit that generates a local oscillation signal ′ necessary for generating n intermediate frequency signals in the mixers 8 a to 8 n, and the oscillation frequency is the frequency of the electromagnetic field to be measured. Therefore, it is set higher by the frequency of the intermediate frequency signal.
A D変換器 1 5は、 演算処理部 1 6によって制御され、 アナログ信号である n 系統の直流電圧信号 1 l a〜 l 1 nを並列にディジタルデータに変換する。 演算 処理手段に相当する演算処理部 1 6は、 電磁界信号レベルのディジタルデータを 入力して記憶するとともに、 入力されたディジ夕ルデ一夕に演算処理を施して測 定結果を外部モニタやプリン夕等の出力装置に出力する。  The AD converter 15 is controlled by the arithmetic processing unit 16 and converts the n-system DC voltage signals 1 la to l 1 n, which are analog signals, into digital data in parallel. The arithmetic processing unit 16 corresponding to the arithmetic processing means inputs and stores the digital data of the electromagnetic field signal level, performs arithmetic processing on the input digital data, and outputs the measurement results to an external monitor or printer. Output to an output device such as evening.
保持基板 5の上部には、 移動手段として、 4個の車輪 1 9で支持され被測定物 である携帯電話機 1 7を載置するための可動台 1 8が設置される。 この可動台 1 8は、 携帯電話機 1 7から放射される近傍電磁界に影響を及ぼさないように、 非 磁性体の部材、 例えばアクリル樹脂で構成され、 車輪 1 9を介して保持基板 5上 を図における X方向に移動することができる。  On the upper part of the holding substrate 5, as a moving means, a movable base 18 for supporting a mobile phone 17, which is an object to be measured, supported by four wheels 19 is installed. The movable table 18 is made of a non-magnetic material, for example, acrylic resin, so as not to affect a nearby electromagnetic field radiated from the mobile phone 17, and is mounted on the holding substrate 5 via wheels 19. You can move in the X direction in the figure.
次に、 以上のように構成された本実施形態の電磁放射分布測定装置の動作を説 明する。 なお、 ここでは被測定物である携帯電話機 1 7から放射される特定の周 波数の電磁界を測定する場合について説明しているが、 任意の周波数の電磁界を 測定する場合は、 局部発振器 1 4の発振周波数を、 例えば演算処理部 1 6によつ て制御、 設定しながら以下に説明する動作を繰り返す。  Next, the operation of the electromagnetic radiation distribution measuring device of the present embodiment configured as described above will be described. Here, a case is described in which an electromagnetic field of a specific frequency radiated from the mobile phone 17 as the device under test is measured. However, when an electromagnetic field of an arbitrary frequency is measured, the local oscillator 1 The operation described below is repeated while controlling and setting the oscillation frequency of 4, for example, by the arithmetic processing unit 16.
ループ素子 l a〜 l nは、 可動台 1 8に載置された携帯電話機 1 7から放射さ れる近傍電磁界のうち、 主として Y方向の磁界により誘導電圧を発生するループ アンテナとして動作する。  The loop elements l a to l n operate as a loop antenna that generates an induced voltage mainly due to the magnetic field in the Y direction among the near electromagnetic fields radiated from the mobile phone 17 mounted on the movable base 18.
検出された磁界信号は、 同軸ケーブル 4 a〜4 nを介してレベル検出部 7 a ~ 7 nに入力され、 ループ素子 1 a〜 1 nの各位置における磁界成分の検出レベル を示す直流電圧信号 1 1 a〜 1 1 nが出力される。 次いで、 直流電圧信号 1 1 a 〜 1 I nは、 A D変換器 1 5においてディジタルデータに変換され、 演算処理部 1 6において記憶される。 ここで、 この得られたディジタルデータは、 可動台 1 8を X方向の所定位置 X 1に固定した状態における携帯電話機 1 7の Y方向の近 傍電磁界分布となる。 そして、 この電磁界検出の分解能はループ素子 1 a〜 l n の配置間隔によって定まり、 例えば 5 mmとなる。 The detected magnetic field signal is input to the level detectors 7a to 7n via the coaxial cables 4a to 4n, and the detection level of the magnetic field component at each position of the loop elements 1a to 1n Are output. Next, the DC voltage signals 11 a to 1 In are converted into digital data in the AD converter 15 and stored in the arithmetic processing unit 16. Here, the obtained digital data is a nearby electromagnetic field distribution in the Y direction of the mobile phone 17 in a state where the movable base 18 is fixed at the predetermined position X1 in the X direction. The resolution of the electromagnetic field detection is determined by the arrangement interval of the loop elements 1a to ln, and is, for example, 5 mm.
