WO2003095802A1 - Centrale combinant dessalement et production hydroelectrique - Google Patents

Centrale combinant dessalement et production hydroelectrique Download PDF

Info

Publication number
WO2003095802A1
WO2003095802A1 PCT/GR2002/000029 GR0200029W WO03095802A1 WO 2003095802 A1 WO2003095802 A1 WO 2003095802A1 GR 0200029 W GR0200029 W GR 0200029W WO 03095802 A1 WO03095802 A1 WO 03095802A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
liquid
desalt
power plant
water
Prior art date
Application number
PCT/GR2002/000029
Other languages
English (en)
Inventor
Efthimios Angelopoulos
Original Assignee
Efthimios Angelopoulos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Efthimios Angelopoulos filed Critical Efthimios Angelopoulos
Priority to PCT/GR2002/000029 priority Critical patent/WO2003095802A1/fr
Priority to AU2002256831A priority patent/AU2002256831A1/en
Publication of WO2003095802A1 publication Critical patent/WO2003095802A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/046Treatment of water, waste water, or sewage by heating by distillation or evaporation under vacuum produced by a barometric column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/005Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for by means of hydraulic motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the combined desalt-hydroelectric power plant is an electricity power plant that combines the potential energy of water, the deference of pressure between the atmosphere and vacuum and finally the heat reservoir of the atmosphere in order to produce electricity and fresh water.
  • Hydroelectric power plants can guaranty constant production of energy at a very low cost per kWh. Also they do not emit to the environment any green gas so they do not contribute to the global worming of our planet. But this method has some major disadvantages. First, its application is limited to the morphology of the surrounding area. Hydroelectric power plants can be installed only were there is water stored in a lake, natural or artificial. Also it requires the construction of a dam witch is very costly and it alters the morphology of the surrounding area by raising the water level in that area.
  • Power plants using renewable energy sources such as solar, have a major disadvantage. They cannot guarantee stable production because they cannot store the energy efficiently. So when the natural energy source is not available, for example at night production stops.
  • the combined desalt-hydroelectric power plant is a production method of electric energy and fresh water using the energy of gravity to produce electric energy and the atmospheric pressure to elevate water in the form of saturated steam up to the desired height.
  • Water gains its head by transforming water in to saturated vapor at low temperature inside the vacuum chamber (5), absorbing heat from the heat pumps condenser installed inside the lower part of the vacuum chamber.
  • Heat pump device is installed close to the lower part of the vacuum chamber supplying sufficient heat to the water in order to evaporate.
  • the heat pump device is a close circuit reverse air- condition device well known to the industry. Napor is raised inexpensively, to the desired height, using the pressure deference between the atmospheric pressure, outside the vacuum chamber, and the vacuum inside the vertical vacuum chamber.
  • the atmospheric pressure raises a column of fluid, in our case water, up to a height depending of the density of the fluid and the pressure at the lower part.
  • the upper part of the hydrostatic tube is connected to the vacuum chamber (5) and the lower is immersed inside a reservoir containing same liquid as hydrostatic tube, in our case water. So condensed water is supplied in the top of the hydrostatic tube and same quantity of water is leaving the hydrostatic tube in the lower part since the water level inside the hydrostatic tube can not be altered. Then water falls down to the turbine through a pipe to produce work.
  • the above-mentioned combined desalt-hydroelectric power plant combines production of electricity and fresh water using renewable energy sources such as gravitation and deference of pressure between the atmosphere and vacuum and finally the environment as heat source.
  • thermodynamic system witch converts water in to steam in vacuum pressure and vice versa, consuming electric energy produced from the plants generator and extracting / absorbing heat to and from the environment.
  • potential / mechanical energy system witch uses the deference of pressure and density between the pressure of the atmosphere applied on the surface of the water and the vacuum pressure inside the chamber to elevate the liter in density steam to desired height.
  • gravity is used to produce mechanical work by exploiting the waterfalls.
  • the above system uses the principle of the barometer, hydrostatic tube (7), to pump out water or any fluid from a lower pressure region to a higher-pressure region.
  • the combined desalt-hydroelectric power plant can operate only as a water elevator and desalinization plant only if required. It can elevate seawater up to grate heights transforming it to fresh water for agriculture reasons.
  • the energy required mainly is supplied from the environment and the electric energy required to operate the plant is mach less than conventional methods require to elevate water.
  • Combined desalt-hydroelectric plant that consist of heating chamber (1), booster pump (2), one-way valve (3), heat pumps condenser (4), chamber (5), steam condenser (6), hydrostatic tube (7), water pipe (8), water turbine (9), electrical generator (10), heaters (12), insulation (13), vacuum pump (14), defusing valve (15), heat pump evaporator (16), fans (17), compressor (18), diffuser (19), air duct (20), concrete cylinder (21), sea bed (22), condenser drain area (23), sea water pump (24), storage tank (25), concrete vertical wall (26).
  • Figure 1 describes the combined desalt-hydroelectric power plant with air condensers that can be installed everywhere in the shore. Described installation can be used preferably for the production of electricity only.
  • the arrows indicate the direction the steam or the water flows.
  • labels water or steam
  • Figure 11 describes the combined desalt-hydroelectric power plant installed close to sea or brackish water that can be used for the combined production of fresh water and electric energy.
  • Figure 12 describes desalt-hydroelectric power plant with air condensers installed one plant higher than the other.
  • Figure 2 describe the close circuit desalt-hydroelectric power plant installed immersed in to the sea.
  • the condenser uses seawater for cooling medium to condense the vapor.
  • the arrows indicate the direction the steam or the water flows.
  • labels water, steam or air
  • Figure 21 describe combined desalt-hydroelectric power plant installed immersed in the sea producing fresh water and electricity at the same time.
  • Heating elements (12) increase the temperature of the water flowing inside the heating chamber (1) up to the desired temperature.
  • Heating elements (12) can be either electric heating elements or they can be the heat pumps condenser, emitting heat.
  • water enters the vacuum chamber (5).
  • water evaporates to saturated steam due to its low pressure and the heat supplied from the heat pumps condenser (4) to the water.
  • Water continuously enters the vacuum chamber since the pressure inside the vacuum chamber (5) is smaller than the pressure applied at the water outside the chamber. So steam climes up to the top of the vacuum chamber threw the diffuser (19) in to the steam condenser (6) .
