WO2003097535A1 - Aqueous solution for diluting water-soluble metal working fluid, apparatus for production thereof, fluid coolant, and apparatus for production of fluid coolant - Google Patents

Aqueous solution for diluting water-soluble metal working fluid, apparatus for production thereof, fluid coolant, and apparatus for production of fluid coolant Download PDF

Info

Publication number
WO2003097535A1
WO2003097535A1 PCT/JP2003/006068 JP0306068W WO03097535A1 WO 2003097535 A1 WO2003097535 A1 WO 2003097535A1 JP 0306068 W JP0306068 W JP 0306068W WO 03097535 A1 WO03097535 A1 WO 03097535A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
coolant
cathode
diaphragm
dilution
Prior art date
Application number
PCT/JP2003/006068
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Takahashi
Yoshikazu Nakagawa
Kiyoshi Nishimura
Mutsumi Yotsuzuka
Toshiyasu Hirokawa
Original Assignee
Nippon Oil Corporation
Takahashi Kinzoku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation, Takahashi Kinzoku Co., Ltd. filed Critical Nippon Oil Corporation
Priority to AU2003231501A priority Critical patent/AU2003231501A1/en
Priority to JP2004505271A priority patent/JPWO2003097535A1/en
Publication of WO2003097535A1 publication Critical patent/WO2003097535A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes
    • C02F2001/46166Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to a dilution water of a water-soluble metal working oil, an apparatus for producing the same, a coolant liquid obtained by mixing the dilution water with a water-soluble metal working oil, and a coolant liquid manufacturing apparatus.
  • water-soluble oils for metal working are used for lubrication and cooling (ie, undiluted solutions of water-soluble industrial lubricating oils. ) Is often used.
  • Water-soluble oils for metal processing are usually used after being diluted about 10 to 20 times with water, and the diluted water-soluble oils for metal processing are generally called coolant liquids.
  • This coolant liquid is usually used in circulation, but contains components preferred by microorganisms, and is often exposed to conditions in which microorganisms can easily propagate due to heat generated during metalworking. It has the disadvantage that it will rot if used for a long time.
  • the decayed coolant will cause problems such as bad odors, poor metalworking performance, and metal corrosion, and must be replaced with new coolant.
  • the labor and cost required to change the coolant liquid impose a great economic burden on the business operator.
  • a method using an ethanolamine compound, an isotizazoline compound, or a metal ion such as copper or silver as a preservative or disinfectant is known.
  • the method of adding preservatives etc. may have a bad effect on the human body or the surrounding environment when used for a long time.
  • isothiazoline compounds cause skin irritation and allergies, and that some ethanolamine compounds are carcinogenic and environmental hormones.
  • Sterilization methods using radiation, ultrasonic waves, and ultraviolet irradiation require expensive equipment and high running costs. Furthermore, it has the disadvantage that the bactericidal effect is weak when the bacteria are grown.
  • Heat sterilization by steam injection does not cause these problems.However, since the coolant is exposed to a high-temperature atmosphere, some of the components are deteriorated, resulting in reduced cutting performance, reduced grinding performance, and poor emulsified state. Sometimes.
  • the conventional methods have some disadvantages, and none of them can be said to be sufficient methods for extending the life of the coolant.
  • the present invention provides a water-soluble metal working oil dilution water which is advantageous for the preparation of a coolant liquid having a sustained anti-rotation effect without adversely affecting the human body, the environment, and the oil agent and its processing performance. It is an object of the present invention to provide an apparatus, a coolant liquid obtained by mixing dilution water and a water-soluble metal working oil, and an apparatus for producing a coolant liquid.
  • the present invention relates to a water-soluble metal working oil diluted water obtained by electrolysis of water and having a pH of 8 or more and 13 or less and containing hydrogen peroxide-containing active oxygen at a concentration of 1 mg ZL or more. is there.
  • the present invention provides a cathode composed of a stainless steel cathode power supply and an electrode formed of a carbon-based material, and an anode formed of platinum and titanium coated with platinum or platinum or a iridium.
  • An electrolysis apparatus including an electrolytic cell provided with an air supply section for supplying gas containing air or oxygen to the surface and a water supply port for introducing water, and applying a voltage to both electrodes of the apparatus.
  • Water-soluble metal processing to produce water with a pH of 8 or more and 13 or less and a concentration of lmgZL or more of active oxygen containing hydrogen peroxide by electrolyzing water introduced into the electrolytic cell It is in the equipment for producing dilution water of oil for use.
  • the present invention is formed of a perforated cathode feeder and a carbon-based material made of stainless steel, nickel-plated stainless steel, or platinum and / or titanium-plated titanium.
  • a cathode composed of a gas diffusion electrode and an anode made of platinum and Z or titanium plated with Z are separated by a diaphragm and provided to face each other, and the cathode surface side opposite to the diaphragm is provided.
  • Electrolyzer with an air supply unit for supplying gas containing air or oxygen to the cathode, and an electrolytic cell provided with a water supply port for supplying water to the cathode chamber between the cathode and the diaphragm
  • an electrolytic cell provided with a water supply port for supplying water to the cathode chamber between the cathode and the diaphragm
  • the present invention is also formed of a perforated cathode feeder and carbonaceous material made of stainless steel, stainless steel with nickel plating, or titanium with plating with platinum and / or iridium.
  • a hollow cylindrical cathode composed of a gas diffusion electrode and an anode made of platinum and / or titanium coated with a iridium are separated by a diaphragm and provided to face each other.
  • the cylindrical cathode has a structure in which a cathode feeder with a hole is placed inside and a gas diffusion electrode is placed outside, and it also supplies air or oxygen-containing gas to the inside of the cathode hollow.
  • An electrolytic cell including an electrolytic cell provided with a water supply port for supplying water to the cathode chamber between the cathode outer portion and the diaphragm.
  • the present invention relates to a water-soluble metal working oil and a dilution water of the water-soluble metal working oil. And a mixture of the two.
  • the present invention provides a coolant liquid producing apparatus including the above-mentioned dilution water producing apparatus, and a mixing apparatus for mixing the dilution water produced by the apparatus with a water-soluble metal additive oil agent.
  • a liquid supply start sensor that sends a supply signal when the amount of coolant in the processing machine decreases from a predetermined level when it is full, in order to automatically supply liquid to the processing machine. It is necessary to provide a control circuit for controlling the signals from the full liquid level sensor, which sends out the supply stop signal when the one liquid level is full, the liquid supply start liquid level sensor, and the full liquid level sensor.
  • An apparatus for producing dilution water of a water-soluble metal working oil agent of the present invention (hereinafter also referred to as an apparatus for producing dilution water of the present invention), and dilution water produced from the apparatus for producing dilution water of the present invention and water-soluble metal
  • An apparatus for producing a coolant liquid obtained by mixing with a processing oil will be described below with reference to the accompanying drawings.
  • FIG. 1 shows a vertical cross-sectional view of an example of the dilution water producing apparatus of the present invention
  • FIGS. 2 and 3 show a top view and a bottom view of the apparatus, respectively
  • FIG. FIG. 3 shows a perspective view when only the component is taken out and viewed.
  • 5 and 6 show vertical sectional views of other examples of the dilution water producing apparatus of the present invention, respectively
  • FIG. 7 shows a perforated cathode feeder or anode used in FIGS. 5 and 6.
  • the electrolytic cell 2 is formed in a vertical cylindrical shape.
  • a concentric circle is formed with the cylindrical cathode 3 as the center, the diaphragm 5 and the anode 4 in order from the radially inner side to the outer side, and the diaphragm 5 as the boundary. It is provided.
  • the lower surface and the upper surface of the electrolytic cell 2 are sealed except for the opening with caps 10 and 11, for example, a resin cap. I have.
  • the cathode chamber 12 is formed on the inner peripheral side of the diaphragm 5 and the anode chamber 13 is formed on the outer peripheral side thereof.
  • a water supply port 6 for supplying water is provided in each of these two chambers at a lower portion thereof, and a dilution port for taking out the dilution water produced here is provided at an upper portion of the cathode chamber 12.
  • a water outlet 8 is provided, and an acid ion water outlet 9 containing no hydrogen peroxide is provided above the anode chamber 13.
  • an air supply unit 7 for sending gas containing air or oxygen to the cathode surface is provided.
  • the cathode 3 and the anode 4 are completely insulated, and the cathode 3 is connected to the negative pole of the power supply (not shown), and the anode 4 is connected to the positive pole of the power supply (not shown). Electrolysis occurs in the electrolytic cell.
  • the cathode 3 is formed of a carbon-based material, but as shown in FIG. 4, a structure in which graphite 15 is adhered to a cylindrical (or tube) -shaped stainless steel cathode feeder 14 It is preferable to have The graphite 15 can be brought into close contact by, for example, winding a felt of graphite on a cathode feeder 14 made of stainless steel and fixing it with an adhesive or metal fittings.
  • the cathode itself does not necessarily need to be made of a carbon-based material. Rather, such a structure can be obtained when the same voltage is applied. It facilitates generation of hydrogen peroxide and alkali ions, and can obtain water having a high concentration of hydrogen peroxide and a high pH.
  • the cathode By forming the cathode from a carbon-based material, the reduction reaction of gas generated by electrolysis (air or oxygen-containing gas sent from the air supply unit) can be stopped at the stage of hydrogen peroxide. Hydrogen peroxide can be generated more efficiently.
  • alkali ions are also generated at the same time, and the water in the cathode chamber 12 becomes highly alkaline.
  • electrolytic alkali ions not containing hydrogen peroxide are generated, and the cathode chamber 12 becomes alkali ion water. If the cathode feeder is made of stainless steel, the iron will dissolve into the water over time and react with hydrogen peroxide, reducing the concentration of hydrogen peroxide.
  • the air supply section 7 provided at the bottom of the cylindrical cathode extends spirally from the inside toward the top along the cathode surface.
  • the air supply unit 7 can be formed using, for example, a resin tube (or pipe) 16, and the surface thereof has a myriad of air diffusion holes (gas outlets) 16 over its entire length. a ... is provided, and the tip is closed.
  • the helical tube and the diffuser holes 16a allow smaller bubbles to be efficiently brought into contact with the cathode surface over the entire area thereof, thus enabling efficient production of active oxygen containing hydrogen peroxide. .
  • the anode 4 is formed of titanium plated with platinum and / or iridium to prevent oxidation of the anode.
  • the diaphragm 5 is provided to prevent the hydrogen peroxide generated in the cathode chamber 12 from moving to the anode side and being decomposed, and also prevent the alkali ions generated at the same time from moving to the anode side.
  • the material of the diaphragm is preferably a polyolefin-based material or cellulose.
  • polychlorinated polyethylene, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyethylene (PE), Polybutyl alcohol (PVA;), and cellulose may be mentioned.
  • polychlorinated polyethylene polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyethylene (PE), and polyvinyl alcohol (PVA) are more preferable.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PE polyethylene
  • PVA polyvinyl alcohol
  • an ion-exchange membrane can be used. In this case, when a cation-exchange membrane is used, only the movement of cations from the anode side to the cathode side occurs, and the anions on the anode side become This is preferable because it can prevent the diffusion from moving from the anode side to the cathode side.
  • a predetermined amount of water is introduced into the cathode chamber 12 and the anode chamber 13 from the water supply port 6 of the electrolytic cell 2, and the air supply section From step 7, gas (air or gas containing oxygen) is blown into the surface of the cathode 3 to energize both electrodes. Electrolysis occurs due to energization, and active oxygen and hydrogen ion containing hydrogen peroxide as a main component are generated on the surface of the cathode 3, so that the cathode chamber 12 contains active oxygen containing hydrogen peroxide and alkali ions. Dilution water is produced.
  • the produced dilution water is taken out from the dilution water take-out port 8 and mixed with a water-soluble metal working oil to prepare the coolant liquid of the present invention. Obtained in this way
  • the diluted water inhibits the growth of bacteria by the alkali ions contained in the diluted water, and acts synergistically with the bactericidal action of active oxygen (mainly hydrogen peroxide), thus exhibiting a high antiseptic action.
  • active oxygen mainly hydrogen peroxide
  • the concentration of active oxygen and alkali ions in the produced dilution water can be adjusted by adjusting the electrolysis time of the water in the electrolytic cell. Note that, due to the electrolysis, acidic ions are generated on the anode surface, and acidic ion water is generated in the anode chamber 13.
  • FIGS. 5 and 6 Another example of the dilution water producing apparatus of the present invention shown in FIGS. 5 and 6 is that a cathode 3 composed of a cathode feeder 14 and a gas diffusion electrode 17 was plated with platinum and Z or iridium. An anode 4 made of titanium is separated by a diaphragm 5 and provided so as to face each other. An air supply unit 7 for supplying air or a gas containing oxygen to the cathode surface side opposite to the diaphragm 5 is provided. In addition, a water supply port 6 for supplying water to the cathode chamber 12 between the cathode 3 and the diaphragm 5 is provided.
  • the cathode 3 composed of a cathode feeder and a gas diffusion electrode has a configuration in which a cathode feeder with a hole is combined with a gas diffusion electrode for diffusing a gas containing air or oxygen. 5 and 6, a net 18 for fixing the gas diffusion electrode 17 is provided.
  • the air supply section 7 provided on the cathode surface side opposite to the diaphragm 5 for supplying air or oxygen-containing gas may have a structure open to the outside, or may form a room.
  • a supply port (not shown) for introducing a gas containing air or oxygen may be provided.
  • the air or gas containing oxygen supplied from the air supply unit 7 is supplied from the perforated cathode power supply 14 to the cathode chamber 12 through the gas diffusion electrode 17.
  • water is supplied from the water supply port 6, and active oxygen containing hydrogen peroxide generated by the electrolysis in the cathode chamber 12 and dilution water containing Al-Lion are supplied to the dilution water outlet 8.
  • active oxygen containing hydrogen peroxide generated by the electrolysis in the cathode chamber 12 and dilution water containing Al-Lion are supplied to the dilution water outlet 8.
  • active oxygen containing hydrogen peroxide generated by the electrolysis in the cathode chamber 12 and dilution water containing Al-Lion are supplied to the dilution water outlet 8.
  • active oxygen containing hydrogen peroxide generated by the electrolysis in the cathode chamber 12 and dilution water containing Al-Lion are supplied to the dilution water outlet 8.
  • a water-soluble metal working oil agent to prepare the
  • the material of the cathode power supply stainless steel or stainless steel subjected to nickel plating is preferably used. Also, with platinum and Z or iridium Titanium subjected to plating is also preferably used.
  • a carbon fiber cloth or a filter having a thickness of about 0.3 to 0.5 mm subjected to a water-repellent treatment is preferably used, and GDE manufactured by E-TEK of the United States is particularly preferable.
  • Fig. 5 shows an example in which an electrode plate with holes is used as the anode
  • Fig. 6 shows an example in which an electrode plate with no holes is used.
  • the water supplied from the water supply port 6 passes outside the anode (the side opposite to the diaphragm) and also passes between the anode and the diaphragm through the perforated anode plate.
  • the generated acidic ionized water is discharged from the acidic ionized water outlet 9.
  • the anode since the anode is closer to the diaphragm, the voltage drop due to anode water is reduced, and the electrolysis efficiency is improved.
  • reference numeral 19 denotes an outer plate
  • reference numeral 21 denotes a spacer
  • reference numeral 22 denotes a notkin.
  • FIG. 7 shows an example of a specific shape of the cathode power supply body and the anode having the holes.
  • the shape and size of the holes are not limited to these examples.
  • the electrolytic cell 2 is formed in a vertical cylindrical shape as in FIG.
  • a diaphragm 5 and an anode 4 are formed in a concentric circle at intervals from a radially inner side to an outer side with a hollow cylindrical cathode 3 as a center.
  • the cathode chamber 12 is formed on the inner peripheral side of the diaphragm 5 and the anode chamber 13 is formed on the outer peripheral side thereof.
  • a water supply port 6 for supplying water is provided in a lower part of each of these chambers, and an active oxygen containing hydrogen peroxide generated here is provided in an upper part of the cathode chamber 12.
  • a take-out port 8 containing diluted water containing alkali and alkaline ions is provided, and a take-out port 9 for taking out acidic ion water is provided above the anode chamber 13.
  • an air supply unit 7 for sending air or a gas containing oxygen to the inside of the hollow of the cathode 3 is provided.
  • the cathode 3 is composed of an electrode composed of a perforated cathode feeder 14 and a gas diffusion electrode 17, with a perforated cathode feeder arranged inside and a gas diffusion electrode outside. Are arranged.
  • the gas containing air or oxygen supplied from the air supply unit 7 diffuses from the inside of the cathode 3 to the cathode chamber 12 side.
  • the coolant liquid of the present invention can be prepared by mixing with a water-soluble metal working oil.
  • the dilution water of the present invention has a hydrogen peroxide concentration of 1 mg / L or more, preferably 3 mgZL or more, and more preferably 50 mgZL or more, in order to obtain the effect of inhibiting the growth of bacteria.
  • the reaction area can be increased, and the concentration of hydrogen peroxide in the dilution water can be increased (5 Omg / L or more).