次に、 可動台 1 8を X方向に所定距離、 例えば 5 mm移動させる。 そして、 上 記したと同様な手順で携帯電話機 1 7の X 2の位置における磁界成分の検出レべ ルを示すディジタルデータを取得し、 演算処理部 1 6において記憶する。 以下、 このような動作を m回繰り返すことにより、 2次元に配置された m x n点からな る近傍電磁界の分布図が得られる。 例えば、 9個のループ素子及びレベル検出部 を含む測定系統を設け、 可動台 1 8を移動させながら 9箇所で近傍電磁界を測定 することにより、 9 x 9 = 8 1点による近傍電磁界分布が得られる。  Next, the movable table 18 is moved in the X direction by a predetermined distance, for example, 5 mm. Then, digital data indicating the detection level of the magnetic field component at the position of X2 of the mobile phone 17 is acquired in the same procedure as described above, and stored in the arithmetic processing unit 16. Hereinafter, by repeating such an operation m times, a distribution diagram of a nearby electromagnetic field composed of m × n points arranged two-dimensionally is obtained. For example, a measurement system including nine loop elements and a level detector is provided, and the near field is measured at nine locations while moving the movable table 18. Is obtained.
以上のように本実施形態では、 所定間隔で 1列に配設した複数のループ素子 1 a〜 1 nによって Y方向の各点における近傍電磁界レベルを検出し、 これをディ ジタルデ一夕に変換して演算処理部 1 6において並列に記憶し、 この動作を m回 繰り返す。 これにより、 携帯電話機 1 7から放射される近傍電磁界分布を高速に 測定することができる。  As described above, in the present embodiment, a plurality of loop elements 1 a to 1 n arranged in a line at a predetermined interval detect a nearby electromagnetic field level at each point in the Y direction, and convert this to digital data. Then, the data is stored in parallel in the arithmetic processing unit 16 and this operation is repeated m times. This makes it possible to measure the near-field distribution radiated from the mobile phone 17 at high speed.
ここで、 携帯電話機 1 7から放射される電磁波のレベルが高く、 レベル検出部 7 a〜 7 nの回路に直接漏洩するような場合は、 これが雑音となり測定の際の S /N (信号対雑音比) を劣化させるが、 本実施形態では、 保持基板 5の下面に電 磁波吸収シート 6を貼り付けているので、 電磁波吸収シート 6の電磁遮蔽効果に より携帯電話機 1 7から放射される電磁波を効果的に遮蔽することができ、 レべ ル検出部 7 a〜7 nへの電磁波の漏洩を防止できる。 これにより、 近傍電磁放射 分布の測定における S /Nが向上し、 測定精度を上げることが可能となる。 また、 各ループ素子 1 a〜 1 nに対応してプリント基板 2にはそれそれ独立に グランドパターン 3 a〜3 nを設け、 ループ素子 1 a〜 1 nの他端及び同軸ケ一 ブル 4 a〜4 nの外部導体をグランドパターン 3 a〜3 nにそれそれ対応して接 続しているので、 各ループ素子及び信号線の電磁的な結合によるアイソレーショ ン (電磁的遮蔽) の劣化を防止でき、 測定精度を向上できる。 Here, when the level of the electromagnetic wave radiated from the mobile phone 17 is high and leaks directly to the circuits of the level detectors 7a to 7n, this becomes noise and the S / N (signal to noise However, in this embodiment, the electromagnetic wave absorbing sheet 6 is attached to the lower surface of the holding substrate 5, so that the electromagnetic wave radiated from the mobile phone 17 due to the electromagnetic shielding effect of the electromagnetic wave absorbing sheet 6 is reduced. Effective shielding can be achieved, and leakage of electromagnetic waves to the level detectors 7a to 7n can be prevented. As a result, the S / N in the measurement of the near electromagnetic radiation distribution is improved, and the measurement accuracy can be increased. In addition, the printed circuit board 2 is provided with ground patterns 3a to 3n independently for each of the loop elements 1a to 1n, and the other ends of the loop elements 1a to 1n and the coaxial cable 4a. ~ 4n external conductors are connected to the ground patterns 3a ~ 3n correspondingly, so isolation by electromagnetic coupling of each loop element and signal line (Electromagnetic shielding) can be prevented from deteriorating, and measurement accuracy can be improved.
また、 本実施形態のループ素子の構成の変形例として、 図 2に示すように、 ル ープ素子 1 a〜 l n相互間の電磁的シールド効果を高めるために、 各ループ素子 の間に電磁的遮蔽手段として電磁波吸収シート 4 0 a〜4 0 nを設けてもよい。 それそれの電磁波吸収シート 4 0 a〜4 0 nは層構造をなしており、 電磁波を 吸収して減衰させる厚さ 0 . 5 mm程度の 2枚の磁性体薄膜 4 1によって金属板 4 2を挟んでサンドィツチ状に構成される。 この電磁波吸収シート 4 0 a〜4 0 nを隣接する二つのループ素子の中間に配置する。 これにより、 隣接するループ 素子間での電磁的結合を弱めることができるので、 アイソレーシヨンを高めるこ とができ、 近傍電磁界分布を測定する際の位置分解能を向上させることが可能と なる。  As a modification of the configuration of the loop element of the present embodiment, as shown in FIG. 2, in order to enhance the electromagnetic shielding effect between the loop elements 1a to ln, an electromagnetic Electromagnetic wave absorbing sheets 40a to 40n may be provided as shielding means. Each of the electromagnetic wave absorbing sheets 40a to 40n has a layered structure, and the metal plate 42 is formed by two magnetic thin films 41 having a thickness of about 0.5 mm that absorb and attenuate electromagnetic waves. It is sandwiched between them. The electromagnetic wave absorbing sheets 40a to 40n are arranged between two adjacent loop elements. As a result, the electromagnetic coupling between adjacent loop elements can be weakened, so that the isolation can be increased and the positional resolution when measuring the near electromagnetic field distribution can be improved.