  • the diffuser decreases the velocity of the steam before it enters the condenser (6).
  • the condenser (6) extract heat from the steam to the environment. As a result the saturated steam is condensed to water. Water then drains down to condensers drain area (23) and from there to the hydrostatic tube (7).
  • the hydrostatic tube balance the weight of the water, of a given height, with the atmospheric pressure in the lower part of the column and the vacuum pressure at the top. When additional condensed water is added on the top of the hydrostatic tube, since the height of the column cannot be altered (Bernoulli's equation), same amount of water will leave the hydrostatic tube (6) from the lower part, in to the water pipe (8).
  • the vacuum pump (14) is operated mainly at the start up of the plant and during the operation of the plant in order to eliminate any leakages of air inside the vacuum chamber, if any.
  • the heat pump mechanism installed close to the lower part of the vacuum chamber (5) operates with a compressing coolant medium flowing inside an independent closed circuit.
  • Heat exchanger (16) increases the temperature of the coolant before entering the compressor (18).
  • the refrigerant plant must be installed in order to condense the steam. Both installations air condenser or refrigeration plant can be installed in the same desalt-hydroelectric plant in order to use the most efficient according with the environment temperature.
  • the desalt-hydroelectric power plant can be operated with a fluid medium other than water when water production is not required. Some of these fluid mediums could be carbon tetrachloride, heptane, HCFC 225, HCFC 141b, HFC 43 or other HCFC and HFC fluids, toluene, R113, R123, hydrazin, deuterium oxide, dichlorethylene, methylene chloride or other.
  • Heating elements (12) can be either electric heating elements, or they can be the heat pumps condenser, emitting heat.
  • Heating elements (12) can be either electric heating elements, or they can be the heat pumps condenser, emitting heat.
  • Heating elements (12) can be either electric heating elements, or they can be the heat pumps condenser, emitting heat.
  • water is inside the lower part of the vacuum chamber it evaporates to saturated steam due to low pressure inside the chamber and the heat supplied from the heat pumps condenser (4) to the water. Water continuously enters the vacuum chamber since the pressure inside the vacuum chamber (5) is smaller than the pressure applied at the water outside the chamber.
  • the diffuser decreases the velocity of the steam before it enters the condenser.
  • the condenser extract heat from the steam in to the environment, atmosphere. As a result the saturated steam is condensed to water. Water then drains down to condensers drain area (23) and from there to the hydrostatic tube (7).
  • the hydrostatic tube balance the weight of the water, of a given height, with the atmospheric pressure in the lower part of the column and the vacuum pressure at the top.
  • the vacuum pump (14) it is operated mainly at the start up of the plant and during the operation of the plant in order to eliminate any leakages of air inside the vacuum chamber, if any.
  • the heat pump mechanism installed close to the lower part of the vacuum chamber (5) operates with a compressing coolant medium flowing inside an independent closed circuit.
  • the compressing coolant medium using compressor (18) before the heat pumps condenser (4) and throttle (15) after the condenser (4) generates heat in the heat pumps condenser (4).
  • Heat exchanger (16) increases the temperature of the coolant before entering the compressor (18).
  • the booster pump (2) is used only if we wont the pressure applied to the water inside the heating chamber to be grater than the atmospheric.
  • the desalt-hydroelectric power plant can operate without the booster pump (2) up to specific air temperature and vacuum chambers height. If desalt hydroelectric power plant has to operate beyond the above limiting factors the booster pump (2) must operate. This applies to all the deferent plant installations exempt the one described in (Fig: 21).
  • the refrigerant plant must be installed in order to condense the steam. Both installations of air condenser and refrigeration plant can be installed in the same desalt-hydroelectric plant in order to use the most efficient according with the environment temperature.
  • the plant can be installed inside the sea. (See Fig: 2, 21). For more details, see below descriptions.
  • the below installation is installed inside the sea and can combine both the production of sea water and electricity.
  • Concrete vertical wall (26) can be installed within the sea were inside the concrete construction the power plant will be fitted.
  • Sea water is supplied in to the turbine (9) threw the opening (27) in the lower side of the concrete wall (26) power by the head pressure in a given depth from the surface of the sea.
  • Water passing threw the turbine in an upward direction generates mechanical work which threw a shaft drives the electrical generator (10) to produce electricity.
  • the turbine is supplied in to the heating chamber (1) ware seawaters temperature raises up to the desired temperature. Heat, inside the heating chamber (1) is produced from heating elements (12).
  • Heating elements (12) can be either electric heating elements or they can be the heat pumps condenser, emitting heat.
  • seawater is supplied in to the vacuum chamber (5).
  • water is inside the vacuum chamber it evaporates to saturated steam due to its low pressure and the heat supplied from the heat pumps condenser (4) to the water.
  • Water continuously enters the vacuum chamber since the pressure inside the vacuum chamber (5) is smaller than the pressure applied at the seawater outside the chamber. So steam climes up to the top of the vacuum chamber and from there in to the steam condenser (6).
  • the condenser extracts heat from the steam in to the sea.
  • the pump (24) is controlling the seawater flow rate to the condenser in order absorb heat the required heat from the steam.
  • the fan (17) is supplying air threw air duct (20) to the heat pumps evaporator (16) in order to rise the temperature of the cooling medium inside the heat pumps close circuit.
  • the vacuum pump (14) it is operated mainly at the start up of the plant and during the operation of the plant in order to eliminates any leakages of air inside the vacuum chamber, if any.
  • the one-way valve (3) prevent air coming in to the plant.
  • the operation of the combined desalt-hydroelectric plant installed inside the sea is similar to the closed circuit application described above (See Fig: 2).
  • the only deference, in the operation, is that condensed is driving the turbine (9) instead of pumping out to the storage tank (25).
  • This application can be used fro the production of electricity only.
  • the combined desalt-hydroelectric power plant can be installed in large cargo ships in order to produce electricity witch can be used for the propulsion of the vessel and for the operation of the auxiliary machinery.
  • the combined desalt hydroelectric power plant can replace the large slow speed diesel engines, which pollute the environment.
  • the operation of the plant is the same with the only deference that the hydrostatic tube (7) will have to replaced with an ordinary pump to pump out the water from the low pressure condenser to the environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