  • concentration of hydrogen peroxide is less than ImgZL, a sufficient bacterial growth inhibitory effect cannot be obtained.
  • the pH of the dilution water is 8 or more and 13 or less, preferably 9 or more and 12 or less for the same reason. If the pH of the dilution water is less than 8, a sufficient bacterial growth inhibitory effect cannot be obtained. If the pH exceeds 13, the metal material may be adversely affected during metal working. For example, when machining aluminum, aluminum can corrode.
  • the production capacity of the dilution water having such a function is usually 0.1 to 1 L / min with the apparatus of the present invention, and by reducing the production capacity of the dilution water per unit time, a high concentration of peroxide can be obtained. Dilution water containing hydrogen can be obtained. In addition, since the generation capacity of dilution water is proportional to the electrode area, the generation capacity can be increased by enlarging the electrode area.
  • the coolant liquid of the present invention can be prepared by mixing the dilution water obtained from the above-mentioned dilution water production apparatus with a water-soluble metal working oil (coolant stock solution). Next, the coolant liquid producing apparatus will be described.
  • FIG. 10 is a diagram schematically showing an arrangement of an example of the coolant liquid producing apparatus of the present invention.
  • the coolant liquid production apparatus 100 shown in FIG. 10 includes a dilution water production apparatus 30 of the present invention, a coolant stock solution tank 40, a coolant stock solution pump 41, a dilution water and a coolant.
  • a mixing device 50 for mixing with the undiluted solution, a water softener 20, and a coolant liquid metering pump 54 are included. Further, the mixing device 50 is provided with a mixing tank 51, a liquid level sensor 52, and a stirrer 53.
  • the water softener 20 is used to keep the calcium and magnesium ions in water low and protect the electrodes. These ion concentration is 0. It is preferable that 0 0 5 mmol Z dm 3 or less.
  • the coolant liquid can be manufactured as follows.
  • water W is passed through a water softener 20, and the obtained soft water is introduced into a dilution water producing device 30.
  • the introduced soft water is electrolyzed by the above-described method, and the dilution water 30a containing active oxygen containing hydrogen peroxide and alkali ions is produced.
  • the produced dilution water 30a is then introduced into the mixing tank 51 of the mixing device 50 together with the coolant undiluted solution 40a.
  • a reservoir tank (shown in the drawing) is provided in front of the mixing devices 50 and 5OA. None) is preferable to store and use the produced dilution water 30a.
  • the dilution water 30a is controlled by the liquid level sensor 52 and introduced to a predetermined liquid level. Then, the supply of the dilution water 30a is stopped, and the coolant stock solution 40a is introduced from the coolant stock solution tank 40 into the mixing tank 51 via the coolant stock solution pump 41. The two liquids are mixed while stirring with a stirrer 53 to produce a coolant liquid 100a.
  • the dilution ratio of the stock solution 40a with the dilution water 30a is usually 5 to 30 times, preferably 8 to 20 times the stock solution.
  • the manufactured coolant 100 a is supplied to the processing machine 90 via a coolant liquid metering pump 54.
  • the mixing device 50 mixes, for example, the dilution water 30 a and the undiluted coolant 40 a directly at a predetermined dilution rate without providing the mixing tank 51. Then, it can be replaced with an apparatus for producing a coolant liquid 100a (hereinafter referred to as a direct mixing type mixing apparatus).
  • FIG. 11 shows a cooler in which the mixing device 50 of the coolant production device shown in Fig. 10 is replaced with the direct mixing type mixing device 5OA.
  • FIG. 4 is a diagram schematically showing an example of an arrangement of a liquid production apparatus 200.
  • a direct mixing type mixing device for example, a pipe (for example, 4 mm inner diameter) for adding a coolant undiluted to a main pipe (for example, stainless steel with a diameter of 10 mm) for passing dilution water ) Is inserted vertically, and the mixing device has a structure in which the tip of the pipe reaches the center of the main pipe.
  • This type of mixing device eliminates the need for the mixing tank 51, and allows the device S to be simpler and smaller.
  • Processing machines such as cutting, grinding, or rolling mills, usually have a coolant tank for storing a predetermined amount of coolant.
  • the coolant liquid production apparatus of the present invention supplies the produced coolant liquid to the processing machine by automatic control. Is preferably provided.
  • FIG. 12 shows an arrangement of an example of a coolant liquid manufacturing apparatus in which the coolant liquid manufacturing apparatus shown in FIG. 10 is provided with a control circuit for controlling the amount of the coolant tank in the processing machine to a predetermined amount. It is a figure which shows typically.
  • the coolant production apparatus 300 is operated when the coolant level in the coolant tank 91 in the processing machine 90 decreases from a predetermined level when the tank is full (usually 100%).
  • the liquid supply start sensor 62 that sends a supply signal when the coolant level decreases to 50%
  • the full sensor 61 that sends a supply stop signal when the coolant level is full, and from these sensors
  • a control circuit 60 for controlling the signals. Examples of the above-mentioned sensor include those utilizing a float type, an electric type, an optical type, and an ultrasonic type. These sensors may be integral or separate.
  • the control circuit 60 is also in communication with the dilution water production device 30 and the coolant stock solution pump 41, and the signal from the sensor is output to the dilution water production device 30 and the coolant stock solution pump 41 as an output signal. To communicate and activate them.
  • the coolant production apparatus shown in FIG. 12 can be provided with additional equipment as shown in the figure.
  • the operation of the coolant stock solution pump 41 may be controlled by a switch (not shown).
  • a dilution water supply valve 31 can be provided in a water supply pipe for the dilution water 30a from the dilution water production device 30 to the mixing tank 51. Furthermore, when the predetermined dilution ratio changes due to evaporation of water, etc.
  • a water supply pipe for introducing dilution water directly from the dilution water production device 30 into the coolant tank 91 of the processing machine Line
  • a dilution water supply valve 32 can be provided there.
  • the coolant liquid 300a from the coolant liquid metering pump 54 and the dilution water 300a from the water supply pipe can be selectively supplied to the coolant liquid tank 91.
  • These pumps can be provided with switching switches (not shown) and can be spilled.
  • a coolant liquid metering pump for supplying the coolant 300 a to the coolant tank 91 of the processing machine 90.
  • control circuit 54 can also be controlled by contacting the control circuit.
  • a predetermined dilution is performed by the coolant manufacturing apparatus of the present invention.
  • the coolant liquid adjusted to the magnification can be supplied to a predetermined amount when the water is full through the coolant liquid metering pump.
  • the liquid supply start liquid amount sensor 61 detects the insufficient liquid amount, and the signal is input to the control circuit 60.
  • the input signal is transmitted as an output signal from the control circuit 60 to the dilution water producing device 30 and the coolant undiluted solution pump 41.
  • the coolant liquid quantitative pump 54 By operating the coolant liquid quantitative pump 54 by a switch (not shown) (or by a signal when communicating with the control circuit 60), the coolant liquid 300a is cooled by the coolant in the processing machine. It can be supplied to the liquid tank 91.
  • the full-water sensor 61 detects it and the signal is sent to the control circuit.
  • the coolant supply is stopped by deactivating the coolant metering pump 54 by means of a switch (not shown) (or by its signal, if it is communicated with the control circuit).
  • the output signal from the control circuit 60 also operates the dilution water producing device 30 and the coolant undiluted solution pump 41 to produce the diluted water 30 a is the dilution water supply
  • the valve 31 and the coolant stock solution 40a are sent to the mixing tank 51 via the coolant stock solution pump 41, where the production of the coolant solution is started. In this way, the coolant liquid can be automatically supplied directly from the coolant liquid production apparatus according to the decrease in the coolant liquid tank volume of the processing machine.
  • FIG. 13 is a diagram schematically showing an arrangement of another example of the coolant liquid producing apparatus in which the above-described control circuit is added to the coolant liquid producing apparatus shown in FIG. Fig. 14 shows the coolant liquid production system shown in Fig. 13 and the control circuit as described above, and the dilution water as shown in Fig. 12 directly from the dilution water production system 30.
  • FIG. 9 is a view schematically showing another example of the arrangement of a coolant liquid production apparatus provided with a water supply pipe that can be introduced into the apparatus shown in FIG.
  • the configuration of the coolant production apparatus shown in FIG. 12 is basically the same as that of FIG. Since the above-mentioned direct mixing type mixing apparatus is used, it is possible to design more compactly.
  • the coolant supplied when the coolant volume of the coolant tank of the processing machine decreases from the predetermined fluid volume when the machine is full, and the coolant fluid at the time of addition are diluted. It is preferably prepared using dilute water containing a high concentration of hydrogen peroxide-containing active oxygen obtained by reducing the amount of water produced per unit time from a water producing apparatus.
  • the coolant liquid for the addition is not required in a large amount. Therefore, in the dilution water production equipment, the amount of water passing therethrough can be set to be smaller than that in the case of the initial supply that requires a large amount. Can be produced. As a result, it is possible to replenish a coolant liquid having a higher anti-rot effect.
  • the coolant production apparatus of the present invention may further include a periodic timer circuit so that coolant can be supplied periodically.
  • FIG. 15 is a diagram schematically illustrating an arrangement of an example of a coolant liquid production apparatus in which a periodic timer circuit is added to the coolant liquid production apparatus of FIG. 13.
  • the coolant timer 600 can be supplied to the coolant tank 91 of the processing machine 90 periodically by providing the periodic timer circuit 70.
  • a coolant drain pipe 92 is separately provided in the coolant tank 91, and a coolant drain valve 9 is provided.
  • 3 is provided so that its opening and closing can be controlled by the signal of the periodic timer circuit 70.
  • the connection between the periodic timer circuit 70 and the coolant liquid drain valve 93 be made easy to release by using, for example, a plug.
  • the coolant production apparatus 600 of the present invention can be mounted on the processing machine 90, or the processing machine can be easily detached from the apparatus.
  • a coolant timer manufacturing apparatus shown in FIG. 14 can also be provided with a periodic timer circuit.
  • the mixing apparatus can be replaced with a mixing apparatus having a mixing tank shown in FIG.
  • the coolant in the coolant tank of the processing machine can be changed at an arbitrary time interval (1 day to 15 days), for example, by the periodic timer circuit.
  • the replacement amount can be set in a range of 10 to 50% reduction from the predetermined amount when the tank is full as described above.
  • Dilution water was produced using the dilution water production apparatus of the present invention.
  • Table 1 shows the properties of the produced dilution water.
  • the dilution water 1 and 2 use the device shown in Fig. 1, the dilution water 3 and 4 use the device shown in Fig. 5, the dilution water 5 and 6 use the device shown in Fig. 6, and the dilution water 7 and 8 use Each sample was generated using the device described in Fig. 8.
  • the cathode feeder 14 constituting the cathode 3 was made of stainless steel, the gas diffusion electrode 17 was made of GDE manufactured by E-TEK, USA, and the anode 4 was made of titanium plated with platinum.
  • For water pass tap water through a water softener to reduce the calcium ion concentration and magnesium ion concentration to 0.05 mm o. One having a value of 1 Z dm 3 or less was used. Air was introduced from the air supply section.
  • the properties of the dilution water when the dilution water is produced using a dilution water production device that uses ordinary stainless steel tubes without graphite and nickel plating, (Dilution water 10 electrolytic alkaline ionized water) Also shown.
  • a hydrogen peroxide test paper Peroxide Test, manufactured by MERCK
  • a pH meter CP-1PT, manufactured by Az One
  • the dilution water and water-soluble metal working oil (Emulsion-type N-Solpur EM manufactured by Nippon Oil Co., Ltd.) were manufactured under the same conditions as those for dilution water 1 to 10 shown in Table 1 above. And was performed.
  • Table 2 shows the properties of the manufactured coolant.
  • the coolant liquids 1, 3, 5, and 7 are used for the filling mode described above, and the coolant liquids 2, 4, 6, and 8 are used for the additional mode.
  • the coolant 9 is a so-called ordinary coolant, and the coolant 10 is a coolant diluted with electrolytically deionized water.
  • a beaker test was carried out on the propagation of the bacteria in the obtained coolant liquids 1 to 10.
  • the coolant of the present invention has a 2.8 times longer life than the normal coolant (Comparative Example 1).
  • the service life is extended more than 1.6 times even with the coolant liquid (Comparative Example 2) diluted with the electrolytic water containing no hydrogen (Comparative Example 2).
  • the coolant liquid having a higher hydrogen peroxide concentration (Examples 2 to 4) has a life extension of 7.3 times or more as compared with Comparative Example 1 and 4.2 times or more as compared with Comparative Example 2. Is shown.
  • Example 5 the odor level of the coolant of the present invention was about 1/8 after 100 days with respect to the normal coolant (Comparative Example 3). It is about 1Z14 to 1/16 compared to Example 3, indicating that it is very effective in preventing odor.
  • the dilution water of the present invention does not adversely affect the human body and the environment, and does not adversely affect the oil agent and its processing performance. Therefore, by using the dilution water of the present invention, it is possible to produce a coolant liquid having a high durability and an excellent rot preventing effect without reducing the processing performance. Further, the dilution water producing apparatus of the present invention can efficiently produce a large amount of dilution water.
  • a coolant having a high pH can be obtained without adding an alkaline reagent (for example, Na salt) or the like, so that maintenance is easy and not only the coolant 1 but also the coolant Since Na salt and the like do not precipitate, there is almost no decrease in the processing performance of the coolant liquid from this point.
  • an alkaline reagent for example, Na salt
  • FIG. 1 is a diagram schematically showing a vertical cross section of an example of the apparatus for producing a dilution water of a water-soluble metal working oil agent of the present invention.
  • FIG. 2 is a diagram schematically showing the manufacturing apparatus of FIG. 1 as viewed from above.
  • FIG. 3 is a diagram schematically showing the manufacturing apparatus of FIG. 1 as viewed from below.
  • FIG. 4 is a perspective view schematically showing a cathode of the manufacturing apparatus of FIG.
  • FIG. 5 is a view schematically showing a vertical cross section of another example of the water-soluble metal working oil dilution water producing apparatus of the present invention.
  • FIG. 6 is a diagram schematically showing a vertical cross section of another example of the water-soluble metal working oil dilution water producing apparatus of the present invention.
  • Figure 7 shows the specific shape of the perforated cathode feeder or anode used in Figures 5 and 6.
  • FIG. 8 is a diagram schematically showing a vertical cross section of another example of the water-soluble metal working oil dilution water producing apparatus of the present invention.
  • FIG. 9 is a diagram schematically showing the manufacturing apparatus of FIG. 8 as viewed from above.
  • FIG. 10 is a diagram schematically showing an arrangement of an example of a coolant production apparatus of the present invention. You.
  • FIG. 11 is a diagram schematically showing an arrangement of another example of the coolant production apparatus of the present invention.
  • FIG. 12 shows a coolant liquid manufacturing apparatus according to the present invention, which is provided with a control circuit for controlling the amount of the coolant tank in the processing machine to a predetermined amount in the coolant liquid manufacturing apparatus shown in FIG. It is a figure which shows an example arrangement
  • FIG. 13 shows another example of the coolant liquid manufacturing apparatus of the present invention in which a control circuit for controlling the amount of the coolant tank in the processing machine to a predetermined amount is added to the coolant liquid manufacturing apparatus shown in FIG. It is a figure which shows an example arrangement
  • Fig. 14 shows another example of the coolant production system of the present invention, which is equipped with the coolant production system shown in Fig. 13 and a water supply pipe that can directly introduce dilution water from the dilution water production system into the coolant reservoir in the processing machine. It is a figure which shows the example of arrangement
  • FIG. 15 is a diagram schematically showing an arrangement of an example of a coolant liquid producing apparatus in which a periodic timer circuit is further added to the coolant liquid producing apparatus of the present invention shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

An aqueous solution for diluting a water-soluble metal working fluid, characterized in that it is produced through the electrolysis of water, has a pH of 8 to 13, and comprises active oxygen contained in hydrogen peroxide in a concentration of 1 mg/L or more. The aqueous solution is produced by supplying water to an electrolysis vessel which comprises a cathode comprised of a cathode electricity feeder made from stainless steel plated with nickel or the like or from titanium plated with platinum or the like and an electrode made from a carbonaceous material or a gas diffusion electrode and an anode made from titanium plated with platinum or the like, the cathode and the anode being isolated by a diaphragm and provided opposite to each other, and supplying air or a gas containing oxygen to the surface of the cathode, and then passing an electric current. The mixing of the aqueous solution with a water-soluble metal working fluid provides a fluid coolant which exhibits durable putrefaction preventing effect, without adversely affecting a human body, the environment, the fluid itself, or performance capabilities of the fluid.