なお、 ループ素子 1 a〜 l n間に介挿して設ける電磁的遮蔽手段は、 例えば磁 性体等の電磁波吸収体のみであつても、 又は金属板等の導体板のみであっても一 定の効果が得られる。 このため、 携帯電話機 1 7が放射する近傍電磁界に影響を 及ぼさない範囲で、 ループ素子 1 a〜 1 n間の電磁波吸収シート 4 0 a〜4 0 n や保持基板 5の下面に設ける電磁波吸収シート 6などを、 電磁波吸収体のみ又は 導体板のみを用いて安価に構成することができる。  The electromagnetic shielding means interposed between the loop elements 1a to ln may be a fixed electromagnetic wave absorber such as a magnetic body or a conductor plate such as a metal plate. The effect is obtained. For this reason, the electromagnetic wave absorbing sheet 40 a to 40 n between the loop elements 1 a to 1 n and the electromagnetic wave absorption provided on the lower surface of the holding substrate 5 are provided within a range that does not affect the nearby electromagnetic field radiated by the mobile phone 17. The sheet 6 and the like can be formed at low cost using only the electromagnetic wave absorber or only the conductor plate.
また、 ループ素子 1 a〜 1 nの構成や寸法は、 本実施形態の例に限るものでは なく、 例えばシールデッ ドループアンテナを用いてもよいし、 寸法は測定周波数 において所望の検出感度が確保できる大きさであればよい。  The configuration and dimensions of the loop elements 1a to 1n are not limited to those of the present embodiment. For example, a shielded loop antenna may be used, and the dimensions are large enough to secure a desired detection sensitivity at a measurement frequency. That's fine.
さらに、 本実施形態において示したループ素子は、 主に磁界成分を検出するも のであるが、 微小ダイポールや微小モノポールの素子を用いることにより、 主と して電界成分の測定が可能となる。  Further, the loop element shown in the present embodiment mainly detects a magnetic field component. However, by using a micro dipole element or a micro monopole element, it is possible to mainly measure an electric field component.
また、 本実施形態では、 可動台 1 8を手動で移動させることにより可動台 1 8 に載置した携帯電話機 1 7を 2次元的に走査して電磁放射分布を測定したが、 可 動台 1 8の移動手段にステッピングモー夕等の駆動手段を用い、 演算処理部 1 6 の制御の下に動作させて可動台 1 8を駆動するようにしてもよい。これによつて、 測定作業を自動化することができ、 携帯電話機 1 7から放射される近傍電磁界分 布をより高速に測定することが可能となる。 (第 2実施形態) Further, in the present embodiment, the mobile phone 18 is manually moved, and the mobile phone 17 placed on the mobile board 18 is two-dimensionally scanned to measure the electromagnetic radiation distribution. A driving means such as a stepping motor may be used as the moving means 8 and the movable table 18 may be driven by operating under the control of the arithmetic processing unit 16. As a result, the measurement operation can be automated, and the near-field distribution radiated from the mobile phone 17 can be measured at higher speed. (Second embodiment)
図 3は本発明の第 2実施形態に係る電磁放射分布測定装置の構成を示す側面図 である。 図 1と同一の構成については、 同一の符号を付して説明を省略する。 一般に、 携帯電話機では電池の消費をできるだけ少なくして通話可能時間を延 ばすため、 送信音声がない時間に送信電波を切る間欠送信が行われる。 従って、 携帯電話機から放射される近傍電磁界の測定に際しても、 実際の使用に即して間 欠送信状態であることが望ましい。 本実施形態は、 これに鑑みて、 携帯電話機の 間欠送信状態における近傍電磁界を測定する電磁放射分布測定装置の構成を示す ものである。  FIG. 3 is a side view showing the configuration of the electromagnetic radiation distribution measuring device according to the second embodiment of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. In general, in mobile phones, intermittent transmission is performed to cut the transmission radio wave when there is no transmission voice in order to extend the talkable time by minimizing battery consumption. Therefore, when measuring the near electromagnetic field radiated from the mobile phone, it is desirable that the intermittent transmission state be set according to the actual use. In view of this, the present embodiment shows a configuration of an electromagnetic radiation distribution measuring device that measures a near electromagnetic field in a mobile phone in an intermittent transmission state.