Cette centrale combinant dessalement et production hydroélectrique est un procédé de production d'électricité et d'eau potable au moyen de sources d'énergies renouvelables. A cet effet, on fait évaporer de l'eau de mer à l'intérieur d'une chambre à vide (5) avec suffisamment de hauteur, à basse température, et on fournit la chaleur requise de façon à évaporer l'eau au moyen du condenseur (4) des pompes à chaleur. La pression atmosphérique appliquée sur la surface des eaux élève la vapeur à l'intérieur de la chambre à vide étant donné que la pression à l'intérieur de la chambre est moins élevée et que la densité de la vapeur est également moins élevée. Lorsque la vapeur atteint la hauteur désirée, elle se condense à l'intérieur du condenseur. L'eau condensée est évacuée à bon compte de la chambre à vide vers l'environnement au moyen du tube hydrostatique (7). L'eau extraite du condenseur est amenée par gravité au moyen d'un tuyau sur une turbine (9) placée moins haut pour produire le travail. Cette centrale convient pour la production d'eau potable et d'électricité sans nécessiter de combustible fossile ou de ressources naturelles telles que les rivières et les lacs.
PCT/GR2002/000029 2002-05-14 2002-05-14 Centrale combinant dessalement et production hydroelectrique WO2003095802A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/GR2002/000029 WO2003095802A1 (fr) 2002-05-14 2002-05-14 Centrale combinant dessalement et production hydroelectrique
AU2002256831A AU2002256831A1 (en) 2002-05-14 2002-05-14 Combined desalt-hydroelectric power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/GR2002/000029 WO2003095802A1 (fr) 2002-05-14 2002-05-14 Centrale combinant dessalement et production hydroelectrique

