WO2003088300A1 - Image display apparatus and its manufacturing method - Google Patents

Image display apparatus and its manufacturing method Download PDF

Info

Publication number
WO2003088300A1
WO2003088300A1 PCT/JP2003/004109 JP0304109W WO03088300A1 WO 2003088300 A1 WO2003088300 A1 WO 2003088300A1 JP 0304109 W JP0304109 W JP 0304109W WO 03088300 A1 WO03088300 A1 WO 03088300A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
spacer
image display
conductor
display device
Prior art date
Application number
PCT/JP2003/004109
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeo Takenaka
Masaru Nikaido
Satoko Oyaizu
Satoshi Ishikawa
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to EP20030712989 priority Critical patent/EP1492150A1/en
Priority to KR10-2004-7015475A priority patent/KR20040095351A/en
Publication of WO2003088300A1 publication Critical patent/WO2003088300A1/en
Priority to US10/954,070 priority patent/US20050104505A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/028Mounting or supporting arrangements for flat panel cathode ray tubes, e.g. spacers particularly relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/18Assembling together the component parts of electrode systems
    • H01J9/185Assembling together the component parts of electrode systems of flat panel display devices, e.g. by using spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/863Spacing members characterised by the form or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/865Connection of the spacing members to the substrates or electrodes
    • H01J2329/8655Conductive or resistive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/865Connection of the spacing members to the substrates or electrodes
    • H01J2329/866Adhesives

Definitions

  • Image display device and method of manufacturing the same
  • the present invention relates to an image display device having a substrate disposed to face and a plurality of electron sources disposed on the inner surface of one substrate, and a method of manufacturing the same.
  • a flat display device such as a field emission display (hereinafter referred to as FED) has been drawing attention.
  • FED field emission display
  • This FED has a first substrate and a second substrate which are opposed to each other with a predetermined gap therebetween, and these substrates are joined to each other directly or via a rectangular frame-shaped side wall to form a vacuum. Constructs an envelope.
  • a phosphor layer is formed on the inner surface of the first substrate, and a plurality of electron-emitting devices are provided on the inner surface of the second substrate as electron sources that excite the phosphor layer to emit light.
  • a plurality of spacers are provided between the substrates as a supporting member.
  • an anode voltage is applied to the phosphor layer and the electron emission element
  • the electron beam emitted from the phosphor is accelerated by an anode voltage to collide with the phosphor layer, so that the phosphor emits light to display an image.
  • the size of the electron-emitting device is on the order of micrometer, and the distance between the first substrate and the second substrate can be set to the order of millimeter. For this reason, compared to the cathode ray tube (hereinafter referred to as CRT) currently used as a display for televisions and computers, the image display device has higher resolution, lighter weight, Thinning can be achieved.
  • CRT cathode ray tube
  • the gap between the first and second substrates cannot be made too large from the viewpoint of resolution, support member characteristics, manufacturability, etc., and needs to be set to about 1 to 2 mm. There is. Therefore, secondary electrons and reflected electrons generated when the electrons emitted from the electron-emitting devices collide with the phosphor screen formed on the first substrate collide with a spacer provided between the substrates, and As a result, the spacer becomes charged.
  • the spacer At the accelerating voltage at FED, the spacer is generally positively charged, and the electron beam emitted from the electron-emitting device is attracted to the spacer and deviates from its original orbit. Therefore, there is a problem that electron beam mis-landing occurs on the phosphor layer and the color purity of a displayed image is degraded.
  • the present invention has been made in view of the above points, and an object of the present invention is to prevent an orbital shift of an electronic beam without causing a rise in temperature and an increase in power consumption, and to improve image quality in image display.
  • An object of the present invention is to provide an apparatus and a manufacturing method thereof.
  • an image display device comprises: a first substrate having an image display surface; a first substrate having an image display surface; A second substrate provided with a plurality of electron sources for emitting and exciting the image display surface; and an atmospheric pressure load disposed between the first and second substrates and acting on the first and second substrates.
  • a method of manufacturing an image display device comprising: a first substrate having an image display surface; and a first substrate having a gap between the first substrate and an electron emission surface.
  • a second substrate provided with a plurality of electron sources for exciting the image display surface; and an atmospheric pressure load disposed between the first and second substrates and acting on the first and second substrates.
  • a conductor is disposed between a predetermined position of the second substrate and a tip of the spacer on the second substrate side, and the spacer is placed on the second substrate side with the tip sandwiching the conductor.
  • FIG. 1 is a perspective view showing an SED according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the SED cut along a line 111 in FIG.
  • FIG. 3 is an enlarged cross-sectional view of the above SED.
  • FIG. 4 is an enlarged sectional view showing a main part of an SD according to a second embodiment of the present invention.
  • FIG. 5 is an enlarged cross-sectional view showing a main part of an SED according to a third embodiment of the present invention.
  • SED surface conduction electron-emitting device
  • this SED has a first substrate 10 and a second substrate 12 each made of a rectangular glass plate as transparent insulating substrates. Are opposed to each other with a gap of about 1.0 to 2.0 mm.
  • the second substrate 12 is formed to have a slightly larger dimension than the first substrate 10.
  • the first substrate 10 and the second substrate 12 are joined to each other via a rectangular frame-shaped side wall 14 made of glass to form a flat rectangular vacuum envelope 15. It is composed.
  • a phosphor screen 16 is formed as an image display surface.
  • This phosphor screen 16 is configured by arranging phosphor layers R, G, B and a black light-shielding layer 11 that emit red, blue, and green light upon collision with electrons. These phosphor layers R, G, and B are formed in a strip shape or a dot shape.
  • a metal back 17 made of aluminum or the like and a getter film (not shown) are formed on the phosphor screen 16. Note that a transparent conductive film or a color filter film made of, for example, ITO may be provided between the first substrate 10 and the phosphor screen.
  • a number of surface conduction electron-emitting devices 18 each emitting an electron beam are provided as electron sources for exciting the phosphor layer of the phosphor screen 16. Have been. These electron-emitting devices 18 have a plurality of rows and a plurality of rows corresponding to each pixel. They are arranged in multiple rows. Each electron-emitting device 18 includes an electron-emitting portion (not shown), a pair of device electrodes for applying a voltage to the electron-emitting portion, and the like.
  • a number of wires 21 for supplying a potential to the electron-emitting device 18 are provided in a matrix shape, and the ends of the wires 21 are provided outside the vacuum envelope 15. Has been withdrawn.
  • the side wall 14 functioning as a bonding member is made of, for example, a sealing material 20 such as a low-melting-point glass or a low-melting-point metal to form a peripheral portion of the first substrate 10 and a peripheral portion of the second substrate 12.
  • a sealing material 20 such as a low-melting-point glass or a low-melting-point metal to form a peripheral portion of the first substrate 10 and a peripheral portion of the second substrate 12.
  • the first substrate and the second substrate are bonded together.
  • the SED includes a spacer assembly 22 disposed between the first substrate 10 and the second substrate 12.
  • the spacer assembly 22 includes a plate-shaped grid 24 and a plurality of column-shaped spacers erected integrally on both sides of the grid.
  • the grid 24 has a first surface 24 a facing the inner surface of the first substrate 10 and a second surface 24 b facing the inner surface of the second substrate 12. It is arranged in parallel with the substrate.
  • a large number of electron beam passage holes 26 and a plurality of spacer openings 28 are formed in the grid 24 by etching or the like.
  • the electron beam passage holes 26 functioning as apertures in the present invention are arranged to face the electron-emitting devices 18 respectively, and transmit the electron beams emitted from the electron-emitting devices.
  • the spacer openings 28 are located between the electron beam passage holes 26 and are arranged at a predetermined pitch.
  • the flange 24 is formed of, for example, an iron-nickel metal plate to a thickness of 0.2 to 0.25 mm, and the surface thereof has An oxide film composed of elements constituting the metal plate, for example, an oxide film composed of Fe 3 O 4 and i Fe 3 O 4 is formed on the surface of the grid 24.
  • a high-resistance film is formed by coating and firing a high-resistance material consisting of a mix, and the resistance of the high-resistance film is set to E + 8 ⁇ or more.
  • the electron beam passage hole 26 is formed in a rectangular shape of, for example, 0.15 to 0.25 mm X 0.15 to 0.25 mm, and the spacer opening 28 is formed of, for example, a diameter. Are formed in a circular shape of about 0.2 to 0.5 mm.
  • the above-described high-resistance film is also formed on the wall surface of the electron beam passage hole 26 provided in the grid 24.
  • a first spacer 30 a is standing upright so as to overlap with each spacer opening 28.
  • An indium layer is applied to the extension end of each first spacer 30a to form a relaxation layer 31 for reducing variations in spacer height.
  • the extending end of each first spacer 30a is connected to the light-shielding layer 11 of the relaxation layer 31, the getter film, the metal back 17 and the phosphor screen 16. And is in contact with the inner surface of the first substrate 10.
  • the relaxation layer 31 does not affect the trajectory of the electron beam at all, and is limited to metal as long as it has an appropriate hardness that has an effect of reducing the variation in height of the spacer. is not.
  • the black light-shielding layer 11 of the metal back 17 and the phosphor screen 16 also has the effect of reducing the height variation of the spacer, and this can sufficiently reduce the variation in height. If available, relaxation layer 3 There is no need to provide 1
  • a second spacer 3Ob is provided standing upright over the spacer holes 28, and its extending end is It is in contact with the inner surface of the second substrate 12.
  • the extension end of each second spacer 3 Ob is located on the wiring 21 provided on the inner surface of the second substrate 12, and the extension of the wiring and the second spacer is also provided.
  • a conductor 33 is provided between the protruding end.