Description

明 細 書 水溶性金属加工用油剤の希釈水、その製造装置、クーラント液、及びクーラント液製  Description Dilution water of water-soluble oil for metalworking, its manufacturing equipment, coolant liquid, and coolant liquid
[技術分野] [Technical field]
本発明は、 水溶性金属加工用油剤の希釈水、 その製造装置、 希釈水と水溶性金 属加工用油剤とを混合してなるクーラント液、 及びクーラント液製造装置に関す る。  The present invention relates to a dilution water of a water-soluble metal working oil, an apparatus for producing the same, a coolant liquid obtained by mixing the dilution water with a water-soluble metal working oil, and a coolant liquid manufacturing apparatus.
[背景技術] [Background technology]
切削、 研削及び圧延用工作機械等の加工機では、 潤滑や冷却のために水溶性の 金属加工用の油剤 (即ち、 水溶性工業用潤滑油の原液。 以下、 単に油剤、 又はク 一ラント原液と称する場合がある。) が多く使用されている。 水溶性金属加工用 油剤は通常水で 1 0倍ないし 2 0倍程度に希釈して用いられ、 希釈した水溶性金 属加工用油剤は一般にクーラント液と呼ばれている。 このクーラント液は、 循環 使用されるのが普通であるが、 微生物が好む成分を含み、 かつ金属加工時に発生 する熱などにより微生物が繁殖しやすい状態に晒されることが多く、 同じクーラ ント液を長期間使い続けると腐敗するという欠点を有している。 腐敗が進行した クーラント液は、 悪臭の発生、 金属加工性能の低下、 金属の腐食などの問題を引 き起こすため、 新しいクーラント液と交換しなければならない。 このクーラント 液交換に要する手間と費用は、 事業者に対し大きな経済的な負担を強いている。 クーラント液の腐敗に対する最も一般的な対策として、 例えば、 エタノールァ ミン系化合物、 ィソチアゾリン系化合物、 あるいは銅や銀などの金属イオンを防 腐'剤 ·殺菌剤として用いる方法が知られている (特開昭 6 2— 2 1 5 5 0 7号、 特開平 2— 2 9 4 9 6号、 特開平 5— 2 3 0 4 9 2号、 特開平 9一 1 3 5 8 8 5 号などの公報)。 その他、 添加剤を加えること以外のクーラント液の寿命延長方 法としては、 例えば、 放射線による殺菌 (特開平 2— 2 1 2 5 9 7号公報)、 超 音波による殺菌 (特開昭 6 3 - 2 4 5 4 9 4号公報)、紫外線照射による殺菌 (特 開平 4一 2 6 4 1 9 9号公報)、 及び水蒸気吹込みによる加熱殺菌 (特開昭 5 6 - 9 5 9 9 2号公報) などの方法が知られている。 In processing machines such as machine tools for cutting, grinding and rolling, water-soluble oils for metal working are used for lubrication and cooling (ie, undiluted solutions of water-soluble industrial lubricating oils. ) Is often used. Water-soluble oils for metal processing are usually used after being diluted about 10 to 20 times with water, and the diluted water-soluble oils for metal processing are generally called coolant liquids. This coolant liquid is usually used in circulation, but contains components preferred by microorganisms, and is often exposed to conditions in which microorganisms can easily propagate due to heat generated during metalworking. It has the disadvantage that it will rot if used for a long time. The decayed coolant will cause problems such as bad odors, poor metalworking performance, and metal corrosion, and must be replaced with new coolant. The labor and cost required to change the coolant liquid impose a great economic burden on the business operator. As the most common countermeasures against the decay of the coolant liquid, for example, a method using an ethanolamine compound, an isotizazoline compound, or a metal ion such as copper or silver as a preservative or disinfectant is known. Japanese Unexamined Patent Publications Nos. Sho 62-2-15507, Japanese Unexamined Patent Application Publication No. 2-294496, Japanese Unexamined Patent Application Publication No. 5-230492, Japanese Unexamined Patent Application Publication No. ). Other methods of extending the service life of the coolant except for adding additives include, for example, sterilization by radiation (Japanese Patent Application Laid-Open No. 2-219597) and sterilization by ultrasonic waves (Japanese Patent Application No. 2 4 5 4 9 4), sterilization by ultraviolet irradiation And methods of heat sterilization by blowing steam (Japanese Unexamined Patent Publication No. 56-95992).
しかし、 防腐剤等を添加する方法は、 長期間使用することによって人体あるい は周囲環境に対し悪影響を及ぼす可能性がある。 例えばイソチアゾリン系化合物 は皮膚の炎症やアレルギーを引き起こし、エタノールアミン系化合物については、 一部のものは発ガン性ゃ環境ホルモンであることが指摘されている。  However, the method of adding preservatives etc. may have a bad effect on the human body or the surrounding environment when used for a long time. For example, it has been pointed out that isothiazoline compounds cause skin irritation and allergies, and that some ethanolamine compounds are carcinogenic and environmental hormones.
放射線、 超音波、 紫外線照射による殺菌方法は、 高額の設備が必要であり、 ラ ンニングコストも高い。 さらに菌が増殖した状態では殺菌効果が薄いという欠点 を有している。  Sterilization methods using radiation, ultrasonic waves, and ultraviolet irradiation require expensive equipment and high running costs. Furthermore, it has the disadvantage that the bactericidal effect is weak when the bacteria are grown.
水蒸気吹き込みによる加熱殺菌についてはこれらの問題点は生じないが、 クー ラント液が高温雰囲気にさらされるため、 成分の一部が変質し、 切削性能 '研削 性能を低下させたり、 ェマルジョン状態が壌れたりすることがある。  Heat sterilization by steam injection does not cause these problems.However, since the coolant is exposed to a high-temperature atmosphere, some of the components are deteriorated, resulting in reduced cutting performance, reduced grinding performance, and poor emulsified state. Sometimes.
以上のように、 従来の方法は何らかの欠点を有し、 いずれも十分なクーラント 液寿命延長方法とはいえない。  As described above, the conventional methods have some disadvantages, and none of them can be said to be sufficient methods for extending the life of the coolant.
本発明は、 人体、 環境に、 また油剤及びその加工性能にも悪影響も与えること のない、 持続した腐敗防止効果を有するクーラント液の調製に有利な水溶性金属 加工用油剤の希釈水、 その製造装置、 希釈水と水溶性金属加工用油剤とを混合し てなるクーラント液、 及びクーラント液製造装置を提供することを目的とするも のである。  The present invention provides a water-soluble metal working oil dilution water which is advantageous for the preparation of a coolant liquid having a sustained anti-rotation effect without adversely affecting the human body, the environment, and the oil agent and its processing performance. It is an object of the present invention to provide an apparatus, a coolant liquid obtained by mixing dilution water and a water-soluble metal working oil, and an apparatus for producing a coolant liquid.
[発明の開示] [Disclosure of the Invention]
本発明者らは、 前記課題について鋭意研究した結果、 本発明を完成したもので める。  The present inventors have made intensive studies on the above-mentioned problems, and as a result, have completed the present invention.
本発明は、 水の電気分解によって得られ、 pHが 8以上、 13以下で、 lmgZL以上の 濃度の過酸化水素含有活性酸素を含むことを特徴とする水溶性金属加工用油剤の希 釈水にある。  The present invention relates to a water-soluble metal working oil diluted water obtained by electrolysis of water and having a pH of 8 or more and 13 or less and containing hydrogen peroxide-containing active oxygen at a concentration of 1 mg ZL or more. is there.
また本発明は、 ステンレススチール製陰極給電体及び炭素系材料で形成された 電極から構成される陰極と、 白金及びノ又はィリジゥムでメツキを施したチタン で形成された陽極とが隔膜により隔てられ、 互いに対峙して設けられ、 かつ陰極 表面に空気あるいは酸素を含む気体を供給するための給気部と水を導入するため の水供給口とが設けられた電解槽を含む電気分解装置からなり、 該装置の両極に 電圧を印加して電解槽中に導入される水を電気分解することにより、 p Hが 8以 上、 13以下で、 lmgZL以上の濃度の過酸化水素含有活性酸素を含む水を製造する ための水溶性金属加工用油剤の希釈水の製造装置にある。 Further, the present invention provides a cathode composed of a stainless steel cathode power supply and an electrode formed of a carbon-based material, and an anode formed of platinum and titanium coated with platinum or platinum or a iridium. Provided facing each other, and the cathode An electrolysis apparatus including an electrolytic cell provided with an air supply section for supplying gas containing air or oxygen to the surface and a water supply port for introducing water, and applying a voltage to both electrodes of the apparatus. Water-soluble metal processing to produce water with a pH of 8 or more and 13 or less and a concentration of lmgZL or more of active oxygen containing hydrogen peroxide by electrolyzing water introduced into the electrolytic cell It is in the equipment for producing dilution water of oil for use.
また本発明は、 ステンレススチール製、 ニッケルメツキを施したステンレスス チール製、 あるいは白金及び/又はィリジゥムでメツキを施したチタン製からな る穴の空いた陰極給電体及び炭素系材料で形成されたガス拡散電極から構成され る陰極と、 白金及び Z又はィリジゥムでメツキを施したチタンで形成された陽極 とが隔膜により隔てられ、 互いに対峙して設けられており、 隔膜と反対側の陰極 表面側に空気あるいは酸素を含む気体を供給するための給気部を有し、 陰極と隔 膜の間の陰極室に水を供給するための水供給口とが設けられた電解槽を含む電気 分解装置からなり、 該装置の両極に電圧を印加して電解槽中に導入される水を電 気分解することにより、 p Hが 8以上、 13以下で、 50mg/L以上の濃度の過酸化 水素含有活性酸素を含む水を製造するための水溶性金属加工用油剤の希釈水の製 造装置にある。  Further, the present invention is formed of a perforated cathode feeder and a carbon-based material made of stainless steel, nickel-plated stainless steel, or platinum and / or titanium-plated titanium. A cathode composed of a gas diffusion electrode and an anode made of platinum and Z or titanium plated with Z are separated by a diaphragm and provided to face each other, and the cathode surface side opposite to the diaphragm is provided. Electrolyzer with an air supply unit for supplying gas containing air or oxygen to the cathode, and an electrolytic cell provided with a water supply port for supplying water to the cathode chamber between the cathode and the diaphragm By applying a voltage to both electrodes of the device and electrolyzing water introduced into the electrolytic cell, it contains hydrogen peroxide at a pH of 8 or more and 13 or less and a concentration of 50 mg / L or more. Active oxygen Including in manufacturing devices dilution water soluble metal working oil for the production of water.
また本発明は、 ステンレススチーノレ製、 ニッケルメツキを施したステンレスス チール製、 あるいは白金及び/又はィリジゥムでメツキを施したチタン製からな る穴の空いた陰極給電体及び炭素系材料で形成されたガス拡散電極から構成され る中空円筒形状の陰極と、 白金及び/又はィリジゥムでメツキを施したチタンで 形成された陽極とが隔膜により隔てられ、 互いに対峙して設けられており、 該中 空円筒形状の陰極は、 内側に穴の空いた陰極給電体が配置され、 外側にガス拡散 電極が配置された構造となっており、 かつ陰極中空内部に空気あるいは酸素を含 む気体を供給するための給気部を有し、 陰極外側部と隔膜の間の陰極室に水を供 給するための水供給口とが設けられた電解槽を含む電気分解装置からなり、 該装 置の両極に電圧を印加して電解槽中に導入される水を電気分解することにより、 p Hが 8以上、 13以下で、 50mgZL以上の濃度の過酸化水素含有活性酸素を含む水 を製造するための水溶性金属加工用油剤の希釈水の製造装置にある。  The present invention is also formed of a perforated cathode feeder and carbonaceous material made of stainless steel, stainless steel with nickel plating, or titanium with plating with platinum and / or iridium. A hollow cylindrical cathode composed of a gas diffusion electrode and an anode made of platinum and / or titanium coated with a iridium are separated by a diaphragm and provided to face each other. The cylindrical cathode has a structure in which a cathode feeder with a hole is placed inside and a gas diffusion electrode is placed outside, and it also supplies air or oxygen-containing gas to the inside of the cathode hollow. An electrolytic cell including an electrolytic cell provided with a water supply port for supplying water to the cathode chamber between the cathode outer portion and the diaphragm. To produce water containing hydrogen peroxide-containing active oxygen at a pH of 8 or more and 13 or less and a concentration of 50 mg or more by applying a voltage to It is in the manufacturing equipment of dilution water of water-soluble metal working oil.
さらに本発明は、 上記水溶性金属加工用油剤の希釈水と水溶性金属加工用油剤 とを混合してなるクーラント液にある。 Further, the present invention relates to a water-soluble metal working oil and a dilution water of the water-soluble metal working oil. And a mixture of the two.
更にまた本発明は、 上記希釈水製造装置と、 該装置で製造した希釈水と水溶性 金属加ェ用油剤とを混合するための混合装置とを含むクーラント液製造装置であ つて、 製造したクーラント液を加工機に自動的に供給するための、 加工機内のク 一ラント液量が満水時の所定液量から減少したときに供給信号を発信する液供給 開始液量センサ一、 加工機内のク一ラント液量が満水したときに供給停止信号を 発信する満水液量センサ一、及ぴ液供給開始液量センサ一と満水液量センサーと からの信号を制御する制御回路を備えてなることを特徴とするクーラント液製造 装置にもある。 本発明の水溶性金属加工用油剤の希釈水の製造装置 (以下、 本発明の希釈水製 造装置ともいう。)、 及び本発明の希釈水の製造装置から製造された希釈水と水溶 性金属加工用油剤とを混合して得られるクーラント液の製造装置を添付の図を用 いて以下に説明する。  Still further, the present invention provides a coolant liquid producing apparatus including the above-mentioned dilution water producing apparatus, and a mixing apparatus for mixing the dilution water produced by the apparatus with a water-soluble metal additive oil agent. A liquid supply start sensor that sends a supply signal when the amount of coolant in the processing machine decreases from a predetermined level when it is full, in order to automatically supply liquid to the processing machine. It is necessary to provide a control circuit for controlling the signals from the full liquid level sensor, which sends out the supply stop signal when the one liquid level is full, the liquid supply start liquid level sensor, and the full liquid level sensor. There is also a featured coolant production equipment. An apparatus for producing dilution water of a water-soluble metal working oil agent of the present invention (hereinafter also referred to as an apparatus for producing dilution water of the present invention), and dilution water produced from the apparatus for producing dilution water of the present invention and water-soluble metal An apparatus for producing a coolant liquid obtained by mixing with a processing oil will be described below with reference to the accompanying drawings.
まず、 本発明の希釈水製造装置について説明する。  First, the dilution water producing apparatus of the present invention will be described.