Publications (1)

Publication Number Publication Date
WO2003095802A1 true WO2003095802A1 (fr) 2003-11-20

Family

ID=29415724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GR2002/000029 WO2003095802A1 (fr) 2002-05-14 2002-05-14 Centrale combinant dessalement et production hydroelectrique

Country Status (2)

Country Link
AU (1) AU2002256831A1 (fr)
WO (1) WO2003095802A1 (fr)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2890650A1 (fr) * 2005-09-12 2007-03-16 Emile Weisman Dispositif de dessalement sous vide de l'eau de mer
WO2010019586A2 (fr) * 2008-08-11 2010-02-18 Ullman Carl T Procédés et systèmes de génération d'énergie
ITAN20090009A1 (it) * 2009-03-17 2010-09-18 S Tra Te G I E S R L Apparato per produzione autonoma almeno di acqua dolce da dissalazione marina.
RU2443872C2 (ru) * 2006-03-31 2012-02-27 Клаус Вольтер Способ, устройство и система для преобразования энергии
CN102383884A (zh) * 2011-07-01 2012-03-21 重庆大学 重力有机工质热功转换系统
CN101830541B (zh) * 2010-02-02 2012-11-07 张庆玉 地下反渗透海水淡化真空装置系统
DE102011116078A1 (de) * 2011-10-18 2013-04-18 Rwe Technology Gmbh Kühlvorrichtung für ein Dampfturbinenkraftwerk
WO2014194924A1 (fr) * 2013-06-05 2014-12-11 El-Monayer Ahmed El-Sayed Mohamed Production d'énergie et distillation d'eau
WO2015012448A1 (fr) * 2013-07-23 2015-01-29 한국에너지기술연구원 Système de production d'énergie complexe hydroélectrique de petite taille
WO2016042073A1 (fr) * 2014-09-19 2016-03-24 Hubert Zimmermann Dispositif de centrale électrique pourvu d'une sortie d'eau thermique au fond de la mer et mode opératoire
CN106430382A (zh) * 2016-12-30 2017-02-22 广东申菱环境系统股份有限公司 一种简便型海水淡化装置
WO2017074476A1 (fr) * 2015-10-26 2017-05-04 Verno Holdings, Llc Système de traitement d'eau et de production de vapeur d'eau pour d'autres utilisations de traitement
WO2017175092A1 (fr) * 2016-04-04 2017-10-12 Pinto Andre Centrale électrique thermique hydroélectrique sous vide
US10273168B2 (en) 2009-06-22 2019-04-30 Verno Holdings, Llc System for processing water and generating water vapor for other processing uses
CN111173669A (zh) * 2019-11-19 2020-05-19 中国科学院电工研究所 一种水沙蓄能发电系统
US11319218B2 (en) 2009-06-22 2022-05-03 Verno Holdings, Llc System for decontaminating water and generating water vapor
US11407655B2 (en) 2009-06-22 2022-08-09 Verno Holdings, Llc System for decontaminating water and generating water vapor
US11608278B2 (en) 2009-06-22 2023-03-21 Verno Holdings, Llc System for treating bio-contaminated wastewater and process for decontaminating a wastewater source

