JP2002143861A - Slime treating and slime treatment method - Google Patents

Slime treating and slime treatment method

Info

Publication number
JP2002143861A
JP2002143861A JP2000339368A JP2000339368A JP2002143861A JP 2002143861 A JP2002143861 A JP 2002143861A JP 2000339368 A JP2000339368 A JP 2000339368A JP 2000339368 A JP2000339368 A JP 2000339368A JP 2002143861 A JP2002143861 A JP 2002143861A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
slime
chamber
tank
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000339368A
Other languages
Japanese (ja)
Inventor
Mitsuharu Terajima
光春 寺嶋
Nobuhiro Oda
信博 織田
Masaharu Uno
雅晴 宇野
Shuhei Wakita
修平 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd, Kurita Water Industries Ltd filed Critical Permelec Electrode Ltd
Priority to JP2000339368A priority Critical patent/JP2002143861A/en
Publication of JP2002143861A publication Critical patent/JP2002143861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively treat slime by intermittently adding hydrogen peroxide produced by electrolysis in the treatment site of slime to the slime treating system. SOLUTION: After hydrogen peroxide continuously produced by electrolysis in a hydrogen peroxide generator 35 is reserved in a hydrogen peroxide charger 37, a specified amount of the hydrogen peroxide is intermittently added to the slime treating system 32. The charger 37 reserves the hydrogen peroxide aqueous solution continuously supplied from the hydrogen peroxide generator 35 in a tank 20 and intermittently discharges the hydrogen peroxide aqueous solution from the tank 20 by using a siphon, float valve mechanism, timer type electromagnetic valve or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、過酸化水素をスラ
イムコントロール剤として添加するスライム処理装置及
びスライム処理方法に係り、特に、現場にて電気分解に
より生成させた過酸化水素を、被スライム処理系に間欠
的に添加することにより、スライムの発生を防止するス
ライム処理装置及びスライム処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slime treatment apparatus and a slime treatment method for adding hydrogen peroxide as a slime control agent. The present invention relates to a slime treatment apparatus and a slime treatment method for preventing slime from being generated by intermittent addition to a system.

【0002】[0002]

【従来の技術】冷却用水系、金属加工液系、製紙用水系
(抄紙工程水、紙用塗工液、ラテックス、糊剤など)及
び織物製造用水系などを含む工業用水系、水泳プール、
噴水、観賞用池及び観賞用流水系などを含むレクリエー
ション用水系、トイレ用水系、貯水槽用水系、浄化槽用
水系及び下水処理用水系などを含む衛生設備用水系等の
各種水系においては、微生物が粘性物質を発生させなが
ら管壁や器壁に付着、増殖してスライムとなる。このよ
うなスライムが発生すると、例えば、冷却用水系におい
ては、熱交換効率の低下や配管表面の腐食、更には配管
系での閉塞などの問題を引き起こす。また、製紙用水系
においては、壁面に付着したスライムが脱落して紙切れ
や斑点などの製品欠陥の原因となる。
2. Description of the Related Art Industrial water systems, including water systems for cooling, metalworking fluid systems, water systems for papermaking (papermaking process water, coating solutions for paper, latex, glue, etc.) and water systems for fabric production, swimming pools, etc.
Microorganisms are present in various water systems such as recreational water systems including fountains, ornamental ponds and ornamental running water systems, toilet water systems, water tank water systems, sanitary water systems such as septic tank water systems and sewage treatment water systems. While generating a viscous substance, it adheres and multiplies on the tube wall or vessel wall to form slime. When such slime is generated, for example, in a cooling water system, problems such as a decrease in heat exchange efficiency, corrosion of the piping surface, and blockage in the piping system are caused. In a papermaking water system, slime adhered to a wall surface falls off and causes product defects such as paper breakage and spots.

【0003】従来、このような水系のスライムの発生を
防止するために、水系にスライムコントロール剤として
塩素剤を添加することが行われている。しかし、塩素剤
は、塩素剤から生じた次亜塩素酸が水中の有機物と反応
して有機塩素化合物を形成するため、近年、その使用が
避けられつつある。
Conventionally, in order to prevent the generation of such water-based slime, a chlorine agent has been added to the water-based system as a slime control agent. However, the use of chlorinated agents is being avoided in recent years because hypochlorous acid generated from the chlorinated agent reacts with organic matter in water to form an organic chlorine compound.

【0004】そこで、塩素剤に代わるスライムコントロ
ール剤として、過酸化水素の適用が検討されている。
[0004] Therefore, application of hydrogen peroxide as a slime control agent instead of a chlorine agent has been studied.

【0005】過酸化水素は不安定であり長期保存が不可
能である上に、輸送に伴う安全性に問題があるため、過
酸化水素をスライムコントロール剤として用いる場合に
は、スライム処理現場にて過酸化水素を製造し、これを
被スライム処理系に添加する必要がある。
[0005] Since hydrogen peroxide is unstable and cannot be stored for a long period of time, and has a problem in safety during transportation, when hydrogen peroxide is used as a slime control agent, it must be used at a slime treatment site. It is necessary to produce hydrogen peroxide and add it to the slime treated system.

【0006】過酸化水素の製造方法の一つとして、電解
槽中の陰極により酸素を電解還元して過酸化水素を製造
する方法が提案されている。この方法によると、過酸化
水素は連続的にかつ一定の生成速度にて製造される。
As one of the methods for producing hydrogen peroxide, a method has been proposed in which oxygen is electrolytically reduced by a cathode in an electrolytic cell to produce hydrogen peroxide. According to this method, hydrogen peroxide is produced continuously and at a constant production rate.

【0007】[0007]

【発明が解決しようとする課題】過酸化水素等のスライ
ムコントロール剤を被スライム処理系に添加する場合、
低濃度の薬剤を連続的に添加することは、スライムの抑
制のために効果的ではない。一方、高濃度の薬剤を連続
的に添加することは、薬剤の酸化力による配管系統の腐
食の問題がある。
When a slime control agent such as hydrogen peroxide is added to a slime treatment system,
Continuous addition of low concentrations of drug is not effective for slime control. On the other hand, continuous addition of a high-concentration chemical has a problem of corrosion of the piping system due to the oxidizing power of the chemical.

