WO2003098015A1 - Verfahren und vorrichtung zum kühlen eines verbrennungsmotors - Google Patents

Verfahren und vorrichtung zum kühlen eines verbrennungsmotors Download PDF

Info

Publication number
WO2003098015A1
WO2003098015A1 PCT/EP2003/005174 EP0305174W WO03098015A1 WO 2003098015 A1 WO2003098015 A1 WO 2003098015A1 EP 0305174 W EP0305174 W EP 0305174W WO 03098015 A1 WO03098015 A1 WO 03098015A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
internal combustion
combustion engine
liquid
coolant
Prior art date
Application number
PCT/EP2003/005174
Other languages
English (en)
French (fr)
Inventor
Bernd Wenderoth
Stefan Dambach
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to CN038112426A priority Critical patent/CN1653250B/zh
Priority to KR10-2004-7018560A priority patent/KR20050010007A/ko
Priority to US10/512,092 priority patent/US7409927B2/en
Priority to EP03730060A priority patent/EP1507965A1/de
Priority to MXPA04010638A priority patent/MXPA04010638A/es
Priority to AU2003240665A priority patent/AU2003240665A1/en
Priority to BR0309995-4A priority patent/BR0309995A/pt
Priority to CA2485186A priority patent/CA2485186C/en
Priority to JP2004505514A priority patent/JP2005530945A/ja
Publication of WO2003098015A1 publication Critical patent/WO2003098015A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/06Cleaning; Combating corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/06Cleaning; Combating corrosion
    • F01P2011/066Combating corrosion