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH339432A (de) * 1956-04-18 1959-06-30 Rueegg Albert Verfahren und Einrichtung zur Energiegewinnung unter Ausnützung geringer Temperaturunterschiede
LU42538A1 (fr) * 1962-10-16 1962-12-17
US3140986A (en) * 1958-01-17 1964-07-14 Walter A Hubbard Method and apparatus for producing electrical power and distilling water by use of geothermal energy
CH406992A (de) * 1963-01-28 1966-01-31 Seiler Josef Vorrichtung zur Gewinnung von destilliertem Wasser aus unreinem Wasser
FR2134797A5 (fr) * 1971-04-21 1972-12-08 Edf
FR2471799A1 (fr) * 1979-12-21 1981-06-26 Pozzi Michel Procede et appareil de distillation de liquides par evaporation suivie de condensation
DE19506317A1 (de) * 1994-02-24 1995-09-21 Daniel Emert Anlage und Verfahren zur Energiegewinnung
GB2345519A (en) * 1999-01-04 2000-07-12 Nelson Rawlins Geothermal power generating system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH339432A (de) * 1956-04-18 1959-06-30 Rueegg Albert Verfahren und Einrichtung zur Energiegewinnung unter Ausnützung geringer Temperaturunterschiede
US3140986A (en) * 1958-01-17 1964-07-14 Walter A Hubbard Method and apparatus for producing electrical power and distilling water by use of geothermal energy
LU42538A1 (fr) * 1962-10-16 1962-12-17
CH406992A (de) * 1963-01-28 1966-01-31 Seiler Josef Vorrichtung zur Gewinnung von destilliertem Wasser aus unreinem Wasser
FR2134797A5 (fr) * 1971-04-21 1972-12-08 Edf
FR2471799A1 (fr) * 1979-12-21 1981-06-26 Pozzi Michel Procede et appareil de distillation de liquides par evaporation suivie de condensation
DE19506317A1 (de) * 1994-02-24 1995-09-21 Daniel Emert Anlage und Verfahren zur Energiegewinnung
GB2345519A (en) * 1999-01-04 2000-07-12 Nelson Rawlins Geothermal power generating system