第 2実施形態の電磁放射分布測定装置は、 測定動作を制御する制御部 2 2を備 えている。 コネクタ 2 0は、 携帯電話機 1 7の動作を外部から制御するための制 御信号を入力する接続端子である。 制御部 2 2は、 図 4 ( a ) に示すように所定 周期で所定回数 (図では 4回) の間欠送信タイミングにおいて出力されるパルス 列からなる制御信号 2 3を生成する。 そしてこの制御信号 2 3をコネクタ 2 0に 接続されたケーブル 2 1を介して携帯電話機 1 7に出力するとともに、 ケーブル 2 4を介して演算処理部 1 6にも同様に出力する。  The electromagnetic radiation distribution measuring device according to the second embodiment includes a control unit 22 that controls a measuring operation. The connector 20 is a connection terminal for inputting a control signal for externally controlling the operation of the mobile phone 17. The control unit 22 generates a control signal 23 consisting of a pulse train output at a predetermined cycle (four times in the figure) intermittent transmission timing at a predetermined cycle as shown in FIG. 4 (a). Then, the control signal 23 is output to the mobile phone 17 via the cable 21 connected to the connector 20, and is similarly output to the arithmetic processing unit 16 via the cable 24.
携帯電話機 1 7は、 図 4 ( a ) に示す制御信号 2 3の高電圧レベル期間 (H期 間)に送信動作を行う。これにより、携帯電話機 1 7の送信電力 2 4は、図 4 ( b ) に示すように H期間に同期して高レベルとなる。 '  The mobile phone 17 performs the transmission operation during the high voltage level period (H period) of the control signal 23 shown in FIG. As a result, the transmission power 24 of the mobile phone 17 becomes high in synchronization with the H period as shown in FIG. 4 (b). '
ループ素子 l a〜 l nは、 携帯電話機 1 7の送信に伴って放射される近傍電磁 界レベルを検出し、 レベル検出部 7 a〜 7 nにおいて直流電圧信号 1 l a〜 l 1 nを出力する。 そして、 A D変換器 1 5により直流電圧信号 1 1 a〜 l 1 nをデ ィジ夕ルデータに変換する。  The loop elements l a to l n detect the level of the near electromagnetic field radiated with the transmission of the mobile phone 17, and output DC voltage signals 1 l a to l 1 n in the level detectors 7 a to 7 n. Then, the AD converter 15 converts the DC voltage signals 11a to l1n into digital data.
演算処理部 1 6は、検出した近傍電磁界レベルのディジタルデータを図 4 ( c ) に示すように制御信号 2 5の H期間に同期して入力し、内部のメモリに記憶する。 また、演算処理部 1 6において、近傍電磁界レベルのディジ夕ルデータを入力し、 図 4 ( d ) に示すように所定期間に亘つて積分、 又は平均した近傍電磁界レペル 2 6を記憶する。 これにより、 携帯電話機 1 7が間欠送信動作を行っている場合 に、 所定期間内の送信電力を積分又は平均した値が得られる。 The arithmetic processing unit 16 inputs the digital data of the detected near electromagnetic field level in synchronization with the H period of the control signal 25 as shown in FIG. 4 (c), and stores it in an internal memory. In addition, the arithmetic processing unit 16 receives the digitized data of the near electromagnetic field level and stores the near electromagnetic field level 26 integrated or averaged over a predetermined period as shown in FIG. 4D. As a result, when the mobile phone 17 is performing the intermittent transmission operation Then, a value obtained by integrating or averaging the transmission power within a predetermined period is obtained.
このように本実施形態によれば、 携帯電話機 1 7が間欠送信動作を行っている 状態において、 所定の送信電力が得られる期間に近傍電磁界分布を正確に測定す ることができる。  As described above, according to the present embodiment, in a state where the mobile phone 17 is performing the intermittent transmission operation, the vicinity electromagnetic field distribution can be accurately measured during a period in which a predetermined transmission power is obtained.
なお、 本実施形態では、 制御部 2 2が携帯電話機 1 7の間欠送信と、 演算処理 部 1 6における検出データの処理及び記憶を制御するように構成したが、 逆に携 帯電話機 1 7の間欠送信タイミングを制御部 2 2により検出し、 これに基づいて 制御信号を生成して演算処理部 1 6の処理及び記憶の動作を制御するようにして も、 同様の効果が得られる。  In this embodiment, the control unit 22 is configured to control the intermittent transmission of the mobile phone 17 and the processing and storage of the detection data in the arithmetic processing unit 16. The same effect can be obtained by detecting the intermittent transmission timing by the control unit 22 and generating a control signal based on this to control the processing and storage operations of the arithmetic processing unit 16.
(第 3実施形態) (Third embodiment)
図 5は本発明の第 3実施形態に係る電磁放射分布測定装置の構成を示す説明図 であり、 図 5 ( a ) は正面図、 図 5 ( b ) は側面図である。 図 1と同一の構成に ついては、 同一の符号を付して説明を省略する。  FIG. 5 is an explanatory view showing a configuration of an electromagnetic radiation distribution measuring device according to a third embodiment of the present invention. FIG. 5 (a) is a front view, and FIG. 5 (b) is a side view. The same components as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
ループ素子 l a〜 l nは、 加工時の寸法精度により一般に検出感度にばらつき が生ずる。 また、 レベル検出部 7 a〜7 nを構成する回路部品個々の特性は必ず しも同じで.はなく、 これによつても検出感度がばらついたり、 周波数特性が変化 したりする。 そこで、 第 3実施形態は、 第 1及び第 2実施形態で説明した電磁放 射分布測定装置において、 検出感度及び周波数特性の較正を行う測定デ一夕較正 機能を持たせた例を示す。  The detection sensitivity of the loop elements la to ln generally varies depending on the dimensional accuracy during processing. In addition, the characteristics of the circuit components constituting the level detectors 7a to 7n are not always the same, and the detection sensitivity varies and the frequency characteristics also change. Thus, the third embodiment shows an example in which the electromagnetic radiation distribution measurement device described in the first and second embodiments has a measurement data calibration function for calibrating detection sensitivity and frequency characteristics.
