JP2004069372A - Method, apparatus and program for calculating intensity of distant electromagnetic field, and recording medium recording the program - Google Patents

Method, apparatus and program for calculating intensity of distant electromagnetic field, and recording medium recording the program Download PDF

Info

Publication number
JP2004069372A
JP2004069372A JP2002226289A JP2002226289A JP2004069372A JP 2004069372 A JP2004069372 A JP 2004069372A JP 2002226289 A JP2002226289 A JP 2002226289A JP 2002226289 A JP2002226289 A JP 2002226289A JP 2004069372 A JP2004069372 A JP 2004069372A
Authority
JP
Japan
Prior art keywords
magnetic field
intensity
probe
electromagnetic field
measurement surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002226289A
Other languages
Japanese (ja)
Inventor
Satoshi Kazama
風間 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2002226289A priority Critical patent/JP2004069372A/en
Publication of JP2004069372A publication Critical patent/JP2004069372A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a small-size apparatus for measuring the intensity of a distant electromagnetic field of an object to be measured. <P>SOLUTION: A magnetic sensor 2 for scanning scans an equivalent surface set in a peripheral space of an object 1 to be measured. A fixed magnetic sensor 3 is fixed in a vicinity of the object 1. The intensity, direction, and phase of a magnetic field are calculated based on detection signals from the sensors. The intensity of the electromagnetic field is then calculated based on the calculated intensity, direction, and phase of the magnetic field. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、被測定物からの電磁波の放射により形成された電磁界の強度を算出する方法に関する。
【0002】
【従来の技術】
近年、電子機器から放射される電磁波が特に問題となってきており、各国の業界団体においても放射電磁波の強度について規格を設けている。そこで、電子機器メーカーでは、不要な放射電磁波を低減させるべく開発設計の際に種々の対策(EMC対策)を行っている。このEMC対策の際には、対象となる電子機器が前記規格を満たしているいるかを確認するために、当該規格に応じた測定を実施する必要がある。また、携帯電話に代表されるように積極的に電磁波を放射する電子機器についても、種々の規格が存在する。そして、多くの規格では、オープンサイトや電波暗室において被測定物から数m程度という遠方での測定を条件としている。
【0003】
【発明が解決しようとする課題】
しかし、オープンサイトや電波暗室は大規模な装置となるため、多大な設備投資が必要であるという問題だけでなく、測定の度にオープンサイトや電波暗室に被測定物を運ばなくてはならず利便性に欠けるという問題があった。そして、この問題は電子機器の開発コストの上昇を招いていた。
【0004】
本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、小規模な装置で被測定物の遠方の電磁界強度を測定することができる方法及び装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明では、電磁波の放射源となる被測定物の遠方における電磁界強度を算出する方法において、被測定物の近傍に基準信号検出用の第1のプローブを固定配置し、被測定物の近傍に設定した測定面において第2のプローブを走査させながら、該第2のプローブの検出信号及び前記第1のプローブの検出信号に基づき前記測定面における電界又は磁界の強度及び方向並びにその位相の分布を算出し、算出した測定面における前記強度及び方向の分布並びに位相分布に基づき被測定物の遠方の任意の位置における電磁界強度を算出することを特徴とする。
【0006】
本発明の原理について説明する。Loveの等価定理によれば、放射源の周囲に設定した仮想的な等価面を波源として考えることで、放射源を知ることなく、該放射源により形成される電磁界(放射電磁界)を求めることができる。具体的には、等価面上の電界Eと磁界Hから等価面磁流Jと等価面電流Jを求め、この等価面磁流Jと等価面電流Jをそれぞれ放射源と考えることにより放射電磁界を求めることができる。更に具体的には、次式により電界E及び磁界Eを求めることができる。なお、ここでE,H,E,H,J,J,nハット(nの上方に「^」を付した記号)はベクトルである。また、μは真空中の透磁率、εは真空中の誘電率である。
【0007】
【数1】

