JPH07239356A - Photoelectric field sensor - Google Patents

Photoelectric field sensor

Info

Publication number
JPH07239356A
JPH07239356A JP6053256A JP5325694A JPH07239356A JP H07239356 A JPH07239356 A JP H07239356A JP 6053256 A JP6053256 A JP 6053256A JP 5325694 A JP5325694 A JP 5325694A JP H07239356 A JPH07239356 A JP H07239356A
Authority
JP
Japan
Prior art keywords
optical
electric field
field sensor
phase shift
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6053256A
Other languages
Japanese (ja)
Inventor
Yuichi Togano
祐一 戸叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6053256A priority Critical patent/JPH07239356A/en
Priority to CA002144075A priority patent/CA2144075C/en
Priority to CN94190478A priority patent/CN1052071C/en
Priority to KR1019950700890A priority patent/KR100220289B1/en
Priority to US08/397,076 priority patent/US5488677A/en
Priority to EP94919869A priority patent/EP0668508B1/en
Priority to DE69430728T priority patent/DE69430728T2/en
Priority to PCT/JP1994/001110 priority patent/WO1995002193A1/en
Publication of JPH07239356A publication Critical patent/JPH07239356A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure without depending on a direction in which environmental electromagnetic waves such as electromagnetic pulses or the like come, or on polarization components, by connecting a plurality of antennas with modifying electrodes of a plurality of optical modifiers formed on the same crystal substrate. CONSTITUTION:Three sets of phase shift optical waveguides 2 are formed on the surface of a substrate 1 of lithium niobate through thermal diffusion of Ti. Moreover, modifying electrodes 3 are arranged in the vicinity of each optical waveguide 2. An optical modifier is constituted in this manner. Three series of antenna elements 4 are set in directions orthogonal to each other (X, Y, Z directions) at an outer wall of a package 7 incorporating the optical modifiers. The antenna elements 4 are connected to the modifying electrodes 3 of the optical modifiers to constitute the photoelectric field sensor. Intensity of an electric field of polarization components in each of three X-axis, Y-axis, Z-axis directions orthogonal to each other is detected by the photoelectric field sensor of three series independently of each other. Therefore, it is not necessary to change a direction of the sensor for every measurement. Moreover, the intensities in three directions can be measured at one time. In other words, the sensor is not directive and can detect also direction of a source generating electromagnetic waves at the same time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、EMC測定(ノイズ測
定)に代表される、特定領域内の電界強度を測定するた
めに用いる、光電界センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical electric field sensor, which is represented by EMC measurement (noise measurement) and is used for measuring the electric field strength in a specific region.

【0002】[0002]

【従来の技術】コンピュータ等の情報機器や通信機器、
ロボット等のFA機器、自動車、鉄道等の制御器など多
くの電気機器は、互いに外部からの電磁ノイズによって
誤動作などの影響を受ける危険を常にもっており、EM
C分野においては、外部の電磁環境や影響を及ぼすよう
なノイズの大きさ、また自らが発生するノイズ等を正確
に測定することが重要となっている。
2. Description of the Related Art Information equipment such as computers and communication equipment,
Many electric devices such as robots and other FA devices, automobiles, railways, and other controllers are always at risk of malfunctioning due to electromagnetic noise from the outside.
In the field C, it is important to accurately measure the magnitude of noise that affects the external electromagnetic environment, the noise generated by itself, and the like.

【0003】従来、上述のような電磁ノイズの測定に
は、(a)通常のアンテナを用いて受信し同軸ケーブルで
測定器まで導く方法、(b)アンテナを用いて受信した信
号を検波して光信号に変換し光ファイバで測定器まで導
く方法、(c)電界強度に応じて透過光の強度が変化する
ように構成された光学素子を用いて電界強度を光強度に
変換し、上記光学素子と光源および測定器に接続された
光検出器間を光ファイバで接続する方法がある。
Conventionally, in the measurement of electromagnetic noise as described above, (a) a method of receiving with a normal antenna and guiding it to a measuring instrument with a coaxial cable, and (b) detecting a received signal with an antenna. A method of converting to an optical signal and guiding to a measuring instrument with an optical fiber, (c) converting the electric field intensity to a light intensity using an optical element configured so that the intensity of transmitted light changes according to the electric field intensity, and the above optical There is a method of connecting the element, the light source, and the photodetector connected to the measuring instrument with an optical fiber.