Definitions

  • the present invention relates to a method and a device for cooling an internal combustion engine, and an internal combustion engine with an internal combustion engine and a corresponding cooling device.
  • Internal combustion engines for example internal combustion engines for motor vehicles, usually have an internal combustion engine and a cooling circuit in which a cooling liquid circulates.
  • Different cooling circuits of such internal combustion engines are described, for example, in European patent application EP-A 0 038 556 or in German patent applications DE-A 198 03 884, DE-A 199 38 614 or DE-A 199 56 893.
  • a coolant circulates in the cooling circuit of these internal combustion engines, which is slid through cooling jackets in the engine block / crankcase and in the cylinder head. The coolant is usually first led through the cooling jacket of the crankcase and then through the cooling jacket of the cylinder head.
  • Coolant concentrates diluted with water are used as cooling liquids that circulate in the cooling circuits, which on the one hand ensure good heat dissipation and on the other hand ensure reliable frost protection.
  • Most of the coolants intended for cooling circuits for internal combustion engines contain alkylene glycols, especially ethylene glycol or propylene glycols, as the main component.
  • alkylene glycol / water mixtures are very corrosive at the operating temperatures of internal combustion engines.
  • the different metals in the cooling system such as copper, brass, iron, steel, cast iron (gray cast iron), lead, tin, chrome, zinc and aluminum and their alloys, as well as solder metals, such as solder (soft solder), must be sufficient be protected from a wide variety of types of corrosion, such as pitting, crevice corrosion, erosion or cavitation. For this reason, coolants contain tel for the cooling circuits of internal combustion engines in addition to the antifreeze agents and corrosion inhibitors.
  • Typical coolant formulations as described for example in WO-A 01/32801, EP-A 0 816 467, WO-A 97/30133 or EP-A 0 557 761, therefore also contain ionic corrosion inhibitors in the form of organic carboxylic acid salts, such as Example alkali salts of 2-ethylhexanoic acid or sebaic acid and / or in the form of inorganic salts, such as nitrates, nitrites, borates or molybdates.
  • organic carboxylic acid salts such as Example alkali salts of 2-ethylhexanoic acid or sebaic acid
  • inorganic salts such as nitrates, nitrites, borates or molybdates.
  • the applicant's international patent application WO-A 02/08354 describes for the first time completely nonionic coolant concentrates and aqueous coolant compositions containing these coolant concentrates.
  • These are coolants with anti-freeze components based on alkylene glycols and their derivatives or glycerin, which contain 0.05 to 10% by weight of one or more carboxylic acid amides and / or sulfonic acid, if necessary, in addition to other corrosion inhibitors, which means in particular with light metals such as Aluminum and magnesium or their alloys provide very good protection against corrosion.
  • ionic decomposition products which have a corrosive action can also arise in such nonionic coolant compositions.
  • the cooling circuit of an internal combustion engine is usually not a hermetically sealed system, so that, for example when filling cooling water, corrosive contaminants can also be introduced.
  • WO-A 00/17951 a cooling system for fuel cells is described in which a pure ethylene glycol / water mixture without corrosion inhibitors is used as the coolant.
  • an ion exchange unit is arranged in the cooling circuit of the fuel cell.
  • WO-A 00/17951 neither mentions internal combustion engines with their specific material problems, for example with regard to the use of components made of lei ⁇ hmetall alloys, nor does this document deal with the problem of cooling liquids which contain corrosion inhibitors.
  • the present invention is therefore based on the technical problem of providing a method for cooling internal combustion engines which offers very good and long-lasting corrosion protection, in particular for light metals and light metal alloys at the operating temperatures prevailing in an internal combustion engine.
  • the invention is also based on the technical problem of providing a device suitable for carrying out the method according to the invention.
  • the invention proposes to use at least one deionization device in the cooling circuit of an internal combustion engine.
  • the use of a deionizer would prevent effective corrosion protection. Therefore, the invention also proposes to use the ionization device in conjunction with a nonionic coolant composition.
  • the invention accordingly relates to a method for cooling internal combustion engines, in which a cooling liquid comprising non-ionic corrosion inhibitors is circulated in a cooling circuit which is in thermal contact with the internal combustion engine, and the cooling liquid is at least intermittently deionized.
  • a cooling liquid comprising non-ionic corrosion inhibitors
  • the cooling liquid is at least intermittently deionized.
  • aqueous coolant compositions with nonionic corrosion inhibitors are particularly suitable for use as a cooling liquid in the process according to the invention.
  • Cooler protective formulations based on water or based on water in combination with liquid alcohol freezing point depressants can be used.
  • suitable liquid-alcohol freezing point depressants are alkylene glycols and their derivatives, and also glycerol, in particular propylene glycol and especially ethylene glycol.
  • higher glycols and glycol ethers are also suitable, for example ethylene glycol, dipropylene glycol and monoethers of glycols, such as methyl, ethyl, propyl and butyl ethers of ethylene glycol, propylene glycol, diethylene glycol and dipropylene glycol.
  • Mixtures of the glycols and glycol ethers mentioned, and mixtures of these glycols with glycerol and, if appropriate, the glycol ethers mentioned can also be used.
  • the anti-freeze and anti-corrosion agent usually present as a concentrate before mixing with water preferably contains 0.05 to 10% by weight, based on the total amount of the concentrate, of one or more carboxylic acid amides and / or sulfonic acid amides, particularly preferably one or more aliphatic, ⁇ ycloali - Phatic, aromatic or heteroaromatic carboxylic acid amides and / or sulfonic acid amides each having 2 to 16 carbon atoms, in particular each having 3 to 12 carbon atoms.
  • the araids can optionally be alkyl-substituted on the nitrogen atom of the amide group, for example by a C 1 -C 4 -alkyl group.
  • Aromatic or heteroaromatic backbones of the molecule can of course also carry alkyl groups.
  • One or more, preferably one or two, amide groups can be present in the molecule.
  • the amides can additionally carry functional groups, preferably C 1 -C 4 -alkoxy amino, chlorine, fluorine, hydroxyl and / or acetyl, in particular such functional groups can be found as substituents on aromatic or heteroaromatic rings present.
  • Particularly preferred aromatic carboxamides, heteroaromatic carboxamides, aliphatic carboxamides, ⁇ y-cloaliphatic carboxamides with the amide group as part of the ring and aromatic sulfonamides are described in detail in WO-A 02/08354.
  • the concentrate may contain aliphatic, ⁇ ycloaliphatic or aromatic amines with 2 to 15 C atoms, mono- or dinuclear saturated or partially unsaturated heterocycles with 4 to 10 C atoms and / or tetra (C 1 -C 6 alkoxy) silanes.
  • additional components mentioned are also described more specifically in WO-A 02/08354.
  • corrosion inhibitors and other auxiliaries such as defoamers, dyes and bitter substances for reasons of hygiene and safety in the event of ingestion, may also be present in the usual small amounts, provided that these are nonionic components.
  • the coolant comprises 10 to 90% by weight of water and 90 to 10% by weight of the coolant concentrate as a ready-to-use aqueous coolant, in particular for protecting the coolant of cooling circuits for internal combustion engines.
  • the cooling liquid is preferably deionized chemically with the aid of ion exchangers and / or liquid deionizing agents and / or by electrochemical means.
  • the present invention also relates to a device for cooling an internal combustion engine, in particular for carrying out the method according to the invention, the device comprising a cooling circuit which is at least partially in thermal contact with the internal combustion engine.
  • the device according to the invention is characterized in that at least one deionization device for cooling liquid is arranged in the cooling circuit. Ion exchangers and / or liquid deionizers and / or agents for continuous electrochemical deionization are preferably used as the deionization device.
  • the deionization device can be arranged at any suitable point in the cooling circuit of the internal combustion engine, for example in the main cooling circuit, so that the deionization device comes into direct contact with the cooling liquid flow, or in a bypass flow through which only a partial quantity of the cooling liquid is pumped per unit of time. or also in an expansion vessel usually provided in the cooling circuit, or in its outlet to the cooling circuit. If an ion exchanger is used as the deionization device, it is preferably contained in a filter cartridge which can be easily replaced and replaced if necessary, for example when the ion exchanger is exhausted.
  • Organic ion exchangers are preferably used in the process according to the invention, in particular mixture products from anion exchange resins of the strongly alkaline hydroxyl type and / or cation exchange resins based on sulfonic acid groups.
  • a corresponding commercially available combination product is, for example, the mixed-bed resin ion exchanger AMBERJET ® UP 6040 RESIN from Rohm & Haas.
  • activated carbons or inorganic adsorbents such as aluminum oxides, silica gels, zeolites or clay minerals such as the so-called solid acids (H-clays), for example MONTMORRILONIT ®, can also be used as ion exchangers for this application.
  • H-clays solid acids
  • a commercially available product is, for example, MONTMORRILONIT ® KSF from Fluka.
  • Liquids known per se which are able to bind ions can be used as the liquid deionizing agent.
  • the binding can take place by complexation, as is the case, for example, with known complexing agents.
  • examples of such compounds are sugar acids, citric acids, tartaric acid, nitrilotriacetic acid (NTA), methylglycinediacetic acid (MGDA), ethylenediaminetetraacetic acid (EDTA) and other polyaminopolycarboxylic acids, such as polyaminopolyphosphonic acids.
  • NTA nitrilotriacetic acid
  • MGDA methylglycinediacetic acid
  • EDTA ethylenediaminetetraacetic acid
  • the liquid deionizing agent is a solution of these compounds in a liquid which can be measured or not measured with the cooling medium.
  • the ions can also be bound by ionic interaction.
  • the liquid deionizing agent can be mixed with the cooling medium so that an intimate contact of both media is guaranteed.
  • the deionizing agent is then separated from the cooling medium again, for example by phase separation using a phase separator or by a membrane cell. If a liquid deionizing agent is used that does not mix with the circulating coolant, one can according to a second variant, bring it into contact with the cooling liquid either directly or via a membrane, in particular an ion-permeable membrane. If the deionizing agent is essentially immiscible with the cooling liquid, the contacting can take place in a container which contains the deionizing agent and through which the cooling medium forming a second phase flows.
  • German patent application DE-A 102 01 276 describes the use of liquid deionizing agents in a cooling system for fuel cells in more detail.
  • the cooling liquid is electrochemically deionized, preferably by electrodialysis.
  • electrodialysis To carry out the electrodialysis, voltage is applied to the electrodes of an electrochemical cell arranged in the cooling circuit, which removes some of the ions from the cooling circuit.
  • Electrodialysis cells which can be operated with or without ion exchangers, are preferably used. If ion exchangers are used, the corresponding cells are also referred to as electrode ionization cells. By using ion exchangers, a significantly lower residual conductivity of the cooling medium can be achieved than with a pure electrodialysis. Electrode ionization cells are therefore used as the preferred deionization device.
  • the cooling medium is conducted as a diluate flow through the cell.
  • Electrode ionization cells are known from si ⁇ h and are used, for example, for the desalination of sea water.
  • Such a cell can consist of a bed of anion and cation exchange resins.
  • anion and cation exchanger resins are arranged in two separate chambers. The diluate stream flows through the ion exchange packets and is separated from the concentrate stream by ion-selective membranes.
  • a detailed description of a method and a device for the electrochemical deionization of the cooling liquid of a fuel cell can be found in the applicant's German patent application DE-A 101 04 771.
  • the present invention also relates to a liquid-cooled internal combustion engine with at least one internal combustion engine and at least one cooling circuit for the internal combustion engine, the internal combustion engine being characterized in that at least one deionization device is provided in the cooling circuit.
  • FIG. 1 shows a schematic representation of the internal combustion engine according to the invention with a deionization device arranged in a cooling circuit; 10
  • FIG. 2 shows a variant of the arrangement of the deionization device in the cooling circuit of FIG. 1.
  • FIG 1 shows an internal combustion engine 10 according to the invention.
  • the internal combustion engine 10 comprises an internal combustion engine 11 which has a cylinder head 12 and an engine block or a crankcase 13, and a cooling circuit 14 in which an aqueous, nonionic coolant composition is circulated by means of a cooling water circulation 15.
  • a cooling water circulation 15 shown mathematically.
  • the internal combustion engine 10 comprises an internal combustion engine 11 which has a cylinder head 12 and an engine block or a crankcase 13, and a cooling circuit 14 in which an aqueous, nonionic coolant composition is circulated by means of a cooling water circulation 15.
  • Example 20 the cooling liquid runs from the cooling water pump 15 through a distributor 16, which divides it into two cooling channels 17, 18, the distribution ratio in the distributor 16 being controllable.
  • the control signal is supplied via a line 19 from a control unit 20, which via (not shown)
  • 25 sensors measures the temperature of the cylinder head 12 and the crankcase 13 or the coolant emerging from the lines 17 or 18 from the internal combustion engine 11 and adjusts the distribution ratio so that none of these temperatures exceeds a predetermined maximum. After leaving the cy-
  • a deionization device 28 provided according to the invention is arranged, for example a replaceable filter cartridge with an ion exchange resin.
  • the cooling liquid circulating in the cooling circuit 14 is continuously deionized. After exhausting the ion exchanger, the filter cartridge can be replaced.
  • the deionization device 28 can also be designed as an electrochemical deionization cell or as a contact cell for a liquid deionization agent.
  • the deionization device 28 is arranged in a bypass 29, with a valve 30 controlling when and which portion of the coolant flow in the bypass branch 29 is deionized.
  • the valve 30 can be controlled, for example, via a signal line 31 as a function of the values supplied by a conductivity measuring cell arranged in the cooling circuit 14 (not shown) by means of the control device 20.
  • the cooling liquid is deionized only if an increase in the concentration of the ionic components of the cooling liquid is registered via the conductivity measuring cell.
  • the other components of the variant of FIG. 2, which correspond to those of the variant of FIG. 1, are identified by the same reference numerals as in FIG. 1.
  • the deionization device provided according to the invention can be arranged at any suitable point in the cooling circuit 14, for example in a line section 32 after running through the cooler 22 or in the bypass line 27.
  • an ASTM D 1384 test apparatus was supplemented in such a way that with the help of a commercial car cooling water pump (Bosch company, type PAA 12V 0 392 020 057, 12V DC voltage, maximum pump capacity 260 liters per hour )
  • the cooling liquid was circulated through a glass filter funnel with a frit, containing 75 g of the ion exchanger AMBERJET ® UP 6040 RESIN (Rohm & Haas).
  • the experiments were carried out three times with or without ion exchangers.
  • a standard metal set in accordance with ASTM D 1384 was used in both tests and, in addition to the aluminum coupon, a magnesium coupon of the alloy Mg AZ91HP was used.
  • non-ionic coolant formulations can further improve the use of an ion exchanger in the cooling circuit.
  • a particularly pronounced improvement in corrosion protection can be found in the components made of magnesium and its alloys, in particular in combination with non-ferrous metals such as copper or brass or white solder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Kühlen eines Verbrennungsmotors. In einem Kühlkreislauf (14) des Verbrennungsmotors (11) wird eine wässrige nichtionische Kühlmittelzusammensetzung verwendet. Damit ein lange anhaltender Korrosionsschutz auch für mit der Kühlflüssigkeit in Kontakt kommende Leichtmetallkomponenten des Motors, wie beispielsweise Komponenten aus Magnesium oder Magnesiumlegierungen, gewährleistet ist, weist der Kühlkreislauf wenigstens eine Entionisierungseinrichtung (28), beispeislweise einen Ionenaustauscher, für die Kühlflüssigkeit auf.

Description

Verfahren und Vorrichtung zum Kühlen eines Verbrennungsmotors
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zum Kühlen eines Verbrennungsmotors, sowie eine Brenn- kraftmasσhine mit einem Verbrennungsmotor und einer entsprechenden Kühlvorrichtung.
Brennkraft asσhinen, beispielsweise Brennkraftmaschinen für Kraftfahrzeuge, weisen üblicherweise einen Verbrennungsmotor und einen Kühlkreislauf, in welchem eine Kühlflüssigkeit zirkuliert, auf. Unterschiedliche Kühlkreisläufe von derartigen Brennkraftma- schinen werden beispielsweise in der europäischen Patentanmeldung EP-A 0 038 556 oder in den deutschen Patentanmeldungen DE-A 198 03 884, DE-A 199 38 614 oder DE-A 199 56 893 beschrieben. Im Kühlkreislauf dieser Brennkraftmaschinen zirkuliert eine Kühlflüssigkeit, die durch Kühlmäntel im Motorbloσk/Kurbelgehäuse und im Zylinderkopf gleitet wird. Die Kühlflüssigkeit wird meist zunächst durch den Kühlmantel des Kurbelgehäuses und anschließend durch den Kühlmantel des Zylinderkopfs geführt. Es ist aber auch möglich, die Kühlflüssigkeit mittels eines vorzugsweise steuerbaren Ventils vor dem Eintritt in das Motorgehäuse in zwei separate Teilkreisläufe aufzuteilen und getrennt in die Kühlmäntel von Kurbelgehäuse und Zylinderkopf zu leiten. Mittels einer Steuereinrichtung ist es dann möglich, die beiden Teilkühlkreise abhängig von Parametern des Verbrennungsmotors bedarfsweise unabhängig voneinander zu regeln.
Als Kühlflüssigkeiten, die in den Kühlkreisläufen zirkulieren, werden mit Wasser verdünnte Kühlmittelkonzentrate eingesetzt, die einerseits eine gute Wärmeabfuhr und andererseits für einen zuverlässigen Frostschutz gewährleisten. Die meisten für Kühlkreis- laufe für Verbrennungsmotoren vorgesehenen Kühlmittel enthalten Alkylenglykole, vor allem Ethylenglykol oder Propylenglyken, als Hauptkomponente. Alkylenglykol/Wasser-Mischungen sind allerdings bei den Betriebstemperaturen von Verbrennungsmotoren sehr korrosiv. Daher müssen die im Kühlsystem vorkommenden unterschiedli- σhen Metalle, wie beispielsweise Kupfer, Messing, Eisen, Stahl, Gusseisen (Grauguss), Blei, Zinn, Chrom, Zink und Aluminium und deren Legierungen, sowie Lötmetalle, wie beispielsweise Lötzinn (Weichlot) , ausreichend vor den verschiedensten Korrosionsarten, wie zum Beispiel Lochfraßkorrosion, Spaltkorrosion, Erosion oder Kavitation, geschützt werden. Aus diesem Grund enthalten Kühlmit- tel für die Kühlkreisläufe von Verbrennungsmotoren neben den Frostschutzmitteln auch Korrosionsinhibitoren.
Typische Kühlmittelformulieren, wie sie beispielsweise in WO-A 01/32801, EP-A 0 816 467, WO-A 97/30133 oder EP-A 0 557 761 beschrieben sind, enthalten daher auch ionische Korrosionsinhibitoren in Form von organischen Carbonsäuresalzen, wie zum Beispiel Alkalisalze von 2-Ethylhexansäure oder Sebaσinsäure und/oder in Form von anorganischen Salzen, wie zum Beispiel Nitrate, Nitrite, Borate oder Molybdate.
Im Automobilbau ist man derzeit bestrebt, durch Gewiσhtsreduzie- rung bei Kraftfahrzeugen den Treibstoffverbrauch abzusenken. Auch im Motorenbau ist man daher bemüht, beispielsweise durch Verwen- düng von Leichtmetallen oder Leichtmetalllegierungen das Gewicht der Aggregate zu verringern. So versucht man beispielsweise in neueren Entwicklungen Motoren teilweise oder vollständig aus Magnesium oder Magnesiumlegierungen zu konstruieren.
Es hat sich aber gezeigt, dass wegen der erhöhten chemischen Reaktivität von Magnesium die heute kommerziell erhältlichen Kühlmittel, die ionische Korrosionsinhibitoren enthalten, praktisch keinen Korrosionsschutz für Bauteile aus Magnesium und dessen Legierungen bieten.
In der internationalen Patentanmeldung WO-A 02/08354 der Anmelderin werden erstmals völlig nichtionische Kühlmittelkonzentrate und diese Kühlmittelkonzentrate enthaltende wässrige Kühlmittelzusammensetzungen beschrieben. Es handelt sich hier um Kühlmittel mit Frostschutzkomponenten auf der Basis von Alkylenglykolen und deren Derivaten oder von Glyzerin, die 0,05 bis 10 Gew.-% eines oder mehrerer Carbonsäureamide und/oder Sulfonsäurea ide gegebenenfalls neben anderen Korrosionsinhibitoren enthalten, wodurch insbesondere bei Leichtmetallen wie Aluminium und Magnesium be- ziehungsweise deren Legierungen ein sehr guter Korrosionsschutz erreicht wird.
Bei den Betriebstemperaturen von Verbrennungsmotoren können aber auch in derartigen nichtionisσhen Kühlmittelzusammensetzungen korrosiv wirkenden ionische Zersetzungsprodukte entstehen. Außerdem stellt der Kühlkreislauf eines Verbrennungsmotors meist kein hermetisch abgeschlossenes System dar, so dass auch, beispielsweise beim Nachfüllen von Kühlwasser, korrosiv wirkende Verschmutzungen eingetragen werden können. In der internationalen Patentanmeldung WO-A 00/17951 wird ein Kühlsystem für Brennstoffzellen beschrieben, bei dem als Kühlmittel ein reines Ethylenglykol/Wasser-Gemisσh ohne Korrosionsinhibitoren eingesetzt wird. Um sowohl die Reinheit des Kühlmittels über einen längeren Zeitraum, als auch eine niedrige spezifische Leitfähigkeit zu gewährleisten, ist im Kühlkreislauf der Brennstoffzelle eine Ionenaustauschereinheit angeordnet. In WO-A 00/17951 werden aber weder Verbrennungsmotoren mit ihrer spezifischen Materialproblematik, etwa hinsichtlich der Verwendung von Bauteilen aus Leiσhmetalllegierungen, erwähnt, noch beschäftigt sich dieses Dokument mit der Problematik von Kühlflüssigkeiten, die Korrosionsinhibitoren enthalten.
Der vorliegenden Erfindung liegt daher das technische Problem zu Grunde, ein Verfahren zum Kühlen von Verbrennungsmotoren bereitzustellen, das insbesondere für Leichtmetalle und Leichtmetalllegierungen bei den in einem Verbrennungsmotor herrschenden Betriebstemperaturen einen sehr guten und lang anhaltenden Korrosionsschutz bietet. Der Erfindung liegt außerdem das technische Problem zu Grunde, eine zur Durchführung des erfindungsgemäßen Verfahrens geeignete Vorrichtung bereitzustellen.
Gelöst wird dieses technische Problem durch das Verfahren gemäß vorliegendem Anspruch 1. Vorteilhafte Weiterbildungen des erfin- dungsgemäßen Verfahrens sind Gegenstand der abhängigen Ansprüche. Die Erfindung schlägt vor, wenigstens eine Entionisierungsein- richtung in dem Kühlkreislauf einer Brennkraftmaschine zu verwenden. Bei herkömmlichen Kühlmittelzusammensetzungen, die ionische Korrosionsinhibitoren enthalten, würde die Verwendung einer Ent- ionisierungseinrichtung einen effektiven Korrosionsschutz verhindern. Daher schlägt die Erfindung außerdem vor, die Ξntionisie- rungseinrichtung in Verbindung mit einer nichtionisσhe Kühlmit- telzusammensetzung zu verwenden.
Die Erfindung betrifft demnach ein Verfahren zum Kühlen von Verbrennungsmotoren, wobei man in einem, mit dem Verbrennungsmotor in thermischem Kontakt stehenden Kühlkreislauf eine Kühlflüssigkeit zirkulieren lasst, die niσhtionisσhe Korrosionsinhibitoren umfasst, und die Kühlflüssigkeit zumindest intermittierend entio- nisiert. Überraschend wurde gefunden, dass durch die intermittierende oder kontinuierliche Entionisierung der Kühlflüssigkeit im Kühlkreislauf die im Betrieb entstehenden ionischen Verunreinigungen aus der Kühlflüssigkeit entfernt werden können und somit ein langanhaltender Korrosionsschutz gewährleistet wird. Durch den Einsatz von niσhtionisσhen Korrosionsinhibitoren eignet sich das erfindungsgemäße Verfahren insbesondere zum Kühlen von Verbrennungsmotoren, die Leichtmetallkomponenten, insbesondere Korn- ponenten aus Aluminium oder Magnesium oder deren Legierungen, enthalten.
Besonders geeignet für die Verwendung als Kühlflüssigkeit in dem erfindungsgemäßen Verfahren sind alle wässrige Kühlmittelzusammensetzungen mit niσhtionisσhen Korrosionsinhibitoren, insbesondere solche, wie sie beispielsweise in der WO-A 02/08354 der Anmelderin beschrieben sind.
Es können Kühlersσhutzformulierungen auf Basis von Wasser oder auf Basis von Wasser in Kombination mit flüssigalkoholisσhen Gefrierpunkterniedrigungsmitteln eingesetzt werden. Als flüssigal- koholisσhe Gefrierpunkterniedrigungsmittel eignen sich Alkylen- glykole und deren Derivate, sowie Glyzerin, insbesondere Propy- lenglykol und vor allem Ethylenglykol. Daneben kommen jedoch auch höhere Glykole und Glykolether in Betracht, beispielsweise Die- thylenglykol, Dipropylenglykol sowie Monoether von Glykolen, wie Methyl-, Ethyl-, Propyl- und Butylether von Ethylenglykol, Propy- lenglykol, Diethylenglykol und Dipropylenglykol. Es können auch Mischungen der genannten Glykole und Glykolether, sowie Mischungen dieser Glykole mit Glyzerin und gegebenenfalls den genannten Glykolethern verwendet werden.
Das üblicherweise vor der Vermischung mit Wasser als Konzentrat vorliegende Frost- und Korrosionsschutzmittel enthält bevorzugt 0,05 bis 10 Gew.-%, bezogen auf die Gesamtmenge des Konzentrats, eines oder mehrerer Carbonsäureamide und/oder Sulfonsäureamide, besonders bevorzugt eines oder mehrerer aliphatischer, σycloali- phatischer, aromatischer oder heteroaromatischer Carbonsäureamide und/oder Sulfonsäureamide mit jeweils 2 bis 16 C-Atomen, insbesondere mit jeweils 3 bis 12 C-Atomen. Die Araide können gegebenenfalls am Stickstoffato der Amidgruppe alkylsubstituiert sein, beispielsweise durch eine Cι-C4-Alkylgruppe. Aromatische oder heteroaromatische Grundgerüste des Moleküls können selbstverständ- lieh auch Alkylgruppen tragen. Im Molekül können eine oder mehrere, vorzugsweise eine oder zwei Amidgruppen vorliegen. Die Amide können zusätzlich funktioneile Gruppen, vorzugsweise Cj-C-i-Alkoxy-Amino, Chlor, Fluor, Hydroxy und/oder Aσetyl, tragen, insbesondere finden sich solche funktioneilen Gruppen als Substi- tuenten an vorhandenen aromatischen oder heteroaromatischen Ringen. Besonders bevorzugte aromatische Carbonsäureamide, heteroaromatische Carbonsäureamide, aliphatisσhe Carbonsäureamide, σy- cloaliphatische Carbonsäureamide mit der Amidgruppierung als Bestandteil des Rings und aromatische Sulfonsäureamide sind in WO-A 02/08354 detailliert beschrieben. Weiterhin kann das Konzentrat aliphatische, σycloaliphatisσhe oder aromatische Amine mit 2 bis 15 C-Atomen, ein- oder zweikernige gesättigte oder teilungesättigte Heterozyklen mit 4 bis 10 C-Atomen und/oder Tetra-(Cι-Cg-alkoxy)-Silane enthalten. Beispiele der genannten zusätzlichen Bestandteile sind ebenfalls in WO-A 02/08354 konkreter beschrieben.
Auch weitere Korrosionsinhibitoren und andere Hilfsmittel, wie Entschäumer, Farbstoffe sowie Bitterstoffe aus Gründen der H - giene und der Sicherheit im Fall eines Verschluckens , können in üblichen geringen Mengen noch enthalten sein, sofern es sich dabei um nichtionische Bestandteile handelt.
Als gebrauchsfertige wässrige Kühlflüssigkeit, insbesondere für den Kühlerschutz von Kühlkreisläufen für Verbrennungsmotoren um- fasst die Kühlflüssigkeit 10 bis 90 Gew.-% Wasser und 90 bis 10 Gew.-% des Kühlmittelkonzentrats.
Vorzugsweise entionisiert man die Kühlflüssigkeit chemisch mit Hilfe von Ionenaustauschern und/oder flüssigen Entionisierungs- mitteln und/oder auf elektrochemischem Wege.
Gegenstand der vorliegenden Erfindung ist außerdem eine Vorrichtung zum Kühlen eines Verbrennungsmotors , insbesondere zur Durσh- führung des erfindungsgemäßen Verfahrens, wobei die Vorrichtung einen Kühlkreislauf umfasst, der zumindest in einem Teilabschnitt mit dem Verbrennungsmotor in thermischem Kontakt steht. Die erfindungsgemäße Vorrichtung ist dadurch gekennzeichnet, dass in dem Kühlkreislauf wenigstens eine Entionisierungseinriσhtung für Kühlflüssigkeit angeordnet ist. Als Entionisierungseinriσhtung werden vorzugsweise Ionenaustauscher und/oder flüssige Entioni- sierungsmittel und/oder Mittel zur kontinuierlichen elektrochemischen Deionisierung verwendet.
Die Entionisierungseinriσhtung kann an jeder geeigneten Stelle im Kühlkreislauf des Verbrennungsmotors angeordnet werden, beispielsweise im Hauptkühlkreislauf, so dass die Entionisierungseinriσhtung direkt mit dem Kühlflüssigkeitsstrom in Kontakt kommen, oder in einem Bypass-Strom, durch den pro Zeiteinheit immer nur eine Teilmenge der Kühlflüssigkeit gepumpt wird, oder auch in einem, im Kühlkreislauf üblicherweise vorgesehenen Ausgleichsgefäß, beziehungsweise in dessen Ablauf zum Kühlkreislauf. Wird ein Ionenaustauscher als Entionisierungseinrichtung verwendet, so ist dieser bevorzugt in einer Filterpatrone enthalten, die bei Bedarf, beispielsweise bei Erschöpfung des Ionenaustauschers leicht ausgewechselt und ersetzt werden kann.
Geeignete Ionenaustauscher zum Entionisieren von Flüssigkeiten sind an sich bekannt. Vorzugsweise werden im erfindungsgemäßen Verfahren organische Ionenaustauscher verwendet, insbesondere Misσhprodukte aus Anionenaustausσherharzen vom stark alkalischen Hydroxyl-Typ und/oder Kationenaustauscherharzen auf Sulfonsäure- gruppen-Basis. Ein entsprechendes kommerziell erhältliches Kombinationsprodukt ist beispielsweise der Misσhbettharz-Ionenaus- tauscher AMBERJET® UP 6040 RESIN der Firma Rohm & Haas.
Weiterhin können auch Aktivkohlen oder anorganische Adsorbentien wie Aluminiumoxide, Kieselgele, Zeolithe oder Tonmineralien wie die sogenannten Festkörpersäuren (H-Tone), zum Beispiel MONTMOR- RILONIT® als Ionenaustauscher für diesen Einsatzzweσk verwendet werden. Ein kommerziell erhältliches Produkt ist zum Beispiel MONTMORRILONIT® KSF der Firma Fluka.
Als flüssige Entionisierungsmittel können an sich bekannte Flüssigkeiten verwendet werden, die in der Lage sind, Ionen zu binden. Die Bindung kann durσh Komplexierung, wie zum Beispiel bei bekannten Komplexbildnern erfolgen. Beispiele für solche Verbindungen sind Zuσkersäuren, Zitronensäuren, Weinsäure, Nitrilo- triessigsäure (NTA) , Methylglyσindiessigsäure (MGDA) , Ethylendia- mintetraessigsäure (EDTA) und weitere Polya inopolycarbonsäuren, wie beispielsweise Polyaminopolyphosphonsäuren. Wenn die komple- xierenden Verbindungen an sich Feststoffe sind, so ist das flüssige Entionisierungsmittel eine Lösung dieser Verbindungen in einer Flüssigkeit, die mit dem Kühlmedium misσhbar oder nicht misσhbar sein kann. Die Bindung der Ionen kann auch durσh ionische Wechselwirkung erfolgen. Dies kann beispielsweise der Fall sein bei der Verwendung von Aminen, quarternierten Aminen oder Polyaminen, wie Polyethylenimin oder Polyvinylamin. Auch Mischungen eines Komplexbildners mit einer Verbindung, die über ionische Wechselwirkungen wirkt, sind möglich, wie zum Beispiel auch Lösungen von Komplexbildnern in solchen Verbindungen.
Das flüssige Entionisierungsmittel kann mit dem Kühlmedium vermischt werden, so dass ein inniger Kontakt beider Medien gewährleistet ist. Anschließend trennt man das Entionisierungsmittel vom Kühlmedium wieder ab, beispielsweise durch eine Phasentren- nung mittels eines Phasenscheiders oder durch eine Membranzelle. Wird ein flüssiges Entionisierungsmittel verwendet, das sich mit der zirkulierenden Kühlflüssigkeit niσht vermisσht, so kann man es gemäß einer zweiten Variante entweder direkt oder über eine Membran, insbesondere eine ionenpermeable Membran, mit der Kühlflüssigkeit in Kontakt bringen. Ist das Entionisierungsmittel mit der Kühlflüssigkeit im wesentlichen unmischbar, so kann das In- Kontakt-Bringen in einem Behälter erfolgen, der das Entionisierungsmittel enthält und von dem eine zweite Phase bildenden Kühlmedium durchströmt wird. In der deutschen Patentanmeldung DE-A 102 01 276 der Anmelderin ist die Verwendung von flüssigen Entio- nisierungsmitteln in einem Kühlsystem für Brennstoffzellen de- taillierter besσhrieben.
Gemäß einer weiteren Variante wird die Kühlflüssigkeit, vorzugsweise durch Elektrodialyse, elektrochemisch entionisiert. Zur Durchführung der Elektrodialyse wird an die Elektroden einer in dem Kühlkreislauf angeordneten elektrochemischen Zelle Spannung angelegt, welche einen Teil der Ionen aus dem Kühlkreislauf entfernt. Bevorzugt verwendet man Elektrodialysezellen, welche mit oder ohne Ionenaustausσher betrieben werden können. Werden Ionenaustauscher verwendet, so bezeichnet man die entsprechenden Zel- len auch als Elektrodeionisationszellen. Durch die Verwendung von Ionenaustausσhern kann eine wesentliσh niedrigere Restleitfähigkeit des Kühlmediums als bei einer reinen Elektrodialyse erreiσht werden. Als bevorzugte Entionisierungseinrichtung werden daher Elektrodeionisationszellen verwendet. Dabei führt man das Kühlme- dium als Diluatstrom durσh die Zelle. Elektrodeionisationszellen sind an siσh bekannt und werden beispielsweise zum Entsalzen von Meerwasser verwendet. Eine derartige Zelle kann aus einem Misσh- bett aus Anionen- und Kationenaustausσherharzen bestehen. Gemäß einer anderen Variante werden Anionen- und Kationentausσherharze in zwei getrennten Kammern angeordnet. Die Ionenaustausσherpak- kungen werden vom Diluatstrom durchströmt und sind durch ionenselektive Membranen von dem Konzentratstrom getrennt. Eine detaillierte Besσhreibung eines Verfahrens und einer Vorriσhtung zur elektroσhemischen Entionisierung der Kühlflüssigkeit einer Brenn- stoffzelle findet siσh in der deutsσhen Patentanmeldung DE-A 101 04 771 der Anmelderin.
Gegenstand der vorliegenden Erfindung ist schließlich auch eine flüssigkeitsgekühlte Brennkraftmasσhine mit wenigstens einem Ver- brennungsmotor und wenigstens einem Kühlkreislauf für den Verbrennungsmotor, wobei die Brennkraftmasσhine dadurch gekennzeichnet ist, dass in dem Kühlkreislauf wenigstens eine Entionisierungseinrichtung vorgesehen ist. Die Erfindung wird im folgenden unter Bezugnahme auf ein in den beigefügten Zeichnungen dargestelltes Ausführungsbeispiel näher erläutert.
5 In den Zeichnungen zeigen:
Figur 1 eine sσhematisσhe Darstellung der erfindungsgemäßen Brennkraftmasσhine mit einer in einem Kühlkreislauf angeordneten Entionisierungseinriσhtung; 10
Figur 2 eine Variante der Anordnung der Entionisierungsein- richtung in dem Kühlkreislauf der Figur 1.
In Figur 1 ist eine erfindungsgemäße Brennkraftmasσhine 10 sσhe-
15 matisch dargestellt. Die Brennkraftmasσhine 10 umfasst einen Verbrennungsmotor 11, der einen Zylinderkopf 12 und einen Motorbloσk bzw. ein Kurbelgehäuse 13 aufweist, und einen Kühlkreislauf 14 in welchem eine wässrige, nichtionisσhe KühlmittelZusammensetzung mittels einer Kühlwasser umpe 15 umgewälzt wird. Im dargestellten
20 Beispiel durσhläuft die Kühlflüssigkeit ausgehend von der Kühlwasserpumpe 15 einen Verteiler 16, der sie in zwei Kühlkanäle 17, 18 aufteilt, wobei das Aufteilungsverhältnis in dem Verteiler 16 steuerbar ist. Das Steuersignal wird über eine Leitung 19 von einer Steuereinheit 20 geliefert, die über (niσht dargestellte)
25 Sensoren die Temperatur des Zylinderkopfes 12 und des Kurbelgehäuses 13 oder der aus den Leitungen 17 bzw. 18 aus dem Verbrennungsmotor 11 austretenden Kühlflüssigkeit misst und das Auftei- lungsverhältnis so einstellt, dass keine dieser Temperaturen ein vorgegebenes Maximum übersteigt. Naσh ihrem Austritt aus dem Zy-
30 linderkopf 12 bzw. dem Kurbelgehäuse 13 werden die Kühlleitungen 17, 18 zu einer Rüσklaufleitung 21 vereinigt, welche die heiße Kühlflüssigkeit zu einem Wärmetausσher 22 führt, der im Kraftfahrzeug als Kühler bezeiσhnet wird. Vor der Vereinigung der beiden Leidungen 17, 18, kann die übliσherweise einen höheren Durσh-
35 satz und eine höhere Austrittstemperatur aufweisende Kühlleitung 17 des Kurbelgehäuses durch einen Heizungswärmetauscher 23 geführt werden, wo der Kühlflüssigkeit Wärme zum Beheizen der Fahrgastzelle eines Kraftfahrzeugs entzogen werden kann. Bevor die heiße Kühlflüssigkeit den Wärmetauscher/Kühler 22 erreiσht kann
40 sie durσh einen von einem Thermostat 24 geregelten Mischer 25 in einen ersten, über eine Leitung 26 zum Kühler 22 führenden Teilstrom und einen zweiten Teilstrom, der den Kühler über eine By- passleitung 27 überbrückt, aufgeteilt werden. Beide Teilströme werden wieder vereinigt, nachdem der ersten Teilstrom den Kühler
45 22 durchlaufen hat, und gelangen zurück zu der Kühlwasserpumpe 16. In der Rücklaufleitung 21 ist im dargestellten Beispiel eine erfindungsgemäß vorgesehene Entionisierungseinrichtung 28 angeordnet, beispielsweise eine ausweσhselbare Filterkartusσhe mit einem Ionenaustausσherharz . In der Variante der Figur 1 wird bei Ver- wendung eines Ionenaustausσhers die im Kühlkreislauf 14 zirkulierende Kühlflüssigkeit kontinuierliσh deionisiert. Naσh Erschöpfen der Ionenaustausσhers kann die Filterkartusche ersetzt werden. Das Entionisierungseinriσhtung 28 kann aber auch als elektrochemische Deionisationszelle oder als Kontaktzelle für ein flüssiges Entionisierungsmittel ausgebildet sein.
In der in Figur 2 dargestellten Variante ist die Entionisierungseinriσhtung 28 in einem Bypass 29 angeordnet, wobei über ein Ventil 30 gesteuert wird, wann und welcher Anteil des Kühlmittel- Stroms im Bypasszweig 29 entionisiert wird. Das Ventil 30 kann beispielsweise über eine Signalleitung 31 in Abhängigkeit von den, von einer im Kühlkreislauf 14 angeordneten (niσht darstellten) Leitfähigkeitsmesszelle gelieferten Werten durσh die Steue- reinriσhtung 20 gesteuert werden. In diesem Fall erfolgt eine Entionisierung der Kühlflüssigkeit nur dann, wenn über die Leitfähigkeitsmesszelle ein Anstieg der Konzentration der ionisσhen Bestandteile der Kühlflüssigkeit registriert wird. Die übrigen Bauteile der Variante der Figur 2, die denjenigen der Variante der Figur 1 entspreσhen, sind mit denselben BezugsZiffern wie in Fig. 1 bezeiσhnet.
Es versteht sich, dass die erfindungsgemäß vorgesehene Entionisierungseinriσhtung an jeder geeigneten Stelle der Kühlkreislaufes 14 angeordnet sein kann, beispielsweise in einem Leitungsab- sσhnitt 32 naσh Durσhlaufen des Kühlers 22 oder auch in der By- passleitung 27.
Vergleiσhsbeispiele
Für Vergleiσhsversuche zum regulären Korrosionstest nach ASTM D 1384-94 wurde eine ASTM D 1384-Prüfapparatur so ergänzt, dass mit Hilfe einer handelsüblichen PKW-Kühlwasserpumpe (Firma Bosch, Typ PAA 12V 0 392 020 057, 12V Gleichspannung, maximale Pumpleistung 260 Liter pro Stunde) über PVC-Sσhläuσhe die Kühlflüssigkeit durσh einen Glasfiltertriσhter mit Fritte zirkuliert wurde, in dem siσh 75 g des Ionenaustausσhers AMBERJET® UP 6040 RESIN (Rohm & Haas) befanden. Die Versuσhe wurde jeweils dreimal mit bzw. ohne Ionenaustausσher durσhgeführt.
Als niσhtionisσhe Kühlersσhutzmittelformulierung wurde ein Ge- misσh aus 30 Gew.-% destilliertem Wasser, 60 Gew.-% Monoethylen- glykol, 1 Gew.-% p-Toluolsulfonamid, 0,5 Gew.-% Triethanolamin und 0,5 Gew.-% Tolutriazol verwendet (Beispiel 15 aus WO-A 02/08354)
Vergleiσhsbeispiel 1:
Für einen ersten Vergleiσhstest wurde in beiden Versuσhen ein Standardmetallsatz gemäß ASTM D 1384 sowie zusätzliσh neben dem Aluminiumσoupon ein Magnesiumσoupon der Legierung Mg AZ91HP ver- wendet.
Die Mittelwerte aus jeweils drei Versuσhen mit beziehungsweise ohne Ionenaustausσher im Kühlkreislauf sind in der folgenden Tabelle 1 dargestellt:
Tabelle 1:
ohne mit
Ionenaustausσher Ionenaustausσher
Prüfkörper Gewiσhtsänderung Gewichtsänderung
[mg/σm2] [mg/σm2] Kupfer - 0,23 0,00
Weiσhlot - 3,13 + 0,01
Messing - 0,24 0,00
Stahl 0,00 - 0,03
Grauguss + 0,01 - 0,09
Gussaluminium + 0,01 + 0,06 Magnesium AZ91HP - 6,70 - 1,59
Versuch 2 :
Im Versuch 2 wurden entsprechende Vergleiσhstests mit dem ASTM- Standardmetallsatz ohne zusätzliσhen Magnesiumσoupon durσhge- führt. Die Mittelwerte aus jeweils drei Versuσhen mit beziehungsweise ohne Ionenaustausσher im Kühlkreislauf sind in folgender Tabelle 2 dargestellt. Tabelle 2 ;
ohne mit
Ionenaustausσher Ionenaustausσher
Prüfkörper Gewiσhtsänderung Gewiσhtsänderung
[mg/σm2] [mg/σm2]
Kupfer - 0,16 - 0,03
Weichlot - 2,51 - 1,11
Messing - 0,17 - 0,05
Stahl + 0,02 - 0,01
Grauguss + 0,04 - 0,02 Gussaluminium + 0,03 - 0,00
Man erkennt, dass siσh der Korrosionsschutz von niσhtionisσhen Kühlersσhutzmittelformulierungen durσh die Verwendung eines Io- nenaustausσhers im Kühlkreislauf weiter verbessern lässt. Eine besonders ausgeprägte Verbesserung des Korrosionssσhutzes findet man bei der Bauteilen aus Magnesium und dessen Legierungen, insbesondere in Kombination mit Buntmetallen wie Kupfer oder Messing beziehungsweise Weiσhlot.

Claims

Patentansprüche
1. Verfahren zum Kühlen eines Verbrennungsmotor, wobei man in einem, mit dem Verbrennungsmotor in thermisσhem Kontakt stehenden Kühlkreislauf eine Kühlflüssigkeit zirkulieren lässt, die niσhtionische Korrosionsinhibitoren umfasst, und die Kühlflüssigkeit zumindest intermittierend entionisiert.
2. Verfahren gemäß Anspruσh 2, dadurσh gekennzeiσhnet, dass man als Kühlflüssigkeit eine wässrige Kühlmittelzusammensetzung verwendet, die 10 bis 90 Gew.% eines Kühlmittelkonzentrats auf der Basis von Alkylenglykolen oder deren Derivaten oder von Glyσerin umfasst, wobei das Kühlmittelkonzentrat, gegebe- nenfalls neben weiteren niσhtionisσhen Komponenten, 0,05 bis 10 Gew.-% bezogen auf die Gesamtmenge des Konzentrats, eines oder mehrerer Carbonsäureamide und/oder Sulfonsäureamide enthält.
3. Verfahren gemäß einem der Ansprüσhe 1 oder 2, dadurσh gekennzeiσhnet, dass man die Kühlflüssigkeit mittels zumindest eines Ionentausσhers entionisiert.
4. Verfahren gemäß einem der Ansprüσhe 1 bis 3, dadurσh gekenn- zeiσhnet, dass man die Kühlflüssigkeit mittels eines flüssigen Entionisierungsmittels entionisiert.
5. Verfahren gemäß einem der Ansprüσhe 1 bis 4, dadurσh gekennzeiσhnet, dass man die Kühlflüssigkeit elektroσhemisσh entio- nisiert.
6. Vorrichtung zum Kühlen eines Verbrennungsmotors , mit einem Kühlkreislauf (14), der zumindest in einem Teilabschnitt mit dem Verbrennungsmotor (11) in thermischem Kontakt steht, da- durσh gekennzeiσhnet, dass in dem Kühlkreislauf wenigstens eine Entionisierungseinriσhtung (28) für Kühl lüssigkeit angeordnet ist.
7. Vorriσhtung gemäß Anspruσh 6, dadurσh gekennzeiσhnet, dass die Entionisierungseinrichtung (28) wenigstens einen Ionenaustausσher, vorzugsweise einen Mischbettharz-Ionenaustau- sσher umfasst.
8. Vorrichtung gemäß einem der Ansprüche 6 oder 7, dadurσh gekennzeiσhnet, dass Entionisierungseinriσhtung (28) als Kontaktzelle ausgebildet ist, in der ein flüssiges Entionisierungsmittel auf die Kühlflüssigkeit einwirken kann
5
9. Vorriσhtung gemäß einem der Ansprüσhe 6 bis 8, dadurσh gekennzeiσhnet, dass die Entionisierungseinriσhtung (28) wenigstens eine Elektrodialysezelle umfasst.
10 10. Vorriσhtung gemäß Anspruσh 9, dadurσh gekennzeiσhnet, dass die Elektrodialysezelle einen Ionenaustausσher umfasst.
11. Flussigkeitsgekühlte Brennkraftmaschine mit wenigstens einem Verbrennungsmotor (11) und wenigstens einem Kühlkreislauf 15 (14) für den Verbrennungsmotor, dadurch gekennzeichnet, dass in dem Kühlkreislauf (14) wenigstens eine Entionisierungseinriσhtung (28) vorgesehen ist.
20
25
30
35
40
45
PCT/EP2003/005174 2002-05-17 2003-05-16 Verfahren und vorrichtung zum kühlen eines verbrennungsmotors WO2003098015A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN038112426A CN1653250B (zh) 2002-05-17 2003-05-16 冷却内燃机的方法和装置
KR10-2004-7018560A KR20050010007A (ko) 2002-05-17 2003-05-16 내연 기관을 냉각시키는 방법 및 장치
US10/512,092 US7409927B2 (en) 2002-05-17 2003-05-16 Method and device for cooling an internal combustion engine
EP03730060A EP1507965A1 (de) 2002-05-17 2003-05-16 Verfahren und vorrichtung zum kuehlen eines verbrennungsmotors
MXPA04010638A MXPA04010638A (es) 2002-05-17 2003-05-16 Metodo y aparato para refrigeracion de un motor de combustion interna.
AU2003240665A AU2003240665A1 (en) 2002-05-17 2003-05-16 Method and device for cooling an internal combustion engine
BR0309995-4A BR0309995A (pt) 2002-05-17 2003-05-16 Processo e dispositivo para o resfriamento de um motor de combustão, e, máquina de queima de combustìvel refrigerada por lìquido
CA2485186A CA2485186C (en) 2002-05-17 2003-05-16 Method and device for cooling an internal combustion engine
JP2004505514A JP2005530945A (ja) 2002-05-17 2003-05-16 燃焼エンジンを冷却する方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10222102.2 2002-05-17
DE10222102A DE10222102A1 (de) 2002-05-17 2002-05-17 Verfahren und Vorrichtung zum Kühlen eines Verbrennungsmotors

Publications (1)

Publication Number Publication Date
WO2003098015A1 true WO2003098015A1 (de) 2003-11-27

Family

ID=29285540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/005174 WO2003098015A1 (de) 2002-05-17 2003-05-16 Verfahren und vorrichtung zum kühlen eines verbrennungsmotors

Country Status (14)

Country Link
US (1) US7409927B2 (de)
EP (1) EP1507965A1 (de)
JP (1) JP2005530945A (de)
KR (1) KR20050010007A (de)
CN (1) CN1653250B (de)
AR (1) AR039979A1 (de)
AU (1) AU2003240665A1 (de)
BR (1) BR0309995A (de)
CA (1) CA2485186C (de)
DE (1) DE10222102A1 (de)
MX (1) MXPA04010638A (de)
PL (1) PL209335B1 (de)
WO (1) WO2003098015A1 (de)
ZA (1) ZA200410121B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736242A2 (de) * 2005-06-14 2006-12-27 Mann+Hummel Gmbh Ionentauscherbehälter, insbesondere in einem Kraftfahrzeug
DE102012010749A1 (de) 2012-05-31 2012-11-29 Daimler Ag Kühlkreislauf eines Kraftwagens sowie Verfahren zum Befüllen einessolchen Kühlkreislaufs
DE102013021850A1 (de) * 2013-01-19 2014-07-24 Kunststoff Schwanden Ag Ausgleichsbehälter für das Kühlsystem einer Verbrennungskraftmaschine

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090178928A1 (en) * 2007-06-29 2009-07-16 Archer-Daniels-Midland Company Process for Desalting Glycerol Solutions and Recovery of Chemicals
JP4456162B2 (ja) * 2008-04-11 2010-04-28 株式会社山田製作所 エンジンの冷却装置
DE102009011568B4 (de) 2009-03-06 2010-12-23 Mann + Hummel Gmbh Filtereinrichtung für ein Kraftfahrzeug
IT1397042B1 (it) * 2009-03-25 2012-12-28 Ferrari Spa Sistema di raffreddamento per un veicolo con propulsione ibrida
DE102010010594B4 (de) * 2010-03-08 2014-10-09 Audi Ag Kühlkreislauf für eine Brennkraftmaschine
EP2392794B1 (de) * 2010-06-07 2019-02-27 Ford Global Technologies, LLC Separat gekühlter Turbolader zur Aufrechterhaltung einer No-Flow Strategie eines Zylinderblockkühlmittelmantels
DE102010037575B4 (de) 2010-09-16 2013-10-02 Geiger Automotive Gmbh Behälter mit Silikagel
AT512492B1 (de) * 2012-01-24 2014-12-15 Avl List Gmbh Elektrisches antriebsaggregat
CN103498722B (zh) * 2013-10-18 2015-10-14 东风汽车有限公司 发动机冷却液浓度自动调节装置及自动调节方法
JP6090246B2 (ja) 2014-07-04 2017-03-08 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
US11204004B2 (en) 2016-02-09 2021-12-21 Kautex Textron Gmbh & Co. Kg System and method for storing and supplying water to an internal combustion engine of a motor vehicle
WO2018220640A1 (en) * 2017-06-02 2018-12-06 Hindustan Petroleum Corporation Limited A formulation for enhancing lubricity of fuels
CN108659797A (zh) * 2018-04-28 2018-10-16 上海理工大学 一种新能源车的冷冻保护液
CN111977851A (zh) * 2020-09-11 2020-11-24 哈尔滨安泰利达科技开发有限公司 一种核电发电机内冷水处理装置
CN113652210B (zh) * 2021-06-28 2024-04-02 中国船舶重工集团公司第七一八研究所 一种低电导率长效冷却液及其制备方法
CN115418202A (zh) * 2022-09-21 2022-12-02 张家港迪克汽车化学品有限公司 一种低电导率冷却液及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1168480A (en) * 1966-12-24 1969-10-29 Rover Co Ltd Vehicles having liquid-cooled engines
JPH04101015A (ja) * 1990-08-13 1992-04-02 Nissan Motor Co Ltd エンジン冷却装置
JPH0693856A (ja) * 1992-09-10 1994-04-05 Nissan Motor Co Ltd エンジンの冷却装置
WO2002008354A1 (de) * 2000-07-24 2002-01-31 Basf Aktiengesellschaft Gefrierschutzmittelkonzentrate auf basis von amiden und diese umfassende kühlmittelzusammensetzungen zum schutz von magnesium und magnesiumlegierungen
US20020017491A1 (en) * 1998-10-28 2002-02-14 Haddock Marvin E. Multi-stage engine coolant recycling apparatus and process
DE10104771A1 (de) * 2001-02-02 2002-08-08 Basf Ag Verfahren und Vorrichtung zum Entionisieren von Kühlmedien für Brennstoffzellen

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333850A (en) * 1979-06-15 1982-06-08 Borg-Warner Corporation Filled polymer composition for automatic addition of a corrosion inhibitor to a coolant system
JPS56148610A (en) 1980-04-18 1981-11-18 Toyota Motor Corp Cooling device for engine
DE3035327A1 (de) * 1980-09-19 1982-05-06 Hoechst Ag, 6000 Frankfurt Kuehlfluessigkeit mit korrosions- und kavitationshemmenden zusaetzen
US4610222A (en) * 1984-07-23 1986-09-09 Union Carbide Corporation Cooling system using an oil-in-alcohol containing consolute antifreeze composition
JPH01125517A (ja) * 1987-11-10 1989-05-18 Mazda Motor Corp 水冷式エンジンの冷却装置
US5009848A (en) * 1988-05-02 1991-04-23 Secretarski James M On board automatic diesel engine cooling water chemical treatment dispensing system
DE4204809A1 (de) * 1992-02-18 1993-08-19 Basf Ag Hartwasserstabile, phosphathaltige kuehlstoffmischungen
DE19605509A1 (de) * 1996-02-15 1997-08-21 Basf Ag Verwendung von quaternierten Imidazolen als Buntmetall-Korrosionsinhibitoren und diese enthaltende Gefrierschutzmittelkonzentrate und Kühlmittelzusammensetzungen
DE19625692A1 (de) * 1996-06-27 1998-01-02 Basf Ag Silikat-, borat- und nitratfreie Gefrierschutzmittelkonzentrate und diese umfassende Kühlmittelzusammensetzungen
US6101988A (en) * 1996-11-13 2000-08-15 Evans Cooling Systems, Inc. Hermetically-sealed engine cooling system and related method of cooling
DE19803884A1 (de) 1998-01-31 1999-08-05 Bayerische Motoren Werke Ag Flüssigkeitsgekühlte Brennkraftmaschine mit einem Kühlkreislauf mit zumindest einer Pumpe
AU5723099A (en) 1998-09-22 2000-04-10 Ballard Power Systems Inc. Antifreeze cooling subsystem
EP1087004A1 (de) * 1999-07-16 2001-03-28 Texaco Development Corporation Synergistische Kombinationen von Carboxylaten zur Verwendung als Gefrierpunkterniedriger und Korrosionsinhibitoren in Wärmeübertragungsflüssigkeiten
US6408688B2 (en) * 1999-07-16 2002-06-25 Strainsert Company Heavy truck brake system using instrumented anchor pins
DE19938614A1 (de) 1999-08-14 2001-02-22 Bosch Gmbh Robert Kühlkreislauf für einen Verbrennungsmotor
MXPA02003473A (es) 1999-10-29 2002-08-20 Basf Ag Concentrados anticongelantes basados en acidos dicarboxilicos, molibdato y triazoles o tiazoles, y composiciones refrigerantes que los comprenden.
US6748906B1 (en) * 2002-04-26 2004-06-15 Brunswick Corporation Heat exchanger assembly for a marine engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1168480A (en) * 1966-12-24 1969-10-29 Rover Co Ltd Vehicles having liquid-cooled engines
JPH04101015A (ja) * 1990-08-13 1992-04-02 Nissan Motor Co Ltd エンジン冷却装置
JPH0693856A (ja) * 1992-09-10 1994-04-05 Nissan Motor Co Ltd エンジンの冷却装置
US20020017491A1 (en) * 1998-10-28 2002-02-14 Haddock Marvin E. Multi-stage engine coolant recycling apparatus and process
WO2002008354A1 (de) * 2000-07-24 2002-01-31 Basf Aktiengesellschaft Gefrierschutzmittelkonzentrate auf basis von amiden und diese umfassende kühlmittelzusammensetzungen zum schutz von magnesium und magnesiumlegierungen
DE10104771A1 (de) * 2001-02-02 2002-08-08 Basf Ag Verfahren und Vorrichtung zum Entionisieren von Kühlmedien für Brennstoffzellen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 339 (M - 1284) 22 July 1992 (1992-07-22) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 360 (M - 1634) 7 July 1994 (1994-07-07) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736242A2 (de) * 2005-06-14 2006-12-27 Mann+Hummel Gmbh Ionentauscherbehälter, insbesondere in einem Kraftfahrzeug
EP1736242A3 (de) * 2005-06-14 2007-02-07 Mann+Hummel Gmbh Ionentauscherbehälter, insbesondere in einem Kraftfahrzeug
US7601260B2 (en) 2005-06-14 2009-10-13 Mann & Hummel Gmbh Ion exchanger container for a motor vehicle
DE102012010749A1 (de) 2012-05-31 2012-11-29 Daimler Ag Kühlkreislauf eines Kraftwagens sowie Verfahren zum Befüllen einessolchen Kühlkreislaufs
DE102013021850A1 (de) * 2013-01-19 2014-07-24 Kunststoff Schwanden Ag Ausgleichsbehälter für das Kühlsystem einer Verbrennungskraftmaschine
DE102013021850B4 (de) 2013-01-19 2023-02-02 Kunststoff Schwanden Ag Ausgleichsbehälter für das Kühlsystem einer Verbrennungskraftmaschine

Also Published As

Publication number Publication date
KR20050010007A (ko) 2005-01-26
US20050166870A1 (en) 2005-08-04
MXPA04010638A (es) 2005-01-25
EP1507965A1 (de) 2005-02-23
US7409927B2 (en) 2008-08-12
DE10222102A1 (de) 2003-11-27
AR039979A1 (es) 2005-03-09
CA2485186C (en) 2011-02-08
CN1653250B (zh) 2010-10-06
PL209335B1 (pl) 2011-08-31
CN1653250A (zh) 2005-08-10
AU2003240665A1 (en) 2003-12-02
BR0309995A (pt) 2005-02-22
CA2485186A1 (en) 2003-11-27
JP2005530945A (ja) 2005-10-13
ZA200410121B (en) 2006-07-26
PL372491A1 (en) 2005-07-25

Similar Documents

Publication Publication Date Title
WO2003098015A1 (de) Verfahren und vorrichtung zum kühlen eines verbrennungsmotors
US5223144A (en) Process for treatment of aqueous soluions of polyhydric alcohols
EP0538214B1 (de) Verfahren zum Wechseln einer Kühlflüssigkeit
EP0557761B1 (de) Hartwasserstabile, phosphathaltige Kühlstoffmischungen
DE19605509A1 (de) Verwendung von quaternierten Imidazolen als Buntmetall-Korrosionsinhibitoren und diese enthaltende Gefrierschutzmittelkonzentrate und Kühlmittelzusammensetzungen
WO2002090462A1 (de) Gefrierschutzmittelkonzentrate enthaltend den farbstoff c.i. reactive violet 5
EP0530430B1 (de) Verfahren zum Behandeln von wässrigen Lösungen von polyhydrischen Alkoholen
EP1634937A1 (de) Silikatfreie Kühlflüssigkeiten auf Basis organischer Säuren und Carbamaten mit verbesserten Korrosionseigenschaften
EP3374463A1 (de) Silikathaltiges kühlmittelkonzentrat
EP0863960B2 (de) Gefrierschutzmittel
DE2036628C2 (de) Gefrierschutzmittel
EP1098949B1 (de) Gefrierschutzmittelkonzentrate und diese enthaltende kühlmittelzusammensetzungen für kühlkreisläufe in verbrennungsmotoren
DE69828205T2 (de) Verdünntes kühlmittel
EP0027870A1 (de) Kavitationshemmende, frostsichere Kühl- bzw. Wärmeübertragungsflüssigkeiten sowie Verwendung eines kavitationshemmenden Zusatzes in frostsicheren Kühl- bzw. Wärmeübertragungsflüssigkeiten
EP1386952A2 (de) Gefrierschutzmittel
DE3514216C2 (de)
DE3148230A1 (de) "nitritfreie kuehlfluessigkeiten auf der basis von glykolen"
DE19962757A1 (de) Wässrige Motoreinlauf-Kühlflüssigkeit mit Dampfraumkorrosionsschutz
DE102010002349A1 (de) Zusätze für Heiz- und Kühlmittel
DE19955704A1 (de) Gefrierschutzmittelkonzentrate auf Basis von Dicarbonsäuren, Molybdat und Triazolen oder Thiazolen und diese umfassende Kühlmittelzusammensetzungen
DE1211893B (de) Verwendung eines Gemisches als Korrosionsinhibitor fuer Metalle, deren Oberflaechen mit Kesselsteinverhuetungs- und Gefrierschutzmitteln enthaltenden waessrigen Fluessigkeiten in Beruehrung kommen
CA2051498A1 (en) Process for treatment of aqueous solutions of polyhydric alcohols
DE102011004765A1 (de) Zusätze für silikathaltige Heiz- und Kühlmittel
DE102010002341A1 (de) Wärmeübertrager und Bauteile für Kfz-Kühlkreisläufe
DE19952482A1 (de) Gefrierschutzmittelkonzentrate auf Basis von Dicarbonsäuren, Monolybdat und Thiazolen und diese umfassende Kühlmittelzusammensetzungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10512092

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/010638

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2485186

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004505514

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 372491

Country of ref document: PL

Ref document number: 2003730060

Country of ref document: EP

Ref document number: 1020047018560

Country of ref document: KR

Ref document number: 20038112426

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004/10121

Country of ref document: ZA

Ref document number: 200410121

Country of ref document: ZA

WWP Wipo information: published in national office

Ref document number: 1020047018560

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003730060

Country of ref document: EP