図 5において、 ループ素子 1 a〜 l nの上部の携帯電話機の位置に、 補正デ一 夕取得手段を構成するプリント基板 2 7が配置される。 プリント基板 2 7には、 その下面に電磁界発生手段に相当するストリップ線路 2 8 a〜2 8 nが、 上面に グランドパターン 2 9がそれそれ印刷等により形成されて配線される。 ストリツ プ線路 2 8 a〜 2 8 nそれそれの一端は特性インピーダンス (一般に 5 0 Ω ) に 等しい終端抵抗 3 0 a〜3 0 nによって終端され、 他端は基準信号源 (基準信号 発生手段) 3 1の出力信号が供給される分配回路 3 2に接続される。  In FIG. 5, a printed circuit board 27 constituting the correction data acquisition means is arranged at the position of the mobile phone above the loop elements 1 a to ln. On the printed circuit board 27, strip lines 28a to 28n corresponding to electromagnetic field generating means are formed on the lower surface, and ground patterns 29 are formed on the upper surface by printing or the like, and wired. One end of each strip line 28a to 28n is terminated by a termination resistor 30a to 30n equal to the characteristic impedance (generally 50Ω), and the other end is a reference signal source (reference signal generation means). It is connected to the distribution circuit 32 to which the output signal of 31 is supplied.
ストリップ線路 2 8 a〜2 8 nの Y方向の位置は、 それそれループ素子 1 a〜 1 nに対向するように配置される。 これによつて、 ストリップ線路 2 8 a〜 2 8 nから放射される近傍電磁界は、 それそれループ素子 1 a〜 l nで検出されるよ うになつている。 , The positions of the strip lines 28 a to 28 n in the Y direction are arranged so as to face the loop elements 1 a to 1 n, respectively. As a result, the stripline 28 a ~ 28 Near-fields emitted from n are detected by the loop elements 1a to ln, respectively. ,
次に、 以上のように構成された本実施形態の電磁放射分布測定装置における測 定の較正動作を説明する。 ここでは、 第 1実施形態の測定動作に適用した例で説 明する。  Next, a measurement calibration operation in the electromagnetic radiation distribution measuring device of the present embodiment configured as described above will be described. Here, an example in which the measurement operation is applied to the first embodiment will be described.
まず、 基準信号源 3 1から所定周波数の基準信号を分配回路 3 2に供給する。 分配回路 3 2は基準信号をス卜リップ線路 2 8 a〜2 8 nに分配する。 これによ り、 ストリップ線路 2 8 a〜2 8 nはそれそれ基準信号に基づく電磁界を放射す る。 ループ素子 1 a〜 1 nには、 ストリ ヅプ線路 2 8 a〜 2 8 nからの一定で既 知の電磁放射が励振され、 この励振による電磁界が検出される。 そして、 第 1実 施形態での説明と同様にして、 ループ素子 1 a〜 1 nそれそれの検出レベルをデ イジタルデータに変換し、 演算処理部 1 6に記憶する。 本実施形態では、 基準信 号源 3 1から出力する基準信号の周波数を f 1から f 2まで変化させ、 このとき の近傍電磁界検出レベルの変化を検出して演算処理部 1 6に記憶する。 First, a reference signal of a predetermined frequency is supplied from the reference signal source 31 to the distribution circuit 32. The distribution circuit 32 distributes the reference signal to the strip lines 28a to 28n. As a result, the strip lines 28a to 28n each emit an electromagnetic field based on the reference signal. The loop element 1 a ~ 1 n, is constant with electromagnetic radiation of the already known are excited from the string Uz flop line 2 8 a~ 2 8 n, the electromagnetic field is detected by the excitation. Then, in the same manner as described in the first embodiment, the detection levels of the loop elements 1 a to 1 n are converted into digital data and stored in the arithmetic processing unit 16. In the present embodiment, the frequency of the reference signal output from the reference signal source 31 is changed from f1 to f2, and the change in the near electromagnetic field detection level at this time is detected and stored in the arithmetic processing unit 16 .
すなわち、 基準信号源 3 1において周波数を f 1から づっ変化させながら f 2まで変化させて基準信号を発生し、 各周波数における近傍電磁界のレベルを ループ素子 1 a〜 1 nごとに検出して測定を行う。 そして、 この検出レベルをデ イジ夕ルデ一夕の形式で演算処理装置 1 6にすベて記憶する。 その結果、 演算処 理装置 1 6では、 図 6に示すような近傍電磁界検出レベルの周波数特性データ 3 3 a〜 3 3 nが得られるので、 これを記憶する。  That is, the reference signal source 31 generates a reference signal by changing the frequency from f 1 to f 2 while changing the frequency from f 1, and detects the level of the near electromagnetic field at each frequency for each of the loop elements 1 a to 1 n. Perform the measurement. Then, all of the detection levels are stored in the arithmetic processing device 16 in the form of digital data. As a result, the arithmetic processing unit 16 obtains the frequency characteristic data 33 a to 33 n of the near electromagnetic field detection level as shown in FIG. 6, and stores this.
実際に被測定物である携帯電話機 1 7の近傍電磁界を測定する際には、 上記の ようにして得られた検出レベル周波数特性データ 3 3 a〜3 3 nを用いて、 各系 統の測定結果のディジタルデ一夕を補正する。 これにより、 複数系統における周 波数による検出感度のばらつきを較正できる。  When actually measuring the electromagnetic field near the mobile phone 17 as the device under test, the detection level frequency characteristic data 33 a to 33 n obtained as described above is used to The digital data of the measurement result is corrected. This makes it possible to calibrate the variation in detection sensitivity due to the frequency in a plurality of systems.
このように本実施形態では、 ループ素子 1 a〜 1 n及びレベル検出部 7 a〜7 nの各測定系統の検出感度の周波数特性を、 周波数可変の基準信号を発生可能な 基準信号源 3 1を用いて測定し、 検出レベル周波数特性データ 3 3 a〜 3 3 ηと して演算処理部 1 6に記憶することができる。 そして、 電磁放射分布測定装置に より携帯電話機の近傍電磁界分布を測定する際に、 測定データを検出レベル周波 数特性データ 3 3 a〜3 3 nで補正することにより、 装置の較正を行うことがで き、 測定の精度が著しく向上する。 As described above, in the present embodiment, the frequency characteristics of the detection sensitivity of each of the measurement systems of the loop elements 1 a to 1 n and the level detection units 7 a to 7 n are converted into the reference signal source 3 1 capable of generating a frequency-variable reference signal. And can be stored in the arithmetic processing unit 16 as the detection level frequency characteristic data 33 a to 33 η. When measuring the electromagnetic field distribution in the vicinity of the mobile phone using the electromagnetic radiation distribution measuring device, By correcting with the numerical characteristic data 33a to 33n, the device can be calibrated, and the accuracy of the measurement is remarkably improved.
なお、 本実施形態では、 基準となる近傍電磁界を発生させる手段として、 基準 信号源 3 1で発生する基準信号で励振されるストリップ線路 2 8 a ~ 2 8 nを用 いたが、 ダイポールやモノポール、 ループ等の基準アンテナを用いてもよい。 ま た、 予め測定によって近傍電磁界が既知である携帯電話機を用いてもよい。 上述した本実施形態によれば、 携帯電話機等の小型の無線通信装置から放射さ れる近傍電磁界分布を、 高速、 かつ高精度で測定することができる。 また、 携帯 電話機など間欠送信を行っている状態の無線通信装置から放射される近傍電磁界 分布を精度良く測定することが可能となる。 さらに、 測定データ較正機能を持た せるようにし、 電磁界の検出レベルの周波数特性データを予め取得して較正に用 いることにより、 実際の近傍電磁界分布の測定に際し、 測定データを高精度で補 正することができる。 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の精神と範 囲を逸脱することなく様々な変更や修正を加えることができることは当業者にと つて明らかである。 本出願は、 2002年 5月 17日出願の日本特許出願 Να2002- 143327に基づくもの であり、 その内容はここに参照として取り込まれる。  In this embodiment, the strip lines 28 a to 28 n which are excited by the reference signal generated by the reference signal source 31 are used as a means for generating the near-field electromagnetic field serving as a reference. A reference antenna such as a pole or a loop may be used. Alternatively, a mobile phone whose nearby electromagnetic field is known by measurement in advance may be used. According to the above-described embodiment, the near-field distribution radiated from a small wireless communication device such as a mobile phone can be measured at high speed and with high accuracy. In addition, it is possible to accurately measure the distribution of a nearby electromagnetic field radiated from a wireless communication device that is performing intermittent transmission such as a mobile phone. In addition, a measurement data calibration function is provided, and the frequency characteristic data of the detection level of the electromagnetic field is acquired in advance and used for calibration, so that the measured data can be accurately compensated for the actual measurement of the nearby electromagnetic field distribution. Can be corrected. Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on Japanese Patent Application No. 2002-143327 filed on May 17, 2002, the contents of which are incorporated herein by reference.
<産業上の利用可能性 > <Industrial applicability>
以上説明したように本発明によれば、 携帯電話機等の小型の無線通信装置から 放射される近傍電磁界分布を、 高速、 かつ高精度で測定することが可能な電磁放 射分布測定装置を提供できる。  As described above, according to the present invention, there is provided an electromagnetic radiation distribution measuring device capable of measuring a near electromagnetic field distribution radiated from a small wireless communication device such as a mobile phone at high speed and with high accuracy. it can.

Claims

請 求 の 範 囲 The scope of the claims
1 . 無線通信装置から放射される近傍電磁界分布を測定する電磁放射分布 測定装置であって、 1. An electromagnetic radiation distribution measuring device for measuring a near electromagnetic field distribution radiated from a wireless communication device,
列状に配置され前記無線通信装置から放射される電磁界に応じた電気信号を出 力する複数の電磁界検出手段と、  A plurality of electromagnetic field detecting means arranged in a row and outputting an electric signal corresponding to an electromagnetic field radiated from the wireless communication device;
前記複数の電磁界検出手段のそれそれに対応して接続され各電磁界検出手段で 得られる電気信号のレベルを検出するレベル検出手段と、  Level detecting means for detecting the level of an electric signal obtained by each of the plurality of electromagnetic field detecting means, the level detecting means being connected corresponding to that of the plurality of electromagnetic field detecting means;
前記電磁界検出手段及び前記無線通信装置と前記レベル検出手段との間に配置 された電磁的遮蔽手段と、  Electromagnetic shielding means disposed between the electromagnetic field detecting means and the wireless communication device and the level detecting means,
前記電磁界検出手段と前記無線通信装置との測定面における相対位置を変化さ せる移動手段と、  Moving means for changing a relative position of the electromagnetic field detecting means and the wireless communication device on a measurement surface;
前記レベル検出手段の検出結果である電磁界レベルと前記相対位置とを対応づ けて記憶、 処理する演算処理手段と、  Arithmetic processing means for storing and processing an electromagnetic field level as a detection result of the level detection means and the relative position in association with each other;
を備えたことを特徴とする電磁放射分布測定装置。  An electromagnetic radiation distribution measuring device comprising:
2 . 前記複数の電磁界検出手段は、 導体をループ状に形成してなる複数の ループ素子を列状に実装したプリント基板を有し、 このプリント基板に前記複数 のループ素子に一対一に対応して該ループ素子の一端がそれそれ接続される複数 のグランドパターンを設けて構成されることを特徴とする請求の範囲第 1項に記 載の電磁放射分布測定装置。 2. The plurality of electromagnetic field detecting means includes a printed circuit board on which a plurality of loop elements each formed by forming a conductor in a loop shape are mounted in a row, and the printed circuit board corresponds to the plurality of loop elements in a one-to-one correspondence. 2. The electromagnetic radiation distribution measuring device according to claim 1, wherein one end of the loop element is provided with a plurality of ground patterns connected to the loop element.
3 . 前記電磁的遮蔽手段は、 前記複数の電磁界検出手段を保持する保持基 板の一面に設けた電磁波吸収体により構成されることを特徴とする請求の範囲第 1項又は第 2項に記載の電磁放射分布測定装置。 3. The electromagnetic shielding device according to claim 1, wherein the electromagnetic shielding unit is configured by an electromagnetic wave absorber provided on one surface of a holding substrate that holds the plurality of electromagnetic field detecting units. The electromagnetic radiation distribution measuring device according to the above.
4 . 前記複数の電磁界検出手段において、 隣接する前記ループ素子の間に 電磁的遮蔽手段を設けたことを特徴とする請求の範囲第 2項に記載の電磁放射分 布測定装置。 4. The electromagnetic radiation distribution measuring device according to claim 2, wherein in the plurality of electromagnetic field detecting means, an electromagnetic shielding means is provided between the adjacent loop elements.
5 . 局部発振信号を発生する局部発振手段を備え、 5. A local oscillation means for generating a local oscillation signal is provided.
前記レベル検出手段は、 前記電磁界検出手段で得られる電気信号と前記局部発 振信号とを混合することにより特定周波数における電磁界レベルを検出すること を特徴とする請求の範囲第 1項に記載の電磁放射分布測定装置。  2. The level detector according to claim 1, wherein the level detector detects an electromagnetic field level at a specific frequency by mixing the electric signal obtained by the electromagnetic field detector with the local oscillation signal. Electromagnetic radiation distribution measuring device.
6 . 前記無線通信装置の送信動作に応じて測定動作を制御する制御手段を 備え、 6. A control unit that controls a measurement operation according to a transmission operation of the wireless communication device,
前記演算処理手段は、 前記制御手段の制御に基づき、 前記無線通信装置が間欠 的な送信動作を行っている場合に送信タイミングに同期して前記レベル検出手段 により検出された電磁界レベルを記憶することを特徴とする請求の範囲第 1項に 記載の電磁放射分布測定装置。  The arithmetic processing means stores an electromagnetic field level detected by the level detection means in synchronization with a transmission timing when the wireless communication device is performing an intermittent transmission operation based on the control of the control means. 2. The electromagnetic radiation distribution measuring device according to claim 1, wherein:
7 . 前記演算処理手段は、 前記無線通信装置の間欠的な送信動作の所定の 回数分に相当する検出期間において、 前記レベル検出手段により検出された電磁 界レベルを積分又は平均して記憶することを特徴とする請求の範囲第 6項に記載 の電磁放射分布測定装置。 7. The arithmetic processing means integrates or averages and stores the electromagnetic field level detected by the level detection means during a detection period corresponding to a predetermined number of intermittent transmission operations of the wireless communication device. The electromagnetic radiation distribution measuring device according to claim 6, wherein:
8 . 前記複数の電磁界検出手段及びレベル検出手段を含む複数の測定系統 それそれの検出感度を取得し補正データを得るための補正デ一夕取得手段を備え、 前記演算処理手段は、 前記レベル検出手段の検出結果である電磁界レベルを前 記補正データによって補正する補正手段を有することを特徴とする請求の範囲第 1項に記載の電磁放射分布測定装置。 8. A plurality of measurement systems including the plurality of electromagnetic field detection means and the level detection means, and a correction data acquisition means for acquiring detection sensitivity of each of the measurement systems and obtaining correction data, wherein the arithmetic processing means comprises: 2. The electromagnetic radiation distribution measuring device according to claim 1, further comprising a correction unit that corrects an electromagnetic field level detected by the detection unit with the correction data.
9 . 前記補正データ取得手段は、 周波数が可変の基準信号を発生する基準 信号発生手段と、 前記複数の電磁界検出手段にそれそれ対応して配置され前記基 準信号に基づき基準電磁界を発生する電磁界発生手段とを有し、 9. The correction data obtaining means includes: a reference signal generating means for generating a reference signal having a variable frequency; and a reference electromagnetic field based on the reference signal, which is arranged corresponding to each of the plurality of electromagnetic field detecting means. Electromagnetic field generating means to perform,
前記演算処理手段は、 前記複数の測定系統それそれにおける前記基準電磁界に 対する検出レベルを周波数に対応づけて記憶することを特徴とする請求の範囲第 項に記載の電磁放射分布測定装置 ( The method according to claim 1, wherein the arithmetic processing means stores a detection level of the plurality of measurement systems with respect to the reference electromagnetic field in association with a frequency. Electromagnetic radiation distribution measurement device described in section (
PCT/JP2003/005849 2002-05-17 2003-05-09 Electromagnetic irradiation distribution measurement device WO2003098239A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003235923A AU2003235923A1 (en) 2002-05-17 2003-05-09 Electromagnetic irradiation distribution measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002143327A JP4112898B2 (en) 2002-05-17 2002-05-17 Electromagnetic radiation distribution measurement method
JP2002-143327 2002-05-17

Publications (1)

Publication Number Publication Date
WO2003098239A1 true WO2003098239A1 (en) 2003-11-27

Family

ID=29545013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005849 WO2003098239A1 (en) 2002-05-17 2003-05-09 Electromagnetic irradiation distribution measurement device

Country Status (5)

Country Link
JP (1) JP4112898B2 (en)
CN (1) CN100514073C (en)
AU (1) AU2003235923A1 (en)
CZ (1) CZ20041123A3 (en)
WO (1) WO2003098239A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003229A (en) * 2004-06-17 2006-01-05 Ntt Docomo Inc Measurement position control device and method
KR101856756B1 (en) * 2016-11-07 2018-05-10 한국표준과학연구원 Signal generator and measurement system including signal generator
JP7216397B2 (en) * 2018-08-27 2023-02-01 国立大学法人金沢大学 Magnetic field space distribution detector
CN110398987B (en) * 2019-04-12 2020-08-28 台州明创科技有限公司 Field device command control platform

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304456A (en) * 1996-05-20 1997-11-28 Matsushita Electric Ind Co Ltd Apparatus for measuring electromagnetic radiation
JPH11326418A (en) * 1998-05-07 1999-11-26 Matsushita Electric Ind Co Ltd Electromagnetic radiation measuring device, and measuring system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304456A (en) * 1996-05-20 1997-11-28 Matsushita Electric Ind Co Ltd Apparatus for measuring electromagnetic radiation
JPH11326418A (en) * 1998-05-07 1999-11-26 Matsushita Electric Ind Co Ltd Electromagnetic radiation measuring device, and measuring system

Also Published As

Publication number Publication date
CN100514073C (en) 2009-07-15
CN1666108A (en) 2005-09-07
JP4112898B2 (en) 2008-07-02
JP2003337152A (en) 2003-11-28
CZ20041123A3 (en) 2005-09-14
AU2003235923A1 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
US6384789B2 (en) Apparatus for testing mobile telephones
JP4481578B2 (en) Electromagnetic wave measuring apparatus and method
CN101662078B (en) Small shielding body electromagnetic shielding performance testing device, system and method therefor
EP1452880B1 (en) Apparatus for measuring specific absorption rate of radio communication apparatus
TW201817186A (en) Multi-antenna noise power measuring method and apparatus
KR20100053482A (en) Multichannel absorberless near field measurement system
WO2003098239A1 (en) Electromagnetic irradiation distribution measurement device
US20070241761A1 (en) System and method for determining attenuation of electromagnetic waves impacting an electromagnetic shield
RU2723924C1 (en) Method of forming extended test zones of homogeneous linearly polarized electromagnetic field
JP6857646B2 (en) RF transmit module with local field monitoring unit for magnetic resonance inspection system
US8710851B2 (en) Method of measuring specific absorption rate of electromagnetic waves
JP2006208019A (en) Electromagnetic wave coupling apparatus
JP3328506B2 (en) Electromagnetic radiation measurement device
JP3593566B2 (en) Antenna measuring method and antenna measuring device
WO2003098238A1 (en) Local sar measurement device and method
CN201536156U (en) Electromagnetic shielding efficiency test device of small shielding body and radio-frequency antenna and dot frequency radiation source therein
CN102955085A (en) Radio frequency leakage test method
JP2004069372A (en) Method, apparatus and program for calculating intensity of distant electromagnetic field, and recording medium recording the program
TWI823691B (en) A measurement arrangement for characterizing a radio frequency arrangement comprising a plurality of antennas, an automated test equipment comprising the measurement arrangement and a method for characterizing a device under test comprising a plurality of antennas
Koo et al. Limit and use of near-field scan for platform RFI analysis
CN114720794B (en) Electronic equipment antenna feeder unit testing device and method based on space radiation
CN202916359U (en) Radio frequency leakage test device
Kriz Validating anechoic chambers above 1 GHz using a reciprocal site VSWR technique
WO2004057348A1 (en) Method and arrangement for testing a radio device
CN111505437A (en) Power line carrier radiation detection device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PV2004-1123

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 20038157098

Country of ref document: CN

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: PV2004-1123

Country of ref document: CZ