  • the conductor 33 is formed in a shape substantially similar to the extended end of the second spacer 30b, and its thickness, that is, the height along the direction orthogonal to the second substrate 12 is For example, it is set to 120 0m.
  • the conductor 33 acts so as to repel the electron beam emitted from the electron-emitting device 18 in a direction away from the second spacer 30b.
  • the conductor 33 is made of, for example, a high melting point metal such as platinum, tungsten, iridium, rhenium, osmium, ruthenium, an alloy thereof, or a conductive glass containing these metals. Have been.
  • Metals such as indium, aluminum, silver, and copper can be used as the conductor 33.However, when discharge occurs, if the melting temperature is low, the metal melts and does not perform its original function. Therefore, it is preferable to use a high melting point metal.
  • the shape of the conductor 33 is not particularly limited, but it is desirable that the corners be rounded in consideration of electric discharge.
  • the height of the conductor 33 is determined by the repulsive force applied to the electron beam, that is, the electron beam. It is set arbitrarily in consideration of the orbit correction amount.
  • Each of the first and second spacers 30a and 30b is a grits It is formed in a tapered shape with a smaller diameter from the side of the extension 24 toward the extension end.
  • each of the first spacers 30a has a diameter of about 0.4 mm at the base end located on the side of the Darlid 24, a diameter of about 0.3 mm at the extension end, and a height of about 0.3 mm. . 6 mm.
  • Each of the second spacers 30b has a diameter of approximately 0.4 mm at the base end located on the grid 24 side, a diameter of approximately 0.25 mm at the extension end, and a height of approximately 0.25 mm. 0.8 mm.
  • the height of 30a is formed lower than the height of the second spacer 3Ob, and the height of the second spacer is approximately equal to the height of the first spacer.
  • 4 Z is set to 3 times or more.
  • the surface resistance of the first spacer 30 a and the second spacer 30 b is 5 ⁇ 10 l 3 gj.
  • Each spacer opening 28, the first and second spacers 30a, 30b are located in line with each other, and the first and second spacers are located in this spacer opening. They are integrally connected to each other through 28.
  • the first and second spacers 30a and 30b are formed integrally with the grid 24 with the grid 24 sandwiched from both sides.
  • the spacer assembly 22 configured as described above is disposed between the first substrate 10 and the second substrate 12.
  • the first and second spacers 30a and 30b contact the inner surfaces of the first substrate 10 and the second substrate 12 so that the first and second spacers 30a and 30b contact these substrates.
  • the applied atmospheric pressure load is supported, and the distance between the substrates is maintained at a predetermined value.
  • the SED is a voltage supply unit 50 that applies a voltage to the grid 24 and the metal back 17 of the first substrate 10. It has.
  • This voltage supply section 50 is connected to the grid 24 and the metal back 17, respectively.
  • the grid 24 has a voltage of 12 kV and the metal back 17 has a voltage of 17 k. Apply a voltage of V. That is, the voltage applied to the grid 24 is set higher than the voltage applied to the first substrate 10, for example, within 1.25 times.
  • a grid 24 having a predetermined dimension and first and second dies (not shown) having a rectangular plate shape and substantially the same dimensions as the grid are provided.
  • a thin plate with a thickness of 0.12 mm made of Fe—50% Ni is degreased.
  • the etching is used to etch the electron beam passage holes 26 and the space.
  • An aperture 28 is formed to form a grid 24.
  • the entire grid 24 is oxidized by an oxidation process, and an insulating film is formed on the surface of the grid including the inner surfaces of the electron beam passage holes 26 and the spacer openings 28.
  • a solution in which fine particles of tin oxide and antimony oxide are dispersed is spray-coated on the insulating film, dried and fired to form a high-resistance film.
  • the first and second molds have grid 24 spacers respectively. It has a plurality of through holes corresponding to the openings 28. In the first mold and the second mold, at least the inner surfaces of the plurality of through holes corresponding to the spacer openings 28 are coated with a resin that is thermally decomposed by heat treatment. .
  • the first mold is positioned such that each through hole is aligned with the spacer opening 28 of the grid 24, and the first surface 24a of the grid is positioned. In close contact.
  • the second mold is closely attached to the second surface 24b of the grid with each through-hole positioned so that each through-hole is aligned with the spacer opening 28 of the grid 24. Let it. Then, the first mold, the grid 24 and the second mold are fixed to each other using a clamper or the like (not shown).
  • a paste-shaped spacer forming material is supplied from the outer surface side of the first mold, and the through hole of the first mold, the spacer opening 28 of the grid 24, Fill the spacer of the second mold with the spacer forming material.
  • a spacer-forming material a glass paste containing at least a UV-curable binder (organic component) and a glass filler is used.
  • the filled spacer forming material is irradiated with ultraviolet rays (UV) as radiation from the outer surfaces of the first and second molds, and the spacer forming material is cured by UV. After this, heat curing may be performed if necessary.
  • UV ultraviolet rays
  • the resin applied to each of the through holes of the first and second molds is thermally decomposed by heat treatment to form a gap between the spacer forming material and the mold. Separate the mold from grid 24.
  • a grid 24 filled with a spacer forming material is added.
  • the sintered material is fired at about 500 to 550 ° C for 30 minutes to 1 hour. .
  • a spacer assembly 22 in which the first and second spacers 30a and 30b are formed on the grid 24 is obtained.
  • a second substrate 12 to which 4 has been bonded is prepared.
  • a conductive paste is printed on the wiring 21 of the second substrate 12 so as to have a thickness of approximately 120 m in a shape substantially similar to the tip of the second spacer 30b.
  • the conductor 33 is formed at a predetermined position on the wiring 21 by drying and firing.
  • indium powder for forming the height relaxing layer 31 is applied to the extending end of each first spacer 30a.
  • the spacer assembly 22 configured as described above is positioned and arranged on the second substrate 12.
  • the spacer assembly 22 is positioned so that the extending ends of the second spacers 30b are in contact with the conductors 33, respectively.
  • the first substrate 10, the second substrate 12, and the spacer assembly 22 are arranged in a vacuum chamber, and the inside of the vacuum chamber is evacuated.
  • the indium powder placed at the extension end of the first spacer 30a is melted, and the pushing height of the first substrate 10a is corrected. This produces a SED with spacer assembly 22.
  • the electron beam B emitted from the electron-emitting device 18 located in the vicinity of the second spacer 3 Ob becomes the second beam. It is repelled by the electric field formed by the conductor layer 33 provided between the extended end of the spacer 30b and the second substrate 12, and takes a trajectory in a direction away from the second spacer. While heading toward the electron beam passage hole 26. Thereafter, the electron beam B is attracted by the charged second spacer 30 Ob and the first spacer 30a, and orbits in a direction approaching these spacers. The repulsion and suction cancel out the orbital deviation of the electron beam B, and the electron beam B emitted from the electron-emitting device 18 finally reaches the target of the phosphor screen 16. Reaches the phosphor layer.
  • the electron beam movement phenomenon occurs when secondary electrons and reflected electrons generated on the phosphor screen collide with the spacer and charge the spacer. At this time, the secondary electron emission coefficient on the surface of the spacer becomes 1 or more due to the accelerating voltage used in the SED, the spacer side wall becomes positively charged, and the electron beam is attracted to the spacer side. become.
  • the conductor 33 is provided between the second substrate side end of the spacer having a relatively low electron velocity and the second substrate, and the conductor 33 allows the electron beam to be emitted. In the direction to repel the spacer An electric field is formed. By controlling the height of the conductor 33, it is possible to change the strength of the electric field and control the amount of repulsion. In the present embodiment, instead of releasing the charge of the spacer, the orbital deviation of the electron beam is canceled by the suction by the spacer and the repulsion by the conductor 33. ing. Therefore, according to the above SED, there is no need to provide a complicated mechanism for converging an electron beam, such as an electron gun in a CRT.
  • the first and second spacers 30a and 30b are charged, and even if the electron beam B is attracted by these spacers. In addition, it is possible to prevent the orbit of the electron beam from being shifted. As a result, mislanding of the electron beam B is prevented, and as a result, deterioration of color purity is reduced and image quality can be improved.
  • the conductive treatment is applied directly to all or part of the surface of the spacer, the reactive current flowing from the first substrate to the second substrate via the spacer increases, and the temperature rises or increases. Causes an increase in power.
  • the conductive processing part may be a gas generation source during the operation of the SED, and may cause ion bombardment of the electron source located near the spacer.
  • the conductor 33 can be used to reduce the electric current around the resistor without causing an increase in the reactive current, an increase in the temperature, an increase in the power consumption, and an ion collision. By changing the field, the trajectory of the electron beam can be easily controlled.
  • the grid 24 is disposed between the first substrate 10 and the second substrate 12 and the height of the first spacer 30a is increased.
  • the height is formed lower than the height of the second spacer 30b.
  • the grid 24 is located closer to the first substrate 10 side than the second substrate 12 is. Therefore, even when a discharge occurs from the first substrate 10 side, the grid 24 suppresses the discharge damage of the electron-emitting devices 18 provided on the second substrate 12. Becomes possible. Therefore, it is possible to obtain an SED with excellent pressure resistance against discharge and improved image quality.
  • the height of the first spacer 30a is formed lower than that of the second spacer 30b, so that the grid is applied to the grid 24. Even when the applied voltage is higher than the voltage applied to the first substrate 10, the electrons generated from the electron-emitting devices 18 can reliably reach the phosphor screen.
  • the first and second spacers 30a and 30b can maintain the interval between the first substrate 10 and the second substrate 12 uniformly over almost the entire area. Become.
  • the conductor 33 is formed of a metal or an alloy in a shape similar to the extended end of the second spacer 30b.