図 1乃至図 9は、 本発明の希釈水製造装置の好ましい具体例を模式的に示した ものである。 図 1は、 本発明の希釈水製造装置の一例の鉛直断面図を示し、 図 2 及び図 3は、 それぞれ該装置を上から見た図及び下から見た図を示し、 図 4は、 陰極のみを取り出して見たときの斜視図を示す。 また図 5及ぴ図 6は、 それぞれ 本発明の希釈水製造装置の他の例の鉛直断面図を示し、 図 7は、 図 5及ぴ図 6で 使用する穴の空いた陰極給電体あるいは陽極の具体的形状を 3例示したものであ る。 また図 8は、 本発明の希釈水製造装置のさらに別の例の鉛直断面図を示し、 図 9は、 該装置を上から見た図を示すものである。 図 1に示す本発明の希釈水製造装置 1の例は、 電解槽 2が縦型円筒状に形成さ れている。 電解槽 2には、 円筒形状の陰極 3を中心にして、 その半径方向内方か ら外方に、 隔膜 5、 そして陽極 4の順に隔膜 5を境にしてこれらが間隔を置いて 同心円を形成して設けられている。 電解槽 2の下面部及ぴ上面部には、 キャップ 1 0、 1 1、 例えば、 樹脂製のキャップなどにより、 開口部を除いて密閉されて いる。 従って、 電解槽 2には隔膜 5を境にして、 その内周側に陰極室 1 2が、 そ してその外周側に陽極室 1 3が形成されている。 これらの両室には、 それぞれ水 を供給するための水供給口 6がその下部に設けられており、 また陰極室 1 2の上 部には、 ここで製造された希釈水を取り出すための希釈水取り出し口 8が、 そし て陽極室 1 3の上部には、 過酸化水素を含有しない酸性イオン水取り出し口 9が 設けられている。 円筒状の陰極 3の底部中央には、 陰極表面に空気又は酸素を含 む気体を送るための給気部 7が設けられている。 陰極 3と陽極 4は完全に絶縁さ れており、 陰極 3を電源 (図示せず) のマイナス極に、 そして陽極 4を電源 (図 示せず) のプラス極に接続させて通電することで、 電解槽では、 電気分解が起る。 陰極 3は、 炭素系材料で形成されているが、 図 4に見られるように、 円筒 (又 は管) 状のステンレススチール製の陰極給電体 1 4上にグラフアイト 1 5を密着 させた構造を有していることが好ましい。 グラフアイ ト 1 5は、 例えば、 グラフ アイトのフェルトをステンレススチール製の陰極給電体 1 4上に巻きつけ、 接着 剤、 あるいは金具などを用いて固定することで密着させることができる。 このよ うに電極表面を炭素系材料 (特にグラフアイト材料) で形成すれば、 必ずしも陰 極自体を炭素系材料で形成する必要はなく、 むしろこのような構造の方が、 同じ 電圧をかけたとき、 過酸化水素及びアルカリイオンの発生を容易にし、 高濃度の 過酸化水素を含み、 かつ高い p Hの水を得ることができる。 1 to 9 schematically show preferred specific examples of the dilution water producing apparatus of the present invention. FIG. 1 shows a vertical cross-sectional view of an example of the dilution water producing apparatus of the present invention, FIGS. 2 and 3 show a top view and a bottom view of the apparatus, respectively, and FIG. FIG. 3 shows a perspective view when only the component is taken out and viewed. 5 and 6 show vertical sectional views of other examples of the dilution water producing apparatus of the present invention, respectively, and FIG. 7 shows a perforated cathode feeder or anode used in FIGS. 5 and 6. These are three specific examples of the shape. FIG. 8 shows a vertical sectional view of still another example of the dilution water producing apparatus of the present invention, and FIG. 9 shows a view of the apparatus from above. In the example of the dilution water producing apparatus 1 of the present invention shown in FIG. 1, the electrolytic cell 2 is formed in a vertical cylindrical shape. In the electrolytic cell 2, a concentric circle is formed with the cylindrical cathode 3 as the center, the diaphragm 5 and the anode 4 in order from the radially inner side to the outer side, and the diaphragm 5 as the boundary. It is provided. The lower surface and the upper surface of the electrolytic cell 2 are sealed except for the opening with caps 10 and 11, for example, a resin cap. I have. Therefore, in the electrolytic cell 2, the cathode chamber 12 is formed on the inner peripheral side of the diaphragm 5 and the anode chamber 13 is formed on the outer peripheral side thereof. A water supply port 6 for supplying water is provided in each of these two chambers at a lower portion thereof, and a dilution port for taking out the dilution water produced here is provided at an upper portion of the cathode chamber 12. A water outlet 8 is provided, and an acid ion water outlet 9 containing no hydrogen peroxide is provided above the anode chamber 13. In the center of the bottom of the cylindrical cathode 3, an air supply unit 7 for sending gas containing air or oxygen to the cathode surface is provided. The cathode 3 and the anode 4 are completely insulated, and the cathode 3 is connected to the negative pole of the power supply (not shown), and the anode 4 is connected to the positive pole of the power supply (not shown). Electrolysis occurs in the electrolytic cell. The cathode 3 is formed of a carbon-based material, but as shown in FIG. 4, a structure in which graphite 15 is adhered to a cylindrical (or tube) -shaped stainless steel cathode feeder 14 It is preferable to have The graphite 15 can be brought into close contact by, for example, winding a felt of graphite on a cathode feeder 14 made of stainless steel and fixing it with an adhesive or metal fittings. If the electrode surface is made of a carbon-based material (especially graphite) in this way, the cathode itself does not necessarily need to be made of a carbon-based material. Rather, such a structure can be obtained when the same voltage is applied. It facilitates generation of hydrogen peroxide and alkali ions, and can obtain water having a high concentration of hydrogen peroxide and a high pH.
陰極を炭素系材料で形成することで、 電気分解によって発生する気体 (給気部 から送られた空気又は酸素を含む気体) の還元反応を過酸化水素の段階で停止す ることができるため、過酸化水素をより効率良く発生させることができる。また、 陰極では、 アルカリイオンも同時に発生しており、 陰極室 1 2の水は高いアル力 リ性になる。 陰極を炭素系材料を用いないで形成した場合には、 過酸化水素を含 まない電解アルカリイオンが発生し、 陰極室 1 2はアルカリイオン水となる。 陰極給電体をステンレススチールを用いて形成した場合には、 時間の経過と共 に鉄分が水中に溶け出して過酸化水素と反応し、 過酸化水素濃度を低減させる。 過酸化水素濃度を安定させるためには、 特に鉄が溶け出しやすい部分 (例えば、 溶接部分) にはニッケルでメツキすることが好ましく、 より好ましくは、 ステン レススチール電極の表面全体がメツキされていることが好ましい。 円筒形状の陰極の底部に設けられた給気部 7はその内部から陰極表面に沿って 上部に向かってらせん状に延ぴている。 給気部 7は、 例えば、 榭脂製のチューブ (又はパイプ) 1 6などを用いて形成することができ、 その表面には、 その全長 に亘つて無数の散気孔 (気体吹き出し口) 1 6 a…が設けられており、 その先端 は閉じられている。 らせん状のチューブと散気孔 1 6 aとによってより小さい気 泡を陰極表面にその全域に亘つて効率良く接触させることができ、 従って、 過酸 化水素含有活性酸素を効率良く製造することができる。 By forming the cathode from a carbon-based material, the reduction reaction of gas generated by electrolysis (air or oxygen-containing gas sent from the air supply unit) can be stopped at the stage of hydrogen peroxide. Hydrogen peroxide can be generated more efficiently. At the cathode, alkali ions are also generated at the same time, and the water in the cathode chamber 12 becomes highly alkaline. When the cathode is formed without using a carbon-based material, electrolytic alkali ions not containing hydrogen peroxide are generated, and the cathode chamber 12 becomes alkali ion water. If the cathode feeder is made of stainless steel, the iron will dissolve into the water over time and react with hydrogen peroxide, reducing the concentration of hydrogen peroxide. In order to stabilize the concentration of hydrogen peroxide, it is preferable that nickel is particularly applied to a portion where iron is easily dissolved (for example, a welded portion), and more preferably the entire surface of the stainless steel electrode is plated. Is preferred. The air supply section 7 provided at the bottom of the cylindrical cathode extends spirally from the inside toward the top along the cathode surface. The air supply unit 7 can be formed using, for example, a resin tube (or pipe) 16, and the surface thereof has a myriad of air diffusion holes (gas outlets) 16 over its entire length. a ... is provided, and the tip is closed. The helical tube and the diffuser holes 16a allow smaller bubbles to be efficiently brought into contact with the cathode surface over the entire area thereof, thus enabling efficient production of active oxygen containing hydrogen peroxide. .
陽極 4は、 陽極の酸化を防止するために、 白金及び/又はイリジウムでメツキ を施したチタンで形成されている。  The anode 4 is formed of titanium plated with platinum and / or iridium to prevent oxidation of the anode.
隔膜 5は、 陰極室 1 2で生成した過酸化水素が陽極側に移動し、 分解されるの を防ぐと共に、 また同時に生成したアルカリイオンの陽極側への移動を防ぐため に設けられている。 隔膜の材料としては、 ポリオレフイン系の材料、 あるいはセ ルロースであることが好ましく、 例えば、 ポリ塩素化工チレン、 ポリフッ化ビニ リデン (P V D F )、 ポリテトラフルォロエチレン (P T F E )、 ポリエチレン ( P E )、 ポリビュルアルコール (P V A;)、 及びセルロールなどを挙げることができ る。 これらの中では、 ポリ塩素化工チレン、 ポリフッ化ビニリデン (P V D F )、 ポリテトラフルォロエチレン (P T F E )、 ポリエチレン (P E )、 及びポリビニ ルアルコール (P V A) であることがさらに好ましい。 また、 他にはイオン交換 膜を使用することができるが、 この場合は陽イオン交換膜を用いると、 陽極側か ら陰極側へ陽イオンの移動のみが生じ、 陽極側にある陰イオンが、 拡散によって 陽極側から陰極側へ移動することを防止できるので好ましい。  The diaphragm 5 is provided to prevent the hydrogen peroxide generated in the cathode chamber 12 from moving to the anode side and being decomposed, and also prevent the alkali ions generated at the same time from moving to the anode side. The material of the diaphragm is preferably a polyolefin-based material or cellulose. For example, polychlorinated polyethylene, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyethylene (PE), Polybutyl alcohol (PVA;), and cellulose may be mentioned. Among these, polychlorinated polyethylene, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyethylene (PE), and polyvinyl alcohol (PVA) are more preferable. Alternatively, an ion-exchange membrane can be used. In this case, when a cation-exchange membrane is used, only the movement of cations from the anode side to the cathode side occurs, and the anions on the anode side become This is preferable because it can prevent the diffusion from moving from the anode side to the cathode side.
図 1に示す希釈水製造装置を用いる希釈水の製造は、 まず、 電解槽 2の水供給 口 6からその陰極室 1 2及び陽極室 1 3に所定量の水を導入し、 また給気部 7か ら気体 (空気、 又は酸素を含む気体) を陰極 3表面に吹き込みながら両極に通電 することで行われる。 通電により電気分解が起こり、 陰極 3表面には過酸化水素 を主成分として含む活性酸素とアル力リイオンが発生し、従って陰極室 1 2には、 過酸化水素を含む活性酸素とアルカリイオンを含む希釈水が製造される。 製造し た希釈水は、 希釈水取り出し口 8から取り出され、 水溶性金属加工用油剤と混合 することで本発明のクーラント液を調製することができる。 このようにして得ら れた希釈水は、 それに含まれるアルカリイオンで菌の増殖を抑制すると共に、 活 性酸素 (主に過酸化水素) による殺菌作用が相乗的に機能し、 高い腐敗防止作用 を示す。 製造された希釈水は、 電解槽の水の電気分解時間を調整することで、 活 性酸素及ぴアルカリイオンの濃度を調整することができる。 なお、 電気分解によ り、 陽極表面には、 酸性イオンが発生し、 陽極室 1 3には、 酸性イオン水が生成 するため、 酸性イオン水取り出し口 9を介して適宜排出される。 図 5及ぴ図 6に示す本発明の希釈水製造装置の他の例は、 陰極給電体 1 4及び ガス拡散電極 1 7から構成される陰極 3と、 白金及び Z又はイリジウムでメツキ を施したチタンで形成された陽極 4とが隔膜 5により隔てられ、 互いに対峙して 設けられており、 隔膜 5と反対側の陰極表面側に空気あるいは酸素を含む気体を 供給するための給気部 7があり、 陰極 3と隔膜 5の間の陰極室 1 2に水を供給す るための水供給口 6とが設けられている。 In the production of dilution water using the dilution water production apparatus shown in FIG. 1, first, a predetermined amount of water is introduced into the cathode chamber 12 and the anode chamber 13 from the water supply port 6 of the electrolytic cell 2, and the air supply section From step 7, gas (air or gas containing oxygen) is blown into the surface of the cathode 3 to energize both electrodes. Electrolysis occurs due to energization, and active oxygen and hydrogen ion containing hydrogen peroxide as a main component are generated on the surface of the cathode 3, so that the cathode chamber 12 contains active oxygen containing hydrogen peroxide and alkali ions. Dilution water is produced. The produced dilution water is taken out from the dilution water take-out port 8 and mixed with a water-soluble metal working oil to prepare the coolant liquid of the present invention. Obtained in this way The diluted water inhibits the growth of bacteria by the alkali ions contained in the diluted water, and acts synergistically with the bactericidal action of active oxygen (mainly hydrogen peroxide), thus exhibiting a high antiseptic action. The concentration of active oxygen and alkali ions in the produced dilution water can be adjusted by adjusting the electrolysis time of the water in the electrolytic cell. Note that, due to the electrolysis, acidic ions are generated on the anode surface, and acidic ion water is generated in the anode chamber 13. Therefore, the acidic ions are appropriately discharged through the acidic ion water outlet 9. Another example of the dilution water producing apparatus of the present invention shown in FIGS. 5 and 6 is that a cathode 3 composed of a cathode feeder 14 and a gas diffusion electrode 17 was plated with platinum and Z or iridium. An anode 4 made of titanium is separated by a diaphragm 5 and provided so as to face each other. An air supply unit 7 for supplying air or a gas containing oxygen to the cathode surface side opposite to the diaphragm 5 is provided. In addition, a water supply port 6 for supplying water to the cathode chamber 12 between the cathode 3 and the diaphragm 5 is provided.
陰極給電体及ぴガス拡散電極から構成される陰極 3は、 穴の空いた陰極給電体 と、 空気あるいは酸素を含む気体を拡散するためのガス拡散電極とを組み合わせ た構成からなる。 図 5及ぴ図 6においては、 ガス拡散電極 1 7を固定するための ネット 1 8が備えられている。  The cathode 3 composed of a cathode feeder and a gas diffusion electrode has a configuration in which a cathode feeder with a hole is combined with a gas diffusion electrode for diffusing a gas containing air or oxygen. 5 and 6, a net 18 for fixing the gas diffusion electrode 17 is provided.
隔膜 5と反対側の陰極表面側に設けられている空気あるいは酸素を含む気体を 供給するための給気部 7は、 外部に解放された構造となっていても良いし、 また 部屋を形成して、 空気あるいは酸素を含む気体を導入するための供給口 (図示せ ず) を設けても良い。  The air supply section 7 provided on the cathode surface side opposite to the diaphragm 5 for supplying air or oxygen-containing gas may have a structure open to the outside, or may form a room. In addition, a supply port (not shown) for introducing a gas containing air or oxygen may be provided.
給気部 7から供給された空気あるいは酸素を含む気体は、 穴の空いた陰極給電 体 1 4からガス拡散電極 1 7を通して陰極室 1 2に供給される。 一方、 陰極室 1 2においては水供給口 6から水が供給され、 電気分解により陰極室 1 2で生成し た過酸化水素を含む活性酸素とアル力リィオンを含む希釈水が希釈水取り出し口 8から取り出され、 水溶性金属加工用油剤と混合することで本発明のクーラント 液を調製することができる。  The air or gas containing oxygen supplied from the air supply unit 7 is supplied from the perforated cathode power supply 14 to the cathode chamber 12 through the gas diffusion electrode 17. On the other hand, in the cathode chamber 12, water is supplied from the water supply port 6, and active oxygen containing hydrogen peroxide generated by the electrolysis in the cathode chamber 12 and dilution water containing Al-Lion are supplied to the dilution water outlet 8. Of the present invention, and mixed with a water-soluble metal working oil agent to prepare the coolant liquid of the present invention.
陰極給電体の材料としては、 ステンレススチール又はニッケルメツキを施した ステンレススチールが好ましく用いられる。 また、 白金及び Z又はイリジウムで メツキを施したチタンも好ましく用いられる。 ガス拡散電極としては、 撥水加工 処理を施した厚さ 0 . 3〜0 . 5 mm程度の炭素繊維製の布あるいはフヱルトが 好ましく用いられ、 特に米国 E— T E K社製 G D Eの使用が望ましい。 As the material of the cathode power supply, stainless steel or stainless steel subjected to nickel plating is preferably used. Also, with platinum and Z or iridium Titanium subjected to plating is also preferably used. As the gas diffusion electrode, a carbon fiber cloth or a filter having a thickness of about 0.3 to 0.5 mm subjected to a water-repellent treatment is preferably used, and GDE manufactured by E-TEK of the United States is particularly preferable.
陽極としては、 穴のあいた電極板が用いられる例を図 5に、 穴の空いていない 電極板を使用した例を図 6に示してある。  Fig. 5 shows an example in which an electrode plate with holes is used as the anode, and Fig. 6 shows an example in which an electrode plate with no holes is used.
図 5においては、水供給口 6より供給された水は陽極の外側(隔膜とは反対側) を通ると共に、 穴の空いた陽極板を通過して陽極と隔膜の間をも通過する。 生成 した酸性イオン水は、 酸性イオン水取り出し口 9から排出される。 この構造にお いては、 陽極が隔膜に近くなるため、 陽極水による電圧降下が少なくなり、 電解 効率が向上する。  In FIG. 5, the water supplied from the water supply port 6 passes outside the anode (the side opposite to the diaphragm) and also passes between the anode and the diaphragm through the perforated anode plate. The generated acidic ionized water is discharged from the acidic ionized water outlet 9. In this structure, since the anode is closer to the diaphragm, the voltage drop due to anode water is reduced, and the electrolysis efficiency is improved.
図 6においては、 陽極板と隔膜の間に水が供給され、 生成した酸性イオン水は 酸性イオン水取り出し口 9から排出される。 この構造においては、 陽極板に通水 用の穴が不要となるため電極面積を大きくとれるというメリットがある。  In FIG. 6, water is supplied between the anode plate and the diaphragm, and the generated acidic ionized water is discharged from the acidic ionized water outlet 9. This structure has an advantage that the electrode area can be increased because a water hole is not required in the anode plate.
なお、 図 5及ぴ図 6において、 記号 1 9は外板、 2 1はスぺーサ一、 2 2はノ ツキンを示す。  In FIGS. 5 and 6, reference numeral 19 denotes an outer plate, reference numeral 21 denotes a spacer, and reference numeral 22 denotes a notkin.
上記の穴の空いた陰極給電体及び陽極の具体的形状の例を図 7に示した。 しか し、 穴の形状、 大きさはこれらの例に限定されるものではない。  FIG. 7 shows an example of a specific shape of the cathode power supply body and the anode having the holes. However, the shape and size of the holes are not limited to these examples.
図 8に示す本発明の希釈水製造装置の例は、 図 1と同様に電解槽 2が縦型円筒 状に形成されている。 電解槽 2には、 中空円筒形状の陰極 3を中心にして、 その 半径方向内方から外方に、 隔膜 5及び陽極 4が間隔を置いて同心円を形成して設 けられている。 従って、 電解槽 2には隔膜 5を境にして、 その内周側に陰極室 1 2がそしてその外周側に陽極室 1 3が形成されている。 これらの両室には、 それ ぞれ水を供給するための水供給口 6がその下部に設けられており、 また陰極室 1 2の上部には、 ここで生成した過酸化水素を含む活性酸素とアルカリイオンを含 む希釈水取り出し口 8が、 そして陽極室 1 3の上部には、 酸性イオン水取り出し 口 9が設けられている。 中空円筒形状の陰極 3の底部及び上面部には、 陰極 3の 中空内部に空気又は酸素を含む気体を送るための給気部 7が設けられている。 陰極 3は穴の空いた陰極給電体 1 4及びガス拡散電極 1 7から構成される電極 からなつており、 内側に穴の空いた陰極給電体が配置され、 外側にガス拡散電極 が配置された構造となっている。 給気部 7から供給された空気又は酸素を含む気 体は、 陰極 3の内側から陰極室 12側へと拡散する。 陰極室 12においては水供 給口 6から水が供給され、 電気分解により陰極室 1 2で生成した過酸化水素を含 む活性酸素とアルカリイオンを含む希釈水が希釈水取り出し口 8から取り出され、 水溶性金属加工用油剤と混合することで本発明のクーラント液を調製することが できる。 本発明の希釈水は、 その過酸化水素濃度が菌の増殖抑制効果を得るために、 1 mg/L以上であり、 好ましくは、 3mgZL以上であり、 より好ましくは 50 mgZL以上である。 陰極を構成する電極にガス拡散電極を使用した場合、 電極 表面の反応部位に空気又は酸素が効率的に取り込まれ、 かつ反応面積を大きくで き、 希釈水の過酸化水素濃度を高め (5 Omg/L以上) られるので特に好まし い。 過酸化水素濃度が ImgZL未満の場合には、 十分な菌増殖抑制効果を得る ことができない。 また希釈水の pHは、 同様な理由から、 8以上、 13以下であ り、 好ましくは、 9以上、 1 2以下である。 希釈水の pHが 8未満の場合には、 十分な菌増殖抑制効果を得ることができない。 またその pHが 1 3を超える場合 には、 金属加工の際に金属材料に悪影響を及ぼす場合がある。 例えば、 アルミ- ゥムの加工では、 アルミニウムが腐食することがある。 このような機能を有する 希釈水の製造能力は、 本発明の装置で通常 0. 1〜1 L/分であり、 単位時間あ たりの希釈水の製造能力を少なくすることで高濃度の過酸化水素を含有する希釈 水を得ることができる。 また、 希釈水の生成能力は電極面積に比例するため、 電 極面積を大型化することで生成能力を高めることができる。 In the example of the dilution water producing apparatus of the present invention shown in FIG. 8, the electrolytic cell 2 is formed in a vertical cylindrical shape as in FIG. In the electrolytic cell 2, a diaphragm 5 and an anode 4 are formed in a concentric circle at intervals from a radially inner side to an outer side with a hollow cylindrical cathode 3 as a center. Accordingly, in the electrolytic cell 2, the cathode chamber 12 is formed on the inner peripheral side of the diaphragm 5 and the anode chamber 13 is formed on the outer peripheral side thereof. A water supply port 6 for supplying water is provided in a lower part of each of these chambers, and an active oxygen containing hydrogen peroxide generated here is provided in an upper part of the cathode chamber 12. A take-out port 8 containing diluted water containing alkali and alkaline ions is provided, and a take-out port 9 for taking out acidic ion water is provided above the anode chamber 13. At the bottom and top of the hollow cylindrical cathode 3, an air supply unit 7 for sending air or a gas containing oxygen to the inside of the hollow of the cathode 3 is provided. The cathode 3 is composed of an electrode composed of a perforated cathode feeder 14 and a gas diffusion electrode 17, with a perforated cathode feeder arranged inside and a gas diffusion electrode outside. Are arranged. The gas containing air or oxygen supplied from the air supply unit 7 diffuses from the inside of the cathode 3 to the cathode chamber 12 side. Water is supplied from the water supply port 6 in the cathode chamber 12, and dilute water containing active oxygen including hydrogen peroxide and alkali ions generated in the cathode chamber 12 by electrolysis is taken out from the dilution water outlet 8. The coolant liquid of the present invention can be prepared by mixing with a water-soluble metal working oil. The dilution water of the present invention has a hydrogen peroxide concentration of 1 mg / L or more, preferably 3 mgZL or more, and more preferably 50 mgZL or more, in order to obtain the effect of inhibiting the growth of bacteria. When a gas diffusion electrode is used as the electrode constituting the cathode, air or oxygen is efficiently taken into the reaction site on the electrode surface, the reaction area can be increased, and the concentration of hydrogen peroxide in the dilution water can be increased (5 Omg / L or more). When the concentration of hydrogen peroxide is less than ImgZL, a sufficient bacterial growth inhibitory effect cannot be obtained. The pH of the dilution water is 8 or more and 13 or less, preferably 9 or more and 12 or less for the same reason. If the pH of the dilution water is less than 8, a sufficient bacterial growth inhibitory effect cannot be obtained. If the pH exceeds 13, the metal material may be adversely affected during metal working. For example, when machining aluminum, aluminum can corrode. The production capacity of the dilution water having such a function is usually 0.1 to 1 L / min with the apparatus of the present invention, and by reducing the production capacity of the dilution water per unit time, a high concentration of peroxide can be obtained. Dilution water containing hydrogen can be obtained. In addition, since the generation capacity of dilution water is proportional to the electrode area, the generation capacity can be increased by enlarging the electrode area.
本発明のクーラント液は、 上記希釈水製造装置から得られた希釈水と水溶性金 属加工用油剤 (クーラント原液) とを混合することで調製することができる。 次に、 クーラント液製造装置について説明する。  The coolant liquid of the present invention can be prepared by mixing the dilution water obtained from the above-mentioned dilution water production apparatus with a water-soluble metal working oil (coolant stock solution). Next, the coolant liquid producing apparatus will be described.
図 10は、 本発明のクーラント液製造装置の一例の配置を模式的に示す図であ る。図 10に示すクーラント液製造装置 100は、本発明の希釈水製造装置 30、 クーラント原液タンク 40、 クーラント原液定量ポンプ 41、 希釈水とクーラン ト原液とを混合する混合装置 5 0、 軟水機 2 0、 及びクーラント液定量ポンプ 5 4が含まれている。 また混合装置 5 0には、混合タンク 5 1、液面センサー 5 2、 及ぴ攪拌機 5 3が備えられていている。 軟水機 2 0は、 水中のカルシウムイオン 及びマグネシウムイオン分を低く抑え、 電極を保護するために用いられる。 これ らのイオン濃度は、 0 . 0 0 5ミリモル Z d m 3以下であることが好ましい。 クーラント液は、 以下のように製造することができる。 FIG. 10 is a diagram schematically showing an arrangement of an example of the coolant liquid producing apparatus of the present invention. The coolant liquid production apparatus 100 shown in FIG. 10 includes a dilution water production apparatus 30 of the present invention, a coolant stock solution tank 40, a coolant stock solution pump 41, a dilution water and a coolant. A mixing device 50 for mixing with the undiluted solution, a water softener 20, and a coolant liquid metering pump 54 are included. Further, the mixing device 50 is provided with a mixing tank 51, a liquid level sensor 52, and a stirrer 53. The water softener 20 is used to keep the calcium and magnesium ions in water low and protect the electrodes. These ion concentration is 0. It is preferable that 0 0 5 mmol Z dm 3 or less. The coolant liquid can be manufactured as follows.
まず、 水 Wを軟水機 2 0に通し、 得られた軟水を希釈水製造装置 3 0に導入す る。 希釈水製造装置 3 0では、 導入された軟水が前述の方法で電気分解され、 過 酸化水素含有活性酸素及びアルカリイオンを含む希釈水 3 0 aが製造される。 製 造された希釈水 3 0 aは、 次にクーラント原液 4 0 aと共に混合装置 5 0の混合 タンク 5 1に導入される。 なお、 製造された希釈水 3 0 aをクーラント原液 4 0 aと混合するにあたり、 配合量の調整を容易にかつ的確に行うために、 混合装置 5 0、 5 O Aの前段にリザ一プタンク (図示なし) を設置して、 製造された希釈 水 3 0 aを貯蔵して使用することが好ましい。  First, water W is passed through a water softener 20, and the obtained soft water is introduced into a dilution water producing device 30. In the dilution water producing device 30, the introduced soft water is electrolyzed by the above-described method, and the dilution water 30a containing active oxygen containing hydrogen peroxide and alkali ions is produced. The produced dilution water 30a is then introduced into the mixing tank 51 of the mixing device 50 together with the coolant undiluted solution 40a. In addition, in mixing the produced dilution water 30a with the coolant undiluted solution 40a, in order to easily and accurately adjust the mixing amount, a reservoir tank (shown in the drawing) is provided in front of the mixing devices 50 and 5OA. None) is preferable to store and use the produced dilution water 30a.
希釈水 3 0 aとクーラント原液 4 0 aとの混合は、 まず、 希釈水 3 0 aを液面 センサー 5 2でコントロールして所定の液面まで導入する。 次いで希釈水 3 0 a の送水を止め、 クーラント原液 4 0 aをクーラント原液タンク 4 0からクーラン ト原液定量ポンプ 4 1を介して混合タンク 5 1に導入する。 攪拌機 5 3で攪拌し ながら両液を混合し、 クーラント液 1 0 0 aを製造する。 希釈水 3 0 aによるク 一ラント原液 4 0 aの希釈倍率は、 原液に対して通常 5倍〜 3 0倍であり、 好ま しくは、 8倍〜 2 0倍である。 5倍より低い希釈倍率では、 高粘度過ぎて加工に は適さない、 一方、 3 0倍を超える希釈倍率では、 加工性能、 例えば、 切削機の 場合には切削性能が低下するなどの悪影響がでやすくなる。 製造されたクーラン ト液 1 0 0 aは、クーラント液定量ポンプ 5 4を介して加工機 9 0に供給される。 図 1 0に示すクーラント液製造装置 1 0 0において、混合装置 5 0は、例えば、 混合タンク 5 1を備えることなく希釈水 3 0 aとクーラント原液 4 0 aとを直接 所定の希釈率で混合してクーラント液 1 0 0 aを製造する装置 (以下、 直接混合 型混合装置と称する) に換えることができる。 図 1 1は、 図 1 0に示すクーラン ト液製造装置の混合装置 5 0を上記直接混合型混合装置 5 O Aに換えたクーラン ト液製造装置 2 0 0の一例の配置を模式的に示す図である。 直接混合型混合装置 としては、 例えば、 希釈水を通水するための主管 (例えば、 內径 1 0 mmのステ ンレス製) に対して、 クーラント原液を添加するためのパイプ (例えば、 内径 4 m m) を垂直に挿入し、 そのパイプの先端が主管の中心部に至るような構造を有 する混合装置を挙げることができる。 このタイプの混合装置は、 混合タンク 5 1 の必要がなく、 装 Sを簡単に、 そして小型化することができる。 In mixing the dilution water 30a and the coolant stock solution 40a, first, the dilution water 30a is controlled by the liquid level sensor 52 and introduced to a predetermined liquid level. Then, the supply of the dilution water 30a is stopped, and the coolant stock solution 40a is introduced from the coolant stock solution tank 40 into the mixing tank 51 via the coolant stock solution pump 41. The two liquids are mixed while stirring with a stirrer 53 to produce a coolant liquid 100a. The dilution ratio of the stock solution 40a with the dilution water 30a is usually 5 to 30 times, preferably 8 to 20 times the stock solution. A dilution ratio lower than 5 times is too viscous to be suitable for processing, while a dilution ratio higher than 30 times adversely affects the processing performance, for example, the cutting performance decreases in the case of a cutting machine. It will be easier. The manufactured coolant 100 a is supplied to the processing machine 90 via a coolant liquid metering pump 54. In the coolant production apparatus 100 shown in FIG. 10, the mixing device 50 mixes, for example, the dilution water 30 a and the undiluted coolant 40 a directly at a predetermined dilution rate without providing the mixing tank 51. Then, it can be replaced with an apparatus for producing a coolant liquid 100a (hereinafter referred to as a direct mixing type mixing apparatus). Fig. 11 shows a cooler in which the mixing device 50 of the coolant production device shown in Fig. 10 is replaced with the direct mixing type mixing device 5OA. FIG. 4 is a diagram schematically showing an example of an arrangement of a liquid production apparatus 200. As a direct mixing type mixing device, for example, a pipe (for example, 4 mm inner diameter) for adding a coolant undiluted to a main pipe (for example, stainless steel with a diameter of 10 mm) for passing dilution water ) Is inserted vertically, and the mixing device has a structure in which the tip of the pipe reaches the center of the main pipe. This type of mixing device eliminates the need for the mixing tank 51, and allows the device S to be simpler and smaller.
加工機、 例えば、 切削、 研削機、 あるいは圧延機には通常所定量のクーラント 液を溜めておくためのクーラント液タンクを有している。 このような加工機にク 一ラント液製造装置から直接クーラント液タンクにクーラント液を供給する場合 には、 本発明のクーラント液製造装置は、 製造したクーラント液を加工機に自動 制御により供給するための制御回路を備えていることが好ましい。  Processing machines, such as cutting, grinding, or rolling mills, usually have a coolant tank for storing a predetermined amount of coolant. When the coolant liquid is directly supplied to the coolant tank from the coolant liquid production apparatus to such a processing machine, the coolant liquid production apparatus of the present invention supplies the produced coolant liquid to the processing machine by automatic control. Is preferably provided.
図 1 2は、 図 1 0に示すクーラント液製造装置に、 加工機内のクーラント液タ ンクの液量を所定液量に制御するための制御回路を備えてなるクーラント液製造 装置の一例の配置を模式的に示す図である。 図 1 2に示すように、 このクーラン ト液製造装置 3 0 0は、 加工機 9 0内のクーラント液タンク 9 1の液量が満水時 の所定液量から減少したとき (通常全体の 1 0〜5 0 %に減少したとき) に供給 信号を発信する液供給開始液量センサー 6 2、 クーラント液量が満水したときに 供給停止信号を発信する満水液量センサー 6 1、 及びこれらのセンサーからの信 号を制御する制御回路 6 0を備えている。 上記センサーとしては、 例えば、 フロ ート式、 電気式、 光式、 及び超音波式などの方式を利用したものを挙げることが できる。 これらのセンサーは一体型でも分離型でもよい。  FIG. 12 shows an arrangement of an example of a coolant liquid manufacturing apparatus in which the coolant liquid manufacturing apparatus shown in FIG. 10 is provided with a control circuit for controlling the amount of the coolant tank in the processing machine to a predetermined amount. It is a figure which shows typically. As shown in FIG. 12, the coolant production apparatus 300 is operated when the coolant level in the coolant tank 91 in the processing machine 90 decreases from a predetermined level when the tank is full (usually 100%). The liquid supply start sensor 62 that sends a supply signal when the coolant level decreases to 50%), the full sensor 61 that sends a supply stop signal when the coolant level is full, and from these sensors And a control circuit 60 for controlling the signals. Examples of the above-mentioned sensor include those utilizing a float type, an electric type, an optical type, and an ultrasonic type. These sensors may be integral or separate.
また制御回路 6 0は、 希釈水製造装置 3 0及ぴクーラント原液定量ポンプ 4 1 とも連絡しており、 センサーからの信号を希釈水製造装置 3 0及びクーラント原 液定量ポンプ 4 1に出力信号として伝達し、 これらを稼動させることができる。 図 1 2に示すクーラント液製造装置には、 図に見られるように、 更に付属設備 を設けることができる。 例えば、 クーラント原液定量ポンプ 4 1はスィッチ (図 示なし) によりその稼動を制御するようにしてもよい。 また希釈水製造装置 3 0 からの希釈水 3 0 aの混合タンク 5 1への送水パイプには希釈水送水弁 3 1を設 けることができる。 さらに水の蒸発などにより所定の希釈倍率が変化した場合に は、 加工機のクーラント液タンク 9 1内の液を薄めることができるように、 希釈 水を希釈水製造装置 3 0から直接加工機のクーラント液タンク 9 1に導入するた めの送水パイプ (バイパスライン) を設け、 そこに希釈水供給弁 3 2を設けるこ とができる。 この場合、 例えば、 クーラント液定量ポンプ 5 4からのクーラント 液 3 0 0 a及ぴ送水パイプからの希釈水 3 0 aは、 そのいずれかを選択的にクー ラント液タンク 9 1に供給できるようにこれらのポンプは切替えスィツチ (図示 なし) を設け、 こりょり制御することもできる。 さらに、 クーラント液 3 0 0 a を加工機 9 0のクーラント液タンク 9 1に供するためのクーラント液定量ポンプThe control circuit 60 is also in communication with the dilution water production device 30 and the coolant stock solution pump 41, and the signal from the sensor is output to the dilution water production device 30 and the coolant stock solution pump 41 as an output signal. To communicate and activate them. The coolant production apparatus shown in FIG. 12 can be provided with additional equipment as shown in the figure. For example, the operation of the coolant stock solution pump 41 may be controlled by a switch (not shown). Further, a dilution water supply valve 31 can be provided in a water supply pipe for the dilution water 30a from the dilution water production device 30 to the mixing tank 51. Furthermore, when the predetermined dilution ratio changes due to evaporation of water, etc. In order to dilute the liquid in the coolant tank 91 of the processing machine, a water supply pipe (bypass) for introducing dilution water directly from the dilution water production device 30 into the coolant tank 91 of the processing machine Line), and a dilution water supply valve 32 can be provided there. In this case, for example, the coolant liquid 300a from the coolant liquid metering pump 54 and the dilution water 300a from the water supply pipe can be selectively supplied to the coolant liquid tank 91. These pumps can be provided with switching switches (not shown) and can be spilled. Furthermore, a coolant liquid metering pump for supplying the coolant 300 a to the coolant tank 91 of the processing machine 90.
5 4も制御回路と連絡させることで、 制御することもできる。 54 can also be controlled by contacting the control circuit.
加工機のクーラント液タンク内にその満水時の所定量全量を最初に供給する、 あるいはクーラント液全量を入れ替える場合 (所謂、 張り込みモードの場合) に は、 本発明のクーラント液製造装置により所定の希釈倍率に調製されたクーラン ト液をクーラント液定量ポンプを介して満水時の所定量まで供給することができ る。  In the case of first supplying a predetermined amount of the full amount to the coolant tank of the processing machine when the water is full, or replacing the entire amount of the coolant (so-called “sticking mode”), a predetermined dilution is performed by the coolant manufacturing apparatus of the present invention. The coolant liquid adjusted to the magnification can be supplied to a predetermined amount when the water is full through the coolant liquid metering pump.
また、 加工機の使用により、 クーラント液タンク内のクーラント液の飛散、 持 ち出し、 あるいは蒸発などにより満水時の所定量のクーラント液量から一定量以 上のクーラント液が減少した場合 (所謂、 追添モードの場合) には、 液供給開始 液量センサー 6 1が不足液量を感知し、その信号は、制御回路 6 0に入力される。 入力信号は制御回路 6 0から出力信号として、 希釈水製造装置 3 0及びクーラン ト原液定量ポンプ 4 1に伝達される。 スィッチ (図示なし) により (あるいは制 御回路 6 0と連絡させている場合にはその信号により)、 クーラント液定量ボン プ 5 4を稼動させることで、 クーラント液 3 0 0 aを加工機内のクーラント液タ ンク 9 1に供給することができる。 クーラント液タンク 9 1に所定量までのクー ラント液が供給されると、 満水液量センサー 6 1が感知し、 その信号は制御回路 In addition, when the coolant is scattered, taken out, or evaporated from the coolant tank in the coolant tank, a certain amount of coolant decreases from a predetermined amount when the water is full (so-called, In the case of the additional mode, the liquid supply start liquid amount sensor 61 detects the insufficient liquid amount, and the signal is input to the control circuit 60. The input signal is transmitted as an output signal from the control circuit 60 to the dilution water producing device 30 and the coolant undiluted solution pump 41. By operating the coolant liquid quantitative pump 54 by a switch (not shown) (or by a signal when communicating with the control circuit 60), the coolant liquid 300a is cooled by the coolant in the processing machine. It can be supplied to the liquid tank 91. When a predetermined amount of coolant is supplied to the coolant tank 91, the full-water sensor 61 detects it and the signal is sent to the control circuit.
6 0に伝達される。 スィッチ (図示なし) により (あるいは制御回路と連絡され ている場合にはその信号により)、 クーラント液定量ポンプ 5 4の稼動を停止さ せることで、 クーラント液の供給が停止される。 一方、 クーラント液の供給が行 われている間、 制御回路 6 0からの出力信号により、 希釈水製造装置 3 0及ぴク 一ラント原液定量ポンプ 4 1も稼動し、 製造された希釈水 3 0 aは、 希釈水送水 弁 3 1を介して、 及ぴクーラント原液 4 0 aはクーラント原液定量ポンプ 4 1を 介して混合タンク 5 1に送られ、 そこでクーラント液の製造が開始される。 この ようにしてクーラント液製造装置から直接加工機のクーラント液タンク液量の減 少に応じてクーラント液を自動的に供給することができる。 Transmitted to 60. The coolant supply is stopped by deactivating the coolant metering pump 54 by means of a switch (not shown) (or by its signal, if it is communicated with the control circuit). On the other hand, while the coolant is being supplied, the output signal from the control circuit 60 also operates the dilution water producing device 30 and the coolant undiluted solution pump 41 to produce the diluted water 30 a is the dilution water supply Through the valve 31 and the coolant stock solution 40a are sent to the mixing tank 51 via the coolant stock solution pump 41, where the production of the coolant solution is started. In this way, the coolant liquid can be automatically supplied directly from the coolant liquid production apparatus according to the decrease in the coolant liquid tank volume of the processing machine.
図 1 3は、 図 1 1に示すクーラント液製造装置に、 上記のような制御回路を付 設したクーラント液製造装置の別の一例の配置を模式的に示す図である。 また図 1 4は、 図 1 3に示すクーラント液製造装置に、 上記のような制御回路と共に、 図 1 2に示すような、 希釈水を希釈水製造装置 3 0から直接加工機のクーラント 液タンク 9 1に導入できる送水パイプを付設したクーラント液製造装置の別の一 例の配置を模式的に示す図である。 図 1 3及ぴ図 1 4のいずれのクーラント液製 造装置 4 0 0、 5 0 0においても、 基本的には図 1 2に示すクーラント液製造装 置の構成と同じであるが、 混合装置として、 上記直接混合型混合装置を用いてい るために、 よりコンパク トに設計することができる。  FIG. 13 is a diagram schematically showing an arrangement of another example of the coolant liquid producing apparatus in which the above-described control circuit is added to the coolant liquid producing apparatus shown in FIG. Fig. 14 shows the coolant liquid production system shown in Fig. 13 and the control circuit as described above, and the dilution water as shown in Fig. 12 directly from the dilution water production system 30. FIG. 9 is a view schematically showing another example of the arrangement of a coolant liquid production apparatus provided with a water supply pipe that can be introduced into the apparatus shown in FIG. In any of the coolant production apparatuses 400 and 500 shown in FIGS. 13 and 14, the configuration of the coolant production apparatus shown in FIG. 12 is basically the same as that of FIG. Since the above-mentioned direct mixing type mixing apparatus is used, it is possible to design more compactly.
本発明のクーラント液製造装置では、 上記のように、 加工機のクーラント液タ ンクの液量が満水時の所定液量から減少したときに供給するクーラント液、 追添 時のクーラント液は、 希釈水の製造装置から単位時間に製造される水量を少なく することにより得た高濃度の過酸化水素含有活性酸素を含む希釈水を用いて調製 されたものであることが好ましい。 クーラント液を追添する場合には、 追添のた めのクーラント液は、 それほど大量に必要でない。 そのため、 希釈水の製造装置 においては、 そこへの通水量を大量に必要な初期供給の場合の量に比べて少なく なるように設定することができ、 従って、 高濃度の過酸化水素含有活性酸素を含 む希釈水を製造できる。 その結果、 腐敗防止効果のより高いクーラント液を補給 することができる。  In the coolant production apparatus of the present invention, as described above, the coolant supplied when the coolant volume of the coolant tank of the processing machine decreases from the predetermined fluid volume when the machine is full, and the coolant fluid at the time of addition are diluted. It is preferably prepared using dilute water containing a high concentration of hydrogen peroxide-containing active oxygen obtained by reducing the amount of water produced per unit time from a water producing apparatus. When adding the coolant liquid, the coolant liquid for the addition is not required in a large amount. Therefore, in the dilution water production equipment, the amount of water passing therethrough can be set to be smaller than that in the case of the initial supply that requires a large amount. Can be produced. As a result, it is possible to replenish a coolant liquid having a higher anti-rot effect.
本発明のクーラント液製造装置には、 更にクーラント液の供給を周期的に行え るように周期タイマー回路を設けることができる。 図 1 5は、 図 1 3のクーラン ト液製造装置に周期タイマー回路を付設したクーラント液製造装置の一例の配置 を模式的に示す図である。図に示すように、周期タイマー回路 7 0の付設により、 クーラント液 6 0 0 aの供給を加工機 9 0のクーラント液タンク 9 1に定期的に 行うことができる。 但し、 このような周期的供給の制御を行うには、 加工機のク 一ラント液タンク 9 1からのクーラント液の減少がほぼ一定の割合で行われるこ とが好ましく、 このためクーラント液タンク 9 1に別にクーラント液排水パイプ 9 2を設け、 これにクーラント液排水弁 9 3を周期タイマー回路 7 0の信号によ りその開閉を制御できるように設けることが好ましい。 周期タイマー回路 7 0と クーラント液排水弁 9 3との連結は、 例えば、 プラグなどを利用し、 その連結を 容易に解除できるようにされていることが好ましい。 これにより、 本発明のクー ラント液製造装置 6 0 0を加工機 9 0に装着、 あるいは該装置から加工機の脱離 を容易に行うことができる。 なお、 加工機のクーラント液タンクを本発明のクー ラント液製造装置と一体化させて、 これらの一体化させた装置を、 加工機に取り 付けるようにすることも可能である。 なお、 図 1 4のクーラント液製造装置にも 周期タイマー回路を付設することができる。 また、 図 1 5のクーラント液製造装 置において、 混合装置を、 図 1 2に示す混合槽を有する混合装置に交換すること もできる。 The coolant production apparatus of the present invention may further include a periodic timer circuit so that coolant can be supplied periodically. FIG. 15 is a diagram schematically illustrating an arrangement of an example of a coolant liquid production apparatus in which a periodic timer circuit is added to the coolant liquid production apparatus of FIG. 13. As shown in the figure, the coolant timer 600 can be supplied to the coolant tank 91 of the processing machine 90 periodically by providing the periodic timer circuit 70. However, in order to control such periodic supply, it is necessary to It is preferable that the coolant liquid from one coolant tank 91 is reduced at a substantially constant rate. Therefore, a coolant drain pipe 92 is separately provided in the coolant tank 91, and a coolant drain valve 9 is provided. Preferably, 3 is provided so that its opening and closing can be controlled by the signal of the periodic timer circuit 70. It is preferable that the connection between the periodic timer circuit 70 and the coolant liquid drain valve 93 be made easy to release by using, for example, a plug. Thereby, the coolant production apparatus 600 of the present invention can be mounted on the processing machine 90, or the processing machine can be easily detached from the apparatus. In addition, it is also possible to integrate the coolant liquid tank of the processing machine with the coolant production apparatus of the present invention, and to attach these integrated devices to the processing machine. A coolant timer manufacturing apparatus shown in FIG. 14 can also be provided with a periodic timer circuit. Further, in the coolant liquid production apparatus shown in FIG. 15, the mixing apparatus can be replaced with a mixing apparatus having a mixing tank shown in FIG.
このような装置では、 周期タイマー回路により、 例えば、 任意に時間間隔 (1 日〜 1 5日) を指定して加工機のクーラント液タンクのクーラント液を交換する ことができる。 クーラント液の交換に際しては、 その交換量は、 前述のようにタ ンクの満水時の所定量から 1 0〜5 0 %の減少範囲で設定することができる。  In such an apparatus, the coolant in the coolant tank of the processing machine can be changed at an arbitrary time interval (1 day to 15 days), for example, by the periodic timer circuit. When replacing the coolant, the replacement amount can be set in a range of 10 to 50% reduction from the predetermined amount when the tank is full as described above.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下に、 実施例及ぴ比較例を挙げて本発明を更に具体的に説明するが本発明は これらの例に限定されるものではない。 本発明の希釈水製造装置を用いて希釈水を製造した。 表 1に製造した希釈水の 性状を示す。 なお、 希釈水 1〜 2は図 1記載の装置を用い、 希釈水 3〜4は図 5 記載の装置を用い、 希釈水 5〜 6は図 6記載の装置を用い、 希釈水 7〜 8は図 8 記載の装置を用いてそれぞれ生成した。 なお、 陰極 3を構成する陰極給電体 1 4 にはステンレススチールを用い、 ガス拡散電極 1 7には米国 E— TEK社製 GDE を用い、 陽極 4には白金メッキを施したチタンを用いた。 水は水道水を軟水機に 通し、 カルシウムイオン濃度、 及ぴマグネシウムイオン濃度を 0 . 0 0 5 mm o 1 Z d m3以下としたものを用いた。 また給気部からは空気を導入した。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Dilution water was produced using the dilution water production apparatus of the present invention. Table 1 shows the properties of the produced dilution water. The dilution water 1 and 2 use the device shown in Fig. 1, the dilution water 3 and 4 use the device shown in Fig. 5, the dilution water 5 and 6 use the device shown in Fig. 6, and the dilution water 7 and 8 use Each sample was generated using the device described in Fig. 8. The cathode feeder 14 constituting the cathode 3 was made of stainless steel, the gas diffusion electrode 17 was made of GDE manufactured by E-TEK, USA, and the anode 4 was made of titanium plated with platinum. For water, pass tap water through a water softener to reduce the calcium ion concentration and magnesium ion concentration to 0.05 mm o. One having a value of 1 Z dm 3 or less was used. Air was introduced from the air supply section.
また表 1には、 比較のために、 上記希釈水製造装置において、 電圧を印加しな いで希釈水を製造したときの希釈水の性状 (希釈水 9 =通常の水)、 及ぴ陰極と して、 グラフアイ トフエルト及ぴニッケルメツキがない通常のステンレススチー ル管を使用した希釈水製造装置を用いて希釈水を製造したときの希釈水の性状 , (希釈水 1 0 =電解アルカリイオン水) も示す。 なお、過酸化水素濃度の測定に は過酸化水素試験紙(MERCK社製 Peroxide Test)を使用し、 pHの測定には pHメ 一ター(ァズワン社製 CP— 1PT)を使用した。 表 1  Table 1 also shows, for comparison, the properties of the dilution water (dilution water 9 = normal water) and the cathode when the dilution water was produced without applying voltage in the above dilution water production equipment. The properties of the dilution water when the dilution water is produced using a dilution water production device that uses ordinary stainless steel tubes without graphite and nickel plating, (Dilution water 10 = electrolytic alkaline ionized water) Also shown. A hydrogen peroxide test paper (Peroxide Test, manufactured by MERCK) was used to measure the hydrogen peroxide concentration, and a pH meter (CP-1PT, manufactured by Az One) was used to measure the pH. table 1
Figure imgf000017_0001
また、 図 1、 図 5、 図 6及ぴ図 8に記載する装置の陰極給電体
Figure imgf000017_0001
In addition, the cathode feeder of the devices described in FIGS. 1, 5, 6, and 8
チーノレの代わりに、 ニッケノレメツキを施したステンレススチール、 白金メッキを 施したチタン、 イリジウムメツキを施したチタン、 白金おょぴイリジウムメツキ を施したチタンの各材質を使用し、陽極に白金メツキを施したチタンの代わりに、 ィリジゥムメツキを施したチタン、 白金おょぴィリジゥムメツキを施したチタン を使用した場合においても、 得られる希釈水の水質は、 表 1に記載した希釈水 1 〜希釈水 8と同等であった。 次に、 クーラント液製造装置 (図 1 3参照) を用いてクーラント液を製造した。 クーラント液製造に際しては、 上記表 1に示す希釈水 1〜 1 0の製造条件と同じ 条件で製造した希釈水と水溶性金属加工油剤(ェマルジヨン型の新日本石油(株) 製ュ-ソルプル E M) とを用いて行った。 表 2に製造したクーラント液の性状を 示す。 表 2 Instead of Chinore, use stainless steel with nickel plating, titanium with platinum plating, titanium with iridium plating, and titanium with platinum iridium plating, and use platinum plating on the anode. In the case where titanium coated with platinum or titanium coated with platinum is used in place of titanium, the quality of the obtained dilution water is equivalent to dilution water 1 to dilution water 8 shown in Table 1. Met. Next, coolant was manufactured using a coolant manufacturing system (see Fig. 13). In the production of the coolant liquid, the dilution water and water-soluble metal working oil (Emulsion-type N-Solpur EM manufactured by Nippon Oil Co., Ltd.) were manufactured under the same conditions as those for dilution water 1 to 10 shown in Table 1 above. And was performed. Table 2 shows the properties of the manufactured coolant. Table 2
Figure imgf000018_0001
ここで、 クーラント液 1、 3、 5、 7は前述した張り込みモードに、 クーラン ト液 2、 4、 6、 8は追添モードに用いるものである。 また、 クーラント液 9は いわゆる通常のクーラント液であり、 クーラント液 1 0は電解アル力リイオン水 で希釈したクーラント液である。
Figure imgf000018_0001
Here, the coolant liquids 1, 3, 5, and 7 are used for the filling mode described above, and the coolant liquids 2, 4, 6, and 8 are used for the additional mode. The coolant 9 is a so-called ordinary coolant, and the coolant 10 is a coolant diluted with electrolytically deionized water.
得られたクーラント液 1〜 1 0に対する'菌の繁殖について、 ビーカーテストを 行った。  A beaker test was carried out on the propagation of the bacteria in the obtained coolant liquids 1 to 10.
クーラント液 1、 3、 5、 7をビ一カーに 3 0 O m L入れ、 マグネティックス ターラー上で攪拌しながら 3 0 °Cに保持して放置した。 ビーカーの上部は開放し ており、 クーラント液が蒸発によって徐々に減少するため、 2回/週の頻度でク 一ラント液 2、 4、 6、 8を追添した。 数日おきに、 一般細菌数を標準寒天平板 培養法に基づいて測定し、 菌数が百万個/ m Lを超えるのに要する日数を、 クー ラントの寿命と考え、 評価基準とした。 比較のために、 表 2のクーラント液 9及 び 1 0に対しても同様の試験を行った。 その結果を表 3に示す。 表 3 30 OmL of the coolant liquids 1, 3, 5, and 7 were added to a beaker, and the mixture was left at 30 ° C while being stirred on a magnetic stirrer. Since the top of the beaker is open and the coolant gradually decreases due to evaporation, coolant 2, 4, 6, and 8 were added twice a week. Every few days, the number of general bacteria is measured based on the standard agar plate culture method, and the number of days required for the number of bacteria to exceed 1 million Considering the life of the runt, it was used as an evaluation standard. For comparison, the same test was performed for the coolants 9 and 10 in Table 2. The results are shown in Table 3. Table 3
Figure imgf000019_0001
表 3に示す結果から明らかなように、 本発明のクーラント液 (実施例 1 ) は通 常のクーラント液 (比較例 1 ) に対して 2 . 8倍の寿命延長を示し、 また、 過酸 化水素を含有しない電解アル力リィオン水で希釈したクーラント液 (比較例 2 ) に対しても 1 . 6倍以上の寿命延長を示している。 また、 本発明における、 更に 過酸化水素濃度の高いクーラント液 (実施例 2〜4 ) は比較例 1に対して 7 . 3 倍以上、 比較例 2に対して 4 . 2倍以上の寿命延長を示している。
Figure imgf000019_0001
As is evident from the results shown in Table 3, the coolant of the present invention (Example 1) has a 2.8 times longer life than the normal coolant (Comparative Example 1). The service life is extended more than 1.6 times even with the coolant liquid (Comparative Example 2) diluted with the electrolytic water containing no hydrogen (Comparative Example 2). Further, in the present invention, the coolant liquid having a higher hydrogen peroxide concentration (Examples 2 to 4) has a life extension of 7.3 times or more as compared with Comparative Example 1 and 4.2 times or more as compared with Comparative Example 2. Is shown.
次に、 表 2に示すクーラント液をマシユングセンター実機 (切削加工機、 三菱 重工 (株) 製 M— V 6 0 C、 タンク容量 2 0 0 L ) にその全量を供給し (初期供 給:張り込み)、 悪臭発生に要する日数を確認した。 クーラント液は張り込み時 はクーラント液 1、 3、 5、 7を、 追添時はクーラント液 2、 4、 6、 8を用い た。 また、 比較のために同型のマシユングセンターに通常の水で希釈したクーラ ント液 9を張り込んだ。 0〜1 0 0日経過後のクーラント液をバプリングさせて 発生するエアーを、 臭い計測器 ((株) クリエーションシステムズ C一 G C— 3 2 9 高感度酸化スズ系、 熱線型焼結半導体センサー) により測定し、 数値化 した。 その評価結果を表 4に示す。 表 4Next, the entire amount of the coolant shown in Table 2 was supplied to an actual machining center (cutting machine, Mitsubishi Heavy Industries, Ltd. M-V600C, tank capacity: 200 L) (initial supply: The number of days required to generate odors was confirmed. Coolant liquids 1, 3, 5, and 7 were used for filling, and coolant liquids 2, 4, 6, and 8 were used for adding. For comparison, the same type of machining center was filled with coolant 9 diluted with normal water. The air generated by bubbling the coolant after 0 to 100 days has elapsed is measured by an odor measuring instrument (Creation Systems Co., Ltd. C-GC-329 High-sensitivity tin oxide, hot-wire sintered semiconductor sensor) And digitized. Table 4 shows the evaluation results. Table 4
Figure imgf000020_0001
表 4に示す結果から、 本発明のクーラント液 (実施例 5) の臭気レベルは、 通 常のクーラント液 (比較例 3) に対して 100日後で約 1 /8、 実施例 6〜8は 比較例 3に対して約 1Z14〜 1/1 6であり、 悪臭防止に対して非常に効果が あることがわかる。
Figure imgf000020_0001
From the results shown in Table 4, the odor level of the coolant of the present invention (Example 5) was about 1/8 after 100 days with respect to the normal coolant (Comparative Example 3). It is about 1Z14 to 1/16 compared to Example 3, indicating that it is very effective in preventing odor.
上記のマシユングセンターのクーラント液タンクに、 図 14に示すクーラント 液製造装置の希釈水のバイパスラインを用いて希釈水供給弁 32により、 希釈水 のみを追添する試験を行い、 そのときのク一ラント液の菌数の変化を観察した。 その結果を表 5に示す。 表 5 A test was conducted in which only the dilution water was added to the coolant tank at the machining center using the dilution water supply valve 32 using the dilution water bypass line of the coolant production system shown in Fig. 14. The change in the number of bacteria in one liquid was observed. Table 5 shows the results. Table 5
Figure imgf000020_0002
表 5に示す結果から、 追添前のマシニングセンターのクーラント液の菌数はい ずれも 106個/ mL 以上であつたが、 希釈水を追添することにより、 どの希釈 水の場合も菌数は減少するが、本発明の希釈水製造装置で製造した希釈水 2、 4、 6、 8 (実施例 9〜1 2 ) の減少率が高いことがわかる。 [産業上の利用可能性]
Figure imgf000020_0002
From the results shown in Table 5, the number of bacteria in the coolant liquid of the machining center before the addition was all 10 6 cells / mL or more, but the number of bacteria in any dilution water was increased by adding the dilution water. Although it decreases, the dilution water 2, 4, produced by the dilution water production apparatus of the present invention 6 and 8 (Examples 9 to 12) show a high reduction rate. [Industrial applicability]
本発明の希釈水は、 人体、 環境に悪影響がなく、 また油剤及ぴその加工性能に も悪影響も与えることのない。 従って、 本発明の希釈水を用いることで、 加工性 能も低下することなく、 かつ持続性が高く、 優れた腐敗防止効果を有するクーラ ント液を製造することができる。 また本発明の希釈水製造装置により、 希釈水を 効率良く、 大量に製造することもできる。 さらに本発明のクーラント液製造装置 では、 アルカリ性試薬 (例えば、 N a塩) などを添加することなく高 p Hのクー ラント液が得られるためにメンテナンスが容易であるばかりか、 クーラン 1、液に N a塩などが析出することもないために、 この点からのクーラント液の加工性能 の低下も殆どない。  The dilution water of the present invention does not adversely affect the human body and the environment, and does not adversely affect the oil agent and its processing performance. Therefore, by using the dilution water of the present invention, it is possible to produce a coolant liquid having a high durability and an excellent rot preventing effect without reducing the processing performance. Further, the dilution water producing apparatus of the present invention can efficiently produce a large amount of dilution water. Further, in the coolant production apparatus of the present invention, a coolant having a high pH can be obtained without adding an alkaline reagent (for example, Na salt) or the like, so that maintenance is easy and not only the coolant 1 but also the coolant Since Na salt and the like do not precipitate, there is almost no decrease in the processing performance of the coolant liquid from this point.
[図面の簡単な説明] [Brief description of drawings]
図 1は、 本発明の水溶性金属加工用油剤の希釈水の製造装置の一例の鉛直断面 を模式的に示す図である。  FIG. 1 is a diagram schematically showing a vertical cross section of an example of the apparatus for producing a dilution water of a water-soluble metal working oil agent of the present invention.
図 2は、 図 1の製造装置を上から見たところを模式的に示す図である。  FIG. 2 is a diagram schematically showing the manufacturing apparatus of FIG. 1 as viewed from above.
図 3は、 図 1の製造装置を下から見たところを模式的に示す図である。  FIG. 3 is a diagram schematically showing the manufacturing apparatus of FIG. 1 as viewed from below.
図 4は、 図 1の製造装置の陰極を模式的に示す斜視図である。  FIG. 4 is a perspective view schematically showing a cathode of the manufacturing apparatus of FIG.
図 5は、 本発明の水溶性金属加工用油剤の希釈水の製造装置の他の一例の鉛直 断面を模式的に示す図である。  FIG. 5 is a view schematically showing a vertical cross section of another example of the water-soluble metal working oil dilution water producing apparatus of the present invention.
図 6は、 本発明の水溶性金属加工用油剤の希釈水の製造装置の他の一例の鉛直 断面を模式的に示す図である。  FIG. 6 is a diagram schematically showing a vertical cross section of another example of the water-soluble metal working oil dilution water producing apparatus of the present invention.
図 7は、 図 5及ぴ図 6で用いた穴の空いた陰極給電体又は陽極の具体的形状を Figure 7 shows the specific shape of the perforated cathode feeder or anode used in Figures 5 and 6.
3例示す図である。 It is a figure showing three examples.
図 8は、 本発明の水溶性金属加工用油剤の希釈水の製造装置の他の一例の鉛直 断面を模式的に示す図である。  FIG. 8 is a diagram schematically showing a vertical cross section of another example of the water-soluble metal working oil dilution water producing apparatus of the present invention.
図 9は、 図 8の製造装置を上から見たところを模式的に示す図である。  FIG. 9 is a diagram schematically showing the manufacturing apparatus of FIG. 8 as viewed from above.
図 1 0は、 本発明のクーラント液製造装置の一例の配置を模式的に示す図であ る。 FIG. 10 is a diagram schematically showing an arrangement of an example of a coolant production apparatus of the present invention. You.
図 1 1は、 本発明のクーラント液製造装置の別の一例の配置を模式的に示す図 である。  FIG. 11 is a diagram schematically showing an arrangement of another example of the coolant production apparatus of the present invention.
図 1 2は、 図 1 0に示すクーラント液製造装置に、 加工機内のクーラント液タ ンクの液量を所定液量に制御するための制御回路を備えてなる本発明のクーラン ト液製造装置の一例の配置を模式的に示す図である。  FIG. 12 shows a coolant liquid manufacturing apparatus according to the present invention, which is provided with a control circuit for controlling the amount of the coolant tank in the processing machine to a predetermined amount in the coolant liquid manufacturing apparatus shown in FIG. It is a figure which shows an example arrangement | positioning typically.
図 1 3は、 図 1 1に示すクーラント液製造装置に、 加工機内のクーラント液タ ンクの液量を所定液量に制御するための制御回路を付設した本発明のクーラント 液製造装置の別の一例の配置を模式的に示す図である。  FIG. 13 shows another example of the coolant liquid manufacturing apparatus of the present invention in which a control circuit for controlling the amount of the coolant tank in the processing machine to a predetermined amount is added to the coolant liquid manufacturing apparatus shown in FIG. It is a figure which shows an example arrangement | positioning typically.
図 1 4は、 図 1 3に示すクーラント液製造装置に、 更に加工機内のクーラント 液タンクに希釈水製造装置から直接希釈水を導入できる送水パイプを設けた本発 明のクーラント液製造装置の別の一例の配置を模式的に示す図である。  Fig. 14 shows another example of the coolant production system of the present invention, which is equipped with the coolant production system shown in Fig. 13 and a water supply pipe that can directly introduce dilution water from the dilution water production system into the coolant reservoir in the processing machine. It is a figure which shows the example of arrangement | positioning typically.
図 1 5は、 図 1 3に示す本発明のクーラント液製造装置に更に周期タイマー回 路を付設したクーラント液製造装置の一例の配置を模式的に示す図である。  FIG. 15 is a diagram schematically showing an arrangement of an example of a coolant liquid producing apparatus in which a periodic timer circuit is further added to the coolant liquid producing apparatus of the present invention shown in FIG.

Claims

請 求 の 範 囲 The scope of the claims
1 . 水の電気分解によって得られ、 pHが 8以上、 13以下で、 lmg/ 以上の 濃度の過酸化水素含有活性酸素を含むことを特徴とする水溶性金属加工用油剤の希 釈水。 1. Dilution water of a water-soluble metalworking oil obtained by electrolysis of water and having a pH of 8 or more and 13 or less and containing active oxygen containing hydrogen peroxide at a concentration of lmg / or more.
2 . ステンレススチール製陰極給電体及び炭素系材料で形成された電極 から構成される陰極と、 白金及び Z又はィリジゥムでメツキを施したチタンで形 成された陽極とが隔膜により隔てられ、 互いに対峙して設けられ、 かつ陰極表面 に空気あるいは酸素を含む気体を供給するための給気部と水を導入するための水 供給口とが設けられた電解槽を含む電気分解装置からなり、 該装置の両極に電圧 を印加して電解槽中に導入される水を電気分解することにより、 p Hが 8以上、 1 3以下で、 lmg/L以上の濃度の過酸化水素含有活性酸素を含む水を製造するための 水溶性金属加工用油剤の希釈水の製造装置。 2. A cathode composed of a stainless steel cathode feeder and an electrode made of a carbon-based material, and an anode made of platinum and titanium plated with Z or iridium are separated by a diaphragm and face each other. An electrolysis apparatus including an electrolytic cell provided with an air supply unit for supplying a gas containing air or oxygen to the cathode surface and a water supply port for introducing water. By applying a voltage to both electrodes to electrolyze the water introduced into the electrolytic cell, water containing active oxygen containing hydrogen peroxide with a pH of 8 or more and 13 or less and a concentration of lmg / L or more can be obtained. For producing a dilution water of a water-soluble metal working oil for producing water.
3 . 陰極が、 ニッケルメツキを施したステンレススチールからなる陰極 給電体上に、 グラフアイトを密着させた構造を有することを特徴とする請求項 2 に記載の希釈水の製造装置。 3. The apparatus for producing dilution water according to claim 2, wherein the cathode has a structure in which graphite is adhered to a cathode power supply body made of nickel-plated stainless steel.
4 . 電解槽が縦型円筒形状であり、 その半径方向内方から外方に陰極、 隔膜、 そして陽極の順に隔膜を境にしてこれらが間隔を置いて同心円を形成して 設けられており、 かつ隔膜と両極との間に水供給口、 そして陰極と隔膜との間に 給気部がそれぞれ槽の下部に設けられており、 該給気部が複数の散気孔を有して 中空管状に形成されており、 かつ円筒の陰極表面に沿って上部に向かって螺旋状 に延ぴていることを特徴とする請求項 2又は 3に記載の希釈水の製造装置。 4. The electrolytic cell has a vertical cylindrical shape, and is formed in a concentric circle at a distance from the diaphragm in the order of the cathode, the diaphragm, and the anode from the inside to the outside in the radial direction. Further, a water supply port is provided between the diaphragm and both electrodes, and an air supply section is provided at a lower portion of the tank between the cathode and the diaphragm, and the air supply section has a plurality of air diffusion holes and is formed in a hollow tubular shape. 4. The apparatus for producing dilution water according to claim 2, wherein the dilution water is formed and spirally extends upward along the cylindrical cathode surface.
5 . ステンレススチーノレ製、 ニッケノレメツキを施したステンレススチー ル製、 あるいは白金及び Z又はィリジゥムでメツキを施したチタン製からなる穴 の空いた陰極給電体及び炭素系材料で形成されたガス拡散電極から構成される陰 極と、 白金及び/又はィリジゥムでメツキを施したチタンで形成された陽極とが 隔膜により隔てられ、 互いに対峙して設けられており、 隔膜と反対側の陰極表面 側に空気あるいは酸素を含む気体を供給するための給気部を有し、 陰極と隔膜の 間の陰極室に水を供給するための水供給口とが設けられた電解槽を含む電気分解 装置からなり、 該装置の両極に電圧を印加して電解槽中に導入される水を電気分 解することにより、 p Hが 8以上、 13以下で、 SOmg/X以上の濃度の過酸化水素 含有活性酸素を含む水を製造するための水溶性金属加工用油剤の希釈水の製造装 5. Cathode feeder with holes made of stainless steel, stainless steel with nickel plating, or titanium with plating with platinum or Z or iridium, and gas diffusion electrode made of carbon-based material Shade composed of A pole and an anode made of platinum and / or titanium coated with a diaphragm are separated by a diaphragm and provided to face each other, and a gas containing air or oxygen is provided on the cathode surface side opposite to the diaphragm. An electrolyzer comprising an electrolytic cell having an air supply section for supplying water and a water supply port for supplying water to a cathode chamber between the cathode and the diaphragm. By applying a voltage to electrolyze water introduced into the electrolytic cell, water with a pH of 8 or more and 13 or less and containing active oxygen containing hydrogen peroxide at a concentration of SOmg / X or more is produced. For the dilution of water-soluble metal working oil
6 . ステンレススチーノレ製、 ニッケノレメツキを施したステンレススチー ル製、 あるいは白金及び/又はィリジゥムでメツキを施したチタン製からなる穴 の空いた陰極給電体及ぴ炭素系材料で形成されたガス拡散電極から構成される中 空円筒形状の陰極と、 白金及び Z又はィリジゥムでメツキを施したチタンで形成 された陽極とが隔膜により隔てられ、 互いに対峙して設けられており、 該中空円 筒形状の陰極は、 内側に穴の空いた陰極給電体が配置され、 外側にガス拡散電極 が配置された構造となっており、 かつ陰極中空内部に空気あるいは酸素を含む気 体を供給するための給気部を有し、 陰極外側部と隔膜の間の陰極室に水を供給す るための水供給口とが設けられた電解槽を含む電気分解装置からなり、 該装置の 両極に電圧を印加して電解槽中に導入される水を電気分解することにより、 p H が 8以上、 13以下で、 50mg/L以上の濃度の過酸化水素含有活性酸素を含む水を製 造するための水溶性金属加工用油剤の希釈水の製造装置。 6. Perforated cathode feeder made of stainless steel, stainless steel with nickel plating, or titanium with plating with platinum and / or aluminum, and gas diffusion formed with carbon-based material A hollow cylindrical cathode composed of electrodes and an anode made of platinum and titanium plated with Z or iridium are separated by a diaphragm, and provided so as to face each other. The cathode has a structure in which a cathode feeder with a hole is arranged on the inside and a gas diffusion electrode is arranged on the outside, and a supply for supplying air or oxygen-containing gas to the inside of the cathode hollow. And an electrolytic cell including an electrolytic cell having a gas supply portion and a water supply port for supplying water to the cathode chamber between the cathode outer portion and the diaphragm. A voltage is applied to both electrodes of the device. And electrolyzes the water introduced into the electrolytic cell to produce water containing hydrogen peroxide-containing active oxygen at a pH of 8 or more and 13 or less and a concentration of 50 mg / L or more. Equipment for producing water dilution for water-soluble metal working oils.
7 . 請求項 1に記載の水溶性金属加工用油剤の希釈水と水溶性金属加工 用油剤とを混合してなるクーラント液。 7. A coolant liquid obtained by mixing dilution water of the water-soluble metal working oil according to claim 1 with a water-soluble metal working oil.
8 . 請求項 2乃至 6のいずれかの項に記載の希釈水製造装置と、 該装置 で製造した希釈水と水溶性金属加工用油剤とを混合するための混合装置とを含む クーラント液製造装置であって、 製造したクーラント液を加工機に自動的に供給 するための、 加ェ機内のクーラント液量が満水時の所定液量から減少したときに 供給信号を発信する液供給開始液量センサー、 加工機内のクーラント液量が満水 したときに供給停止信号を発信する満水液量センサー、 及び液供給開始液量セン サ一と満水液量センサ一からの信号を制御する制御回路を備えてなることを特徴 とするクーラント液製造装置。 8. A coolant production apparatus comprising: the dilution water production apparatus according to any one of claims 2 to 6; and a mixing apparatus for mixing the dilution water produced by the apparatus with a water-soluble metal working oil. When the amount of the coolant in the processing machine for automatically supplying the produced coolant to the processing machine decreases from the predetermined amount when the water is full. A liquid supply start liquid level sensor that sends a supply signal, a full liquid level sensor that sends a supply stop signal when the coolant level in the processing machine is full, and a liquid supply start liquid level sensor and a full liquid level sensor And a control circuit for controlling a signal of the coolant.
9 . クーラント液量が満水時の所定液量から減少したときに供給するク 一ラント液が、 希釈水の製造装置から単位時間に製造される水量を少なくするこ とにより得た高濃度の過酸化水素含有活性酸素を含む希釈水を用いて調製された ものであることを特徴とする請求項 8に記載のクーラント液製造装置。 9. The coolant liquid to be supplied when the amount of the coolant decreases from the predetermined liquid level when it is full is high concentration excess liquid obtained by reducing the amount of water produced per unit time from the dilution water production equipment. 9. The coolant liquid production apparatus according to claim 8, wherein the apparatus is prepared using dilution water containing active oxygen containing hydrogen oxide.
PCT/JP2003/006068 2002-05-17 2003-05-15 Aqueous solution for diluting water-soluble metal working fluid, apparatus for production thereof, fluid coolant, and apparatus for production of fluid coolant WO2003097535A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003231501A AU2003231501A1 (en) 2002-05-17 2003-05-15 Aqueous solution for diluting water-soluble metal working fluid, apparatus for production thereof, fluid coolant, and apparatus for production of fluid coolant
JP2004505271A JPWO2003097535A1 (en) 2002-05-17 2003-05-15 Diluted water for water-soluble metal processing oil, its production equipment, coolant liquid, and coolant production equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-143746 2002-05-17
JP2002143746 2002-05-17

Publications (1)

Publication Number Publication Date
WO2003097535A1 true WO2003097535A1 (en) 2003-11-27

Family

ID=29545031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006068 WO2003097535A1 (en) 2002-05-17 2003-05-15 Aqueous solution for diluting water-soluble metal working fluid, apparatus for production thereof, fluid coolant, and apparatus for production of fluid coolant

Country Status (3)

Country Link
JP (1) JPWO2003097535A1 (en)
AU (1) AU2003231501A1 (en)
WO (1) WO2003097535A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257452A (en) * 2005-03-15 2006-09-28 E & Cs:Kk Electrolysis diaphragm and manufacturing method therefor
JP2014118443A (en) * 2012-12-13 2014-06-30 Nakajima Sangyo Kk Manufacturing apparatus of water-soluble coolant obtained by diluting water-soluble cutting fluid by alkaline electrolytic water, and water-soluble coolant obtained by diluting water-soluble cutting fluid by alkaline electrolytic water
CN104372371A (en) * 2014-09-24 2015-02-25 南开大学 Novel hydrogen peroxide generator, and method for of electro-Fenton treatment of organic wastewater
CN109748348A (en) * 2019-03-06 2019-05-14 高桥金属制品(苏州)有限公司 Liquid volume reduction makeup is set and energy-saving emission-reduction type machining water treatment system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750560B2 (en) * 1975-02-14 1982-10-27
JPH10140383A (en) * 1996-11-12 1998-05-26 Permelec Electrode Ltd Electrode feeder, its production and electrolytic cell for producing hydrogen peroxide
JP2000178778A (en) * 1998-12-21 2000-06-27 Oji Paper Co Ltd Production of hydrogen peroxide
JP2001192875A (en) * 2000-01-05 2001-07-17 Kurita Water Ind Ltd Method and apparatus for preparing hydrogen peroxide
JP2001327934A (en) * 2000-05-23 2001-11-27 Nippon Steel Corp Cleaning device and cleaning method
JP2002053990A (en) * 2000-08-02 2002-02-19 Permelec Electrode Ltd Method of manufacturing hydrogen peroxide water
JP2002143861A (en) * 2000-11-07 2002-05-21 Kurita Water Ind Ltd Slime treating and slime treatment method
JP2002167594A (en) * 2000-09-21 2002-06-11 Takahashi Kinzoku Kk Water-soluble coolant liquid containing electrolytic ion water mixed thereinto and production apparatus therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750560B2 (en) * 1975-02-14 1982-10-27
JPH10140383A (en) * 1996-11-12 1998-05-26 Permelec Electrode Ltd Electrode feeder, its production and electrolytic cell for producing hydrogen peroxide
JP2000178778A (en) * 1998-12-21 2000-06-27 Oji Paper Co Ltd Production of hydrogen peroxide
JP2001192875A (en) * 2000-01-05 2001-07-17 Kurita Water Ind Ltd Method and apparatus for preparing hydrogen peroxide
JP2001327934A (en) * 2000-05-23 2001-11-27 Nippon Steel Corp Cleaning device and cleaning method
JP2002053990A (en) * 2000-08-02 2002-02-19 Permelec Electrode Ltd Method of manufacturing hydrogen peroxide water
JP2002167594A (en) * 2000-09-21 2002-06-11 Takahashi Kinzoku Kk Water-soluble coolant liquid containing electrolytic ion water mixed thereinto and production apparatus therefor
JP2002143861A (en) * 2000-11-07 2002-05-21 Kurita Water Ind Ltd Slime treating and slime treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257452A (en) * 2005-03-15 2006-09-28 E & Cs:Kk Electrolysis diaphragm and manufacturing method therefor
JP2014118443A (en) * 2012-12-13 2014-06-30 Nakajima Sangyo Kk Manufacturing apparatus of water-soluble coolant obtained by diluting water-soluble cutting fluid by alkaline electrolytic water, and water-soluble coolant obtained by diluting water-soluble cutting fluid by alkaline electrolytic water
CN104372371A (en) * 2014-09-24 2015-02-25 南开大学 Novel hydrogen peroxide generator, and method for of electro-Fenton treatment of organic wastewater
CN109748348A (en) * 2019-03-06 2019-05-14 高桥金属制品(苏州)有限公司 Liquid volume reduction makeup is set and energy-saving emission-reduction type machining water treatment system

Also Published As

Publication number Publication date
JPWO2003097535A1 (en) 2005-09-15
AU2003231501A8 (en) 2003-12-02
AU2003231501A1 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
CA2496028C (en) Biocidal solution
US6632347B1 (en) Electrochemical treatment of an aqueous solution
CN102224109B (en) Treatment method of solutions or wastewater and method for forming acid solution or alkaline solution
KR101450993B1 (en) Method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
US10053380B2 (en) Electrolysis device and apparatus for producing electrolyzed ozonated water
US20060169575A1 (en) Manufacturing method of oxidative water to be employed for sterilization
JP2005058848A (en) Production method for water used for washing, disinfecting, and wound healing, its production apparatus, and water used for washing, disinfecting, and wound healing
CN101426734A (en) Process for producing a disinfectant by electrochemical activation (eca) of water, disinfectant produced in such a manner and use thereof
EP1926842A2 (en) Acidic electrolyzed water production system and protection membrane
US11352272B2 (en) Bio-electrochemical sensor and method for optimizing performance of a wastewater treatment system
RU2297980C1 (en) Method of the electroactivation of the water solutions
GB2352728A (en) Electrochemical treatment of an aqueous solution
CN1332890C (en) Electrolytic device and method for disinfecting water in a water supply system by means of the generation of active chlorine
DE102006043267A1 (en) Preparing a disinfectant, useful e.g. to disinfect water such as rain water, comprises adding an electrolytic solution to water, and subjecting the diluted water/electrolytic solution to an electric current
WO2003097535A1 (en) Aqueous solution for diluting water-soluble metal working fluid, apparatus for production thereof, fluid coolant, and apparatus for production of fluid coolant
JP5244038B2 (en) Electrolyzed water mixing device
JP4251059B2 (en) Bactericidal electrolyzed water production equipment
JP2001191079A (en) Electrolytic water forming device
US20240174533A1 (en) Electrolyzed water production apparatus, and electrolyzed water production method using same
CN211035348U (en) Raw material supply device for acidic electrolyzed water generator
US20240003020A1 (en) Electrochemical device for producing biocide solutions
JP3205527B2 (en) Method for producing weakly acidic sterilized water and weakly alkaline water
KR102406930B1 (en) Recirculating and filtering-reverse electrodialysis system for sea water treatment
RU2252919C1 (en) Drinking water electric-activation process
JP2005152867A (en) Electrolytic water manufacturing means

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004505271

Country of ref document: JP

122 Ep: pct application non-entry in european phase