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2890650A1 (fr) * 2005-09-12 2007-03-16 Emile Weisman Dispositif de dessalement sous vide de l'eau de mer
RU2443872C2 (ru) * 2006-03-31 2012-02-27 Клаус Вольтер Способ, устройство и система для преобразования энергии
US8393153B2 (en) 2006-03-31 2013-03-12 Klaus Wolter Method, device, and system for converting energy
WO2010019586A2 (fr) * 2008-08-11 2010-02-18 Ullman Carl T Procédés et systèmes de génération d'énergie
WO2010019586A3 (fr) * 2008-08-11 2010-04-22 Ullman Carl T Procédés et systèmes de génération d'énergie
ITAN20090009A1 (it) * 2009-03-17 2010-09-18 S Tra Te G I E S R L Apparato per produzione autonoma almeno di acqua dolce da dissalazione marina.
WO2010106565A1 (fr) * 2009-03-17 2010-09-23 S.Tra.Te.G.I.E. S.R.L. Appareil pour produire indépendamment au moins de l'eau douce par dessalement d'eau de mer
US10273168B2 (en) 2009-06-22 2019-04-30 Verno Holdings, Llc System for processing water and generating water vapor for other processing uses
US11667543B2 (en) 2009-06-22 2023-06-06 Verno Holdings, Llc Process for decontaminating water and generating water vapor
US11608278B2 (en) 2009-06-22 2023-03-21 Verno Holdings, Llc System for treating bio-contaminated wastewater and process for decontaminating a wastewater source
US11591241B2 (en) 2009-06-22 2023-02-28 Verno Holdings, Llc System for decontaminating water and generating water vapor
US11407655B2 (en) 2009-06-22 2022-08-09 Verno Holdings, Llc System for decontaminating water and generating water vapor
US11319218B2 (en) 2009-06-22 2022-05-03 Verno Holdings, Llc System for decontaminating water and generating water vapor
US10730762B2 (en) 2009-06-22 2020-08-04 Verno Holdings, Llc System for processing water and generating water vapor for other processing uses
CN101830541B (zh) * 2010-02-02 2012-11-07 张庆玉 地下反渗透海水淡化真空装置系统
CN102383884A (zh) * 2011-07-01 2012-03-21 重庆大学 重力有机工质热功转换系统
DE102011116078A1 (de) * 2011-10-18 2013-04-18 Rwe Technology Gmbh Kühlvorrichtung für ein Dampfturbinenkraftwerk
WO2014194924A1 (fr) * 2013-06-05 2014-12-11 El-Monayer Ahmed El-Sayed Mohamed Production d'énergie et distillation d'eau
WO2015012448A1 (fr) * 2013-07-23 2015-01-29 한국에너지기술연구원 Système de production d'énergie complexe hydroélectrique de petite taille
WO2016042073A1 (fr) * 2014-09-19 2016-03-24 Hubert Zimmermann Dispositif de centrale électrique pourvu d'une sortie d'eau thermique au fond de la mer et mode opératoire
WO2017074476A1 (fr) * 2015-10-26 2017-05-04 Verno Holdings, Llc Système de traitement d'eau et de production de vapeur d'eau pour d'autres utilisations de traitement
WO2017175092A1 (fr) * 2016-04-04 2017-10-12 Pinto Andre Centrale électrique thermique hydroélectrique sous vide
CN106430382A (zh) * 2016-12-30 2017-02-22 广东申菱环境系统股份有限公司 一种简便型海水淡化装置
CN111173669A (zh) * 2019-11-19 2020-05-19 中国科学院电工研究所 一种水沙蓄能发电系统
CN111173669B (zh) * 2019-11-19 2021-04-30 中国科学院电工研究所 一种水沙蓄能发电系统

Also Published As

Publication number Publication date
AU2002256831A1 (en) 2003-11-11

Similar Documents

Publication Publication Date Title
WO2003095802A1 (fr) Centrale combinant dessalement et production hydroelectrique
US10473368B2 (en) Heat pump, small power station and method of pumping heat
US7841201B2 (en) Heat pump that evaporates water as a working liquid to generate a working vapor
US7647774B2 (en) Cryogenic cogeneration system
US8484991B2 (en) Heat pump comprising a cooling mode
JP6298072B2 (ja) 集中熱力学的太陽光発電所または従来の火力発電所
US10676373B2 (en) Thermal utilization system and methods
US20210180471A1 (en) Power Generation Method and System Using Working Fluid with Buoyancy Engine
US4041707A (en) Underwater thermal energy conversion unit
CN112664419B (zh) 一种可调闭式海洋温差能发电系统
US3290229A (en) Apparatus for direct contact condensation of vapors
US3204861A (en) Pump and control therefor
WO2010124697A2 (fr) Flottaison sur des pontons de dessalement et centrale tandem de génération d'électricité
RU2234618C2 (ru) Гравитационная паросиловая гидроэлектростанция
RU2810845C1 (ru) Двухфазный гравитационный двигатель
RU2805156C1 (ru) Энергоустановка, работающая на перепадах температур в разных средах (Варианты)
WO2009090305A1 (fr) Procédé et installation pour produire de l'énergie
EP2492627B1 (fr) Système de refroidissement pour cycles de Rankine thermique solaire
Ninić et al. Hybrid wind-power-distillation plant
El-Hadik Lifting of Water by Thermodynamic Pump.
FI64977C (fi) Med hjaelp av temperaturdifferenser fungerande kraftmaskin
SU49651A1 (ru) Способ работы силовой (энергетической) установки дл использовани запасов бесплатной энергии (воды, разности температур воды и воздуха)
WO2012167801A1 (fr) Installation à impulsions pour transformer une énergie thermique à faible potentiel en énergie électrique
RU2285132C1 (ru) Тепловая электростанция
RU2482324C2 (ru) Вакуумная гидроустановка

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP