JP2006208019A - Electromagnetic wave coupling apparatus - Google Patents

Electromagnetic wave coupling apparatus Download PDF

Info

Publication number
JP2006208019A
JP2006208019A JP2005016541A JP2005016541A JP2006208019A JP 2006208019 A JP2006208019 A JP 2006208019A JP 2005016541 A JP2005016541 A JP 2005016541A JP 2005016541 A JP2005016541 A JP 2005016541A JP 2006208019 A JP2006208019 A JP 2006208019A
Authority
JP
Japan
Prior art keywords
antenna
electromagnetic wave
measured
coupling device
antenna pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005016541A
Other languages
Japanese (ja)
Inventor
Masaaki Hirose
雅昭 廣世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CANDOX SYSTEMS Inc
Original Assignee
CANDOX SYSTEMS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CANDOX SYSTEMS Inc filed Critical CANDOX SYSTEMS Inc
Priority to JP2005016541A priority Critical patent/JP2006208019A/en
Publication of JP2006208019A publication Critical patent/JP2006208019A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for accurately measuring spurious radiation, covering a very wide frequency band. <P>SOLUTION: A stage for putting an object to be measured, a wide band progressive wave antenna pair facing X, Y, Z axis directions from the stage in the center, a compositor for combining and adding signals from the antenna pair, and a means for reading the added power spectrum are provided. By constituting the stage connected with the compositor so that the facing antenna pair can be added with the same phase to be a movable stage or that maximum power value can be calculated by varying the phase with a variable phase shifter, the maximum value in each frequency is recorded at all times and the fundamentals waves, higher harmonic waves or other spurious components can be measured and recorded. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、VHF、UHF帯等の電波機器(例えば携帯電話機等)から発せられる目的キャリア成分と高周波等の不要輻射スプリアス成分とを、広帯域に亘り正確に測定できる電磁波結合装置に関するものである。 The present invention relates to an electromagnetic wave coupling device capable of accurately measuring a target carrier component emitted from a radio wave device such as a VHF band or a UHF band (for example, a mobile phone) and an unnecessary radiation spurious component such as a high frequency over a wide band.

最近の携帯電話機には、通話だけでなく、画像表示やインターネット機能が付与されたり、その他幾多の使途が考案され、目覚しい進化を遂げつつある。他の無線情報端末機器も無線LANのブロードバンド化、オフィス、家庭さらに自動車等における情報機器同士のデータリンク等々、近来・未来はIT時代にふさわしく数々の電磁波を使う小型情報機器が開発される筈である。   Recent mobile phones are not only making calls, but also being provided with image display and Internet functions, and many other uses have been devised, and are making remarkable progress. Other wireless information terminal devices will also be developed as wireless LAN broadband, data links between information devices in offices, homes, automobiles, etc. In the near future, small information devices that use various electromagnetic waves will be developed in the IT era. is there.

これら機器からは、通信目的の基本周波数成分の他、スプリアス成分と呼ばれる不要信号成分も放射され、これが妨害を与えたりしている。従って、これら放射の実態を正確に掌握し、適切な対策を施した機器を製造することが強く求められている。しかしながら、これらスプリアス放射は、非常に広範囲の周波数帯に及んでいるため、その正確な測定手段を求めるのは難しいのが現状である。   From these devices, in addition to the fundamental frequency component for communication purposes, unnecessary signal components called spurious components are also radiated, which may cause interference. Therefore, there is a strong demand to manufacture devices that accurately grasp the actual state of these emissions and take appropriate measures. However, since these spurious radiations extend over a very wide frequency band, it is difficult to obtain accurate measurement means.

(1)例えば電波暗室等の電磁波測定サイトで、被測定物に広帯域アンテナを向け飛来する電磁波の各周波数成分を測定すれば、スプリアス成分の測定は可能である。しかしながら、XYZ各偏波成分を測定するには、被測定物の設置を其の都度変えて測定を繰り返さなければならないが、このようにするには極めて多大の時間を浪費するだけでなく、その間に被測定物の状態が変化してしまうことが生じ得る。   (1) Spurious components can be measured by measuring each frequency component of electromagnetic waves flying toward a device under test at an electromagnetic wave measurement site such as an anechoic chamber. However, in order to measure each XYZ polarization component, it is necessary to repeat the measurement by changing the installation of the object to be measured each time. It can happen that the state of the object to be measured changes.

(2)工場やオフィス等の小さなスペースでは、TEM−CELLと呼ばれる一種の伝送線路形状内に被測定物を入れる方法がある。TEM−CELLは一方向偏波に対応するので、単一偏波のみであるから、各軸偏波毎に被測定物の設置をし直すことが必要になる。また、大きな同軸線路の内導線と外皮の間に被測定物を入れる構造であるので、被測定物が入る位置により結合係数が変わる問題があり、これは広い周波数範囲では更に問題が大きくなる。そればかりか、被測定物のフェーズセンターがスプリアス周波数で色々と変化するので、そのスプリアス周波数毎にいちいち設置位置を探す必要があるが、これは不可能に近いから、あまり正確な測定は望めない。   (2) In a small space such as a factory or office, there is a method of putting an object to be measured in a kind of transmission line shape called TEM-CELL. Since TEM-CELL is compatible with unidirectional polarization, it has only a single polarization. Therefore, it is necessary to re-install the device under test for each axial polarization. In addition, since the object to be measured is inserted between the inner conductor of the large coaxial line and the outer skin, there is a problem that the coupling coefficient changes depending on the position where the object to be measured enters, which becomes more problematic in a wide frequency range. In addition, since the phase center of the object to be measured changes variously at the spurious frequency, it is necessary to find the installation position for each spurious frequency, but this is almost impossible, so it is not possible to measure very accurately. .

上記(2)の方法の結合量は、内導体に近づくほど大きくなり、外皮側に行くほど小さくなる。要するに、設置場所を限定し、その約束事に基づいて値を読む方法であるから、特に装置内で被測定物が大きくなるにしたがって、規定の位置に置くことは難しくなり、益々測定が不正確になる。   The amount of coupling in the method (2) increases as it approaches the inner conductor, and decreases as it goes to the outer skin side. In short, it is a method of limiting the installation location and reading the value based on the convention, so it becomes difficult to place it in the specified position, especially as the object to be measured becomes larger in the device, and the measurement becomes increasingly inaccurate. Become.

特願平5―72095号明細書には、アンテナ測定装置で放射電力と放射パターンを測定する装置が提案されている。これは、基本的には上記(1)の関係を、多数のアンテナで円周状に囲み、電気的に掃引することによって、測定時間を節約しようとするものである。   Japanese Patent Application No. 5-72095 proposes a device for measuring radiation power and radiation pattern with an antenna measurement device. This is basically intended to save the measurement time by surrounding the relationship (1) with a large number of antennas in a circle and electrically sweeping the relationship.

これは上記(1)と同様に、各偏波毎に被測定物の設置を変え測定するものであるが、この装置で高調波スプリアスを測定する場合も、各周波数成分の電力を逐次求め、測定操作終了後にデータを比較することによって、基本波成分やスプリアス放射強度比の関係を求めるものであるから、上記(1)と同じ欠点を有する。   As in the above (1), the measurement is performed by changing the installation of the object to be measured for each polarized wave, but when measuring harmonic spurious with this device, the power of each frequency component is sequentially obtained, Since the relationship between the fundamental wave component and the spurious radiation intensity ratio is obtained by comparing the data after the measurement operation is completed, it has the same drawback as the above (1).

このような問題点を解決するため本出願人は、被測定物の円周上に同一特性の進行波アンテナを配置し、各その中心点からアンテナエレメント間の伝送移送量を同じになるように調整し、即ち、発信源から周囲に放射される電波を円周上で同相で収得・合成する方法を開発し、先に特許を取得している(特許文献1参照)。
特許第3436669号 この場合、単一の偏波のみに着目した装置で、XYZ3軸の偏波成分を別々に、また、数次高調波迄をも含む極めて広帯域に亘り全軸・全周波数範囲で前述の中心点から等距離に測定アンテナが位置する関係を構築することは困難である。
In order to solve such a problem, the present applicant arranges traveling wave antennas having the same characteristics on the circumference of the object to be measured so that the transmission transfer amount between the antenna elements from each center point becomes the same. A method of adjusting, that is, acquiring and synthesizing radio waves radiated from a transmission source in the same phase on the circumference has been developed, and a patent has been obtained (see Patent Document 1).
Patent No. 3436669 In this case, the device focuses only on a single polarized wave, and the polarization components of the XYZ three axes are separated separately, and over a very wide band including several harmonics in all axes and all frequency ranges. It is difficult to construct a relationship in which the measurement antenna is located equidistant from the center point.

上記特許によって、予め定められた周波数及び偏波での放射電力を迅速に求める方法は実現したが、近来のようにブロードバンド化したデジタル通信では、送信用キャリア周波数のみならず、内部では高速なデジタル処理信号等が動作しているから、極めて広帯域に不要な電磁波成分を放射する問題があった。   Although the above-mentioned patent has realized a method for quickly obtaining radiated power at a predetermined frequency and polarization, in digital communication with broadband as in the past, not only the carrier frequency for transmission but also high-speed digital inside Since the processing signal or the like is operating, there is a problem of radiating unnecessary electromagnetic wave components in a very wide band.

また、プラスチック筺体等で小型化が進むハンディー情報機器は、従来の本格的な通信機器に比べ、シールド等の対策が不足しがちであるから、キャリア信号の高調波成分の放出も無視できない。   In addition, handy information devices that are becoming smaller in size such as plastic housings tend to have insufficient measures such as shielding as compared to conventional full-fledged communication devices. Therefore, the emission of harmonic components of carrier signals cannot be ignored.

これらの極めて広範囲に及ぶ周波数帯スプリアス信号放射を正確に測定しようとすると、前述の従来法では膨大な時間を要し不可能に近いので、適切な測定法が渇望されている。   In order to accurately measure these very wide frequency band spurious signal emissions, the above-described conventional method requires a great deal of time and is almost impossible, and therefore, an appropriate measurement method is desired.

この発明は、このような点に着目してなされたものであり、非常に広範囲の周波数帯にまたがるスプリアス放射を正確に測定する方法を提供することを目的とする。   The present invention has been made paying attention to such points, and an object thereof is to provide a method for accurately measuring spurious radiation over a very wide frequency band.

上記目的に沿う本発明の構成は、被測定物(電磁波放射体)を載置する移動し得る台と、該台を中心としてXYZ軸方向に対向する広帯域進行波アンテナペアと、該アンテナペアからの信号を合成加算する合成器と、加算した電力スペクトラムを読み取る手段とを具備し、前記対向するアンテナペア同士は同位相で加算され得るように前記合成器に接続されると共に前記台を移動し得る台とするか、可変位相器で位相を変えることによって、最大電力値を求め得るように構成したことにより、常に各周波数における最大値を記録し、基本波、高調波、或いは他のスプリアス成分を測定記録することができる。尚、アンテナペアとは、等しい偏波のアンテナのことである。   The configuration of the present invention that meets the above-described object includes a movable table on which a device under test (electromagnetic wave emitter) is placed, a broadband traveling wave antenna pair that faces the XYZ axis around the table, and the antenna pair. And a means for reading the added power spectrum, and the opposed antenna pairs are connected to the combiner so that they can be added in the same phase and move the stage. The maximum value at each frequency is always recorded by setting it as a platform to obtain, or by changing the phase with a variable phase shifter, so that the maximum value at each frequency is always recorded, and the fundamental, harmonic, or other spurious components Can be recorded. The antenna pair is an antenna having the same polarization.

前記アンテナペアは、前記台を中心として、XYZ軸方向にそれぞれ等距離で対向配置しているのが好ましい(請求項2)。   It is preferable that the antenna pairs are arranged to face each other at equal distances in the XYZ axial directions with the platform as a center.

前記広帯域進行波アンテナペアが、基本周波数の3倍以上の帯域幅を有する進行波アンテナであるのが良い(請求項3)。   The broadband traveling wave antenna pair may be a traveling wave antenna having a bandwidth that is three times or more the fundamental frequency.

前記加算した電力スペクトラムを読み取る手段が、ピーク値保持機能を持ったスペクトラムアナライザー等の掃引型電力測定器であるのが好ましい(請求項4)。   The means for reading the added power spectrum is preferably a swept power measuring instrument such as a spectrum analyzer having a peak value holding function.

前記被測定物を載置する台には、対向するアンテナ間の中間点を被測定物電磁波放射源の中心が通過するための掃引可動する機構が設けられているのが好ましい(請求項5)。このように構成すれば、被測定物を載置する台を任意周波数範囲で掃引しながら移動させることが出来る。   The platform on which the object to be measured is placed is preferably provided with a mechanism that can be swept so that the center of the electromagnetic wave radiation source to be measured passes through an intermediate point between the opposing antennas. . If comprised in this way, the stand which mounts a to-be-measured object can be moved, sweeping in an arbitrary frequency range.

前記対向するアンテナペア同士は同位相で加算されるように等しい位相量で前記合成器に接続されるのが好ましい(請求項6)。   Preferably, the opposing antenna pairs are connected to the combiner with equal phase amounts so that they are added in the same phase.

更に、前記アンテナペアの外側には、電磁波吸収材と金属遮蔽板で構成されたシールド箱が形成されているのが好ましい(請求項6)。このようにすることによって、被測定物から放射される電磁波が反射されないと共に、本器アンテナペアがケース金属面でイメージ像を作らないようにすることができる。   Furthermore, it is preferable that a shield box composed of an electromagnetic wave absorbing material and a metal shielding plate is formed outside the antenna pair. By doing in this way, the electromagnetic wave radiated | emitted from a to-be-measured object is not reflected, but it can prevent that this device antenna pair makes an image image on a case metal surface.

本発明によれば、従来、多大な時間を要しても、正確に測定することが困難であった広帯域スプリアス成分の測定・分析を、僅かなスペースで且つ短時間に行うことができるため、無用な混乱を与える妨害波の発生を事前に止める対策ができるほか、益々増える各種電波使用機器相互間の妨害や例えば心臓ペースメーカー等の電子機器への妨害防止等情報化社会の秩序ある発展に寄与するところ極めて大きい。 According to the present invention, it is possible to measure and analyze a broadband spurious component that has conventionally been difficult to measure accurately even in a long time, in a short space and in a short time. In addition to taking measures to stop the generation of disturbing waves that cause unnecessary disruption in advance, it contributes to the orderly development of the information-oriented society, such as the increasing interference between various radio wave devices and the prevention of interference with electronic devices such as cardiac pacemakers. It is extremely large.

次に、本発明の実施の形態を説明する。
前記請求項1〜6の本発明の目的を達成するためには、以下(1)〜(3)のような解決すべき技術的課題がある。
Next, an embodiment of the present invention will be described.
In order to achieve the object of the present invention of the first to sixth aspects, there are technical problems to be solved such as (1) to (3) below.

(1)3軸に亘る偏波成分を検出できること
これは所謂、通信のための主アンテナのみならず、色々な所から電磁波輻射があるので、予め偏波を決められないことから、本発明の必須の条件である。更に、主アンテナからの放射でもキャリア周波数以外の高周波を含む成分は、主アンテナ上でも色々なモードが発生し、基本波と同じ方向の偏波になる保証は全く無いことから、この条件は必要である。
(1) The ability to detect polarization components over three axes This is because not only the so-called main antenna for communication but also electromagnetic radiation from various places, the polarization cannot be determined in advance. It is an indispensable condition. Furthermore, this condition is necessary because components that include high frequencies other than the carrier frequency even when radiating from the main antenna generate various modes on the main antenna and are not guaranteed to be polarized in the same direction as the fundamental wave. It is.

(2)基本周波数の少なくとも3倍調波以上の広帯域な周波数範囲を確実に観察・測定できること
一般にスプリアス信号の大きな成分は2次、3次高調波であるので、この帯域迄を一度に観察・測定するのが好ましい。更に前述のデジタル機器が、キャリアとは無関係なクロック信号とその高調波が多量に放出されるので、基本波の少なくとも3倍までの周波数範囲を確実に連続して観察・測定するのが好ましいから、これは本発明の効果を十分発揮させるための必要な条件である。
(2) A wide frequency range that is at least 3 times higher than the fundamental frequency can be observed and measured reliably. Generally, the large components of spurious signals are second and third harmonics. It is preferable to measure. Furthermore, since the above-mentioned digital equipment emits a large amount of clock signals and their harmonics unrelated to the carrier, it is preferable to reliably observe and measure the frequency range up to at least three times the fundamental wave. This is a necessary condition for fully exhibiting the effects of the present invention.

(3)上述の各成分を測定できること
空間に放射される電波は、伝搬距離によって減衰して行く。放出された近傍では3乗項・2乗項・1乗項が混在する。ある程度の距離とアンテナ方式によって、遠方界と同じ1乗項が支配的となる関係を作ることが出来る。しかし、距離が変わると伝送量(結合量)が変化してしまうことに変わりはない。そこで、本発明の効果を十分発揮させるためには、被測定物と測定用アンテナの位置関係が変わっても、再現良く各周波数成分の値を求める方法が必要である。
(3) The above-mentioned components can be measured The radio wave radiated into the space is attenuated by the propagation distance. In the vicinity of the emission, the third power term, the second power term, and the first power term are mixed. With a certain distance and antenna system, it is possible to create a relationship in which the same first power term as the far field is dominant. However, there is no change in the transmission amount (coupling amount) when the distance changes. Therefore, in order to sufficiently exhibit the effects of the present invention, a method for obtaining the value of each frequency component with good reproducibility is required even if the positional relationship between the object to be measured and the measurement antenna changes.

(4)更に、各軸、各周波数毎に伝送量の校正が出来れば、正確な測定が可能となり、本発明の効果が更に十分発揮される。   (4) Furthermore, if the transmission amount can be calibrated for each axis and each frequency, accurate measurement becomes possible, and the effects of the present invention are more fully exhibited.

まず、上記(1)については、以下の手段によって実現することが出来る。   First, the above (1) can be realized by the following means.

被測定物を中心に、好ましくは3方向に等しい距離で、好ましくはXYZ3軸に平行な直線偏波の進行波アンテナを、それぞれ対向させて配置する。そして各対向した同じ偏波のアンテナを、中心から同じ位相量のケーブルと信号合成器で結ぶ。即ち、XYZ偏波のアンテナが被測定物上に形成される。   Centering on the object to be measured, traveling wave antennas of linear polarization, preferably parallel to the X, Y, and Z axes at a distance equal to each other in three directions, are arranged to face each other. Then, the antennas of the same polarization facing each other are connected from the center with a cable having the same phase amount and a signal combiner. That is, an XYZ polarized antenna is formed on the object to be measured.

上記(2)については、広帯域アンテナとして、基本周波数の3倍以上の帯域幅を持つ進行波アンテナを設計することによって実現することが出来る。これは既存のアンテナ理論で形成できるが、例えば実施例では、700MHz〜12GHzをカバーするアンテナを試作することによって行った。   The above (2) can be realized by designing a traveling wave antenna having a bandwidth that is at least three times the fundamental frequency as a broadband antenna. This can be formed by existing antenna theory. For example, in the embodiment, an antenna covering 700 MHz to 12 GHz was prototyped.

上記(3)の安定な再現性の実現は、測定用アンテナに接続される放射電力測定装置(例えばスペクトラムアナライザー)を任意周波数範囲で掃引しながら、電磁波放射体(送信機)を設置する台を移動させるか、可変位相器で位相を変えることによって、最大電力値を求めことにより、被測定送信機から放射されるスプリアス信号は、各周波数点で中心点を通るので、各周波数成分の最大値が記録され、再現性の良い測定が可能となる。   Realization of the stable reproducibility of (3) above requires that a table on which an electromagnetic wave emitter (transmitter) is installed while sweeping a radiated power measuring device (for example, a spectrum analyzer) connected to a measurement antenna in an arbitrary frequency range. Since the spurious signal radiated from the transmitter under measurement passes through the center point at each frequency point by moving or changing the phase with a variable phase shifter, the maximum value of each frequency component Is recorded, and measurement with good reproducibility becomes possible.

対向したアンテナペアの真の中心点は、外側両アンテナへの位相が等しくなる点であるから、対向したアンテナペアの合成出力端と丁度中間に配置したアンテナ間の伝送量は、等しい位相のとき2倍となり最大となる。特に波長の短い高調波領域では、少しの位置の変化により、この位相差も急激に変化し、伝送量も急激に減じるので、より中心点が判別できる。   The true center point of the opposed antenna pair is the point where the phase to both outer antennas is equal, so when the amount of transmission between the antennas placed just in between the combined output end of the opposed antenna pair is the same phase Doubled and maximized. In particular, in the harmonic region with a short wavelength, the phase difference also changes abruptly and the amount of transmission also decreases abruptly due to a slight change in position, so that the center point can be more discriminated.

今、被測定物である電磁波放射体(送信機)に設置する台を、これを挟むように配置してある外側両アンテナ方向に可変移動できる機構を設け、両アンテナの合成出力は計測するスクトラムアナライザー等の測定器に接続し、測定器は最大値をホールドするマックスホールドモードを使用すると、各周波数成分の最大値を見ることができる。マックスモードとは、測定データをデジタルメモリー等で記録し同じ番地のデータ同士比較しながら、常に大きな値を記録するモードであるから、スペクトラムアナライザーの場合、横軸周波数に相当する各位置で最大値が記録保持されていくからである。   Now, a mechanism is provided that can variably move the base installed on the electromagnetic wave emitter (transmitter), which is the object to be measured, in the direction of both outer antennas that are arranged so as to sandwich it, and the combined output of both antennas is measured. When connected to a measuring device such as a tram analyzer, the measuring device uses a max hold mode in which the maximum value is held, so that the maximum value of each frequency component can be viewed. Max mode is a mode in which measured data is recorded in digital memory and compared with data at the same address while constantly recording large values. In the case of a spectrum analyzer, the maximum value is obtained at each position corresponding to the horizontal axis frequency. This is because the record is kept.

被測定機器は、任意周波数範囲で掃引しながら移動させることになるので、必ず各周波数点で前述の「中心点」を通り、各周波数成分の最大値が記録されるから、極めて再現性の良い測定が可能となる。   Since the device under test is moved while sweeping in an arbitrary frequency range, the maximum value of each frequency component is recorded at each frequency point and always passes through the above-mentioned “center point”, so the reproducibility is extremely good. Measurement is possible.

この関係が、XYZの3方向に成り立つようにするため、3軸方向に可動し得る機構を設ける。スペクトラムアナライザーが3入力端子備わっていれば、XYZ各軸での周波数特性が一度に求められる。1入力であっても、順次切り替えて3つの軸のデータを別々に求め、これをパーソナルコンピュータ(以下PCと呼ぶ)等に転送し、例えば同一画面に重ね書きすることによって簡単に直視できる。   In order for this relationship to hold in the three directions of XYZ, a mechanism that can move in the three-axis directions is provided. If the spectrum analyzer has three input terminals, the frequency characteristics of each axis of XYZ can be obtained at once. Even with one input, the data of the three axes can be obtained separately by switching sequentially, transferred to a personal computer (hereinafter referred to as a PC), etc., and overwritten on the same screen, for example, can be easily viewed directly.

上記(4)の校正法は、以下の手順によって容易に且つ正確に校正できる。   The calibration method (4) can be easily and accurately calibrated by the following procedure.

UHF/VHF帯は波長が手ごろなので、λ/2ダイポールアンテナを使用する。このダイポールアンテナを前述の対向アンテナの中心に置き、このダイポールアンテナと外側両アンテナの合成器出力端の伝送量を測定する。このとき、ダイポールアンテナを可動させて最大値を求める。これが中間点に標準ダイポールアンテナを置いたときの伝送量であり、これが標準結合係数となる。半波長ダイポールアンテナの理論利得は、周波数に関係なく常に1.64(2.1db)であるので、この値を基準にすることになる。なお、製作したダイポールアンテナにも出来不出来があるから、理論値に対する利得偏差を測定する必要がある(校正作業)。この校正は、2アンテナ間距離を正確に定め理論減衰量から校正したり、3アンテナ比較法(米国NIST法)等が知られている。   Since the UHF / VHF band has a reasonable wavelength, a λ / 2 dipole antenna is used. This dipole antenna is placed in the center of the above-mentioned counter antenna, and the transmission amount at the combiner output end of this dipole antenna and both outer antennas is measured. At this time, the maximum value is obtained by moving the dipole antenna. This is the amount of transmission when a standard dipole antenna is placed at the midpoint, and this is the standard coupling coefficient. Since the theoretical gain of the half-wave dipole antenna is always 1.64 (2.1 db) regardless of the frequency, this value is used as a reference. In addition, since the manufactured dipole antenna is not possible, it is necessary to measure the gain deviation from the theoretical value (calibration work). For this calibration, a distance between two antennas is accurately determined and calibrated from a theoretical attenuation amount, or a three-antenna comparison method (US NIST method) is known.

次に、本発明の実施例を図面に基づいて説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1に示す如く等しい偏波のアンテナ(アンテナペア)を、被測定物を挟んで、対向させて設置し、同アンテナペア同士を合成器にて接続する。この時、アンテナ出力端から合成器までの位相を合わせておく。   As shown in FIG. 1, antennas (antenna pairs) having the same polarization are placed facing each other with the object to be measured interposed therebetween, and the antenna pairs are connected by a combiner. At this time, the phase from the antenna output end to the combiner is matched.

このアンテナペアの中間に同じ偏波の電磁波放射源(被測定物)を置くと、左右両アンテナに電力が誘起される。真の中間点から放射されれば、左右アンテナペアには同相の電力が誘起され、合成器で2倍に加算される。この時最大値を示すので、この最大値を探し求めることによって、再現性と正確性を確保できる。尚、中間点からずれると、左右アンテナペアの誘起電力の位相差によって、合成出力は減じられる。   If an electromagnetic wave radiation source (object to be measured) having the same polarization is placed in the middle of the antenna pair, power is induced in both the left and right antennas. If radiated from the true midpoint, in-phase power is induced in the left and right antenna pairs and added twice by the combiner. Since the maximum value is indicated at this time, reproducibility and accuracy can be ensured by searching for the maximum value. In addition, if it deviates from an intermediate point, a synthetic | combination output will be reduced by the phase difference of the induced electric power of a left-right antenna pair.

図2は、本発明の実施例を示すものであり、図1の左右アンテナペアの偏波をY軸偏波と呼べば、被測定物の上下にX軸偏波を構成し、XYZ3軸の偏波を構成した例を示す。Z軸偏波の作成は、左右か上下のいずれかのアンテナペアに直角なアンテナエレメント(直交エレメント)を組み合わせればよい。このように構成することにより、8面体の箱のうち2面を開けることができ、被測定物の出し入れが可能となる。   FIG. 2 shows an embodiment of the present invention. If the polarization of the left and right antenna pairs in FIG. 1 is called Y-axis polarization, X-axis polarization is formed above and below the object to be measured, and XYZ 3-axis polarization is shown. The example which comprised the polarization is shown. Z-axis polarization can be created by combining antenna elements (orthogonal elements) perpendicular to the left / right or upper / lower antenna pairs. With this configuration, two of the octahedral boxes can be opened, and the object to be measured can be taken in and out.

XYZ3軸のアンテナペアの外側は、電波吸収材と金属によるシールドケースが形成され、反射成分を吸収し誤差が生じないようにすると共に、金属シールドケースにより外来電波の進入を防止している。   A shield case made of a radio wave absorber and metal is formed on the outside of the XYZ triaxial antenna pair so as to absorb a reflection component so as not to cause an error and to prevent an external radio wave from entering by the metal shield case.

図3は、本発明の他の実施例を示すものであり、XYZ3軸のアンテナペアの真の中間点を被測定物電磁波放射のフェーズセンターが必ず通過するように、被測定物を載置する台に、XYZ方向に移動する可動装置を設けた例を示す。   FIG. 3 shows another embodiment of the present invention, in which the object to be measured is placed so that the phase center of the electromagnetic wave radiation of the object to be measured always passes through the true middle point of the XYZ triaxial antenna pair. An example in which a movable device that moves in the XYZ directions is provided on the table will be described.

各軸アンテナペアからの出力は、合成器で加算され、測定器に接続される。測定器には、通常スペクトラムアナライザーを用いる。このとき、測定信号強度値の最大値を記録するマックスホールド機能を使用する。上記可動装置によって、各アンテナペア間の中間点を通過したときの最大値を記録保持することになる。   Outputs from each axis antenna pair are added by a synthesizer and connected to a measuring instrument. A spectrum analyzer is usually used as a measuring instrument. At this time, a maximum hold function for recording the maximum value of the measurement signal intensity value is used. The maximum value when passing through the intermediate point between each antenna pair is recorded and held by the movable device.

通常スペクトラムアナライザーは、周波数軸を時間をかけて掃引している。この掃引周期と前述の可動装置の掃引周期を非同期にすることによって、ある程度の時間をかければ、全測定周波数に亘って、各周波数点での最大値が記録される。   Normally, a spectrum analyzer sweeps the frequency axis over time. By making the sweep cycle asynchronous with the above-described sweep cycle of the movable device, the maximum value at each frequency point is recorded over the entire measurement frequency if a certain amount of time is taken.

この可動は、XYZ軸に平行な直線方向に限らず、携帯電話機のようなものは、回転させるほうが効率的な場合もある。使用するスペクトラムアナライザーには、3入力機能(マルチチャンネル機能)が備わっていれば最適であるが、古くからある1チャンネル型でも差し支えない。   This movement is not limited to a linear direction parallel to the XYZ axes, and it may be more efficient to rotate a mobile phone or the like. The spectrum analyzer to be used is optimal if it has a three-input function (multi-channel function), but an old one-channel type may be used.

上記XYZ各アンテナペアの合成器出力を切替ながら1チャンネル毎の出力をマックスホールド測定し、PC等にデータを伝送する。   While switching the combiner output of each of the XYZ antenna pairs, the output for each channel is subjected to max hold measurement, and the data is transmitted to a PC or the like.

PCによって、各チャンネルに相当するデータを並べて作図表示したり、比較しながら最大値を表示したりすることによって、放射源の周波数毎の放射電力値を知ることができる。   The PC can display the radiation power value for each frequency of the radiation source by plotting and displaying the data corresponding to each channel or displaying the maximum value while comparing the data.

図4は、本発明の他の実施例を示すものであり、DUT(被測定物)設置台を移動させる代わりに、可変移相器で位相を変えて、最大電力値を探し求め得るように構成した例を示す。尚、上記図4では、一対のアンテナペアしか記載していないが、前記実施例と同様にアンテナペアは、XYZ軸方向に対向配置している。   FIG. 4 shows another embodiment of the present invention, which is configured so that the maximum power value can be found by changing the phase with a variable phase shifter instead of moving the DUT (device under test) installation base. An example is shown. In FIG. 4, only a pair of antenna pairs is shown, but the antenna pairs are arranged opposite to each other in the XYZ axis direction as in the above embodiment.

最大電力値は、対向するアンテナペアの位相が等しくなる点であるから、台を移動させる代わりに、対向するアンテナペアの位相を変えて、位相が等しくなる点(最大電力値である)を求めても同様の結果が得られる。   Since the maximum power value is the point where the phase of the opposing antenna pair becomes equal, instead of moving the stage, the phase of the opposing antenna pair is changed to find the point where the phase becomes equal (the maximum power value) However, similar results can be obtained.

上記実施例では、対向する移相器の制御、電力測定器の制御及びデータの作図は、ソフトウェアによって行うようになっている。   In the above-described embodiment, the control of the opposite phase shifter, the control of the power meter, and the data plotting are performed by software.

(送信電力の校正)
上記アンテナペアのゲイン特性は一定ではない。所謂周波数特性が存在するので、各周波数に亘り、校正することが必要である。
(Transmission power calibration)
The gain characteristics of the antenna pair are not constant. Since so-called frequency characteristics exist, calibration is required over each frequency.

本発明の方法で校正することは、以下のように極めて簡単に行うことができる。   Calibration by the method of the present invention can be performed very simply as follows.

被測定物の代わりに標準ダイポールアンテナを「中間点」に挿入する。このときXYZ各軸の偏波に合わせて設定する。測定器にはネットワークアナライザーを用いて、アンテナ間の伝搬量を直視・測定すると好都合である。   Insert a standard dipole antenna at the “midpoint” instead of the DUT. At this time, it is set according to the polarization of each axis of XYZ. It is convenient to use a network analyzer as a measuring instrument to directly view and measure the amount of propagation between antennas.

前記したのと同様に可動して最も伝送損失の少ない値を読み取れば、標準ダイポールでの基準結合量となり、所謂、この装置の結合係数となる。何故ならば、半波長ダイポールアンテナのゲインは、周波数に関係なく一定であり、アンテナ間の距離も一定であるので、放射電力値に正比例した電力がアンテナに誘起され、測定器で読み取れるからである。   If the value that is movable and has the smallest transmission loss is read in the same manner as described above, it becomes the reference coupling amount at the standard dipole, which is the so-called coupling coefficient of this apparatus. This is because the gain of the half-wave dipole antenna is constant regardless of the frequency, and the distance between the antennas is also constant, so that power directly proportional to the radiated power value is induced in the antenna and can be read by the measuring instrument. .

更に精密な測定を行う場合は、この半波長ダイポールアンテナの校正を別途行えばよい。半波長ダイポールアンテナのゲイン理論値は1.64であるので、正確に測定した距離に設定したアンテナ間の伝送量から理論値と比較して求められるからである。   For more precise measurement, the half-wave dipole antenna may be calibrated separately. This is because the theoretical gain value of the half-wave dipole antenna is 1.64, and is obtained by comparing with the theoretical value from the transmission amount between the antennas set at the accurately measured distance.

また、使用する進行波広帯域アンテナの周波数は極めてなだらかに製作することが出来る。従って、ある程度の周波数間隔で上記半波長ダイポールアンテナで校正しておけば、十分補完しながら、連続した周波数特性として用いることが出来る。   In addition, the traveling wave broadband antenna to be used can be manufactured very gently. Therefore, if the half-wavelength dipole antenna is calibrated at a certain frequency interval, it can be used as a continuous frequency characteristic while being sufficiently supplemented.

本発明の実施例を示す原理図である。It is a principle figure which shows the Example of this invention. 本発明の他の実施例を示す原理図である。It is a principle figure which shows the other Example of this invention. 本発明の他の実施例を示す原理図である。It is a principle figure which shows the other Example of this invention. 本発明の他の実施例を示す原理図である。It is a principle figure which shows the other Example of this invention.

Claims (7)

被測定物を載置する台と、該台を中心としてXYZ軸方向に対向する広帯域進行波アンテナペアと、該アンテナペアからの信号を合成加算する合成器と、加算した電力スペクトラムを読み取る手段とを具備し、前記対向するアンテナペア同士は同位相で加算され得るように前記合成器に接続されると共に前記台を移動し得る台とするか、可変位相器で位相を変えることによって、最大電力値を求め得るように構成したことを特徴とする電磁波結合装置。 A table on which the object to be measured is placed; a broadband traveling wave antenna pair opposed to each other in the X, Y, and Z axis directions around the table; a combiner that combines and adds signals from the antenna pair; and a means for reading the added power spectrum The antenna pair is connected to the combiner so that the opposite antenna pairs can be added in the same phase and the stage can be moved, or the phase can be changed by a variable phase shifter, so that the maximum power can be obtained. An electromagnetic wave coupling device configured to obtain a value. 前記アンテナペアは、前記台を中心として、XYZ軸方向にそれぞれ等距離で対向配置している請求項1記載の電磁波結合装置。 2. The electromagnetic wave coupling device according to claim 1, wherein the antenna pairs are arranged to face each other at equal distances in the XYZ axial directions with the base as a center. 前記広帯域進行波アンテナペアが、基本周波数の3倍以上の帯域幅を有する進行波アンテナである請求項1又は2記載の電磁波結合装置。 The electromagnetic wave coupling device according to claim 1 or 2, wherein the broadband traveling wave antenna pair is a traveling wave antenna having a bandwidth of three times or more of a fundamental frequency. 前記加算した電力スペクトラムを読み取る手段が、ピーク値保持機能を持った掃引型電力測定器である請求項1〜3のいずれかに記載の電磁波結合装置。 The electromagnetic wave coupling device according to any one of claims 1 to 3, wherein the means for reading the added power spectrum is a sweep type power measuring instrument having a peak value holding function. 前記被測定物を載置する台には、対向するアンテナ間の中間点を被測定物電磁波放射源の中心が通過するための掃引可動する機構が設けられている請求項1〜3のいずれかに記載の電磁波結合装置。 The table on which the object to be measured is placed is provided with a sweeping movable mechanism for allowing the center of the object to be measured electromagnetic wave radiation to pass through an intermediate point between the opposing antennas. The electromagnetic wave coupling device described in 1. 前記対向するアンテナペア同士は同位相で加算されるように等しい位相量で前記合成器に接続される請求項1〜5のいずれかに記載の電磁波結合装置。 The electromagnetic wave coupling device according to claim 1, wherein the opposing antenna pairs are connected to the combiner with equal phase amounts so that the antenna pairs are added in the same phase. 前記アンテナペアの外側には、電磁波吸収材と金属遮蔽板とで構成されたシールド箱が形成されている請求項1〜6のいずれかに記載の電磁波結合装置。 The electromagnetic wave coupling device according to any one of claims 1 to 6, wherein a shield box composed of an electromagnetic wave absorbing material and a metal shielding plate is formed outside the antenna pair.
JP2005016541A 2005-01-25 2005-01-25 Electromagnetic wave coupling apparatus Pending JP2006208019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005016541A JP2006208019A (en) 2005-01-25 2005-01-25 Electromagnetic wave coupling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005016541A JP2006208019A (en) 2005-01-25 2005-01-25 Electromagnetic wave coupling apparatus

Publications (1)

Publication Number Publication Date
JP2006208019A true JP2006208019A (en) 2006-08-10

Family

ID=36965067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005016541A Pending JP2006208019A (en) 2005-01-25 2005-01-25 Electromagnetic wave coupling apparatus

Country Status (1)

Country Link
JP (1) JP2006208019A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082945A (en) * 2006-09-28 2008-04-10 Taiyo Yuden Co Ltd Near electromagnetic field distribution measurement apparatus
JP2009002788A (en) * 2007-06-21 2009-01-08 Panasonic Corp Electromagnetic wave measuring method and electromagnetic wave measuring device
JP2011053016A (en) * 2009-08-31 2011-03-17 Anritsu Corp Method of measuring radiation power and radiation power measuring device
JP2013101159A (en) * 2008-11-20 2013-05-23 Mitsubishi Electric Corp Radiation emi measuring device
WO2019225617A1 (en) * 2018-05-22 2019-11-28 株式会社Nttドコモ Measuring method and measuring device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164500A (en) * 1986-12-26 1988-07-07 セイコーインスツルメンツ株式会社 Wave dark room
JPH07239356A (en) * 1994-02-25 1995-09-12 Tokin Corp Photoelectric field sensor
JPH0843466A (en) * 1994-07-27 1996-02-16 Nec Corp Emi measuring apparatus
JPH11133079A (en) * 1997-11-04 1999-05-21 Kyandokkusu Systems:Kk Electromagnetic coupling device
JPH11340930A (en) * 1998-05-27 1999-12-10 Mitsubishi Electric Corp Radio terminal test equipment
JP2001324524A (en) * 2000-05-12 2001-11-22 Nec Corp Automatic measuring method and device for undesired radiation
JP2003315396A (en) * 2002-04-22 2003-11-06 Murata Mfg Co Ltd Electromagnetic wave measuring device
JP2003322668A (en) * 2002-02-27 2003-11-14 Matsushita Electric Ind Co Ltd Polarized wave measuring device, antenna characteristic measuring device using the same and electric wave measuring device
JP2004264143A (en) * 2003-02-28 2004-09-24 Matsushita Electric Ind Co Ltd Electromagnetic wave measuring instrument and its method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63164500A (en) * 1986-12-26 1988-07-07 セイコーインスツルメンツ株式会社 Wave dark room
JPH07239356A (en) * 1994-02-25 1995-09-12 Tokin Corp Photoelectric field sensor
JPH0843466A (en) * 1994-07-27 1996-02-16 Nec Corp Emi measuring apparatus
JPH11133079A (en) * 1997-11-04 1999-05-21 Kyandokkusu Systems:Kk Electromagnetic coupling device
JPH11340930A (en) * 1998-05-27 1999-12-10 Mitsubishi Electric Corp Radio terminal test equipment
JP2001324524A (en) * 2000-05-12 2001-11-22 Nec Corp Automatic measuring method and device for undesired radiation
JP2003322668A (en) * 2002-02-27 2003-11-14 Matsushita Electric Ind Co Ltd Polarized wave measuring device, antenna characteristic measuring device using the same and electric wave measuring device
JP2003315396A (en) * 2002-04-22 2003-11-06 Murata Mfg Co Ltd Electromagnetic wave measuring device
JP2004264143A (en) * 2003-02-28 2004-09-24 Matsushita Electric Ind Co Ltd Electromagnetic wave measuring instrument and its method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082945A (en) * 2006-09-28 2008-04-10 Taiyo Yuden Co Ltd Near electromagnetic field distribution measurement apparatus
JP2009002788A (en) * 2007-06-21 2009-01-08 Panasonic Corp Electromagnetic wave measuring method and electromagnetic wave measuring device
US7924232B2 (en) 2007-06-21 2011-04-12 Panasonic Corporation Electromagnetic wave measuring method and electromagnetic wave measuring apparatus
JP2013101159A (en) * 2008-11-20 2013-05-23 Mitsubishi Electric Corp Radiation emi measuring device
JP2011053016A (en) * 2009-08-31 2011-03-17 Anritsu Corp Method of measuring radiation power and radiation power measuring device
WO2019225617A1 (en) * 2018-05-22 2019-11-28 株式会社Nttドコモ Measuring method and measuring device

Similar Documents

Publication Publication Date Title
US8502546B2 (en) Multichannel absorberless near field measurement system
US8103470B2 (en) Method, coupler and apparatus for measuring radiated power
US7672640B2 (en) Multichannel absorberless near field measurement system
KR101360280B1 (en) Multichannel absorberless near field measurement system
JPH11177508A (en) Antenna coupler for testing portable/car telephone
US11372037B2 (en) Freespace antenna measurement system
Expósito et al. Uncertainty assessment of a small rectangular anechoic chamber: From design to operation
JP2006208019A (en) Electromagnetic wave coupling apparatus
CN115267356A (en) Boundary deformation cross coupling reverberation chamber shielding effectiveness testing device and method
Fady et al. Novel miniaturized multiband antenna and applications for smart navigation media
WO2003098238A1 (en) Local sar measurement device and method
JP3436669B2 (en) Electromagnetic wave coupling device
Narang et al. Design and characterization of microstrip based E-field sensor for GSM and UMTS frequency bands
Foged et al. Modern Automotive Antenna Measurements
Kang et al. Design of a miniaturized printed multi-turn loop antenna for shielding effectiveness measurement
Chen et al. An Enhanced-Sensitivity Tangential Electric Field Probe With Tunable Resonant Frequency
Betta et al. The accurate calibration of EMC antennas in compact chambers—Measurements and uncertainty evaluations
Sevgi et al. Antenna calibration for EMC tests and measurements
Clay Improving the correlation between OATS, RF anechoic room and GTEM radiated emissions measurements for directional radiators at frequencies between approximately 150 MHz and 10 GHz
Audone et al. Measurement of radiated spurious emissions with the substitution and field strength test methods
Joseph et al. An improved method to determine the antenna factor
CN116819186B (en) Method for adjusting and measuring antenna performance of communication terminal of Internet of things
Hong et al. Ka-band electric-field probe calibration system with rotating and linear motion
TWI847639B (en) Measuring device and measuring method of antenna pattern based on near field to far field transformation
JP2003028905A (en) Analyzing device for antenna excitation coefficient

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Effective date: 20100224

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100630