【0008】従って、過酸化水素は被スライム処理系に
対して所定濃度の薬液として間欠的に添加することが望
まれるが、過酸化水素をスライム処理現場にて電気分解
により製造する場合、過酸化水素は連続的にかつ一定の
生成速度で製造されるため、これを直接に被スライム処
理系に添加すると、過酸化水素は被スライム処理系に連
続的に添加されることになり、間欠添加方式にはならな
い。電解槽を継続的に作動させて過酸化水素を間欠的に
製造することは、電解槽の電極の性能維持の上で好まし
くない。このため、過酸化水素は、一定電流で連続運転
された電解槽から一定の速度で被スライム処理系に連続
添加されることとなり、スライム抑制効果が不十分とな
りがちであった。
Accordingly, it is desired that hydrogen peroxide be added intermittently to the slime-treated system as a chemical solution having a predetermined concentration. Since hydrogen is produced continuously and at a constant production rate, if it is directly added to the slime-treated system, hydrogen peroxide will be continuously added to the slime-treated system, and the intermittent addition method It does not become. Intermittent production of hydrogen peroxide by continuously operating the electrolytic cell is not preferable from the viewpoint of maintaining the performance of the electrode of the electrolytic cell. For this reason, hydrogen peroxide is continuously added to the slime treatment system at a constant speed from an electrolytic cell continuously operated at a constant current, and the slime suppression effect tends to be insufficient.

【0009】本発明は上記従来の問題点を解決し、スラ
イム処理現場にて電気分解により生成させた過酸化水素
を、被スライム処理系に対して間欠的に添加することに
より、効果的なスライム処理を行うスライム処理装置及
びスライム処理方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and effectively intermittently adds hydrogen peroxide produced by electrolysis at a slime treatment site to a slime treatment system to thereby provide an effective slime. An object of the present invention is to provide a slime processing device and a slime processing method for performing processing.

【0010】[0010]

【課題を解決するための手段】本発明のスライム処理装
置は、電気分解により過酸化水素含有液を製造する手段
と、該手段により製造された過酸化水素含有液を受け入
れて貯留する手段と、該貯留手段内の過酸化水素含有液
の所定量を被スライム処理系へ間欠的に添加する手段と
を有することを特徴とする。
According to the present invention, there is provided a slime treatment apparatus comprising: means for producing a hydrogen peroxide-containing liquid by electrolysis; means for receiving and storing the hydrogen peroxide-containing liquid produced by the means. Means for intermittently adding a predetermined amount of the hydrogen peroxide-containing liquid in the storage means to the slime treatment system.

【0011】本発明のスライム処理方法は、電気分解に
より過酸化水素含有液を製造し、得られた過酸化水素含
有液を貯留した後、その所定量を被スライム処理系に間
欠的に添加することを特徴とする。
According to the slime treatment method of the present invention, a hydrogen peroxide-containing liquid is produced by electrolysis, and the obtained hydrogen peroxide-containing liquid is stored, and then a predetermined amount thereof is intermittently added to the slime treatment system. It is characterized by the following.

【0012】本発明のスライム処理装置及びスライム処
理方法では、スライム処理現場にて電気分解により連続
的に生成させた過酸化水素を、一旦貯留した後、その所
定量を被スライム処理系に間欠的に添加することがで
き、良好なスライム処理効果を得ることができる。
In the slime treatment apparatus and the slime treatment method of the present invention, hydrogen peroxide continuously generated by electrolysis at the slime treatment site is temporarily stored, and a predetermined amount is intermittently transferred to the slime treatment system. To obtain a good slime treatment effect.

【0013】本発明のスライム処理装置において、過酸
化水素含有液の製造手段としては、陽極室及び陰極室を
有する電解槽と、陽イオン交換膜で区画された第1の室
及び第2の室を有した透析槽とを備えてなり、該第1の
室に該電解槽の陽極室から流出する陽極流出液が導入さ
れると共に第2の室に陰極室から流出する陰極流出液が
導入され、該陰極流出液中のアルカリ金属イオンが該陽
イオン交換膜を透過して陽極流出液中に移行するものが
好ましい。
In the slime treatment apparatus of the present invention, the means for producing the hydrogen peroxide-containing liquid includes an electrolytic cell having an anode chamber and a cathode chamber, and a first chamber and a second chamber partitioned by a cation exchange membrane. And a dialysis cell having a dialysis cell having an anode effluent flowing out of the anode chamber of the electrolytic cell is introduced into the first chamber, and a cathode effluent flowing out of the cathode chamber is introduced into the second chamber. Preferably, alkali metal ions in the cathode effluent permeate the cation exchange membrane and migrate into the anode effluent.

【0014】この過酸化水素製造手段であれば、次のよ
うにして、アルカリ含有量の少ない過酸化水素溶液を得
ることができる。即ち、陽極液として中性塩の水溶液を
用い、陽極室中のナトリウムイオン等のアルカリ金属イ
オンを陰極室へ移動させ、陰極室では過酸化水素とNa
OH等のアルカリ金属水酸化物を生成させる。そして、
この電解処理により得られた酸性の陽極流出液とアルカ
リ性の陰極流出液を透析槽に導入して透析処理する。陽
イオン交換膜で仕切られた透析槽の第1の室に陽極流出
液を通液し、第2の室に陰極流出液を通液すると、透析
槽内において、陰極液中のNaイオン等のアルカリ金属
イオンは陽イオン交換膜を透過して当該イオンポテンシ
ャルの低い陽極流出液側へ移動する。この透析槽内で
は、過酸化水素イオンは、陰イオンであるため陽イオン
交換膜を通過できない。このため、透析槽に通液するこ
とにより、陽極流出液は硫酸などの酸と硫酸ナトリウム
などの塩の混液から硫酸ナトリウム等の塩成分を主体と
した溶液に変化し、再度陽極電解液として利用すること
が可能となる。一方、陰極流出液は、アルカリ金属イオ
ン濃度の低い過酸化水素溶液となる。
With this hydrogen peroxide producing means, a hydrogen peroxide solution having a small alkali content can be obtained as follows. That is, an aqueous solution of a neutral salt is used as an anolyte, alkali metal ions such as sodium ions in the anode compartment are moved to the cathode compartment, and hydrogen peroxide and Na
Generates an alkali metal hydroxide such as OH. And
The acidic anode effluent and the alkaline cathode effluent obtained by this electrolytic treatment are introduced into a dialysis tank for dialysis. When the anode effluent is passed through the first chamber of the dialysis cell partitioned by the cation exchange membrane and the cathode effluent is passed through the second chamber, Na ions and the like in the catholyte are passed through the dialysis cell. The alkali metal ions permeate the cation exchange membrane and move to the anode effluent having a low ionic potential. In this dialysis tank, hydrogen peroxide ions are anions and cannot pass through the cation exchange membrane. Therefore, by passing the solution through the dialysis tank, the anode effluent changes from a mixture of an acid such as sulfuric acid and a salt such as sodium sulfate to a solution mainly containing a salt component such as sodium sulfate, and is used again as the anode electrolyte. It is possible to do. On the other hand, the cathode effluent is a hydrogen peroxide solution having a low alkali metal ion concentration.

【0015】[0015]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0016】まず、図1を参照して本発明に好適な過酸
化水素製造装置について説明する。
First, a hydrogen peroxide producing apparatus suitable for the present invention will be described with reference to FIG.

【0017】図1は実施の形態に係る過酸化水素製造装
置の構成を示す系統図である。
FIG. 1 is a system diagram showing a configuration of a hydrogen peroxide producing apparatus according to an embodiment.

【0018】電解槽1は陽イオン交換膜2によって陽極
室3と陰極室4とに区画され、陽極室3内には陽極5が
設置され、陰極室4には陰極6が設置されている。陽極
5及び陰極6には電圧印加装置7により直流電圧が印加
される。
The electrolytic cell 1 is divided into an anode chamber 3 and a cathode chamber 4 by a cation exchange membrane 2. An anode 5 is installed in the anode chamber 3, and a cathode 6 is installed in the cathode chamber 4. A DC voltage is applied to the anode 5 and the cathode 6 by a voltage application device 7.

【0019】陽イオン交換膜2としてはオレフィン系、
フルオロオレフィン系のもの等が使用できるが、フルオ
ロオレフィン系のものが望ましい。また、イオン交換基
はスルホン基またはカルボキシル基が適している。
As the cation exchange membrane 2, an olefin-based membrane,
Fluoroolefin-based ones can be used, but fluoroolefin-based ones are preferred. Further, as the ion exchange group, a sulfone group or a carboxyl group is suitable.

【0020】この陽極5としては、貴金属系等の耐酸性
不溶性電極を用いるのが好ましい。即ち、陽極室3から
はアルカリ金属イオンが除去され、水素イオンが生成す
るため、陽極室3内は酸性となる。この酸性液と接触し
た陽極物質が陽イオンとして溶出すると、陰極側へ引き
つけられ、陽イオン交換膜の陰極側で析出し、電流が流
れにくくなるなどの問題があるため、陽極としては不溶
性電極を用いるのが好ましい。このような電極として
は、例えば、チタンに白金をコーティングした電極が例
示される。
As the anode 5, it is preferable to use an acid-resistant and insoluble electrode such as a noble metal. That is, since alkali metal ions are removed from the anode chamber 3 and hydrogen ions are generated, the inside of the anode chamber 3 becomes acidic. If the anode material that comes into contact with this acidic solution elutes as cations, it is attracted to the cathode side and precipitates on the cathode side of the cation exchange membrane, which causes problems such as the difficulty in flowing current. It is preferably used. An example of such an electrode is an electrode in which titanium is coated with platinum.

【0021】陽極室3へは後述の中和槽12から好まし
くはNaSO等の中性塩の水溶液が導入される。
An aqueous solution of a neutral salt such as Na 2 SO 4 is preferably introduced into the anode chamber 3 from a neutralization tank 12 described later.

【0022】この中性塩としては、硫酸、塩酸、硝酸、
リン酸などの鉱酸のアルカリ金属塩が適している。望ま
しくは硫酸ナトリウムが良い。ハロゲン化物たとえば塩
化ナトリウムを使用する場合は、塩素ガスが発生しない
様な酸素発生電位の低い電極材料を選ぶ必要があるの
で、アニオンがハロゲンでない中性塩を使用するのが望
ましい。
The neutral salts include sulfuric acid, hydrochloric acid, nitric acid,
Alkali metal salts of mineral acids such as phosphoric acid are suitable. Preferably, sodium sulfate is used. When a halide such as sodium chloride is used, it is necessary to select an electrode material having a low oxygen generation potential so as not to generate chlorine gas. Therefore, it is desirable to use a neutral salt whose anion is not halogen.

【0023】陰極室4へは水が導入される。この水とし
ては硬度成分を除いた軟水や純水に対し、電気抵抗を小
さくするためにNaClやNaOHなどの電解質を添加
した水が好ましい。
Water is introduced into the cathode chamber 4. The water is preferably water to which an electrolyte such as NaCl or NaOH has been added to soft water or pure water excluding the hardness component in order to reduce electric resistance.

【0024】陽極5、陰極6間に電圧印加装置7により
直流電圧を印加すると、陽極室3は酸性(例えば硫酸酸
性)となる。陰極室6はアルカリ性になると共に、電解
により生成した酸素が還元されてHが生成する。
When a DC voltage is applied between the anode 5 and the cathode 6 by the voltage application device 7, the anode chamber 3 becomes acidic (for example, sulfuric acid). The cathode chamber 6 becomes alkaline, and oxygen generated by electrolysis is reduced to generate H 2 O 2 .

【0025】陽極室3からの例えば硫酸酸性の流出液
は、透析槽8の陽極流出液通過室(第1の室)9に通液
され、陰極室4からのH及びアルカリ金属イオン
含有流出液は、該透析槽8の陰極流出液通過室(第2の
室)10に通液される。両室9,10間は陽イオン交換
膜11で区画されている。これらの室9,10内にはフ
ッ素樹脂などよりなるメッシュ状の流路材を設けるのが
好ましい。
The sulfuric acid acidic effluent from the anode compartment 3 is passed through the anode effluent passage chamber (first chamber) 9 of the dialysis tank 8, where H 2 O 2 and alkali metal ions from the cathode compartment 4 are passed. The contained effluent is passed through the cathode effluent passage chamber (second chamber) 10 of the dialysis tank 8. A cation exchange membrane 11 is defined between the two chambers 9 and 10. It is preferable to provide a mesh-shaped flow path material made of a fluororesin or the like in these chambers 9 and 10.

【0026】前記の通り、これらの室9,10内を各流
出液が通過する間に陰極流出液内のNa等のアルカリ金
属イオンが当該イオン濃度が低い陽極流出液側へ陽イオ
ン交換膜11を透過して移行する。従って、陰極流出液
通過室10からはアルカリ金属イオン濃度の低いH
含有液が取り出される。
As described above, while each of the effluents passes through these chambers 9 and 10, alkali metal ions such as Na in the cathode effluent are transferred to the cation exchange membrane 11 toward the anode effluent having a low ion concentration. And migrate through. Therefore, from the cathode effluent passage chamber 10, H 2 O having a low alkali metal ion concentration is obtained.
2 containing liquid is taken out.

【0027】Naイオン等のアルカリ金属イオンが透過
してきてSOイオンがNaSO 等になった室9の
流出液は、配管9aを介して中和槽12へ送られる。こ
の中和槽12において、pH計13で検出される液のp
Hが所定の弱酸性ないし中性のpHとなるようにタンク
14内の濃NaOH水溶液がポンプ15、バルブ16を
介して該中和槽12内に添加される。この中和槽12内
の液はポンプ17を介して前記電解槽1の陽極室3へ供
給され、再利用される。
Permeation of alkali metal ions such as Na ions
Come and SO4Ion is Na2SO 4Room 9
The effluent is sent to the neutralization tank 12 via the pipe 9a. This
Of the liquid detected by the pH meter 13 in the neutralization tank 12
Tank so that H has a predetermined weakly acidic or neutral pH
The concentrated NaOH aqueous solution in 14 operates the pump 15 and the valve 16.
Through the neutralization tank 12. In this neutralization tank 12
Is supplied to the anode chamber 3 of the electrolytic cell 1 through a pump 17.
Paid and reused.

【0028】なお、電解槽が複数個設置されている場
合、一つの電解槽からの陽極流出液を他の電解槽の陽極
液として再利用しても良い。
When a plurality of electrolytic cells are provided, the anode effluent from one electrolytic cell may be reused as the anolyte for another electrolytic cell.

【0029】このような過酸化水素製造装置であれば、
電解槽への供給水量と供給電力量を一定とすることによ
り、一定濃度のH水溶液を一定流量で得ることが
できる。
With such an apparatus for producing hydrogen peroxide,
By keeping the amount of water supplied and the amount of power supplied to the electrolytic cell constant, a H 2 O 2 aqueous solution having a constant concentration can be obtained at a constant flow rate.

【0030】本発明では、このような過酸化水素製造装
置において連続的に製造される過酸化水素水溶液を貯槽
に一旦貯留し、この貯槽からその所定量を間欠的に被ス
ライム処理系に添加する。
In the present invention, an aqueous hydrogen peroxide solution continuously produced in such a hydrogen peroxide producing apparatus is temporarily stored in a storage tank, and a predetermined amount of the aqueous solution is intermittently added to the slime treatment system from the storage tank. .

【0031】次に、このような過酸化水素製造装置から
連続的に送給される過酸化水素水溶液を貯留してその所
定量を間欠添加するための過酸化水素貯留・添加手段に
ついて、図2を参照して説明する。
Next, hydrogen peroxide storage / addition means for storing an aqueous hydrogen peroxide solution continuously fed from such a hydrogen peroxide production apparatus and intermittently adding a predetermined amount thereof will be described with reference to FIG. This will be described with reference to FIG.

【0032】図2は実施の形態に係る過酸化水素貯留・
添加手段を示す断面図である。
FIG. 2 shows hydrogen peroxide storage and storage according to the embodiment.
It is sectional drawing which shows an addition means.

【0033】図2(a)の過酸化水素貯留・添加手段
は、過酸化水素製造装置から配管21を介して送給され
る過酸化水素水溶液をタンク20に受け入れ、タンク2
0内の水位が所定水位(サイホン管22の最上位のレベ
ル)に上昇したときに、サイホンの原理でタンク20内
の過酸化水素水溶液をサイホン管22より被スライム処
理系に間欠的に供給するものである。
The hydrogen peroxide storing and adding means shown in FIG. 2A receives the aqueous hydrogen peroxide solution supplied from the hydrogen peroxide producing apparatus via the pipe 21 into the tank 20,
When the water level in 0 rises to a predetermined water level (the highest level of the siphon pipe 22), the aqueous solution of hydrogen peroxide in the tank 20 is intermittently supplied from the siphon pipe 22 to the slime processing system by the siphon principle. Things.

【0034】タンク20内の水位がサイホン管22の流
入口のレベルまで低下すると、サイホンがブレークし、
タンク20内に再び液が貯留される。
When the water level in the tank 20 drops to the level at the inlet of the siphon pipe 22, the siphon breaks,
The liquid is stored again in the tank 20.

【0035】図2(b)の過酸化水素貯留・添加手段
は、過酸化水素製造装置から配管21を介して送給され
る過酸化水素水溶液をタンク20に受け入れ、タンク2
0の底部に設けられた注入管23の開口を塞ぐフロート
弁26を、浮き24の浮力で開閉することにより、タン
ク20内の過酸化水素水溶液を被スライム処理系に間欠
的に供給するものである。
The hydrogen peroxide storing and adding means shown in FIG. 2B receives the aqueous hydrogen peroxide solution supplied from the hydrogen peroxide producing apparatus via the pipe 21 into the tank 20,
By opening and closing a float valve 26 that closes an opening of an injection pipe 23 provided at the bottom of the tank 20 with the buoyancy of a float 24, the aqueous solution of hydrogen peroxide in the tank 20 is intermittently supplied to the slime treatment system. is there.

【0036】フロート弁26は軸支部材27によって上
下方向回動可能に支持されている。浮き24はフロート
弁26にくさり25で連結されており、タンク20内の
水位の上昇に伴って、浮き24も上昇する。
The float valve 26 is supported by a shaft support member 27 so as to be vertically rotatable. The float 24 is connected to the float valve 26 by a bore 25, and the float 24 rises as the water level in the tank 20 rises.

【0037】浮き24の浮力が所定以上になるまでタン
ク20内に液が溜まると、くさり25を介してフロート
弁26が引き上げられ、これにより、注入管23の開口
から、タンク20内の過酸化水素水溶液が流出する。フ
ロート弁26は、水よりも比重が小さい構成となってお
り、一旦、注入管23の開口から引き上げられると、タ
ンク20内の液が全量流出するまで該開口から離れたま
まとなっている。タンク20内の過酸化水素水溶液の全
量が排出されると、フロート弁26は再び注入管23の
開口を塞ぎ、タンク20内に過酸化水素水溶液が溜めら
れる。
When the liquid accumulates in the tank 20 until the buoyancy of the float 24 becomes equal to or more than a predetermined value, the float valve 26 is pulled up through the bore 25, whereby the peroxide in the tank 20 is opened through the opening of the injection pipe 23. The aqueous hydrogen solution flows out. The float valve 26 has a specific gravity smaller than that of water. Once the float valve 26 is pulled up from the opening of the injection pipe 23, the float valve 26 is kept away from the opening until all the liquid in the tank 20 flows out. When the entire amount of the aqueous solution of hydrogen peroxide in the tank 20 is discharged, the float valve 26 closes the opening of the injection pipe 23 again, and the aqueous solution of hydrogen peroxide is stored in the tank 20.

【0038】図2(c)の過酸化水素貯留・添加手段
は、過酸化水素製造装置から配管21を介して送給され
る過酸化水素水溶液をタンク20に受け入れ、タンク2
0の底部に設けられた注入管23の電磁弁28をタイマ
ーにより一定時間毎に所定の時間開とすることにより、
タンク20内の過酸化水素水溶液を被スライム処理系に
間欠的に供給するものである。
The hydrogen peroxide storage / addition means shown in FIG. 2 (c) receives the aqueous hydrogen peroxide solution supplied from the hydrogen peroxide producing device via the pipe 21 into the tank 20,
By opening the solenoid valve 28 of the injection pipe 23 provided at the bottom of the cylinder 0 for a predetermined period of time by a timer,
The aqueous solution of hydrogen peroxide in the tank 20 is intermittently supplied to the slime treatment system.

【0039】いずれの過酸化水素貯留・添加手段にあっ
ても、過酸化水素製造装置から定流量で過酸化水素水溶
液がタンク20内に流入する。このタンク20から、サ
イホン管22、フロート弁機構又はタイマー式電磁弁2
8により、所定量の過酸化水素水溶液が所定の間隔で被
スライム処理系に添加される。
In any of the hydrogen peroxide storage / addition means, a hydrogen peroxide aqueous solution flows into the tank 20 at a constant flow rate from the hydrogen peroxide producing apparatus. From this tank 20, a siphon pipe 22, a float valve mechanism or a timer solenoid valve 2
In step 8, a predetermined amount of an aqueous solution of hydrogen peroxide is added to the slime treatment system at predetermined intervals.

【0040】なお、本発明において、過酸化水素貯留・
添加手段は、過酸化水素製造装置から連続的に送給され
る過酸化水素水溶液を貯留して、所定量の過酸化水素水
溶液を所定の間隔で被スライム処理系に添加することが
できるものであれば良く、何ら図2に示すものに限定さ
れるものではない。
In the present invention, hydrogen peroxide storage and storage
The addition means is capable of storing an aqueous solution of hydrogen peroxide continuously fed from the hydrogen peroxide production device and adding a predetermined amount of the aqueous solution of hydrogen peroxide to the slime treatment system at predetermined intervals. It suffices if there is, and it is not limited to what is shown in FIG.

【0041】本発明では、このように電気分解により連
続的に製造される過酸化水素の所定量を被スライム処理
系に間欠的に注入することにより、比較的高濃度で過酸
化水素が被スライム処理系に注入され、被スライム処理
系の基材腐食等の問題を引き起こすことなく、効果的な
スライム処理を行える。
According to the present invention, a predetermined amount of the hydrogen peroxide continuously produced by the electrolysis is intermittently injected into the slime treatment system, so that the hydrogen peroxide has a relatively high concentration. The slime is injected into the treatment system, and effective slime treatment can be performed without causing problems such as corrosion of the base material in the slime treatment system.

【0042】なお、被スライム処理系に注入する過酸化
水素の濃度や間欠注入の頻度は、被スライム処理系の水
質や運転条件によって適宜決定されるが、例えば、冷却
水系や製紙用水系のスライム処理においては、100〜
10000ppm程度の過酸化水素水溶液を1〜72時
間に1回の頻度で循環水量の0.1〜20%程度の量だ
け添加するのが好ましい。
The concentration of hydrogen peroxide injected into the slime treatment system and the frequency of intermittent injection are determined as appropriate according to the water quality and operating conditions of the slime treatment system. In processing, 100-
It is preferable to add a hydrogen peroxide aqueous solution of about 10,000 ppm once every 1 to 72 hours in an amount of about 0.1 to 20% of the circulating water amount.

【0043】[0043]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0044】実施例1 図3に示す循環冷却水系にて過酸化水素の添加によるス
ライム処理実験を行った。
Example 1 A slime treatment experiment was performed by adding hydrogen peroxide in the circulating cooling water system shown in FIG.

【0045】図3に示す冷却塔の循環水系は、冷却塔3
1の冷却水をポンプPを備える送り配管32で熱交換部
(冷凍機凝縮器)33に送給して熱交換した後、戻り配
管34で冷却塔31に戻すものであり、過酸化水素発生
器35で発生させた過酸化水素は配管36より過酸化水
素投入器37に送給され、ここで一旦貯留された後、配
管38より間欠的に送り配管32に注入される。戻り配
管34にはスライム付着量測定用のSUS短管39と腐
食減量測定用の銅片40Aを取り付けた短管40とが設
けられている。41は補給水供給配管、42はブロー配
管である。
The circulating water system of the cooling tower shown in FIG.
The first cooling water is supplied to a heat exchange unit (refrigerator condenser) 33 by a feed pipe 32 provided with a pump P to exchange heat, and then returned to the cooling tower 31 by a return pipe 34. The hydrogen peroxide generated in the vessel 35 is fed from a pipe 36 to a hydrogen peroxide input device 37, where it is temporarily stored, and then intermittently injected into a feed pipe 32 from a pipe 38. The return pipe 34 is provided with a SUS short pipe 39 for measuring the amount of slime adhered and a short pipe 40 to which a copper piece 40A for measuring corrosion loss is attached. 41 is a makeup water supply pipe, and 42 is a blow pipe.

【0046】この冷却塔の仕様及び運転条件は次の通り
である。 冷却塔 :CT−1(信和産業(株)SBC−80E
S) 保有水量:1.2m 循環水量:63m/hr(80RT) 蒸発水量:650L/hr 飛散水量:30L/hr ブロー水:130L/hr 滞留時間:7時間 補給水 :厚木市水 濃縮倍率:5倍
The specifications and operating conditions of this cooling tower are as follows:
It is. Cooling tower: CT-1 (Shinwa Sangyo SBC-80E)
S) Water holding volume: 1.2m3  Circulating water volume: 63m3/ Hr (80RT) Evaporated water volume: 650 L / hr Scattered water volume: 30 L / hr Blow water: 130 L / hr Residence time: 7 hours Makeup water: Atsugi city water Concentration magnification: 5 times

【0047】過酸化水素発生器35としては、図2に示
す装置を用い、各部の仕様及び運転条件は次の通りとし
た。 〔過酸化水素製造用電解槽1〕 陽極 :耐酸性DSE電極 (Dimensionally Stable E
lectrode) (ペルメレック電極(株)製) 電極面積:5dm 陽イオン交換膜:ナフイオン117(デュポン社製) 膜厚 0.3mm 陰電極:平均径7μmの黒鉛粉末(TGP−7 東海カ
ーボン(株)製)とポリテトラフルオロエチレンディス
パージョン30J(三井フロロケミカル(株)製)を重
量比が2:1になるように混合し、室温で溶媒を揮発さ
せた後、この混合物をシート状に加工、350℃で10
分間焼成したものをガス拡散極とし、これにSUS31
6製のプレートよりなる給電極板とを重ね合わせて陰極
とした。 〔透析槽8〕 陽イオン交換膜:ナフイオン117(デュポン社製) 膜面積 30dm 流路厚み:各0.5mm 流路材 :PTFE製メッシュ 〔運転条件〕 陽極液:400ppm NaCl水溶液 流量 2L/hr 陰極液:純水 流量 2L/hr 電流 :15A 電圧 :6V 中和槽12に添加するタンク14内のNaOH濃度:10N
The hydrogen peroxide generator 35 is shown in FIG.
The specifications and operating conditions of each part are as follows.
Was. [Electrolyzer 1 for hydrogen peroxide production] Anode: Acid-resistant DSE electrode (Dimensionally Stable E
lectrode) (Permelec Electrode Co., Ltd.) Electrode area: 5dm2  Cation exchange membrane: Nafion 117 (manufactured by DuPont) Film thickness 0.3 mm Negative electrode: graphite powder having an average diameter of 7 μm (TGP-7 Tokai Ka)
And Polytetrafluoroethylene Disc
Load version 30J (Mitsui Fluorochemicals Co., Ltd.)
Mix in a volume ratio of 2: 1 and evaporate the solvent at room temperature.
After that, the mixture was processed into a sheet,
What was fired for a minute was used as a gas diffusion electrode,
The cathode is placed on top of the supply electrode plate consisting of 6 plates.
And [Dialysis tank 8] Cation exchange membrane: Nafion 117 (manufactured by DuPont) Membrane area 30 dm2  Flow path thickness: 0.5 mm each Flow path material: PTFE mesh [Operating conditions] Anolyte: 400 ppm NaCl aqueous solution Flow rate 2 L / hr Catholyte: Pure water Flow rate 2 L / hr Current: 15 A Voltage: 6 V Add to neutralization tank 12 NaOH concentration in the tank 14 to be changed: 10 N

【0048】上記条件で過酸化水素発生器35を運転し
たところ、陽極流出液の透析槽流出液(配管9a内への
流出液)は、平均酸濃度0.015Nであり、中和に必
要な苛性ソーダ量は過酸化水素1kg当たり0.24k
gであった。また、陰極流出液の透析槽8の流出液は、
アルカリ/過酸化水素のモル比が0.2、過酸化水素濃
度2500ppmであり、その流出量は2L/hrであ
った。
When the hydrogen peroxide generator 35 was operated under the above conditions, the effluent of the dialysis tank (the effluent into the pipe 9a) of the anode effluent had an average acid concentration of 0.015N, which was necessary for neutralization. The amount of caustic soda is 0.24k / kg of hydrogen peroxide
g. The effluent of the cathode effluent from the dialysis tank 8 is:
The alkali / hydrogen peroxide molar ratio was 0.2, the hydrogen peroxide concentration was 2500 ppm, and the outflow was 2 L / hr.

【0049】この過酸化水素発生器35より2L/hr
で定量供給される過酸化水素濃度2500ppmの過酸
化水素水溶液を過酸化水素投入器37で貯留し、過酸化
水素投入器37内の過酸化水素水溶液48Lを1日に1
回の頻度で、冷却水の送り配管32に注入した。
From the hydrogen peroxide generator 35, 2 L / hr
The hydrogen peroxide aqueous solution having a hydrogen peroxide concentration of 2500 ppm, which is supplied in a fixed amount, is stored in the hydrogen peroxide injector 37, and 48 L of the hydrogen peroxide aqueous solution in the hydrogen peroxide injector 37 is discharged once a day.
The cooling water was injected into the feed pipe 32 at a frequency of times.

【0050】このときのスライム付着量、LTD(汚れ
指標)及び腐食速度を下記方法により調べ、結果を表1
に示した。 〔スライム付着量〕41日間運転後に、内径16mm、
長さ301mmのSUS短管39の内面に付着した付着
物を擦り落とし、懸濁液をNo.5Cの濾紙で濾過し付
着物量をSS量として求めた。 〔LTD(汚れ指標)〕LTD (Leaving Temperature
Difference) は、熱交換部の冷凍機凝縮器における冷媒
凝縮温度と冷却水出口温度との温度差を下記式により補
正して求められる。LTDは凝縮器チューブに汚れが付
着すると大きくなるため、汚れの付着状況を表す指標と
して用いられる。
At this time, the slime adhesion amount, LTD (dirt index) and corrosion rate were examined by the following methods.
It was shown to. [Slime adhesion amount] After operation for 41 days, inner diameter 16 mm,
The adhering matter adhering to the inner surface of the SUS short tube 39 having a length of 301 mm is scraped off, and the suspension The mixture was filtered through a 5C filter paper, and the amount of the deposit was determined as the SS amount. [LTD (dirt index)] LTD (Leaving Temperature)
Difference) is obtained by correcting the temperature difference between the refrigerant condensation temperature in the refrigerator condenser in the heat exchange section and the cooling water outlet temperature by the following equation. Since the LTD becomes larger when dirt adheres to the condenser tube, the LTD is used as an index indicating the dirt adhesion state.

【0051】[0051]

【数1】 (Equation 1)

【0052】なお、冷媒としてはフロン「R11」を用
い、その凝縮温度は、吐出圧力から求めた。また、定格
冷却水出入口温度差は5.5℃とし、41日間運転後の
LTDを求めた。 〔腐食速度〕41日間運転後の短管40内の銅片40A
の腐食減量(mg)を調べ、1日,100cm当たり
の腐食速度(mdd)を算出した。
The refrigerant used was Freon "R11", and the condensation temperature was determined from the discharge pressure. Further, the rated cooling water inlet / outlet temperature difference was 5.5 ° C., and the LTD after 41 days of operation was determined. [Corrosion rate] Copper piece 40A in short pipe 40 after operation for 41 days
Was examined for corrosion weight loss (mg), and the corrosion rate per day (100 cm 2 ) (mdd) was calculated.

【0053】実施例2 過酸化水素発生器35の給水量等を実施例1の10倍と
し、過酸化水素発生器35にて過酸化水素濃度2500
ppmの過酸化水素水溶液を20L/hr製造し、これ
を過酸化水素投入器37に貯留して1日に1回の頻度で
冷却水の送り配管32に480L注入したこと以外は実
施例1と同様にして運転を行い、同様にスライム付着
量、LTD(汚れ指標)及び腐食速度を調べ、結果を表
1に示した。
Example 2 The amount of water supplied to the hydrogen peroxide generator 35 was set to be 10 times that of the first embodiment, and the hydrogen peroxide generator 35 provided a hydrogen peroxide concentration of 2500.
Example 1 except that 20 L / hr of a hydrogen peroxide aqueous solution of ppm was stored in a hydrogen peroxide input device 37 and 480 L was injected into the cooling water feed pipe 32 once a day. The operation was carried out in the same manner, and the slime adhesion amount, LTD (dirt index) and corrosion rate were similarly examined. The results are shown in Table 1.

【0054】比較例1,2 実施例1,2において、過酸化水素投入器37を設け
ず、過酸化水素発生器35からの2500ppm過酸化
水素水溶液を2L/hr(比較例1)又は20L/hr
(比較例2)で冷却水の送り配管32に連続注入したこ
と以外はそれぞれ同様にして運転を行い、同様にスライ
ム付着量、LTD(汚れ指標)及び腐食速度を調べ、結
果を表1に示した。
Comparative Examples 1 and 2 In Examples 1 and 2, the hydrogen peroxide charging device 37 was not provided, and the 2500 ppm aqueous hydrogen peroxide solution from the hydrogen peroxide generator 35 was used at 2 L / hr (Comparative Example 1) or 20 L / hr. hr
The operation was performed in the same manner as in (Comparative Example 2) except that the cooling water was continuously injected into the feed pipe 32. Similarly, the slime adhesion amount, LTD (dirt index) and corrosion rate were examined, and the results are shown in Table 1. Was.

【0055】[0055]

【表1】 [Table 1]

【0056】表1より次のことが明らかである。The following is clear from Table 1.

【0057】即ち、過酸化水素発生器で連続的に製造さ
れる過酸化水素水溶液を、そのまま連続的に循環冷却水
系に添加した比較例1,2のうち、過酸化水素水溶液の
注入量の少ない比較例1では、スライムや汚れの付着防
止効果が十分でなく、過酸化水素水溶液の注入量の多い
比較例2では、スライムや汚れの付着防止効果は良好で
あるものの、配管腐食の問題がある。
That is, in Comparative Examples 1 and 2 in which the aqueous hydrogen peroxide solution continuously produced by the hydrogen peroxide generator was continuously added to the circulating cooling water system as it was, the injection amount of the aqueous hydrogen peroxide solution was small. In Comparative Example 1, the effect of preventing the adhesion of slime and dirt is not sufficient, and in Comparative Example 2 in which the amount of the hydrogen peroxide solution injected is large, the effect of preventing the adhesion of slime and dirt is good, but there is a problem of pipe corrosion. .

【0058】これに対して、過酸化水素水溶液を過酸化
水素投入器で貯留して間欠注入した実施例1,2では、
配管腐食を引き起こすことなく、良好なスライム及び汚
れの付着防止効果が得られる。
On the other hand, in Examples 1 and 2 in which the aqueous hydrogen peroxide solution was stored in the hydrogen peroxide injector and intermittently injected,
Good slime and dirt adhesion preventing effects can be obtained without causing pipe corrosion.

【0059】[0059]

【発明の効果】以上詳述した通り、本発明のスライム処
理装置及びスライム処理方法によれば、スライム処理現
場にて電気分解により生成させた過酸化水素を、被スラ
イム処理系に対して間欠的に添加することにより、効果
的なスライム処理を行うことができる。
As described above in detail, according to the slime treatment apparatus and the slime treatment method of the present invention, hydrogen peroxide generated by electrolysis at the slime treatment site is intermittently supplied to the slime treatment system. Slime treatment can be performed effectively by adding slime.

【0060】特に、請求項2のスライム処理装置であれ
ば、過酸化水素を安価に製造することができ、処理コス
トの低減を図ることができる。
In particular, according to the slime processing apparatus of the second aspect, hydrogen peroxide can be produced at low cost, and the processing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る過酸化水素製造装置
を示す系統図である。
FIG. 1 is a system diagram showing a hydrogen peroxide producing apparatus according to an embodiment of the present invention.

【図2】本発明の実施の形態に係る過酸化水素貯留・添
加手段を示す断面図である。
FIG. 2 is a cross-sectional view showing a hydrogen peroxide storage / addition unit according to the embodiment of the present invention.

【図3】実施例において、スライム処理実験を行った循
環冷却水系を示す系統図である。
FIG. 3 is a system diagram showing a circulating cooling water system in which a slime treatment experiment was performed in the example.

【符号の説明】[Explanation of symbols]

1 電解槽 2 陽イオン交換膜 3 陽極室 4 陰極室 5 陽極 6 陰極 8 透析槽 11 陽イオン交換膜 12 中和槽 20 タンク 22 サイホン管 23 注入管 24 浮き 28 電磁弁 31 冷却塔 33 熱交換部 35 過酸化水素発生器 37 過酸化水素投入器 DESCRIPTION OF SYMBOLS 1 Electrolysis tank 2 Cation exchange membrane 3 Anode chamber 4 Cathode chamber 5 Anode 6 Cathode 8 Dialysis tank 11 Cation exchange membrane 12 Neutralization tank 20 Tank 22 Siphon tube 23 Injection pipe 24 Floating 28 Electromagnetic valve 31 Cooling tower 33 Heat exchange part 35 Hydrogen peroxide generator 37 Hydrogen peroxide injector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 550 C02F 1/50 550C 550D 560 560F B01D 61/46 B01D 61/46 61/58 61/58 C02F 1/46 C02F 1/46 Z 1/469 1/72 1/72 C25B 1/30 C25B 1/30 C02F 1/46 103 (72)発明者 織田 信博 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 (72)発明者 宇野 雅晴 神奈川県藤沢市石川1145番地B−102 (72)発明者 脇田 修平 神奈川県藤沢市辻堂元町5−5−9、II −3 Fターム(参考) 4D006 GA17 JA42A JA42C KA03 KA52 KA54 KA55 KA56 KD17 KE15Q KE18Q MA03 MC30 PB07 PB08 4D050 AA02 AA08 AA10 AA12 AB06 AB31 BB09 BC10 BD04 4D061 DA02 DA07 DA08 DB02 DB09 EA02 EA09 EB04 EB13 EB30 EB39 ED12 ED13 FA16 GC05 GC12 4K021 AB15 BA02 BB03 BB04 DB01 DB31 EA06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/50 550 C02F 1/50 550C 550D 560 560F B01D 61/46 B01D 61/46 61/58 61/58 C02F 1/46 C02F 1/46 Z 1/469 1/72 1/72 C25B 1/30 C25B 1/30 C02F 1/46 103 (72) Inventor Nobuhiro Oda 3-4-2 Nishishinjuku, Shinjuku-ku, Tokyo Kurita Water Industries Ltd. (72) Inventor Masaharu Uno 1145, Ishikawa, Fujisawa City, Kanagawa Prefecture B-102 (72) Inventor Shuhei Wakita 5-5-9, Tsujido Motomachi, Fujisawa City, Kanagawa Prefecture II-3 F-term (reference) 4D006 GA17 JA42A JA42C KA03 KA52 KA54 KA55 KA56 KD17 KE15Q KE18Q MA03 MC30 PB07 PB08 4D050 AA02 AA08 AA10 AA12 AB06 AB31 BB09 BC10 BD04 4D061 DA02 DA07 DA08 DB02 DB09 EA02 EA09 EB04 EB13 EB30 EB39 ED12 ED13 FA16 GC05 GC12 4K021 AB15 BA02 BB03 BB04 DB01 DB31 EA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電気分解により過酸化水素含有液を製造
する手段と、 該手段により製造された過酸化水素含有液を受け入れて
貯留する手段と、 該貯留手段内の過酸化水素含有液の所定量を被スライム
処理系へ間欠的に添加する手段とを有することを特徴と
するスライム処理装置。
1. A means for producing a hydrogen peroxide-containing liquid by electrolysis, a means for receiving and storing the hydrogen peroxide-containing liquid produced by the means, and a position of the hydrogen peroxide-containing liquid in the storage means. A means for intermittently adding a fixed amount to the slime treatment system.
【請求項2】 請求項1において、過酸化水素含有液を
製造する手段は、 陽極室及び陰極室を有する電解槽と、 陽イオン交換膜で区画された第1の室及び第2の室を有
した透析槽とを備えてなり、 該第1の室に該電解槽の陽極室から流出する陽極流出液
が導入されると共に第2の室に陰極室から流出する陰極
流出液が導入され、該陰極流出液中のアルカリ金属イオ
ンが該陽イオン交換膜を透過して陽極流出液中に移行す
ることを特徴とするスライム処理装置。
2. The method according to claim 1, wherein the means for producing the hydrogen peroxide-containing liquid comprises: an electrolytic cell having an anode chamber and a cathode chamber; and a first chamber and a second chamber partitioned by a cation exchange membrane. A dialysis cell having an anode effluent flowing out of the anode chamber of the electrolytic cell is introduced into the first chamber, and a cathode effluent flowing out of the cathode chamber is introduced into the second chamber, A slime treatment apparatus, wherein alkali metal ions in the cathode effluent pass through the cation exchange membrane and migrate into the anode effluent.
【請求項3】 電気分解により過酸化水素含有液を製造
し、得られた過酸化水素含有液を貯留した後、その所定
量を被スライム処理系に間欠的に添加することを特徴と
するスライム処理方法。
3. A slime characterized by producing a hydrogen peroxide-containing liquid by electrolysis, storing the obtained hydrogen peroxide-containing liquid, and then intermittently adding a predetermined amount thereof to the slime treatment system. Processing method.
JP2000339368A 2000-11-07 2000-11-07 Slime treating and slime treatment method Pending JP2002143861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000339368A JP2002143861A (en) 2000-11-07 2000-11-07 Slime treating and slime treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000339368A JP2002143861A (en) 2000-11-07 2000-11-07 Slime treating and slime treatment method

Publications (1)

Publication Number Publication Date
JP2002143861A true JP2002143861A (en) 2002-05-21

Family

ID=18814447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000339368A Pending JP2002143861A (en) 2000-11-07 2000-11-07 Slime treating and slime treatment method

Country Status (1)

Country Link
JP (1) JP2002143861A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097535A1 (en) * 2002-05-17 2003-11-27 Nippon Oil Corporation Aqueous solution for diluting water-soluble metal working fluid, apparatus for production thereof, fluid coolant, and apparatus for production of fluid coolant
WO2005077831A1 (en) * 2004-02-12 2005-08-25 Denkai Giken Co. Electrochemical water treatment method and device
WO2011150473A1 (en) * 2010-06-03 2011-12-08 The University Of Queensland Controlling activity of microorganisms in wastewater systems
JP2013204982A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Method of monitoring contamination of cooling water line and method of controlling chemical feed
WO2022050012A1 (en) * 2020-09-03 2022-03-10 オルガノ株式会社 Cooling water system control method, and cooling water system control device
CN114653476A (en) * 2022-02-24 2022-06-24 杭州吉宝传动设备有限公司 Integrated superconducting magnetic separation system and sorting method thereof
CN115074164A (en) * 2022-05-07 2022-09-20 塔里木大学 Integrated cleaning and removing method for key harmful elements in hard-to-float bituminous coal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097535A1 (en) * 2002-05-17 2003-11-27 Nippon Oil Corporation Aqueous solution for diluting water-soluble metal working fluid, apparatus for production thereof, fluid coolant, and apparatus for production of fluid coolant
WO2005077831A1 (en) * 2004-02-12 2005-08-25 Denkai Giken Co. Electrochemical water treatment method and device
WO2011150473A1 (en) * 2010-06-03 2011-12-08 The University Of Queensland Controlling activity of microorganisms in wastewater systems
JP2013204982A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Method of monitoring contamination of cooling water line and method of controlling chemical feed
WO2022050012A1 (en) * 2020-09-03 2022-03-10 オルガノ株式会社 Cooling water system control method, and cooling water system control device
CN114653476A (en) * 2022-02-24 2022-06-24 杭州吉宝传动设备有限公司 Integrated superconducting magnetic separation system and sorting method thereof
CN114653476B (en) * 2022-02-24 2023-12-01 浙江吉宝智能装备股份有限公司 Integrated superconducting magnetic separation system and sorting method thereof
CN115074164A (en) * 2022-05-07 2022-09-20 塔里木大学 Integrated cleaning and removing method for key harmful elements in hard-to-float bituminous coal
CN115074164B (en) * 2022-05-07 2023-10-03 塔里木大学 Method for cleaning and removing key harmful elements in hard-to-float bituminous coal

Similar Documents

Publication Publication Date Title
JP3716042B2 (en) Acid water production method and electrolytic cell
JP3428998B2 (en) Electrolyzer producing mixed oxidant gas
JP5836392B2 (en) Water treatment using bipolar membrane
JP4886787B2 (en) Electrochemical treatment of solutions containing hexavalent chromium
JP2000254650A (en) Water treatment and water treatment device
JP2001502229A (en) How to reduce or prevent scale
JP2006098003A (en) Electrolytic treating method and electrolytic treating device for circulating type cooling water system
MXPA02008974A (en) Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof.
JP2002143861A (en) Slime treating and slime treatment method
JP2006255653A (en) Electrolytic treatment method of water system
JP4394941B2 (en) Electrolytic ozonizer
JP2007253114A (en) Electrolysis method of water and electrolytic apparatus
JP4126904B2 (en) Water treatment method and apparatus for cooling water system
JPH09279376A (en) Production of chlorine dioxide
JP2001293474A (en) Cleaning method of seawater and cleaning device for seawater
JP2006198583A (en) Electrolytic treatment method and apparatus for water system
AU2021365682A1 (en) Water treatment method and water treatment apparatus
JP2006198547A (en) Electrolytic treatment method and apparatus for water system
CN112028187A (en) Electrocatalytic oxidation device and method
RU2157793C1 (en) Method of preparing disinfecting neutral anolite solution neutral anolite
JP2001246381A (en) Method and device for manufacturing alkaline ionized water
RU2139956C1 (en) Plant for production of hypochlorites solutions by electrolysis
JP2001192875A (en) Method and apparatus for preparing hydrogen peroxide
JP2003024951A (en) Method for treating circulating cooling water system and circulating cooling water system
JP2001314862A (en) Slime preventing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005