【0004】本発明は(c)の方法による光電界センサに
関するものである。この方法では、同軸ケーブル等の電
気ケーブルの代わりに光ファイバを使うため、電界分布
が乱れてしまったり、ケーブル途中からのノイズ混入等
の問題は全くない。また、電気回路やバッテリを必要と
しないため小型で、さらに、電界の検出感度が高く応答
速度が速いなどの特徴がある。
The present invention relates to an optical electric field sensor according to the method (c). In this method, since an optical fiber is used instead of an electric cable such as a coaxial cable, there is no problem that the electric field distribution is disturbed or noise is mixed in the middle of the cable. Further, since it does not require an electric circuit or a battery, it is small in size, and further has high electric field detection sensitivity and high response speed.

【0005】また、この方法では、電界強度を透過光の
強度変化に変換する光学素子として、電気光学効果を有
する結晶を用いている。その素子の構造としては、光フ
ァイバの出射光をレンズで平行光として小型アンテナを
取り付けた結晶中を通過させて結晶中の電界により偏光
状態を変化させ、検光子で強度変化に変換した後再び光
ファイバに結合するバルク型素子と、結晶上に設けた光
導波路により上記光学素子を構成する導波路型素子があ
り、通常、導波路型のほうがバルク型よりも10倍以上
検出感度が高い。
Further, in this method, a crystal having an electro-optical effect is used as an optical element for converting the electric field intensity into a change in intensity of transmitted light. The structure of the device is that the light emitted from the optical fiber is made into parallel light by the lens and passes through the crystal with a small antenna attached, the polarization state is changed by the electric field in the crystal, and the intensity is changed by the analyzer, and then again. There are a bulk type element coupled to an optical fiber and a waveguide type element that constitutes the above optical element by an optical waveguide provided on a crystal. Usually, the waveguide type has a detection sensitivity 10 times or more higher than that of the bulk type.

【0006】図5は従来の導波路型素子による光電界セ
ンサの構成例を示す。c軸に直角に切り出したニオブ酸
リチウム結晶基板1上にチタンを拡散して入射光導波路
52、そこから分岐した二つの位相シフト光導波路5
3、および上記二つの位相シフト光導波路が再び結合し
て出射光導波路56が形成されている。入射光導波路5
2の入射端には入力光ファイバ57が結合され、出射光
導波路56の出射端には出力光ファイバ58が接続され
ている。また、位相シフト光導波路53上には1対の変
調電極3が設置され、アンテナエレメント4に接続され
ている。図5において、入力光ファイバ57からの入射
光11は入射光導波路52に入射した後、二つの位相シ
フト光導波路53にエネルギーが分割される。電界が印
加された場合、アンテナエレメント4により変調電極3
に電圧が誘起されて二つの位相シフト光導波路53には
互いに反対向きの電界が生ずる。この結果、電気光学効
果により屈折率変化が生じて二つの位相シフト光導波路
53を伝搬する光波間には印加電界の大きさに応じた位
相差が生じ、それらが合流して出射光導波路56に結合
する場合に干渉により光強度が変化する。すなわち、印
加電界強度に応じて出力光ファイバ58に出射する出射
光12の強度は変化することになり、その光強度変化を
光検出器で測定することにより印加電界の強度を測定で
きる。
FIG. 5 shows a configuration example of a conventional optical electric field sensor using a waveguide type element. An incident optical waveguide 52 by diffusing titanium on a lithium niobate crystal substrate 1 cut out at a right angle to the c-axis, and two phase shift optical waveguides 5 branched therefrom.
3, and the two phase shift optical waveguides are coupled again to form the emission optical waveguide 56. Incident optical waveguide 5
An input optical fiber 57 is coupled to the incident end of No. 2 and an output optical fiber 58 is connected to the outgoing end of the outgoing optical waveguide 56. Further, a pair of modulation electrodes 3 is installed on the phase shift optical waveguide 53 and connected to the antenna element 4. In FIG. 5, the incident light 11 from the input optical fiber 57 enters the incident optical waveguide 52, and then the energy is split into two phase shift optical waveguides 53. When an electric field is applied, the modulation electrode 3 is moved by the antenna element 4.
A voltage is induced in the two phase shift optical waveguides 53 to generate electric fields in opposite directions. As a result, a change in refractive index occurs due to the electro-optical effect, and a phase difference corresponding to the magnitude of the applied electric field occurs between the light waves propagating through the two phase shift optical waveguides 53, and they merge to the output optical waveguide 56. When combined, the light intensity changes due to interference. That is, the intensity of the emitted light 12 emitted to the output optical fiber 58 changes depending on the applied electric field intensity, and the intensity of the applied electric field can be measured by measuring the change in the optical intensity with a photodetector.

【0007】[0007]

【発明が解決しようとする課題】光電界センサを使用し
て電界測定を行う場合、測定しようとする電磁パルス等
の環境電磁波の到来方向や偏波面は予知することができ
ないことが多い。この場合は、測定中に様々な方向に光
電界センサを向けて配置し、最大強度方向を探し出して
測定しなければならない。また、光電界センサを構成す
るダイポールアンテナは、指向性が強いため、電磁波発
生源が多方向にある場合は、多数の測定ポイントで互い
に直交する3方向について電界強度をそれぞれ測定し、
解析する必要があり、取扱いの難しさや測定の信頼性等
に問題が残る。
When an electric field is measured using an optical electric field sensor, it is often impossible to predict the arrival direction or polarization plane of an environmental electromagnetic wave such as an electromagnetic pulse to be measured. In this case, the optical electric field sensor must be arranged in various directions during measurement, and the maximum intensity direction must be found and measured. Further, since the dipole antenna that constitutes the optical electric field sensor has a strong directivity, when the electromagnetic wave generation sources are in multiple directions, the electric field strengths are measured in three directions orthogonal to each other at a large number of measurement points,
It is necessary to analyze, and there are problems in handling and reliability of measurement.

【0008】本発明はこのような問題点を解決すべく、
測定のたびごとに受信方向を変える必要がなく、測定す
る電磁パルス等の環境電磁波が到来する方向や偏波成分
に依存しないで測定が可能で、小型かつ製作が容易な光
電界センサを提供する。
The present invention has been made to solve the above problems.
Provide a compact and easy-to-manufacture optical electric field sensor that does not need to change the receiving direction each time it is measured and can perform measurement without depending on the direction of arrival of environmental electromagnetic waves such as electromagnetic pulses to be measured or polarization components. .

【0009】[0009]

【課題を解決するための手段】前記課題を達成するため
に、第1の発明は、電気光学効果を示す結晶基板上に形
成された入射光導波路、その入射光導波路より分岐した
二つの位相シフト光導波路、その二つの位相シフト光導
波路が合流する出射光導波路、および位相シフト光導波
路の近傍に形成された変調電極からなる光電界センサに
おいて、同一結晶基板上に、それぞれ独立した複数の光
変調器を形成し、それぞれの変調電極に、それぞれ指向
性が異なる複数のアンテナを接続して構成することを特
徴とする光電界センサである。
In order to achieve the above object, a first invention is an incident optical waveguide formed on a crystal substrate exhibiting an electro-optical effect, and two phase shifts branched from the incident optical waveguide. In an optical electric field sensor including an optical waveguide, an output optical waveguide where the two phase shift optical waveguides merge, and a modulation electrode formed in the vicinity of the phase shift optical waveguide, a plurality of independent optical modulations are provided on the same crystal substrate. And a plurality of antennas having different directivities are connected to the respective modulation electrodes to form an optical electric field sensor.

【0010】第2の発明は、電気光学効果を示す結晶基
板上に形成された入射光導波路、その入射光導波路より
分岐した二つの位相シフト光導波路、その二つの位相シ
フト光導波路が合流する出射光導波路、および位相シフ
ト光導波路の近傍に形成された変調電極からなる光電界
センサにおいて、変調電極に、3方向に互いに直交して
配置した一組のアンテナを接続して構成することを特徴
とする光電界センサである。
According to a second aspect of the invention, an incident optical waveguide formed on a crystal substrate exhibiting an electro-optical effect, two phase shift optical waveguides branched from the incident optical waveguide, and an exit where the two phase shift optical waveguides merge. An optical electric field sensor comprising an optical waveguide and a modulation electrode formed in the vicinity of a phase shift optical waveguide, characterized in that a pair of antennas arranged orthogonal to each other in three directions is connected to the modulation electrode. Is an optical electric field sensor.

【0011】[0011]

【作用】第1の発明は全方位の電磁波発生源に対応可能
な光電界センサを、第2の発明は多指向性の光電界セン
サを、それぞれ提供する。
The first aspect of the present invention provides an optical electric field sensor capable of coping with an omnidirectional electromagnetic wave generation source, and the second aspect of the invention provides a multi-directional optical electric field sensor.

【0012】まず第1の発明において、指向性をもつ3
組のダイポールアンテナを、直交した3軸(X、Y、Z
軸)に構成し、それぞれの入力を別々に、同一基板上に
独立に形成した3個の光変調器の変調電極に導く。これ
により各電界センサはそれぞれのアンテナの指向性に依
存して各偏波成分を測定し、3個の電界センサによって
全方位の測定を可能とする。この構成による光電界セン
サは、従来技術による単独の光電界センサ3個を単に寄
せ集めによって構築する場合と比較すると、小型、製作
容易、かつ特性一様等の特徴がある。
First, in the first aspect of the invention, there is a directivity
Set a pair of dipole antennas in three orthogonal axes (X, Y, Z
Axis), and each input is led separately to the modulation electrodes of three optical modulators independently formed on the same substrate. As a result, each electric field sensor measures each polarization component depending on the directivity of each antenna, and the three electric field sensors enable omnidirectional measurement. The optical electric field sensor with this configuration has features such as small size, easy manufacture, and uniform characteristics, as compared with a case where three individual optical electric field sensors according to the prior art are simply assembled.

【0013】また、第2の発明においては、3方向に互
いに直交して配置した一組のアンテナを、単一の光変調
器の変調電極に導くことによって、多指向性機能を有す
る電界センサを得る。このような方式の電界センサは、
装置の大きさが増すことなく、複数の方向の偏波成分を
同時に測定することを可能とし、測定の能率を向上す
る。
Further, in the second invention, an electric field sensor having a multi-directional function is provided by introducing a set of antennas arranged in three directions orthogonal to each other to a modulation electrode of a single optical modulator. obtain. The electric field sensor of this type is
It is possible to simultaneously measure polarization components in a plurality of directions without increasing the size of the device, and improve the measurement efficiency.

【0014】[0014]

【実施例】以下に本発明を実施例によって説明する。EXAMPLES The present invention will be described below with reference to examples.

【0015】(実施例1)図1は、第1の発明の一実施
例による光変調器の構成を示す。電気光学効果の性質を
有するニオブ酸リチウム(LiNbO3)(以下 LN
という)結晶のX基板1の表面に3組の位相シフト光導
波路2をTiの熱拡散により形成し、さらに、この位相
シフト光導波路2の近傍に変調電極を配置して、光変調
器を構成する。それぞれの光変調器の光導波路入出射光
はそれぞれ独立に形成した光変調器ごとに、入射光導波
路、および出射光導波路によってそれぞれ導入し、出力
する。図2に示すように、光入射側にTE波が入力とな
るように定偏波光ファイバ5が、光出射側にシングルモ
ード光ファイバ6がそれぞれ接続される。アンテナエレ
メント4は光変調器を内蔵するパッケージ7の外壁に、
互いに直交する方向(X、Y、Z方向)に3系列配置
し、それぞれの光変調器の変調電極に接続して光電界セ
ンサを構成する。
(Embodiment 1) FIG. 1 shows the configuration of an optical modulator according to an embodiment of the first invention. Lithium niobate (LiNbO 3 ) having the property of electro-optic effect (hereinafter referred to as LN
That is, three sets of phase shift optical waveguides 2 are formed on the surface of a crystalline X substrate 1 by thermal diffusion of Ti, and modulation electrodes are arranged in the vicinity of the phase shift optical waveguides 2 to form an optical modulator. To do. The light entering and exiting the optical waveguide of each optical modulator is introduced and output by the incident optical waveguide and the outgoing optical waveguide for each independently formed optical modulator. As shown in FIG. 2, the polarization maintaining optical fiber 5 is connected to the light incident side so that the TE wave is input, and the single mode optical fiber 6 is connected to the light emitting side. The antenna element 4 is provided on the outer wall of the package 7 containing the optical modulator,
Three series are arranged in directions (X, Y, Z directions) orthogonal to each other and connected to the modulation electrodes of the respective optical modulators to form an optical electric field sensor.

【0016】これにより、互いに直交するX、Y、Z軸
の3方向の各偏波成分の電界強度は、それぞれ独立した
3系列の光電界センサによって検出されるため、測定の
たびにその向きを変える必要がなく、かつ同時に測定す
ることが可能である。すなわち指向性を持たず、かつ同
時にその電磁波発生源の方向を検知する機能を持つ。
As a result, the electric field strengths of the respective polarization components in the three directions of the X, Y, and Z axes which are orthogonal to each other are detected by the independent three series of optical electric field sensors, so that the direction is changed at each measurement. It is not necessary and it is possible to measure simultaneously. That is, it has no directivity and at the same time has a function of detecting the direction of the electromagnetic wave generation source.

【0017】(実施例2)図3は、第1の発明の他の実
施例による光変調器の構成を示す。LN結晶のZ基板1
の表面に3組の位相シフト光導波路2をTiの熱拡散に
より形成し、さらに、この光導波路上に変調電極3を配
置する。図に示すように、一つの入射光を3組の位相シ
フト光導波路と1つの光導波路に4分割する光分岐回路
を形成し、それぞれ3個の光変調器の光導波路に入射光
を導く構造とする。光入射側にTM波が入力となるよう
に定偏波光ファイバ5(図2参照)が、光出射側にシン
グルモード光ファイバ6(図2参照)がそれぞれ接続さ
れる。前記実施例1と同じように、アンテナエレメント
4は図2に示すように、光変調器を内蔵するパッケージ
7の外壁に、互いに直交する方向に3系列配置し、それ
ぞれの光変調器の変調電極に接続して、光電界センサを
構成する。
(Embodiment 2) FIG. 3 shows the configuration of an optical modulator according to another embodiment of the first invention. LN crystal Z substrate 1
Three sets of phase-shifting optical waveguides 2 are formed on the surface of by thermal diffusion of Ti, and the modulation electrode 3 is arranged on the optical waveguides. As shown in the figure, a structure is formed in which one incident light is divided into three sets of phase shift optical waveguides and one optical waveguide into four optical branch circuits, and the incident light is guided to the optical waveguides of three optical modulators. And A constant polarization optical fiber 5 (see FIG. 2) is connected to the light incident side so that the TM wave is input, and a single mode optical fiber 6 (see FIG. 2) is connected to the light emitting side. As in the first embodiment, as shown in FIG. 2, the antenna elements 4 are arranged on the outer wall of the package 7 containing the optical modulator in three series in the directions orthogonal to each other, and the modulation electrodes of the respective optical modulators are arranged. To form an optical electric field sensor.

【0018】互いに直交するX、Y、Z軸の3方向の各
偏波成分の電界強度は、それぞれ独立した3系列の光電
界センサによって検出されるため、測定のたびにその向
きを変える必要がなく、かつ同時に測定することが可能
である。すなわち指向性を持たず、かつ同時にその電磁
波発生源の方向を検知する機能を持つ。他の一つの分岐
光はそのまま独立の出射光とし、これはモニタリングの
ために利用することができる。
Since the electric field strengths of the respective polarization components in the three directions of the X, Y, and Z axes which are orthogonal to each other are detected by the independent three-series optical electric field sensors, it is not necessary to change the direction every measurement. , And it is possible to measure simultaneously. That is, it has no directivity and at the same time has a function of detecting the direction of the electromagnetic wave generation source. The other one of the branched lights is an independent outgoing light, which can be used for monitoring.

【0019】(実施例3)図4は、第2の発明の実施例
による光変調器の構成を示す。LN結晶のX基板1の表
面に1組の位相シフト光導波路2をTiの熱拡散により
形成し、さらに、光導波路の近傍に変調電極を配置し
て、光変調器を構成する。光変調器の光導波路入出射光
はそれぞれ形成した入射光導波路、および出射光導波路
によってそれぞれ導入し、出力する。
(Embodiment 3) FIG. 4 shows the configuration of an optical modulator according to an embodiment of the second invention. A set of phase shift optical waveguides 2 is formed on the surface of an X substrate 1 of LN crystal by thermal diffusion of Ti, and modulation electrodes are arranged in the vicinity of the optical waveguides to form an optical modulator. Light entering and exiting the optical waveguide of the optical modulator is introduced and output by the incident optical waveguide and the outgoing optical waveguide that are respectively formed.

【0020】光入射側にTE波が入力となるように定偏
波光ファイバ5(図2参照)が、光出射側にシングルモ
ード光ファイバ6(図2参照)がそれぞれ接続されてい
る。前記実施例1と同じように、アンテナエレメント4
は図2に示すように、光変調器を内蔵するパッケージ7
の外壁に、3方向に互いに直交して配置した一組のアン
テナを、単一の光変調器の変調電極3に接続することに
よって、多指向性機能を有する光電界センサを構成す
る。
A constant polarization optical fiber 5 (see FIG. 2) is connected to the light incident side so that the TE wave is input, and a single mode optical fiber 6 (see FIG. 2) is connected to the light emitting side. Similar to the first embodiment, the antenna element 4
As shown in FIG. 2, is a package 7 containing an optical modulator.
An optical electric field sensor having a multi-directional function is configured by connecting a set of antennas, which are arranged in three directions orthogonal to each other on the outer wall of, to the modulation electrode 3 of a single optical modulator.

【0021】[0021]

【発明の効果】以上述べたように、本発明は小型かつ製
作が容易な光電界センサを実現し、これにより測定のた
びごとに受信方向を変える必要がなく、測定する電磁パ
ルス等の環境電磁波が到来する方向や偏波成分に依存し
ない測定を可能とする。
As described above, the present invention realizes a small-sized and easy-to-manufacture optical electric field sensor, which makes it unnecessary to change the receiving direction each time measurement is performed, and to measure environmental electromagnetic waves such as electromagnetic pulses to be measured. It enables measurement that does not depend on the direction of arrival or the polarization component.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明による光変調器の構成を示す説明
図。
FIG. 1 is an explanatory diagram showing a configuration of an optical modulator according to a first invention.

【図2】第1および第2の発明によるアンテナエレメン
トを含む光電界センサの構成を示す説明図。
FIG. 2 is an explanatory diagram showing a configuration of an optical electric field sensor including antenna elements according to the first and second inventions.

【図3】第1の発明による光変調器の他の構成例を示す
説明図。
FIG. 3 is an explanatory diagram showing another configuration example of the optical modulator according to the first invention.

【図4】第2の発明による光変調器の構成を示す説明
図。
FIG. 4 is an explanatory diagram showing a configuration of an optical modulator according to a second invention.

【図5】従来の導波路型素子による光電界センサの構成
図。
FIG. 5 is a configuration diagram of a conventional optical electric field sensor using a waveguide type element.

【符号の説明】[Explanation of symbols]

1 (LiNbO3)基板 2 位相シフト光導波路 3 変調電極 4 アンテナエレメント 4X X軸方向ダイポールアンテナ 4Y Y軸方向ダイポールアンテナ 4Z Z軸方向ダイポールアンテナ 5 定偏波光ファイバ 6 シングルモード光ファイバ 7 パッケージ 11 入射光 12 出射光 52 入射光導波路 53 位相シフト光導波路 56 出射光導波路 57 入力光ファイバ 58 出力光ファイバ1 (LiNbO 3 ) substrate 2 phase shift optical waveguide 3 modulation electrode 4 antenna element 4X X-axis direction dipole antenna 4Y Y-axis direction dipole antenna 4Z Z-axis direction dipole antenna 5 constant polarization optical fiber 6 single mode optical fiber 7 package 11 incident light 12 outgoing light 52 incident optical waveguide 53 phase shift optical waveguide 56 outgoing optical waveguide 57 input optical fiber 58 output optical fiber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気光学効果を示す結晶基板上に形成さ
れた入射光導波路、その入射光導波路より分岐した二つ
の位相シフト光導波路、その二つの位相シフト光導波路
が合流する出射光導波路、および前記位相シフト光導波
路の近傍に形成された変調電極からなる光変調器と前記
変調電極に接続されたアンテナとから構成された光電界
センサにおいて、同一結晶基板上に、それぞれ独立した
複数の光変調器を形成し、それぞれ指向性が異なる複数
のアンテナを、それぞれの変調電極に接続して構成した
ことを特徴とする光電界センサ。
1. An incident optical waveguide formed on a crystal substrate exhibiting an electro-optical effect, two phase shift optical waveguides branched from the incident optical waveguide, an outgoing optical waveguide in which the two phase shift optical waveguides join, and In an optical electric field sensor including an optical modulator including a modulation electrode formed in the vicinity of the phase shift optical waveguide and an antenna connected to the modulation electrode, a plurality of independent optical modulations are provided on the same crystal substrate. And a plurality of antennas having different directivities are connected to respective modulation electrodes to form an optical electric field sensor.
【請求項2】 電気光学効果を示す結晶基板上に形成さ
れた入射光導波路、その入射光導波路より分岐した二つ
の位相シフト光導波路、その二つの位相シフト光導波路
が合流する出射光導波路、および前記位相シフト光導波
路の近傍に形成された変調電極からなる光変調器と前記
変調電極に接続されたアンテナとから構成された光電界
センサにおいて、3方向に互いに直交して配置した一組
のアンテナを、前記変調電極に接続して構成したことを
特徴とする光電界センサ。
2. An incident optical waveguide formed on a crystal substrate exhibiting an electro-optical effect, two phase shift optical waveguides branched from the incident optical waveguide, an outgoing optical waveguide in which the two phase shift optical waveguides join, and An optical electric field sensor including an optical modulator formed of a modulation electrode formed in the vicinity of the phase shift optical waveguide and an antenna connected to the modulation electrode, and a pair of antennas arranged orthogonal to each other in three directions. Is connected to the modulation electrode, and an optical electric field sensor is provided.
JP6053256A 1993-07-07 1994-02-25 Photoelectric field sensor Pending JPH07239356A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP6053256A JPH07239356A (en) 1994-02-25 1994-02-25 Photoelectric field sensor
CA002144075A CA2144075C (en) 1993-07-07 1994-07-07 Electric field sensor
CN94190478A CN1052071C (en) 1993-07-07 1994-07-07 Electric field sensor
KR1019950700890A KR100220289B1 (en) 1993-07-07 1994-07-07 Electric field sensor
US08/397,076 US5488677A (en) 1993-07-07 1994-07-07 Electric field sensor
EP94919869A EP0668508B1 (en) 1993-07-07 1994-07-07 Electric field sensor
DE69430728T DE69430728T2 (en) 1993-07-07 1994-07-07 SENSORS FOR ELECTRICAL FIELDS
PCT/JP1994/001110 WO1995002193A1 (en) 1993-07-07 1994-07-07 Electric field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6053256A JPH07239356A (en) 1994-02-25 1994-02-25 Photoelectric field sensor

Publications (1)

Publication Number Publication Date
JPH07239356A true JPH07239356A (en) 1995-09-12

Family

ID=12937711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6053256A Pending JPH07239356A (en) 1993-07-07 1994-02-25 Photoelectric field sensor

Country Status (1)

Country Link
JP (1) JPH07239356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208019A (en) * 2005-01-25 2006-08-10 Candox Systems Inc Electromagnetic wave coupling apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208019A (en) * 2005-01-25 2006-08-10 Candox Systems Inc Electromagnetic wave coupling apparatus

Similar Documents

Publication Publication Date Title
KR100220289B1 (en) Electric field sensor
CN100437050C (en) Distribution type fiber-optic vibration sensor
CN1844942A (en) Photoelectric integrated sensor for strong electric field measurement
JP5044100B2 (en) Electromagnetic wave measuring device, electromagnetic wave measuring probe, electromagnetic wave measuring probe array
JP2007078633A (en) High sensitivity three-axis photoelectric field sensor
JP3720327B2 (en) 3-axis optical electric field sensor
JPH07239356A (en) Photoelectric field sensor
JPH0989961A (en) Electric field detecting device
JP2001343410A (en) Electric field probe
JPH085687A (en) Field sensor
JP2014215140A (en) Electric field measuring apparatus
JP3505669B2 (en) Electric field sensor
JPH09113557A (en) Operating point adjusting method for electric field sensor and electric field sensor
JP3577616B2 (en) Electric field sensor
JP3611409B2 (en) Electric field sensor
JP3435584B2 (en) Electric field sensor head and electric field sensor
JP3632714B2 (en) Electromagnetic wave receiving system
JP3355502B2 (en) Electric field sensor
JPH08313577A (en) Electric field sensor
JP3673611B2 (en) Electric field sensor
CN1858602A (en) No-antenna photoelectric integrated sensor for strong electric field measurement
JPH0829467A (en) Electric field sensor
JP3355503B2 (en) Electric field sensor
JPH07301643A (en) Electric field sensor
SU1737361A1 (en) Device for measuring parameters of signal reflected from input of microwave component