Figure 2004069372
【0008】
このように、等価面における電界Eと磁界Hを測定することで任意の位置における放射電磁界を求めることができる。本願発明では、被測定物の近傍に固定配置した第1のプローブにより基準信号を検出することにより、第2のプローブの検出信号の位相をも検出できる。これにより、被測定物の近傍に設定した測定面における電界又は磁界の強度及び方向並びにその位相の分布を得ることができ、これらの分布から被測定物の遠方における電磁界強度を算出することができる。
【0009】
【発明の実施の形態】
本願発明の一実施の形態に係る遠方電磁界強度の算出方法及び装置について図面を参照して説明する。図1は遠方電磁界強度の算出装置の測定系の構成図である。
【0010】
本実施の形態では、図1に示すように、被測定物1から放射される電磁波により形成された電磁界(放射電磁界)の強度を算出する。具体的には、走査用磁界センサ2及び固定磁界センサ3を用いて検出した被測定物1の近傍の磁界の強度・方向・位相に基づき、任意の位置における放射電磁界の強度を算出する。まず、この算出方法の理論について説明する。
【0011】
上述したように、Loveの等価定理によれば、等価面上の電界Eと磁界Hから等価面磁流Jと等価面電流Jを求め、この等価面磁流Jと等価面電流Jをそれぞれ放射源と考えることにより放射電磁界を求めることができる。この理論を拡張したものにSchelkunoffの等価定理がある。Schelkunoffの等価定理では、等価面上の電界E又は磁界Hどちらか一方から等価面磁流J又は等価面電流Jを求めることで、放射電磁界を求めることができる。これは、等価面磁流Jの場合は等価面を磁気壁と考え、等価面電流Jの場合は等価面を電気壁と考えることによる。
【0012】
ここで、実際に電界E又は磁界Hのいずれかの測定を行うことを考えると、電位の絶対値を測定することが困難である。そこで、本実施の形態では、被測定物1の近傍に設定した等価面上にループアンテナからなる走査用磁界センサ2を配置し、この走査用磁界センサ2を用いて磁界Hの測定を行うことにする。磁界の大きさは、該磁界センサ2からの出力電流Iにより次式を用いて求めることができる。次式においては、ループの出力に50Ωの負荷が直列に接続されているものとする。
【0013】
=2πfμSHsinθ/(50×2)
なお、fは周波数、μは透磁率、Sはループ面積、Hは磁界、θは磁界とループ面の角度である。
【0014】
また、この理論では磁界Hをベクトルで測定する必要があるが、本測定系では後述するように、磁界に対する磁界センサ2の向きを変えて複数回測定することにより磁界の向きを測定するとともに、走査用磁界センサ2とは別に固定の磁界センサ3を設けることにより位相を測定可能としている。
【0015】
このSchelkunoffの等価定理を適用して被測定物1からの放射電磁による放射電磁界を求めるには、被測定物1を囲むように設定した6面(等価面)のそれぞれを、走査用磁界センサ2を各面に垂直に配置した方向から測定する。これにより走査面の磁界の大きさと位相と向きの分布が得られる。そして、面の単位法線ベクトルとこの磁界の外積で求められる等価面電流が、磁気壁であると仮定された6面に分布している、として求められる電磁界分布が電磁界となる。具体的には、2倍の等価面電流が流れていると考えればよい。この等価面電流を微小ダイポールとして考え次式を用いることで電磁界が算出できる。
【0016】
【数2】
Figure 2004069372
【0017】
ここで、(r,θ,φ)は微小ダイポールからの極座標表示の点、ωは各周波数、lは微小ダイポールの長さ、Idは微小ダイポールに流れる電流、λは波長、Zoは次式で示す空間の波動インピーダンスである。
【0018】
【数3】
Figure 2004069372
【0019】
以下、図1を参照して本実施の形態に係る測定系について具体的に説明する。図1に示すように、本測定系では、走査用の磁界センサ2と、該磁界センサ2を被測定物1の周囲に設定した所定の走査面において走査させるセンサ走査装置4と、被測定物1の近傍に配置した基準信号検出用の固定磁界センサ3とを備えている。
【0020】
走査用磁界センサ2は、シールデッドループ構造となっている。本実施の形態では、図2に示すように、多層プリント配線板によりシールデッドループ構造を実現している。具体的には、第1層21及び第3層23にシールド用のパターン24及び25を設けるとともに、第2層22に心線に相当するパターン26を設けている。各パターン24〜26間の接続はスルーホール27により実現している。また、各パターンの24〜26は配線板の端部に設けた同軸コネクタ28にそれぞれ接続している。このような構造により、図3に示すような一般的なシールデッドループアンテナと同様に磁気センサとして機能する。なお、本実施の形態では多層プリント配線板を用いたセンサを用いたが、図3に示すような一般的なシールデッドループアンテナ2’であっても本発明は実施できる。しかしながら、多層プリント配線板を用いたセンサでは、小型化が容易であること及び被測定物への接近が容易であることから分解能の向上が期待できる点で、一般的なシールデッドループアンテナ2’よりも好適である。
【0021】
なお、走査用のセンサ2として、本実施の形態に係る磁界センサの他に、電界センサや電磁界センサを用いてもよい。
【0022】
固定磁界センサ3は、走査用磁界センサ2の検出信号の位相を検出するための基準となる信号を検出する。この固定磁界センサ3は、被測定物1の近傍に配置したセンサであればその構造は問わない。本実施の形態ではループアンテナを用いた。
【0023】
走査用磁界センサ2及び固定磁界センサ3は、図1に示すように、各々ミキサ5,6を介してA/Dコンバータ7,8に接続している。ミキサ5,6には、発振器9で生成された周波数変換用の基準信号が分波器10により分配されて入力される。これにより、A/Dコンバータ7,8の入力信号がダウンコンバートされる。A/Dコンバータ7,8は、入力信号をディジタルに変換する。また、A/Dコンバータ7,8は互いに位相同期して動作している。これにより、走査用磁界センサ2の検出信号と固定磁界センサ3の検出信号との位相差を検出できる。A/Dコンバータ7,8によって変換されたデータはコンピュータ11に入力される。
【0024】
コンピュータ11は、A/Dコンバータ7,8からの入力データをフーリエ変換する高速フーリエ変換部12と、変換後の各周波数ごとのデータから磁界の強度・方向・位相を算出する磁界情報算出部13と、センサ走査装置4を制御する走査制御部14とを備えている。高速フーリエ変換部12及び磁界情報算出部13は、走査制御部14の制御信号に基づき動作し、被測定物1の近傍に設定された所定の走査面において磁界の磁界の強度・方向・位相を算出する。算出されたデータは、メモリやハードディスク等の記憶装置(図示省略)に保存される。走査制御部14は、図4に示すように、被測定物1を囲むように空間中に設定された仮想的な直方体30の各面を走査するようにセンサ走査装置4を制御する。
【0025】
ここで、測定面である仮想的な直方体30の設定方法について図5を参照して説明する。図5は、微小ダイポールと微小ループ電流の波動インピーダンスの距離特性を示す図である。直方体30の各面(測定面)は、波源との距離が、図5に示す微小ダイポールによる波動インピーダンスと微小ループ電流による波動インピーダンスとが交わる距離よりも波源に近くなるよう(図5では位置Xよりも左方向となるような距離)に設定するのが好ましい。
【0026】
磁界情報算出部13における磁界の強度・方向・位相を算出する方法について説明する。磁界情報算出部13は、走査面に対する角度を変えた測定した走査用磁界センサ2からの2つのデータの和及び差を取ることにより、磁界の強度及び方向を算出する。また、走査用磁界センサ2からのデータと固定磁界センサ3からのデータとを対比することにより両者間の位相差を検出する。走査面における磁界の位相とは、この固定磁界センサ3からの検出信号を基準とした両者間の位相差を意味する。
【0027】
コンピュータ11は、さらに、磁界情報算出部13で算出された走査面における磁界の強度・方向・位相から任意の位置における電磁界を算出する放射電磁界算出部15を備えている。この算出の方法には、前述したようにSchelkunoffの等価定理を用いる。算出した結果は、メモリやハードディスク等の記憶装置(図示省略)に保存される。図示省略の記憶装置に保存された算出結果及び前記磁界分布は、表示装置(図示省略)に表示される。
【0028】
以上のように、本実施の形態によれば、被測定物1の近傍を走査する走査用磁界センサ2を走査させながら、その検出信号と被測定物1の近傍に固定配置した固定磁界センサ3からの検出信号とを比較することにより、走査面における磁界の強度・方向・位相の分布が得られる。そして、得られたデータに基づき、被測定物1からの放射電磁波により形成された電磁界(放射電磁界)を求めることができる。
【0029】
したがって、前述のように本来オープンサイトや電波暗室など特定の条件で実施しなければならない測定について、被測定物の近傍の測定を行うだけで本来の測定値を算出することができる。このような測定の他の例としては、オープンサイトや電波暗室による測定だけでなく、携帯電話などの設計・開発で行われる人体への電磁波の吸収率を表すSAR値の測定(この測定では本来人体をシミュレートしたファントムと呼ばれる装置を用いる)や、アンテナの設計時に行われる放射パターンの測定などがあげられる。本発明では、このような測定について多大な設備投資を行うことなく、容易に電子機器の設計・開発を行うことが可能となる。
【0030】
以上、本発明の一実施の形態について説明したが、本発明は該実施の形態に限定されるものではない。例えば、上記実施の形態では、Loveの等価定理を拡張したSchelkunoffの等価定理を適用し、被測定物の近傍の磁界のみを測定するようにしたが、小型ダイポールアンテナ等を用いて電界のみを測定するようにしてもよく、また磁界及び電界の双方を測定するようにしてもよい。
【0031】
また、上記実施の形態では、被測定物1の周囲空間に仮想的な直方体30を設定し、該仮想直方体30の各面を走査するようにしたが、図6に示すように、その一面をグランド面31として他の5面のみを走査してもよい。被測定物1の形状等によっては、その側面側の面を無視するようにして、被測定物の上面側及び下面側の2面のみを走査するようにしてもよい。さらに、図7に示すように、仮想的な円筒32を設定して、その周面,上面及び下面を走査するようにしてもよい。
【0032】
さらに、上記実施の形態では、走査面における磁界の位相を測定するために、走査用磁界センサ2とは別にループアンテナからなる固定磁界センサ3を被測定物1の近傍に配置したが、センサを被測定物1に付設するようにしてもよい。
【0033】
【発明の効果】
以上詳述したように、本願発明では、被測定物の近傍に固定配置した第1のプローブにより基準信号を検出することにより、第2のプローブの検出信号の位相をも検出できる。これにより、被測定物の近傍に設定した測定面における電界又は磁界の強度及び方向並びにその位相の分布を得ることができ、これらの分布から遠方における電磁界強度を算出することができる。したがって、オープンサイトや電波暗室のような大規模な設備を用いることなく、被測定物の近傍の測定だけで遠方の電磁界強度を得られるので、電子機器の開発・設計を低コストかつ容易に行うことが可能となる。
【図面の簡単な説明】
【図1】遠方電磁界強度の算出装置の測定系の構成図
【図2】走査用磁界センサの構造を説明する図
【図3】他の走査用磁界センサを説明する図
【図4】走査面を説明する図
【図5】微小ダイポールと微小ループ電流の波動インピーダンスの距離特性を示す図
【図6】走査面の他の例を説明する図
【図7】走査面の他の例を説明する図
【符号の説明】
1…被測定物、2…走査用磁界センサ、3…固定磁界センサ、4…センサ走査装置、5,6…ミキサ、7,8…A/Dコンバータ、9…発振器、10…分波器、11…コンピュータ、12…高速フーリエ変換部、13…磁界情報算出部、14…走査装置制御部、15…放射電磁界算出部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for calculating the intensity of an electromagnetic field formed by the emission of an electromagnetic wave from a device under test.
[0002]
[Prior art]
In recent years, electromagnetic waves radiated from electronic devices have become particularly problematic, and industry groups in various countries have established standards for the intensity of radiated electromagnetic waves. Therefore, electronic device manufacturers take various measures (EMC measures) at the time of development design in order to reduce unnecessary radiated electromagnetic waves. At the time of this EMC countermeasure, it is necessary to perform measurement according to the standard in order to confirm whether the target electronic device satisfies the standard. Also, there are various standards for electronic devices such as mobile phones that actively emit electromagnetic waves. And, in many standards, it is required that measurement be performed at a distance of about several meters from an object to be measured in an open site or an anechoic chamber.
[0003]
[Problems to be solved by the invention]
However, since open sites and anechoic chambers are large-scale devices, not only is a large capital investment required, but also the object to be measured must be transported to the open site or anechoic chamber every time measurement is performed. There was a problem of lack of convenience. This problem has led to an increase in the development cost of electronic devices.
[0004]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method and an apparatus capable of measuring a far electromagnetic field intensity of an object to be measured with a small-scale apparatus. is there.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in a method for calculating an electromagnetic field intensity at a distance from an object to be measured which is a radiation source of an electromagnetic wave, a first probe for detecting a reference signal is fixed near the object to be measured. While arranging and scanning the second probe on the measurement surface set near the object to be measured, the electric field or the magnetic field on the measurement surface is measured based on the detection signal of the second probe and the detection signal of the first probe. It is characterized in that the distribution of the intensity, the direction, and the phase thereof is calculated, and the electromagnetic field intensity at an arbitrary position far from the measured object is calculated based on the calculated distribution of the intensity, the direction, and the phase distribution on the measurement surface.
[0006]
The principle of the present invention will be described. According to the Love equivalence theorem, an electromagnetic field (radiated electromagnetic field) formed by a radiation source is determined without knowing the radiation source by considering a virtual equivalent surface set around the radiation source as a wave source. be able to. Specifically, determine the equivalent plane magnetic current J m equivalent surface current J e from the electric field E 1 and the magnetic field H 1 of the equivalent surface, the equivalent plane magnetic current J m equivalent surface current J e respectively radiation source By thinking, the radiated electromagnetic field can be obtained. More specifically, the electric field E and the magnetic field E can be obtained by the following equations. Here, E, H, E 1 , H 1 , J m , J e , and n hats (symbols with “^” above n) are vectors. Μ 0 is the magnetic permeability in a vacuum, and ε 0 is the dielectric constant in a vacuum.
[0007]
(Equation 1)
Figure 2004069372
[0008]
As described above, by measuring the electric field E 1 and the magnetic field H 1 on the equivalent surface, a radiation electromagnetic field at an arbitrary position can be obtained. According to the present invention, the phase of the detection signal of the second probe can be detected by detecting the reference signal by the first probe fixedly arranged near the device under test. This makes it possible to obtain the distribution of the intensity and direction of the electric or magnetic field and the phase thereof on the measurement surface set in the vicinity of the device under test, and to calculate the electromagnetic field intensity at a distance from the device under test from these distributions. it can.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
A method and apparatus for calculating a far electromagnetic field intensity according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a measurement system of a far electromagnetic field strength calculating device.
[0010]
In the present embodiment, as shown in FIG. 1, the intensity of an electromagnetic field (radiated electromagnetic field) formed by an electromagnetic wave radiated from the DUT 1 is calculated. Specifically, the intensity of the radiated electromagnetic field at an arbitrary position is calculated based on the intensity, direction, and phase of the magnetic field near the DUT 1 detected using the scanning magnetic field sensor 2 and the fixed magnetic field sensor 3. First, the theory of this calculation method will be described.
[0011]
As described above, according to the equivalence theorem of Love, obtains the equivalent surface magnetic current J m equivalent surface current J e from the electric field E 1 and the magnetic field H 1 of the equivalent surface, the equivalent plane magnetic current J m equivalent surface By considering the current Je as a radiation source, a radiation electromagnetic field can be obtained. An extension of this theory is the Schelkunoff equivalence theorem. The equivalence theorem of Schelkunoff, by obtaining the equivalent plane magnetic current J m or equivalent surface current J e from either one field E 1 or a magnetic field H 1 of the equivalent surface, it is possible to determine the radiation field. If this is the equivalent surface magnetic current J m believed magnetic wall equivalent surface, in the case of the equivalent surface current J e due to be considered as an electrical wall equivalent surface.
[0012]
Here, considering that actually do any of the measurement of the electric field E 1 or a magnetic field H 1, it is difficult to measure the absolute value of the potential. Therefore, in this embodiment, arranged for scanning magnetic field sensor 2 comprising a loop antenna on the equivalent surface that is set in the vicinity of the DUT 1, to measure the magnetic field H 1 by using the scanning magnetic field sensor 2 I will. The size of the magnetic field, the output current I m from the magnetic field sensor 2 may be obtained by using the following equation. In the following equation, it is assumed that a load of 50Ω is connected in series to the output of the loop.
[0013]
I m = 2πfμSH sin θ / (50 × 2)
Here, f is the frequency, μ is the magnetic permeability, S is the loop area, H is the magnetic field, and θ is the angle between the magnetic field and the loop plane.
[0014]
Although in this theory it is necessary to measure the magnetic field H 1 by a vector, as described later in this assay system, with measuring the magnetic field orientation of the by measuring a plurality of times while changing the orientation of the magnetic field sensor 2 with respect to the magnetic field By providing a fixed magnetic field sensor 3 separately from the scanning magnetic field sensor 2, the phase can be measured.
[0015]
In order to apply the Schelkunoff's equivalence theorem to obtain a radiation electromagnetic field due to electromagnetic radiation from the DUT 1, each of six surfaces (equivalent surfaces) set so as to surround the DUT is scanned with a scanning magnetic field sensor. 2 is measured from the direction perpendicular to each surface. Thereby, the distribution of the magnitude, phase and direction of the magnetic field on the scanning surface is obtained. Then, the electromagnetic field distribution obtained assuming that the equivalent surface current obtained by the cross product of the unit normal vector of the surface and this magnetic field is distributed on the six surfaces assumed to be magnetic walls is the electromagnetic field. Specifically, it can be considered that twice the equivalent surface current is flowing. Considering this equivalent surface current as a small dipole, the electromagnetic field can be calculated by using the following equation.
[0016]
(Equation 2)
Figure 2004069372
[0017]
Here, (r, θ, φ) is a point in polar coordinates from the minute dipole, ω is each frequency, l is the length of the minute dipole, Id is the current flowing through the minute dipole, λ is the wavelength, and Zo is This is the wave impedance of the indicated space.
[0018]
[Equation 3]
Figure 2004069372
[0019]
Hereinafter, the measurement system according to the present embodiment will be specifically described with reference to FIG. As shown in FIG. 1, in the present measurement system, a scanning magnetic field sensor 2, a sensor scanning device 4 for scanning the magnetic field sensor 2 on a predetermined scanning surface set around the DUT 1, and a DUT 1 and a fixed magnetic field sensor 3 for detecting a reference signal, which is disposed in the vicinity of the reference magnetic field sensor 1.
[0020]
The scanning magnetic field sensor 2 has a shielded loop structure. In the present embodiment, as shown in FIG. 2, a shielded loop structure is realized by a multilayer printed wiring board. Specifically, shield patterns 24 and 25 are provided on the first layer 21 and the third layer 23, and a pattern 26 corresponding to a core wire is provided on the second layer 22. The connection between the patterns 24 to 26 is realized by through holes 27. Also, 24 to 26 of each pattern are connected to a coaxial connector 28 provided at an end of the wiring board. With such a structure, it functions as a magnetic sensor like a general shielded loop antenna as shown in FIG. In the present embodiment, a sensor using a multilayer printed wiring board is used. However, the present invention can be implemented with a general shielded loop antenna 2 'as shown in FIG. However, in a sensor using a multilayer printed wiring board, a general shielded loop antenna 2 ′ can be expected to improve the resolution because it is easy to miniaturize and easy to approach an object to be measured. Is more suitable.
[0021]
Note that an electric field sensor or an electromagnetic field sensor may be used as the scanning sensor 2 in addition to the magnetic field sensor according to the present embodiment.
[0022]
The fixed magnetic field sensor 3 detects a signal serving as a reference for detecting the phase of the detection signal of the scanning magnetic field sensor 2. The structure of the fixed magnetic field sensor 3 is not limited as long as the sensor is arranged near the DUT 1. In the present embodiment, a loop antenna is used.
[0023]
The scanning magnetic field sensor 2 and the fixed magnetic field sensor 3 are connected to A / D converters 7 and 8 via mixers 5 and 6, respectively, as shown in FIG. The reference signals for frequency conversion generated by the oscillator 9 are distributed to the mixers 5 and 6 by the duplexer 10 and input. Thus, the input signals of the A / D converters 7 and 8 are down-converted. A / D converters 7 and 8 convert input signals into digital signals. The A / D converters 7 and 8 operate in phase synchronization with each other. Thereby, the phase difference between the detection signal of the scanning magnetic field sensor 2 and the detection signal of the fixed magnetic field sensor 3 can be detected. The data converted by the A / D converters 7 and 8 is input to the computer 11.
[0024]
The computer 11 includes a fast Fourier transform unit 12 that performs a Fourier transform on the input data from the A / D converters 7 and 8, and a magnetic field information calculator 13 that calculates the strength, direction, and phase of the magnetic field from the converted data for each frequency. And a scanning control unit 14 for controlling the sensor scanning device 4. The fast Fourier transform unit 12 and the magnetic field information calculation unit 13 operate based on the control signal of the scan control unit 14 and determine the strength, direction, and phase of the magnetic field of the magnetic field on a predetermined scanning plane set near the DUT 1. calculate. The calculated data is stored in a storage device (not shown) such as a memory or a hard disk. The scanning control unit 14 controls the sensor scanning device 4 to scan each surface of a virtual rectangular parallelepiped 30 set in space so as to surround the DUT 1 as shown in FIG.
[0025]
Here, a method of setting a virtual rectangular parallelepiped 30 which is a measurement surface will be described with reference to FIG. FIG. 5 is a diagram showing a distance characteristic of a wave impedance of a minute dipole and a minute loop current. Each surface (measurement surface) of the rectangular parallelepiped 30 is set so that the distance from the wave source is closer to the wave source than the distance between the wave impedance due to the minute dipole and the wave impedance due to the minute loop current shown in FIG. It is preferable to set the distance to the left.
[0026]
A method of calculating the strength, direction, and phase of the magnetic field in the magnetic field information calculation unit 13 will be described. The magnetic field information calculation unit 13 calculates the strength and direction of the magnetic field by taking the sum and difference of two data from the scanning magnetic field sensor 2 measured at different angles with respect to the scanning plane. Further, by comparing data from the scanning magnetic field sensor 2 with data from the fixed magnetic field sensor 3, a phase difference between the two is detected. The phase of the magnetic field on the scanning plane means a phase difference between the two based on the detection signal from the fixed magnetic field sensor 3.
[0027]
The computer 11 further includes a radiation electromagnetic field calculation unit 15 that calculates an electromagnetic field at an arbitrary position from the intensity, direction, and phase of the magnetic field on the scanning plane calculated by the magnetic field information calculation unit 13. As described above, Schelkunoff's equivalence theorem is used for this calculation. The calculated result is stored in a storage device (not shown) such as a memory or a hard disk. The calculation results and the magnetic field distribution stored in a storage device (not shown) are displayed on a display device (not shown).
[0028]
As described above, according to the present embodiment, while the scanning magnetic field sensor 2 that scans the vicinity of the DUT 1 is scanned, the detection signal and the fixed magnetic field sensor 3 that is fixedly disposed near the DUT 1 are scanned. By comparing the detection signal with the detection signal from the scanner, the distribution of the intensity, direction, and phase of the magnetic field on the scanning surface can be obtained. Then, based on the obtained data, an electromagnetic field (radiated electromagnetic field) formed by the radiated electromagnetic wave from the DUT 1 can be obtained.
[0029]
Therefore, as described above, for a measurement that should be performed under specific conditions, such as an open site or an anechoic chamber, an original measurement value can be calculated only by performing measurement in the vicinity of the measured object. Other examples of such measurement include not only measurement using an open site or an anechoic chamber, but also measurement of the SAR value that indicates the absorptivity of electromagnetic waves to the human body, which is performed in the design and development of mobile phones and the like (in this measurement, the A device called a phantom that simulates the human body), and measurement of a radiation pattern performed when designing an antenna. According to the present invention, it is possible to easily design and develop an electronic device without making a large capital investment for such measurement.
[0030]
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this Embodiment. For example, in the above embodiment, the Schelkunoff's equivalent theorem, which is an extension of the Love's equivalent theorem, is applied to measure only the magnetic field near the object to be measured, but only the electric field is measured using a small dipole antenna or the like. Alternatively, both the magnetic field and the electric field may be measured.
[0031]
Further, in the above embodiment, the virtual cuboid 30 is set in the space around the DUT 1 and each surface of the virtual cuboid 30 is scanned. However, as shown in FIG. Only the other five surfaces may be scanned as the ground surface 31. Depending on the shape and the like of the DUT 1, the side surface may be ignored, and only the two upper and lower surfaces of the DUT may be scanned. Furthermore, as shown in FIG. 7, a virtual cylinder 32 may be set, and its peripheral surface, upper surface, and lower surface may be scanned.
[0032]
Further, in the above-described embodiment, the fixed magnetic field sensor 3 including a loop antenna is disposed near the DUT 1 separately from the scanning magnetic field sensor 2 in order to measure the phase of the magnetic field on the scanning surface. It may be attached to the DUT 1.
[0033]
【The invention's effect】
As described in detail above, in the present invention, the phase of the detection signal of the second probe can be detected by detecting the reference signal with the first probe fixedly arranged near the device under test. This makes it possible to obtain the distribution of the intensity and direction of the electric or magnetic field and the phase thereof on the measurement surface set in the vicinity of the object to be measured, and to calculate the electromagnetic field intensity at a distance from these distributions. Therefore, it is possible to obtain the strength of a distant electromagnetic field only by measuring the vicinity of the DUT without using large-scale equipment such as an open site or an anechoic chamber. It is possible to do.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a measurement system of a far electromagnetic field strength calculation device. FIG. 2 is a diagram illustrating the structure of a scanning magnetic field sensor. FIG. 3 is a diagram illustrating another scanning magnetic field sensor. FIG. 5 is a diagram illustrating a surface. FIG. 5 is a diagram illustrating a distance characteristic of a wave impedance of a minute dipole and a minute loop current. FIG. 6 is a diagram illustrating another example of a scanning surface. FIG. 7 is another example of a scanning surface. Figure to be explained
DESCRIPTION OF SYMBOLS 1 ... DUT, 2 ... Scanning magnetic field sensor, 3 ... Fixed magnetic field sensor, 4 ... Sensor scanning device, 5, 6 ... Mixer, 7, 8 ... A / D converter, 9 ... Oscillator, 10 ... Duplexer, 11 Computer, 12 Fast Fourier Transform Unit, 13 Magnetic Field Information Calculation Unit, 14 Scanning Device Control Unit, 15 Radiated Electromagnetic Field Calculation Unit

Claims (4)

電磁波の放射源となる被測定物の遠方における電磁界強度を算出する方法において、
第1のプローブを被測定物の近傍に固定配置又は被測定物に付設して基準信号を検出し、
被測定物の近傍空間に設定した測定面において第2のプローブを走査させながら信号を検出し、
第2のプローブの検出信号及び前記第1のプローブの検出信号に基づき前記測定面における電界又は磁界の強度及び方向並びにその位相の分布を算出し、
算出した測定面における前記強度及び方向の分布並びに位相分布に基づき被測定物の遠方の任意の位置における電磁界強度を算出する
ことを特徴とする遠方電磁界強度の算出方法。
In a method of calculating the electromagnetic field strength in the distance of the device under test as a radiation source of electromagnetic waves,
The first probe is fixedly arranged in the vicinity of the measured object or attached to the measured object to detect the reference signal,
A signal is detected while scanning the second probe on the measurement surface set in the space near the object to be measured,
Based on the detection signal of the second probe and the detection signal of the first probe, calculate the intensity and direction of the electric field or magnetic field on the measurement surface and the distribution of the phase thereof,
A method for calculating a far electromagnetic field strength, comprising calculating an electromagnetic field strength at an arbitrary position far from an object to be measured based on the calculated distribution of the strength and direction and the phase distribution on the measurement surface.
電磁波の放射源となる被測定物の遠方における電磁界強度を算出する装置において、
被測定物の近傍に固定又は被測定物に付設した基準信号検出用の第1のプローブと、
被測定物の近傍空間に設定した測定面における電界又は磁界の強度を測定する第2のプローブと、
第2のプローブを前記測定面において走査させる走査装置と、
第2のプローブの検出信号及び前記第1のプローブの検出信号に基づき前記測定面における電界又は磁界の強度及び方向並びにその位相の分布を算出する手段と、
算出した測定面における前記強度及び方向の分布並びに位相分布に基づき被測定物の遠方の任意の位置における電磁界強度を算出する手段とを備えた
ことを特徴とする遠方電磁界強度の算出装置。
In a device for calculating the electromagnetic field strength in the distance of the DUT as a radiation source of electromagnetic waves,
A first probe for detecting a reference signal fixed near or attached to the device under test,
A second probe that measures the intensity of an electric field or a magnetic field on a measurement surface set in a space near the object to be measured,
A scanning device for scanning a second probe on the measurement surface;
Means for calculating the intensity and direction of the electric field or magnetic field on the measurement surface based on the detection signal of the second probe and the detection signal of the first probe, and a distribution of the phase thereof;
Means for calculating an electromagnetic field intensity at an arbitrary position distant from the measured object based on the calculated distribution of the intensity and direction and the phase distribution on the measurement surface.
電磁波の放射源となる被測定物の遠方における電磁界強度を算出する装置に
被測定物の近傍に固定又は被測定物に付設した基準信号検出用の第1のプローブからの検出信号と、被測定物の近傍空間に設定した測定面における電界又は磁界の強度を測定する第2のプローブからの検出信号とに基づき、前記測定面における電界又は磁界の強度及び方向並びにその位相の分布を算出する手段と、
算出した測定面における前記強度及び方向の分布及び位相分布に基づき被測定物の遠方の任意の位置における電磁界強度を算出する手段として機能させる
ことを特徴とする遠方電磁界強度の算出プログラム。
A detection signal from a first probe for detecting a reference signal fixed to or attached to the device under test is provided in a device for calculating the electromagnetic field intensity at a distance from the device under test as a radiation source of electromagnetic waves; Based on the detection signal from the second probe that measures the intensity of the electric field or magnetic field on the measurement surface set in the space near the object, calculate the intensity and direction of the electric field or magnetic field on the measurement surface and the distribution of the phase thereof. Means,
A far-field electromagnetic field calculation program that functions as a means for calculating an electromagnetic field strength at an arbitrary position far from an object to be measured based on the calculated intensity and direction distribution and phase distribution on a measurement surface.
請求項3記載の遠方電磁界強度の算出プログラムを記録したコンピュータ読み取り可能な記録媒体。A computer-readable recording medium recording the far electromagnetic field strength calculation program according to claim 3.
JP2002226289A 2002-08-02 2002-08-02 Method, apparatus and program for calculating intensity of distant electromagnetic field, and recording medium recording the program Pending JP2004069372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226289A JP2004069372A (en) 2002-08-02 2002-08-02 Method, apparatus and program for calculating intensity of distant electromagnetic field, and recording medium recording the program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226289A JP2004069372A (en) 2002-08-02 2002-08-02 Method, apparatus and program for calculating intensity of distant electromagnetic field, and recording medium recording the program

Publications (1)

Publication Number Publication Date
JP2004069372A true JP2004069372A (en) 2004-03-04

Family

ID=32013681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226289A Pending JP2004069372A (en) 2002-08-02 2002-08-02 Method, apparatus and program for calculating intensity of distant electromagnetic field, and recording medium recording the program

Country Status (1)

Country Link
JP (1) JP2004069372A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047297A (en) * 2004-07-05 2006-02-16 Ntt Docomo Inc Apparatus for measuring specific absorption rate
JP2006098158A (en) * 2004-09-29 2006-04-13 Hitachi Ltd Electric field distribution measuring method and electric field distribution measuring device
JP2006201007A (en) * 2005-01-20 2006-08-03 Taiyo Yuden Co Ltd Calculation method for electric field vector and its device, calculation program of electric field vector and recording medium which records its program, calculation method of electromagnetic field vector and its device, calculation program of electrromagnetic field vector and recording medium which records its program, calculation method of distant electromagnetic field intensity and its device, calculation program of distant electromagnetic field intensity and recording medium which records its program
JP2007163236A (en) * 2005-12-13 2007-06-28 Matsushita Electric Ind Co Ltd Electromagnetic wave measuring method and electromagnetic wave measuring device
US9335359B2 (en) 2013-08-09 2016-05-10 Tdk Corporation Far electromagnetic field estimation method and apparatus, and near electromagnetic field measurement apparatus
JP2017181070A (en) * 2016-03-28 2017-10-05 アンリツ株式会社 Electric field intensity distribution measurement device and electric field intensity distribution measurement method
JP2018128262A (en) * 2017-02-06 2018-08-16 日本ユニシス株式会社 Solar radiation intensity calculation apparatus and solar radiation intensity calculation method
US10317446B2 (en) 2016-03-28 2019-06-11 Tdk Corporation Radiated emission measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062467A (en) * 1996-06-12 1998-03-06 Mitsubishi Electric Corp Unnecessary electromagnetic wave measuring system
JPH11295365A (en) * 1998-04-07 1999-10-29 Toyo Commun Equip Co Ltd Electromagnetic field analyzing method
JP2000304790A (en) * 1999-04-23 2000-11-02 Hitachi Ltd Device and method for investigating electromagnetic wave generating source and method for analyzing the source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062467A (en) * 1996-06-12 1998-03-06 Mitsubishi Electric Corp Unnecessary electromagnetic wave measuring system
JPH11295365A (en) * 1998-04-07 1999-10-29 Toyo Commun Equip Co Ltd Electromagnetic field analyzing method
JP2000304790A (en) * 1999-04-23 2000-11-02 Hitachi Ltd Device and method for investigating electromagnetic wave generating source and method for analyzing the source

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047297A (en) * 2004-07-05 2006-02-16 Ntt Docomo Inc Apparatus for measuring specific absorption rate
JP2006098158A (en) * 2004-09-29 2006-04-13 Hitachi Ltd Electric field distribution measuring method and electric field distribution measuring device
JP4635544B2 (en) * 2004-09-29 2011-02-23 株式会社日立製作所 Electric field distribution measuring method and electric field distribution measuring apparatus
JP2006201007A (en) * 2005-01-20 2006-08-03 Taiyo Yuden Co Ltd Calculation method for electric field vector and its device, calculation program of electric field vector and recording medium which records its program, calculation method of electromagnetic field vector and its device, calculation program of electrromagnetic field vector and recording medium which records its program, calculation method of distant electromagnetic field intensity and its device, calculation program of distant electromagnetic field intensity and recording medium which records its program
US7358749B2 (en) 2005-01-20 2008-04-15 Taiyo Yuden, Co., Ltd. Method, apparatus, and program for measuring an electromagnetic field and medium storing the program
JP4619799B2 (en) * 2005-01-20 2011-01-26 太陽誘電株式会社 Electric field vector calculation method and apparatus, electric field vector calculation program, and recording medium recording the program
JP2007163236A (en) * 2005-12-13 2007-06-28 Matsushita Electric Ind Co Ltd Electromagnetic wave measuring method and electromagnetic wave measuring device
US9335359B2 (en) 2013-08-09 2016-05-10 Tdk Corporation Far electromagnetic field estimation method and apparatus, and near electromagnetic field measurement apparatus
JP2017181070A (en) * 2016-03-28 2017-10-05 アンリツ株式会社 Electric field intensity distribution measurement device and electric field intensity distribution measurement method
US10317446B2 (en) 2016-03-28 2019-06-11 Tdk Corporation Radiated emission measuring device
JP2018128262A (en) * 2017-02-06 2018-08-16 日本ユニシス株式会社 Solar radiation intensity calculation apparatus and solar radiation intensity calculation method

Similar Documents

Publication Publication Date Title
JP4619799B2 (en) Electric field vector calculation method and apparatus, electric field vector calculation program, and recording medium recording the program
US7459917B2 (en) Measuring method for electromagnetic field intensity and apparatus therefor, measuring method for electromagnetic field intensity distribution and apparatus therefor, measuring method for current and voltage distributions and apparatus therefor
US6975111B2 (en) Method and device for measuring intensity of electromagnetic field, method and device for measuring current-voltage distribution, and method for judging quality of electronic device, and electronic device thereof
US9699678B2 (en) Plane wave generation within a small volume of space for evaluation of wireless devices
KR101360280B1 (en) Multichannel absorberless near field measurement system
JP2008134218A (en) System and method for measuring specific absorption rate
KR100574226B1 (en) Method for measuring the electromagnetic radiation pattern and gain of a radiator using a TEM waveguide
Sarabandi et al. Pattern and gain characterization using nonintrusive very-near-field electro-optical measurements over arbitrary closed surfaces
JP2004069372A (en) Method, apparatus and program for calculating intensity of distant electromagnetic field, and recording medium recording the program
Shinde et al. Modeling EMI due to display signals in a TV
JP3760908B2 (en) Narrow directional electromagnetic antenna probe and electromagnetic field measuring device, current distribution exploration device or electrical wiring diagnostic device using the same
CN112213565B (en) Electromagnetic field passive probe and detection system
JP5362599B2 (en) Electromagnetic source exploration method, electromagnetic source exploration program, electromagnetic source exploration device
Jomaa et al. Development of a 3D scanning system for magnetic near-field characterization
Sivaraman et al. Three dimensional scanning system for near-field measurements
Lin et al. Printed magnetic field probe with enhanced performances
Kazama et al. Adjacent electric field and magnetic field distribution measurement system
JP2008082945A (en) Near electromagnetic field distribution measurement apparatus
JP3489363B2 (en) Method and apparatus for measuring electromagnetic interference of circuit board
JP7410561B2 (en) Radio wave sensor and electric field component detection device
JP6052355B1 (en) Test equipment
Yamaguchi et al. Two dimensional electromagnetic noise imaging system using planar shielded-loop coil array
Dang et al. A simple method for calculating the output voltage at receive antenna terminals using the complex antenna factor
JP2019158479A (en) Wave source information presentation system, wave source information presentation method, and program
Chiyo et al. Measurement technique for electromagnetic field intensity distribution using infrared 2-D lock-in amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603