  • the conductor 33 is formed of a metal plate having a thickness of 200 m from F e —50% Ni and has a fixed layer 4 made of a conductive frit, a conductive adhesive or the like. 0 is fixed on the shield line 2 1 of the second substrate 12. Then, the spacer assembly 22 holds the first and second substrates 10 and 1 with the extended end of each second spacer 30 b contacting the conductor 33. It is located between the two.
  • the first and second substrates 10, 12, and the substrate are manufactured by the same steps as in the first embodiment.
  • the height of the first spacer 30a was 0.2 mm
  • the height of the second spacer 3Ob was 1.0 Omm.
  • a conductive adhesive having a thickness of 5 ⁇ m is applied to a predetermined position on the wiring 21 of the second substrate 12 in a shape substantially similar to the tip of the second spacer 30b, and the fixing layer 4 is formed. Form a 0.
  • the fixed layer is dried, and the conductor 33 is wired. Stick on top.
  • the spacer assembly 22 is positioned and arranged on the second substrate 12. At this time, the extending ends of the second spacers 30b are in contact with the conductors 33, respectively. Position the spacer assembly 22 as shown. In this state, the first substrate 10, the second substrate 12, and the spacer assembly 22 are placed in a vacuum chamber, and the inside of the vacuum chamber is evacuated. To join the first substrate to the second substrate. Thereby, the SED is manufactured.
  • the same operation and effect as those of the first embodiment can be obtained.
  • the fixed layer 40 in which the conductor 33 is fixed to the wiring 21 can be used as a correction layer for correcting variations in the height of the spacer. For this reason, it is possible to reduce the manufacturing cost of the spacer without requiring high processing accuracy of the spacer.
  • the SED according to the second embodiment and the SED without the conductor 33 were prepared, and the movement amount of the electron beam was compared.
  • the electron beam was suctioned to the spacer side by about 150 Um, whereas in the SED according to the present embodiment, the moving amount of the electron beam was Was almost zero, and the color purity of the displayed image was also improved.
  • the conductor 33 is formed of a metal or an alloy in a shape similar to the extended end of the second spacer 30b. ing.
  • the conductor 33 is formed of a metal plate having a thickness of 200 jUm from F e —50% Ni and a fixed layer made of an insulating adhesive, for example, a flat glass. It is fixed to the extended end of the second spacer 30b by 42.
  • the spacer assembly 22 is fixed to the conductor 33. Are disposed between the first and second substrates 10 and 12 with the extended end of each second spacer 30 b contacting the wiring 21 on the second substrate 12. .
  • the first and second substrates 10, 12, and the substrate are manufactured by the same steps as those in the first embodiment. Form the user assembly 22. At this time, the height of the first spacer 30a was 0.2 mm, and the height of the second spacer 30b was 1.0 mm.
  • a flat glass is applied to the tip of each second spacer 30 b of the spacer assembly 22 to form a fixed layer 42.
  • the conductor 33 having a thickness of 200 ⁇ m made of Fe—50% Ni is placed on the fixed layer 42, the fixed layer is dried and fired. The conductor 33 is fixed to the tip of the second spacer 3 Ob.
  • the spacer assembly 22 is positioned and arranged on the second substrate 12. At this time, the spacer assembly 22 is placed such that the extended ends of the second spacers 30b to which the conductors 33 are fixed are located on the wirings 21 of the second substrate 12 respectively. Position. In this state, the first substrate 10, the second substrate 12, and the spacer assembly 22 are arranged in a vacuum chamber, and the inside of the vacuum chamber is evacuated. Then, the first substrate is joined to the second substrate. Thereby, SED is manufactured.
  • the fixed layer 42 that fixes the conductor 33 to the tip of the second spacer may be used as a correction layer that corrects the height variation of the spacer. it can. Therefore, it is possible to reduce the manufacturing cost of the spacer without requiring high processing accuracy of the spacer.
  • the SED according to the third embodiment and the SED without the conductor 33 were prepared, and the movement amount of the electron beam was compared.
  • the electron beam was attracted to the spacer side by about 150 jtm, whereas in the SED according to the present embodiment, the movement amount of the electron beam was small. It was almost zero, and the color purity of the displayed image was also improved.
  • the present invention is not limited to the above-described embodiment, but can be variously modified within the scope of the present invention.
  • the present invention is applicable not only to an image display device having a grid but also to an image display device having no grid.
  • a columnar or plate-shaped spacer formed integrally is used, and a conductor is provided between the second substrate-side tip of each spacer and the second substrate.
  • the conductor is provided between the wiring on the second substrate and the tip of the spacer.
  • the conductor is not limited to the wiring, and the second substrate may be provided at a position avoiding the electron-emitting device. It is sufficient if it is provided between and the tip of the spreader.
  • the electron source is not limited to a surface conduction electron-emitting device, but can be applied to any type of FED using an electron source that emits electrons in a vacuum such as a field emission type or a carbon nanotube.

Abstract

An image display apparatus comprises a first substrate (10) having an image display face and a second substrate opposite to the first substrate with a gap and provided with electron sources (18) which excite the image display face. Spacers (30a, 30b) which support the atmospheric load acting on these substrates are provided between the first and second substrates. A conductor (33), which repels the electron beam emitted from the electron source, is provided between the end of the spacer on the second substrate side and the second substrate.

Description

明 細 書  Specification
画像表示装置およびその製造方法 Image display device and method of manufacturing the same
技術分野 Technical field
この発明は、 対向配置された基板と、 一方の基板の内面に 配設された複数の電子源と、 を有した画像表示装置およびそ の製造方法に関する。  The present invention relates to an image display device having a substrate disposed to face and a plurality of electron sources disposed on the inner surface of one substrate, and a method of manufacturing the same.
背景技術 Background art
近年、 高品位放送用あるいはこれに伴う高解像度の画像表 示装置が望まれてお り 、 そのスク リーン表示性能については 一段と厳しい性能が要望されている。 これら要望を達成する ためにはスク リーン面の平坦化、 高解像度化が必須であ り 、 同時に軽量、 薄型化も図らねばならない。  In recent years, there has been a demand for a high-definition image display device for high-definition broadcasting or a high-resolution image display device associated therewith. In order to achieve these demands, it is necessary to flatten the screen surface and increase the resolution. At the same time, the weight and thickness must be reduced.
上記のよ う な要望を満たす画像表示装置と して、 例えば、 フ ィ ール ドェ ミ ッ シ ョ ンディ ス プ レイ (以下 F E D と称す る) 等の平面表示装置が注目 されている。 この F E Dは、 所 定の隙間を置いて対向配置された第 1 基板および第 2基板を 有し、 これらの基板は、 その周縁部同士が直接あるいは矩形 枠状の側壁を介して互いに接合され真空外囲器を構成してい る。 第 1 基板の内面には蛍光体層が形成され、 第 2基板の内 面には、 蛍光体層を励起して発光させる電子源と して複数の 電子放出素子が設けられている。  As an image display device that satisfies the above demands, for example, a flat display device such as a field emission display (hereinafter referred to as FED) has been drawing attention. This FED has a first substrate and a second substrate which are opposed to each other with a predetermined gap therebetween, and these substrates are joined to each other directly or via a rectangular frame-shaped side wall to form a vacuum. Constructs an envelope. A phosphor layer is formed on the inner surface of the first substrate, and a plurality of electron-emitting devices are provided on the inner surface of the second substrate as electron sources that excite the phosphor layer to emit light.
また、 第 1 基板および第 2基板に加わる大気圧荷重を支え るために、 これら基板の間には支持部材と して複数のスぺ一 サが配設されている。 この F E Dにおいて、 画像を表示する 場合、 蛍光体層にアノ ー ド電圧が印加され、 電子放出素子か ら放出 された電子ビームをァノ ー ド電圧によ り 加速 して蛍光 体層へ衝突させる こ と によ り 、 蛍光体が発光 して画像を表示 する。 In addition, in order to support an atmospheric pressure load applied to the first substrate and the second substrate, a plurality of spacers are provided between the substrates as a supporting member. In this FED, when displaying an image, an anode voltage is applied to the phosphor layer and the electron emission element The electron beam emitted from the phosphor is accelerated by an anode voltage to collide with the phosphor layer, so that the phosphor emits light to display an image.
このよ う な F E Dでは、 電子放出素子の大きさがマイ ク ロ メ ー トルオーダーであ り 、 第 1 基板と第 2 基板と の間隔を ミ リ メ ー トルオーダ一に設定する こ とができる。 このため、 現 在のテ レ ビやコ ン ピュータ のディ ス プレイ と して使用されて いる陰極線管 (以下、 C R T と称する) と比較 して、 画像表 示装置の高解像度化、 軽量化、 薄型化を達成する こ とが可能 と なる。  In such an FED, the size of the electron-emitting device is on the order of micrometer, and the distance between the first substrate and the second substrate can be set to the order of millimeter. For this reason, compared to the cathode ray tube (hereinafter referred to as CRT) currently used as a display for televisions and computers, the image display device has higher resolution, lighter weight, Thinning can be achieved.
上述のよ う な画像表示装置において、 実用的な表示特性を 得るためには、 通常の C R T と 同様の蛍光体を用い、 ァノ ー ド電圧を数 k V以上に設定する こ とが望ま しい。 しか し、 第 1 基板と第 2 基板との間の隙間は、 解像度や支持部材の特性、 製造性な どの観点から あま り 大き く する こ と はできず、 1 ~ 2 m m程度に設定する必要がある。 そのため、 電子放出素子 か ら放出 された電子が第 1 基板に形成された蛍光面に衝突す る際に発生 した 2 次電子および反射電子が基板間に配設され たスぺーザに衝突 し、 その結果、 スぺーサが帯電 して しま う 。 F E D における加速電圧では、 一般にスぺーサは正に帯電 し、 電子放出素子から放出された電子ビームはスぺーザに引 き付 け られ、 本来の軌道からずれて しま う 。 従って、 蛍光体層に 対 して電子 ビームの ミスラ ンディ ングが発生 し、 表示画像の 色純度が劣化する と いう 問題がある。  In order to obtain practical display characteristics in such an image display device as described above, it is desirable to use a phosphor similar to an ordinary CRT and set the anode voltage to several kV or more. . However, the gap between the first and second substrates cannot be made too large from the viewpoint of resolution, support member characteristics, manufacturability, etc., and needs to be set to about 1 to 2 mm. There is. Therefore, secondary electrons and reflected electrons generated when the electrons emitted from the electron-emitting devices collide with the phosphor screen formed on the first substrate collide with a spacer provided between the substrates, and As a result, the spacer becomes charged. At the accelerating voltage at FED, the spacer is generally positively charged, and the electron beam emitted from the electron-emitting device is attracted to the spacer and deviates from its original orbit. Therefore, there is a problem that electron beam mis-landing occurs on the phosphor layer and the color purity of a displayed image is degraded.
このよ う なスぺーサによ る電子ビームの吸引 を低減するた め、 スぺーサ表面の全部または一部に導電処理を施して帯電 を逃がすこ とが考えられる。 しか しながら、 スぺーサ自体に 導電処理を施した場合、 スぺーサを介 して第 1 基板から第 2 基板に流れる無効電流が増加 し、 温度の上昇や消費電力の増 加を引き起こす。 In order to reduce the attraction of the electron beam by such a spacer, Therefore, it is conceivable that all or part of the spacer surface is subjected to a conductive treatment to release the charge. However, when the spacer itself is subjected to conductive treatment, the reactive current flowing from the first substrate to the second substrate via the spacer increases, causing an increase in temperature and an increase in power consumption.
発明の開示 Disclosure of the invention
この発明は以上の点に鑑みなされたもので、 その目的は、 温度の上昇や消費電力の増加を引き起こすこ と な く 、 電子ビ ー厶の軌道ずれを防止し、 画像品位の向上 した画像表示装置 およびその製造方法を提供する こ とにある。  The present invention has been made in view of the above points, and an object of the present invention is to prevent an orbital shift of an electronic beam without causing a rise in temperature and an increase in power consumption, and to improve image quality in image display. An object of the present invention is to provide an apparatus and a manufacturing method thereof.
上記目的を達成するため、 この発明の態様に係る画像表示 装置は、 画像表示面を有する第 1 基板と、 上記第 1 基板に隙 間を置いて対向配置されている と と もに、 電子を放出 して上 記画像表示面を励起する複数の電子源が設けられた第 2基板 と、 上記第 1 基板および第 2基板間に配設され、 第 1 および 第 2基板に作用する大気圧荷重を支持する複数のスぺーザと、 上記スぺーザの上記第 2基板側の先端と上記第 2基板との間 にそれぞれ配置され、 上記電子源から放出された電子ビーム を反発する導電体と、 を備えている。  In order to achieve the above object, an image display device according to an aspect of the present invention comprises: a first substrate having an image display surface; a first substrate having an image display surface; A second substrate provided with a plurality of electron sources for emitting and exciting the image display surface; and an atmospheric pressure load disposed between the first and second substrates and acting on the first and second substrates. A plurality of soothers for supporting an electron beam, and a conductor disposed between the tip of the soother on the side of the second substrate and the second substrate, respectively, for repelling an electron beam emitted from the electron source. , And.
また、 この発明の他の態様に係る画像表示装置の製造方法 は、 画像表示面を有する第 1 基板と、 上記第 1 基板に隙間を 置いて対向配置されている と と もに、 電子を放出 し上記画像 表示面を励起する複数の電子源が設けられた第 2基板と、 上 記第 1 基板および第 2基板間に配設され、 第 1 および第 2基 板に作用する大気圧荷重を支持する複数のスぺ一ザと、 を備 えた画像表示装置の製造方法において、 Further, according to another aspect of the present invention, there is provided a method of manufacturing an image display device, comprising: a first substrate having an image display surface; and a first substrate having a gap between the first substrate and an electron emission surface. A second substrate provided with a plurality of electron sources for exciting the image display surface; and an atmospheric pressure load disposed between the first and second substrates and acting on the first and second substrates. Multiple supporting users and In the method for manufacturing an image display device,
上記第 2基板の所定位置と上記スぺーサの第 2基板側の先 端との間に導電体を配置し、 上記スぺーサをその第 2基板側 の先端が上記導電体を挟んで上記第 2基板に当接するよ う に 配置した状態で、 上記第 1 および第 2基板を互いに接合する 上記のよ う に構成された画像表示装置によれば、 スぺーサ 近傍に位置 した電子源から放出された電子は、 一旦、 導電体 によって形成された電界によ リ 反発され、 スぺーザから離れ る方向へ軌道を取った後、 今度はスぺーサに吸引されスぺー ザに接近する方向へ軌道を取る。 この反発と吸引とにょ リ 電 子の軌道ずれが相殺され、 電子源から放出された電子は最終 的に画像表示面の目標の位置に到達する。 4 よ り、 電子 のミスランディ ングに起因する色純度の劣化を低減し、 画像 品位の向上 した画像表示装置が得られる。  A conductor is disposed between a predetermined position of the second substrate and a tip of the spacer on the second substrate side, and the spacer is placed on the second substrate side with the tip sandwiching the conductor. According to the image display device configured as described above, in which the first and second substrates are joined to each other in a state where the electron source is arranged to be in contact with the second substrate, the electron source located near the spacer is The emitted electrons are once repelled by the electric field formed by the conductor, orbit in the direction away from the spacer, and then are attracted to the spacer and approach the spacer. Take the orbit to The repulsion and attraction cancel the orbital deviation of the electrons, and the electrons emitted from the electron source eventually reach the target position on the image display surface. Thus, it is possible to obtain an image display device in which the deterioration of color purity due to electron mislanding is reduced and the image quality is improved.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 この発明の実施の形態に係る S E Dを示す斜視図 図 2 は 図 1 の線 1 1一 1 1 に沿って破断した上記 S E Dの 斜視図。  FIG. 1 is a perspective view showing an SED according to an embodiment of the present invention. FIG. 2 is a perspective view of the SED cut along a line 111 in FIG.
図 3 は 上記 S E Dを拡大 して示す断面図。  FIG. 3 is an enlarged cross-sectional view of the above SED.
図 4 は この発明の第 2 の実施の形態に係る S Dの要部 を拡大して示す断面図。  FIG. 4 is an enlarged sectional view showing a main part of an SD according to a second embodiment of the present invention.
図 5 は、 この発明の第 3 の実施の形態に係る S E Dの要部 を拡大 して示す断面図。  FIG. 5 is an enlarged cross-sectional view showing a main part of an SED according to a third embodiment of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下図面を参照 しながら、 この発明を、 平面型の画像表示 ヒ して F E Dの一種である表面伝導型電子放出装置 (以 下、 S E D と称する) に適用 した実施の形態について詳細に 説明する。 The present invention will be described with reference to the drawings. E. An embodiment applied to a surface conduction electron-emitting device (hereinafter, referred to as SED), which is a type of FED, will be described in detail.
図 1 なしゝ し図 3 に示すよ う に、 この S E Dは、 透明な絶縁 基板と してそれぞれ矩形状のガラス板か らなる第 1 基板 1 0 および第 2 基板 1 2 を備え、 これらの基板は約 1 . 0 〜 2 . 0 m mの隙間を置いて対向配置されている。 第 2 基板 1 2 は、 第 1 基板 1 0 よ り も僅かに大きな寸法に形成されている。 そ して、 第 1 基板 1 0 および第 2基板 1 2 は、 ガラスから なる 矩形枠状の側壁 1 4 を介 して周縁部同志が接合され、 偏平な 矩形状の真空外囲器 1 5 を構成 している。  As shown in Fig. 1 and Fig. 3, this SED has a first substrate 10 and a second substrate 12 each made of a rectangular glass plate as transparent insulating substrates. Are opposed to each other with a gap of about 1.0 to 2.0 mm. The second substrate 12 is formed to have a slightly larger dimension than the first substrate 10. The first substrate 10 and the second substrate 12 are joined to each other via a rectangular frame-shaped side wall 14 made of glass to form a flat rectangular vacuum envelope 15. It is composed.
第 1 基板 1 0 の内面には画像表示面と しての蛍光体スク リ ーン 1 6 が形成されている。 この蛍光体スク リ ーン 1 6 は、 電子の衝突によ り 赤、 青、 緑に発光する蛍光体層 R、 G 、 B、 および黒色遮光層 1 1 を並べて構成されている。 これらの蛍 光体層 R、 G 、 Bはス ト ライ プ状あるいは ドッ ト状に形成さ れている。 蛍光体スク リ ーン 1 6 上には、 アルミ ニウム等か らなる メ タ ルバック 1 7 および図示 しないゲッ タ膜が形成さ れている。 なお、 第 1 基板 1 0 と蛍光体スク リ ーンとの間に、 例えば I T O等からなる透明導電膜ある いはカ ラーフ ィ ルタ 膜を設けて も よい。  On an inner surface of the first substrate 10, a phosphor screen 16 is formed as an image display surface. This phosphor screen 16 is configured by arranging phosphor layers R, G, B and a black light-shielding layer 11 that emit red, blue, and green light upon collision with electrons. These phosphor layers R, G, and B are formed in a strip shape or a dot shape. A metal back 17 made of aluminum or the like and a getter film (not shown) are formed on the phosphor screen 16. Note that a transparent conductive film or a color filter film made of, for example, ITO may be provided between the first substrate 10 and the phosphor screen.
第 2 基板 1 2 の内面には、 蛍光体スク リ ーン 1 6 の蛍光体 層を励起する電子源と して、 それぞれ電子 ビームを放出する 多数の表面伝導型の電子放出素子 1 8 が設けられている。 こ れらの電子放出素子 1 8 は、 画素毎に対応 して複数列および 複数行に配列されている。 各電子放出素子 1 8 は、 図示 しな い電子放出部、 この電子放出部に電圧を印加する一対の素子 電極等で構成されている。 第 2基板 1 2 の内面上には、 電子 放出素子 1 8 に電位を供給する多数本の配線 2 1 がマ ト リ ツ ク状に設けられ、 その端部は真空外囲器 1 5の外部に引出さ れている。 On the inner surface of the second substrate 12, a number of surface conduction electron-emitting devices 18 each emitting an electron beam are provided as electron sources for exciting the phosphor layer of the phosphor screen 16. Have been. These electron-emitting devices 18 have a plurality of rows and a plurality of rows corresponding to each pixel. They are arranged in multiple rows. Each electron-emitting device 18 includes an electron-emitting portion (not shown), a pair of device electrodes for applying a voltage to the electron-emitting portion, and the like. On the inner surface of the second substrate 12, a number of wires 21 for supplying a potential to the electron-emitting device 18 are provided in a matrix shape, and the ends of the wires 21 are provided outside the vacuum envelope 15. Has been withdrawn.
接合部材と して機能する側壁 1 4は、 例えば、 低融点ガラ ス、 低融点金属等の封着材 2 0 によ り 、 第 1 基板 1 0の周縁 部および第 2基板 1 2 の周縁部に封着され、 第 1 基板および 第 2基板同志を接合している。  The side wall 14 functioning as a bonding member is made of, for example, a sealing material 20 such as a low-melting-point glass or a low-melting-point metal to form a peripheral portion of the first substrate 10 and a peripheral portion of the second substrate 12. The first substrate and the second substrate are bonded together.
また、 図 2 および図 3 に示すよ うに、 S E Dは、 第 1 基板 1 0 および第 2基板 1 2間に配設されたスぺーサアッセンブ リ 2 2 を備えている。 スぺーサアッセンプリ 2 2 は、 板状の グリ ッ ド 2 4 と、 グリ ッ ドの両面に一体的に立設された複数 の柱状のスぺーザと、 を備えて構成されている。  As shown in FIGS. 2 and 3, the SED includes a spacer assembly 22 disposed between the first substrate 10 and the second substrate 12. The spacer assembly 22 includes a plate-shaped grid 24 and a plurality of column-shaped spacers erected integrally on both sides of the grid.
詳細に述べる と、 グリ ッ ド 2 4 は第 1 基板 1 0 の内面と対 向 した第 1 表面 2 4 a および第 2基板 1 2 の内面と対向 した 第 2表面 2 4 b を有し、 これらの基板と平行に配置されてい る。 グリ ッ ド 2 4 には、 エッチング等によ り 多数の電子ビー ム通過孔 2 6 および複数のスぺーサ開孔 2 8が形成されてい る。 この発明における開孔と して機能する電子ビーム通過孔 2 6 は、 それぞれ電子放出素子 1 8 と対向 して配列され、 電 子放出素子から放出された電子ビームを透過する。 また、 ス ベーサ開孔 2 8 は、 それぞれ電子ビーム通過孔 2 6間に位置 し所定の ピッチで配列されている。 フ グリ ツ ド 2 4 は、 例えば鉄—ニ ッケル系の金属板によ り 厚 さ 0 . "! 〜 0 . 2 5 m mに形成されて しゝる と と も に、 その表 面には、 金属板を構成する元素か らなる酸化膜、 例えば、 F e 3 O 4 、 i F e 3 O 4 からなる酸化膜が形成されて し る。 グリ ッ ド 2 4 の表面には、 ガラス、 セラ ミ ックからなる高抵 抗物質を塗布、 焼成 した高抵抗膜が形成され、 高抵抗膜の抵 抗は、 E + 8 Ω ロ以上に設定されている。 More specifically, the grid 24 has a first surface 24 a facing the inner surface of the first substrate 10 and a second surface 24 b facing the inner surface of the second substrate 12. It is arranged in parallel with the substrate. A large number of electron beam passage holes 26 and a plurality of spacer openings 28 are formed in the grid 24 by etching or the like. The electron beam passage holes 26 functioning as apertures in the present invention are arranged to face the electron-emitting devices 18 respectively, and transmit the electron beams emitted from the electron-emitting devices. The spacer openings 28 are located between the electron beam passage holes 26 and are arranged at a predetermined pitch. The flange 24 is formed of, for example, an iron-nickel metal plate to a thickness of 0.2 to 0.25 mm, and the surface thereof has An oxide film composed of elements constituting the metal plate, for example, an oxide film composed of Fe 3 O 4 and i Fe 3 O 4 is formed on the surface of the grid 24. A high-resistance film is formed by coating and firing a high-resistance material consisting of a mix, and the resistance of the high-resistance film is set to E + 8 Ω or more.
電子ビーム通過孔 2 6 は、 例えば、 0 . 1 5 〜 0 · 2 5 m m X 0 . 1 5 〜 0 . 2 5 m mの矩形状に形成され、 スぺ一サ 開孔 2 8 は、 例えば径が約 0 . 2 〜 0 . 5 m mの円形に形成 されている。 なお、 上述 した高抵抗膜は、 グリ ッ ド 2 4 に設 けられた電子 ビーム通過孔 2 6 の壁面にも形成されている。  The electron beam passage hole 26 is formed in a rectangular shape of, for example, 0.15 to 0.25 mm X 0.15 to 0.25 mm, and the spacer opening 28 is formed of, for example, a diameter. Are formed in a circular shape of about 0.2 to 0.5 mm. The above-described high-resistance film is also formed on the wall surface of the electron beam passage hole 26 provided in the grid 24.
グ リ ツ ド 2 4 の第 1 表面 2 4 a 上には、 各スぺーサ開孔 2 8 に重ねて第 1 スぺーサ 3 0 a がー体的に立設されている。 各第 1 スぺーサ 3 0 a の延出端にはイ ンジウム層が塗布され、 スぺーサ高さのばらつきを緩和する緩和層 3 1 を構成 してい る。 そ して、 各第 1 スぺーサ 3 0 a の延出端は、 緩和層 3 1 、 ゲッ タ膜、 メ タ ルバッ ク 1 7 および蛍光体スク リ ーン 1 6 の 遮光層 1 1 を介 して第 1 基板 1 0 の内面に当接 している。 緩 和層 3 1 は、 電子ビームの軌道に何ら影響を与える ものでは な く 、 スぺ一ザの高さ ばらつきの緩和効果がある適当な硬度 を持つものであれば、 金属に限定される ものではない。 尚、 メ タ ルバッ ク 1 7 および蛍光体スク リ ーン 1 6 の黒色遮光層 1 1 もスぺーサの高さ ばらつきを緩和する効果があ り 、 これ で十分な高さバラ ツキ緩和効果が得られる場合は、 緩和層 3 1 をあえて設ける必要はない。 On the first surface 24 a of the grid 24, a first spacer 30 a is standing upright so as to overlap with each spacer opening 28. An indium layer is applied to the extension end of each first spacer 30a to form a relaxation layer 31 for reducing variations in spacer height. The extending end of each first spacer 30a is connected to the light-shielding layer 11 of the relaxation layer 31, the getter film, the metal back 17 and the phosphor screen 16. And is in contact with the inner surface of the first substrate 10. The relaxation layer 31 does not affect the trajectory of the electron beam at all, and is limited to metal as long as it has an appropriate hardness that has an effect of reducing the variation in height of the spacer. is not. The black light-shielding layer 11 of the metal back 17 and the phosphor screen 16 also has the effect of reducing the height variation of the spacer, and this can sufficiently reduce the variation in height. If available, relaxation layer 3 There is no need to provide 1
グリ ツ ド 2 4 の第 2表面 2 4 b上には、 各スぺーサ開孔 2 8 に重ねて第 2スぺーサ 3 O bがー体的に立設され、 その延 出端は、 第 2基板 1 2の内面に当接している。 各第 2スぺー サ 3 O bの延出端は、 第 2基板 1 2の内面上に設けられた配 線 2 1 上に位置 している と ともに、 この配線と第 2 スぺーサ の延出端との間には導電体 3 3が設けられている。 導電体 3 3 は、 第 2 スぺーサ 3 0 b の延出端と ほぼ相似形状に形成さ れ、 その厚さ、 つま り 、 第 2基板 1 2 と直交する方向に沿つ た高さは、 例えば 1 2 0 〃 mに設定されている。  On the second surface 24b of the grid 24, a second spacer 3Ob is provided standing upright over the spacer holes 28, and its extending end is It is in contact with the inner surface of the second substrate 12. The extension end of each second spacer 3 Ob is located on the wiring 21 provided on the inner surface of the second substrate 12, and the extension of the wiring and the second spacer is also provided. A conductor 33 is provided between the protruding end. The conductor 33 is formed in a shape substantially similar to the extended end of the second spacer 30b, and its thickness, that is, the height along the direction orthogonal to the second substrate 12 is For example, it is set to 120 0m.
後述するよ う に、 導電体 3 3 は、 電子放出素子 1 8から放 出された電子ビームを第 2 スぺーサ 3 0 bから離間する方向 へ反発するよ う に作用する。 導電体 3 3 は、' 例えば、 白金、 タ ングステン、 イ リ ジウム、 レニウム、 オス ミ ウム、 ルテニ ゥム等の高融点金属、 これらの合金、 あるいはこれらの金属 を含有する導電性ガラス等で形成されている。 導電体 3 3 と して、 イ ンジウム、 アルミ ニウム、 銀、 銅等の金属も使用可 能ではあるが、 放電が起きた際、 溶融温度が低いと溶融して 本来の機能を発揮しな く なる恐れがあ り 、 高融点金属を用い る方が望ま しい。  As described later, the conductor 33 acts so as to repel the electron beam emitted from the electron-emitting device 18 in a direction away from the second spacer 30b. The conductor 33 is made of, for example, a high melting point metal such as platinum, tungsten, iridium, rhenium, osmium, ruthenium, an alloy thereof, or a conductive glass containing these metals. Have been. Metals such as indium, aluminum, silver, and copper can be used as the conductor 33.However, when discharge occurs, if the melting temperature is low, the metal melts and does not perform its original function. Therefore, it is preferable to use a high melting point metal.
導電体 3 3 の形状は特に限定されないが 放電を考慮 して 角部が丸 く 形成されている こ とが望ま しい 導電体 3 3 の高 さは、 電子ビームに与える反発力、 つま り 電子ビームの軌 道補正量を考慮 して任意に設定される。  The shape of the conductor 33 is not particularly limited, but it is desirable that the corners be rounded in consideration of electric discharge. The height of the conductor 33 is determined by the repulsive force applied to the electron beam, that is, the electron beam. It is set arbitrarily in consideration of the orbit correction amount.
第 1 および第 2スぺーサ 3 0 a 、 3 0 bの各々は、 グリ ツ 9 ド 2 4側から延出端に向かって径が小さ く なった先細テーパ 状に形成されている。 例えば、 各第 1 スぺ一サ 3 0 a はダリ ッ ド 2 4側に位置した基端の径が約 0 . 4 m m、 延出端の径 が約 0 . 3 m m、 高さが約 0 . 6 m mに形成されている。 ま た、 各第 2 スぺーサ 3 0 b はグリ ッ ド 2 4側に位置した基端 の径が約 0 . 4 m m、 延出端の径が約 0 . 2 5 m m、 高さが 約 0 . 8 m mに形成されている。 このよ う に、 第 1 スぺーサEach of the first and second spacers 30a and 30b is a grits It is formed in a tapered shape with a smaller diameter from the side of the extension 24 toward the extension end. For example, each of the first spacers 30a has a diameter of about 0.4 mm at the base end located on the side of the Darlid 24, a diameter of about 0.3 mm at the extension end, and a height of about 0.3 mm. . 6 mm. Each of the second spacers 30b has a diameter of approximately 0.4 mm at the base end located on the grid 24 side, a diameter of approximately 0.25 mm at the extension end, and a height of approximately 0.25 mm. 0.8 mm. Thus, the first spacer
3 0 a の高さは、 第 2 スぺーサ 3 O b の高さ よ り も低く 形成 され、 第 2スぺーザの高さは、 第 1 スぺーザの高さに対し約The height of 30a is formed lower than the height of the second spacer 3Ob, and the height of the second spacer is approximately equal to the height of the first spacer.
4 Z 3倍以上に設定されている。 4 Z is set to 3 times or more.
第 1 スぺーサ 3 0 a 及ぴ第 2 スぺーサ 3 0 b の表面抵抗は 5 X 1 0 l 3 gj となっている。 各スぺーサ開孔 2 8 、 第 1 お よび第 2 スぺ一サ 3 0 a 、 3 0 b は互いに整列 して位置 し、 第 1 および第 2 スぺーサはこのスぺ一サ開孔 2 8 を介して互 いに一体的に連結されている。 これによ り 、 第 1 および第 2 スぺーサ 3 0 a 、 3 0 b は、 グリ ッ ド 2 4 を両面から挟み込 んだ状態でグリ ツ ド 2 4 と一体に形成されている。  The surface resistance of the first spacer 30 a and the second spacer 30 b is 5 × 10 l 3 gj. Each spacer opening 28, the first and second spacers 30a, 30b are located in line with each other, and the first and second spacers are located in this spacer opening. They are integrally connected to each other through 28. As a result, the first and second spacers 30a and 30b are formed integrally with the grid 24 with the grid 24 sandwiched from both sides.
上記のよ うに構成されたスぺーサアッセンプリ 2 2は第 1 基板 1 0 および第 2基板 1 2間に配設されている。 そ して、 第 1 および第 2スぺ一サ 3 0 a 、 3 0 b は、 第 1 基板 1 0 お よび第 2基板 1 2の内面に当接する こ とによ り 、 これらの基 板に作用する大気圧荷重を支持し、 基板間の間隔を所定値に 維持している。  The spacer assembly 22 configured as described above is disposed between the first substrate 10 and the second substrate 12. The first and second spacers 30a and 30b contact the inner surfaces of the first substrate 10 and the second substrate 12 so that the first and second spacers 30a and 30b contact these substrates. The applied atmospheric pressure load is supported, and the distance between the substrates is maintained at a predetermined value.
図 2 に示すよ う に、 S E Dは、 グリ ッ ド 2 4 および第 1 基 板 1 0 のメ タルバック 1 7 に電圧を印加する電圧供給部 5 0 を備えている。 この電圧供給部 5 0 は、 グ リ ッ ド 2 4 および メ タ ルバッ ク 1 7 にそれぞれ接続され、 例えば、 グリ ッ ド 2 4 に 1 2 k V、 メ タ ルバッ ク 1 7 【こ 1 0 k Vの電圧を印加す る。 すなわち、 グリ ッ ド 2 4 に印加する電圧は、 第 1 基板 1 0 に印加する電圧よ り も高 く 設定され、 例えば、 1 . 2 5倍 以内に設定されている。 As shown in FIG. 2, the SED is a voltage supply unit 50 that applies a voltage to the grid 24 and the metal back 17 of the first substrate 10. It has. This voltage supply section 50 is connected to the grid 24 and the metal back 17, respectively. For example, the grid 24 has a voltage of 12 kV and the metal back 17 has a voltage of 17 k. Apply a voltage of V. That is, the voltage applied to the grid 24 is set higher than the voltage applied to the first substrate 10, for example, within 1.25 times.
上記 S E D において、 画像を表示する場合、 蛍光体スク リ ーン 1 6 およびメ タ ルバッ ク 1 7 にアノ ー ド電圧が印加され、 電子放出素子 1 8から放出 された電子ビーム B をアノ ー ド電 圧によ り 加速 して蛍光体スク リ ーン 1 6 へ衝突させる。 これ によ り 、 蛍光体スク リ ーン 1 6 の蛍光体層が励起されて発光 し、 画像を表示する。  In the above SED, when displaying an image, an anode voltage is applied to the phosphor screen 16 and the metal back 17, and the electron beam B emitted from the electron-emitting device 18 is anoded. It is accelerated by the voltage and collided with the phosphor screen 16. Thereby, the phosphor layer of the phosphor screen 16 is excited and emits light to display an image.
次に、 以上のよ う に構成された S E Dの製造方法について 説明する。 スぺーサア ッセ ンプリ 2 2 を製造する場合、 まず、 所定寸法のグリ ツ ド 2 4 、 グリ ツ ドと ほぼ同一の寸法を有 し た図示 しない矩形板状の第 1 および第 2金型を用意する。 こ の場合、 F e — 5 0 % N i か らなる板厚 0 . 1 2 m mの薄板 を脱脂 ■ 洗浄 , 乾燥 した後、 エ ッ チングによ り 電子ビーム通 過孔 2 6 、 およびスぺーサ開孔 2 8 を形成 しグリ ッ ド 2 4 と する。 その後、 グリ ッ ド 2 4全体を酸化処理によ り 酸化させ、 電子ビーム通過孔 2 6 およびスぺ一サ開孔 2 8 の内面を含め グ リ ッ ド表面に絶縁膜を形成する。 更に、 絶縁膜の上に、 酸 化錫および酸化アンチモ ンの微粒子を分散させた液をス プ レ 一被覆 し、 乾燥、 焼成 して高抵抗膜を形成する。  Next, a method of manufacturing the SED configured as described above will be described. When manufacturing the spacer assembly 22, first, a grid 24 having a predetermined dimension and first and second dies (not shown) having a rectangular plate shape and substantially the same dimensions as the grid are provided. prepare. In this case, a thin plate with a thickness of 0.12 mm made of Fe—50% Ni is degreased. ■ After cleaning and drying, the etching is used to etch the electron beam passage holes 26 and the space. An aperture 28 is formed to form a grid 24. Thereafter, the entire grid 24 is oxidized by an oxidation process, and an insulating film is formed on the surface of the grid including the inner surfaces of the electron beam passage holes 26 and the spacer openings 28. Further, a solution in which fine particles of tin oxide and antimony oxide are dispersed is spray-coated on the insulating film, dried and fired to form a high-resistance film.
第 1 および第 2金型は、 それぞれグリ ッ ド 2 4 のスぺーサ 開孔 2 8 に対応 した複数の透孔を有 している。 また、 第 1 金 型および第 2 金型において、 少な く と もスぺーサ開孔 2 8 に 対応 した複数の透孔の内面には、 熱処理によ り 熱分解する樹 脂が塗布されている。 The first and second molds have grid 24 spacers respectively. It has a plurality of through holes corresponding to the openings 28. In the first mold and the second mold, at least the inner surfaces of the plurality of through holes corresponding to the spacer openings 28 are coated with a resin that is thermally decomposed by heat treatment. .
そ して、 第 1 金型を、 各透孔がグ リ ッ ド 2 4 のスぺ一サ開 孔 2 8 と 整列する よ う に位置決め した状態でグ リ ツ ドの第 1 表面 2 4 a に密着させる。 同様に、 第 2金型を、 各透孔がグ リ ッ ド 2 4 のスぺーサ開孔 2 8 と整列する よ う に位置決め し た状態でグリ ツ ドの第 2 表面 2 4 b に密着させる。 そ して、 これら第 1 金型、 グ リ ッ ド 2 4 、 および第 2 金型を図示 しな ぃク ラ ンパ等を用いて互いに固定する。  Then, the first mold is positioned such that each through hole is aligned with the spacer opening 28 of the grid 24, and the first surface 24a of the grid is positioned. In close contact. Similarly, the second mold is closely attached to the second surface 24b of the grid with each through-hole positioned so that each through-hole is aligned with the spacer opening 28 of the grid 24. Let it. Then, the first mold, the grid 24 and the second mold are fixed to each other using a clamper or the like (not shown).
次に、 例えば、 第 1 金型の外面側からペース ト状のスぺー サ形成材料を供給 し、 第 1 金型の透孔、 グ リ ッ ド 2 4のスぺ 一サ開孔 2 8 、 および第 2金型の透孔にスぺーサ形成材料を 充填する。 スぺーサ形成材料と しては、 少な く と も紫外線硬 化型のバイ ンダ (有機成分) およびガラス フ ィ ラーを含有 し たガラスペース 卜 を用いる。  Next, for example, a paste-shaped spacer forming material is supplied from the outer surface side of the first mold, and the through hole of the first mold, the spacer opening 28 of the grid 24, Fill the spacer of the second mold with the spacer forming material. As a spacer-forming material, a glass paste containing at least a UV-curable binder (organic component) and a glass filler is used.
続いて、 充填されたスぺーサ形成材料に対 し、 第 1 および 第 2金型の外面側か ら放射線と して紫外線 ( U V ) を照射 し、 スぺーサ形成材料を U V硬化させる。 この後、 必要に応 じて 熱硬化を行なって も よ い。 次に、 熱処理によ り 第 1 および第 2金型の各透過孔に塗布された樹脂を熱分解 し、 スぺーサ形 成材料と金型の間にすき間を作 り 、 第 1 および第 2 金型をグ リ ッ ド 2 4から剥離する。  Subsequently, the filled spacer forming material is irradiated with ultraviolet rays (UV) as radiation from the outer surfaces of the first and second molds, and the spacer forming material is cured by UV. After this, heat curing may be performed if necessary. Next, the resin applied to each of the through holes of the first and second molds is thermally decomposed by heat treatment to form a gap between the spacer forming material and the mold. Separate the mold from grid 24.
続いて、 スぺーサ形成材料が充填されたグ リ ッ ド 2 4 を加 熱炉内で熱処理 し、 スぺーサ形成材料内からバイ ンダを飛ば した後、 約 5 0 0 〜 5 5 0 °Cで 3 0 分〜 1 時間、 スぺ一サ形 成材料を本焼成する。 これによ り 、 グリ ッ ド 2 4 上に第 1 お よび第 2 スぺ一サ 3 0 a 、 3 0 b が作 り 込まれたスぺーサァ ッセ ンプリ 2 2 が得られる。 Subsequently, a grid 24 filled with a spacer forming material is added. After heat treatment in a heating furnace and the binder is blown out of the spacer forming material, the sintered material is fired at about 500 to 550 ° C for 30 minutes to 1 hour. . As a result, a spacer assembly 22 in which the first and second spacers 30a and 30b are formed on the grid 24 is obtained.
一方、 予め、 蛍光体スク リ ーン 1 6 およびメ タ ルバック 1 7 の設けられた第 1 基板 1 0 と 、 電子放出素子 1 8 および配 線 2 1 が設け られている と と もに側壁 1 4 が接合された第 2 基板 1 2 と 、 を用意 してお く 。  On the other hand, the first substrate 10 on which the phosphor screen 16 and the metal back 17 are provided in advance, the electron emission element 18 and the wiring 21 are provided, and the side wall 1 is provided. A second substrate 12 to which 4 has been bonded is prepared.
続いて、 第 2基板 1 2 の配線 2 1 上に、 第 2 スぺーサ 3 0 b の先端と ほぼ相似形状で厚さ 1 2 0 m と なる よ う に導電 性ペース 卜 を印刷 した後、 乾燥および焼成する こ と によ り 、 配線 2 1 上の所定位置に導電体 3 3 を形成する。 また、 高さ 緩和層 3 1 を形成するためのイ ンジウム粉末を各第 1 スぺー サ 3 0 a の延出端に塗布する。  Subsequently, a conductive paste is printed on the wiring 21 of the second substrate 12 so as to have a thickness of approximately 120 m in a shape substantially similar to the tip of the second spacer 30b. The conductor 33 is formed at a predetermined position on the wiring 21 by drying and firing. In addition, indium powder for forming the height relaxing layer 31 is applied to the extending end of each first spacer 30a.
次に、 上記のよ う に構成されたスぺーサア ッセ ンプリ 2 2 を第 2基板 1 2 上に位置決め配置する。 この際、 第 2スぺー サ 3 0 b の延出端がそれぞれ導電体 3 3 と接触するよ う にス ぺ一サア ッセンプ リ 2 2 を位置決めする。 この状態で、 第 1 基板 1 0 、 第 2 基板 1 2 、 およびスぺーサア ッセ ンプリ 2 2 を真空チャ ンバ内に配置 し、 真空チャ ンバ内を真空排気 した 後、 側壁 1 4 を介 して第 1 基板を第 2 基板に接合する。 同時 に、 第 1 スぺ一サ 3 0 a の延出端に配置されたイ ンジウム粉 末を溶融させ、 第 1 基板 1 0 で押 しっぷ し高さ を補正する。 これによ り 、 スぺーサア ッセンプ リ 2 2 を備えた S E Dが製 9 Next, the spacer assembly 22 configured as described above is positioned and arranged on the second substrate 12. At this time, the spacer assembly 22 is positioned so that the extending ends of the second spacers 30b are in contact with the conductors 33, respectively. In this state, the first substrate 10, the second substrate 12, and the spacer assembly 22 are arranged in a vacuum chamber, and the inside of the vacuum chamber is evacuated. To join the first substrate to the second substrate. At the same time, the indium powder placed at the extension end of the first spacer 30a is melted, and the pushing height of the first substrate 10a is corrected. This produces a SED with spacer assembly 22. 9
1 3 造される。  1 3 Built.
以上のよう に構成された S E Dによれば、 図 3 に示すよ う に、 第 2 スぺーサ 3 O b近傍に位置した電子放出素子 1 8 か ら放出された電子ビーム Bは、 第 2スぺーサ 3 0 b の延出端 と第 2基板 1 2 との間に設けられた導体層 3 3 が形成する電 界によ り 反発され、 第 2 スぺーザから離れる方向へ軌道を取 り ながら電子ビーム通過孔 2 6 に向かう 。 その後、 電子ビー ム Bは、 今度は、 帯電した第 2スぺーサ 3 O b および第 1 ス ぺ一サ 3 0 a に吸引され、 これらのスぺーサに接近する方向 へ軌道を取る。 そ して、 この反発と吸引 とによ り電子ビーム Bの軌道ずれが相殺され、 電子放出素子 1 8 から放出された 電子ビーム Bは、 最終的に蛍光体スク リ ーン 1 6の目標とす る蛍光体層に到達する。  According to the SED configured as described above, as shown in FIG. 3, the electron beam B emitted from the electron-emitting device 18 located in the vicinity of the second spacer 3 Ob becomes the second beam. It is repelled by the electric field formed by the conductor layer 33 provided between the extended end of the spacer 30b and the second substrate 12, and takes a trajectory in a direction away from the second spacer. While heading toward the electron beam passage hole 26. Thereafter, the electron beam B is attracted by the charged second spacer 30 Ob and the first spacer 30a, and orbits in a direction approaching these spacers. The repulsion and suction cancel out the orbital deviation of the electron beam B, and the electron beam B emitted from the electron-emitting device 18 finally reaches the target of the phosphor screen 16. Reaches the phosphor layer.
具体的には、 電子放出素子からスぺーサ側面への距離が小 さ いほど、 電子ビームがスぺーサ側へ移動する量は大き く 、 逆にスぺーサ側面への距離が十分に大きい場合、 電子ビーム がスぺーサ側へ移動する量は無視できる量となる。 電子ビー ムの移動現象は、 蛍光面で発生 した 2次電子及び反射電子が スぺーサに衝突 しスぺーザが帯電する こ とで発生する。 この 際、 S E Dで使用される加速電圧からスぺーサ表面での 2次 電子放出係数が 1 以上とな り 、 スぺーサ側壁は正に帯電し、 電子ビームをスぺーサ側へと引き付ける事になる。  Specifically, the smaller the distance from the electron-emitting device to the spacer side, the greater the amount of movement of the electron beam to the spacer side, and conversely the distance to the spacer side is sufficiently large. In this case, the amount of movement of the electron beam to the spacer is negligible. The electron beam movement phenomenon occurs when secondary electrons and reflected electrons generated on the phosphor screen collide with the spacer and charge the spacer. At this time, the secondary electron emission coefficient on the surface of the spacer becomes 1 or more due to the accelerating voltage used in the SED, the spacer side wall becomes positively charged, and the electron beam is attracted to the spacer side. become.
本実施の形態では、 電子の速度が比較的小さいスぺーサの 第 2基板側の端と第 2基板との間に導電体 3 3 を設け、 この 導電体 3 3 によ り 、 電子ビームがスぺーサと反発する方向の 電界を形成 している。 導電体 3 3 の高さ を制御する こ と で電 界の強さ を変え、 反発量を制御する こ と が出来る。 そ して、 本実施の形態では、 スぺーサの帯電を逃がすのではな く 、 ス ぺ一サによる吸引 と導電体 3 3 によ る反発と によ リ 電子ビー 厶の軌道ずれを相殺 して いる。 そのため、 上記 S E Dによれ ば、 C R T における電子銃のよ う な、 電子 ビームを収束させ るための複雑な機構を設ける必要がない。 In the present embodiment, the conductor 33 is provided between the second substrate side end of the spacer having a relatively low electron velocity and the second substrate, and the conductor 33 allows the electron beam to be emitted. In the direction to repel the spacer An electric field is formed. By controlling the height of the conductor 33, it is possible to change the strength of the electric field and control the amount of repulsion. In the present embodiment, instead of releasing the charge of the spacer, the orbital deviation of the electron beam is canceled by the suction by the spacer and the repulsion by the conductor 33. ing. Therefore, according to the above SED, there is no need to provide a complicated mechanism for converging an electron beam, such as an electron gun in a CRT.
このよ う に、 上述 した S E Dによれば、 第 1 および第 2 ス ぺーサ 3 0 a 、 3 0 b が帯電 し、 これらスぺ一サによ り 電子 ビーム Bが引 き付けられた場合でも、 電子 ビームの軌道ずれ を防止する こ と ができる。 これによ り 、 電子 ビーム Bの ミ ス ラ ンディ ングを防止 し、 その結果、 色純度の劣化を低減 して 画像品位の向上を図る こ とができる。  As described above, according to the above-described SED, the first and second spacers 30a and 30b are charged, and even if the electron beam B is attracted by these spacers. In addition, it is possible to prevent the orbit of the electron beam from being shifted. As a result, mislanding of the electron beam B is prevented, and as a result, deterioration of color purity is reduced and image quality can be improved.
なお、 スぺーサの表面の全部または一部に直接導電処理を 施 した場合、 スぺーサを介 して第 1 基板か ら第 2 基板へ流れ る無効電流が増加 し、 温度の上昇や消費電力の増加を引き起 こす。 また、 この導電処理部が S E Dの動作中にガスの発生 源と な り 、 スぺーサ近傍に位置 した電子源のイオン衝撃を引 き起こす場合も ある。 これに対 して、 本実施の形態によれば、 無効電流の増加、 温度の上昇や消費電力の増加、 イオン衝突 を引き起こすこ とな く 、 導電体 3 3 によ リ スぺーサ周辺の電 界を変え電子 ビームの軌道を容易に制御する こ とができる。  In addition, if the conductive treatment is applied directly to all or part of the surface of the spacer, the reactive current flowing from the first substrate to the second substrate via the spacer increases, and the temperature rises or increases. Causes an increase in power. In addition, the conductive processing part may be a gas generation source during the operation of the SED, and may cause ion bombardment of the electron source located near the spacer. On the other hand, according to the present embodiment, the conductor 33 can be used to reduce the electric current around the resistor without causing an increase in the reactive current, an increase in the temperature, an increase in the power consumption, and an ion collision. By changing the field, the trajectory of the electron beam can be easily controlled.
本実施の形態に係る S E D と 、 上述 した導電体 3 3 が設け られていない S E D と を用意 し、 電子 ビームの移動量を比較 した。 その結果、 導電体が設け られていない S E Dでは電子 ビームがスぺ一サ側に約 1 2 0 i m移動 したのに対 し、 本実 施の形態に係る S E Dでは、 電子 ビームの移動量がほぼ 0 と な り 、 表示画像の色純度も改善された。 An SED according to the present embodiment and an SED in which the above-described conductor 33 was not provided were prepared, and the movement amount of the electron beam was compared. As a result, in SEDs without conductors, On the other hand, while the beam has moved about 120 im to the spreader side, the SED according to the present embodiment has almost zero movement of the electron beam, and the color purity of the displayed image is also improved. Was.
更に、 上記 S E D によれば、 第 1 基板 1 0 と第 2基板 1 2 との間にグ リ ツ ド 2 4 が配置されている と と もに、 第 1 スぺ ーサ 3 0 a の高さは、 第 2 スぺーサ 3 0 b の高さ よ り も低 く 形成されている。 これによ り 、 グ リ ッ ド 2 4 は第 2基板 1 2 よ り も第 1 基板 1 0側に接近 して位置 している。 そのため、 第 1 基板 1 0側から放電が生 じた場合でも、 グ リ ッ ド 2 4 に よ り 、 第 2基板 1 2 上に設けられた電子放出素子 1 8 の放電 破損を抑制する こ とが可能となる。 従って、 放電に対する耐 圧性に優れ画像品位の向上 した S E D を得る こ とができる。  Further, according to the SED, the grid 24 is disposed between the first substrate 10 and the second substrate 12 and the height of the first spacer 30a is increased. The height is formed lower than the height of the second spacer 30b. As a result, the grid 24 is located closer to the first substrate 10 side than the second substrate 12 is. Therefore, even when a discharge occurs from the first substrate 10 side, the grid 24 suppresses the discharge damage of the electron-emitting devices 18 provided on the second substrate 12. Becomes possible. Therefore, it is possible to obtain an SED with excellent pressure resistance against discharge and improved image quality.
また、 上記構成の S E D によれば、 第 1 スぺーサ 3 0 a の 高さ を第 2 スぺーサ 3 0 b よ り も低 く 形成する こ と によ り 、 グリ ツ ド 2 4 に印加する電圧を第 1 基板 1 0 に印加する電圧 よ り 大き く した場合でも 、 電子放出素子 1 8 から発生 した電 子を蛍光体スク リ ーン側へ確実に到達させる こ とができる。  In addition, according to the SED having the above configuration, the height of the first spacer 30a is formed lower than that of the second spacer 30b, so that the grid is applied to the grid 24. Even when the applied voltage is higher than the voltage applied to the first substrate 10, the electrons generated from the electron-emitting devices 18 can reliably reach the phosphor screen.
更に、 複数の第 1 スぺ一サ 3 0 a に高さのばらつきがあつ た場合で も高さ緩和層 3 1 によ り ばらつきを吸収 し、 複数の 第 1 スぺーザと第 1 基板 1 0 と を確実に接触させる こ とがで きる。 従って、 第 1 および第 2 スぺーサ 3 0 a 、 3 0 b によ り 、 第 1 基板 1 0 および第 2基板 1 2 間の間隔をほぼ全域に 亘つて均一に保持する こ とが可能と なる。  Further, even when the plurality of first spacers 30a have a variation in height, the variation is absorbed by the height relaxing layer 31 and the plurality of first spacers and the first substrate 1 are absorbed. 0 and can be reliably contacted. Therefore, the first and second spacers 30a and 30b can maintain the interval between the first substrate 10 and the second substrate 12 uniformly over almost the entire area. Become.
次に、 この発明の第 2 の実施の形態に係る S E D について 説明する 。 図 4 に示すよ う に、 第 2 の実施の形態によれば、 導電体 3 3 は、 金属ある いは合金によ り 第 2 スぺーサ 3 0 b の延出端と相似形状に形成されている。 例えば、 導電体 3 3 は、 F e — 5 0 % N i から厚さ 2 0 0 mの金属板によ り 形 成され、 導電性フ リ ツ ト、 導電性接着剤等からなる固定層 4 0 によ り 第 2 基板 1 2 の罩己線 2 1 上に固定されている。 そ し て、 スぺーサア ッセ ンプ リ 2 2 は、 各第 2 スぺーサ 3 0 b の 延出端が導電体 3 3 に当接 した状態で、 第 1 および第 2基板 1 0 、 1 2 間に配置されている。 Next, an SED according to a second embodiment of the present invention will be described. As shown in FIG. 4, according to the second embodiment, The conductor 33 is formed of a metal or an alloy in a shape similar to the extended end of the second spacer 30b. For example, the conductor 33 is formed of a metal plate having a thickness of 200 m from F e —50% Ni and has a fixed layer 4 made of a conductive frit, a conductive adhesive or the like. 0 is fixed on the shield line 2 1 of the second substrate 12. Then, the spacer assembly 22 holds the first and second substrates 10 and 1 with the extended end of each second spacer 30 b contacting the conductor 33. It is located between the two.
なお、 他の構成は前述 した第 1 の実施の形態と 同一であ り 、 同一の部分には同一の参照符号を付 してその詳細な説明を省 略する。  The other configuration is the same as that of the above-described first embodiment, and the same portions are denoted by the same reference characters and detailed description thereof will not be repeated.
上記のよ う に構成された第 2 の実施の形態に係る S E D を 製造する場合、 第 1 の実施の形態と 同様の工程によ り 、 第 1 および第 2 基板 1 0 、 1 2 、 およびスぺーサア ッセンプ リ 2 2 を形成する。 この際、 第 1 スぺーサ 3 0 a の高さは 0 . 2 m m、 第 2 スぺ一サ 3 O b の高さ は 1 . O m m と した。  When manufacturing the SED according to the second embodiment configured as described above, the first and second substrates 10, 12, and the substrate are manufactured by the same steps as in the first embodiment. Form a pulse assembly 22. At this time, the height of the first spacer 30a was 0.2 mm, and the height of the second spacer 3Ob was 1.0 Omm.
続いて、 第 2 基板 1 2 の配線 2 1 上の所定位置に、 第 2 ス ぺーサ 3 0 b の先端と ほぼ相似形状に厚さ 5 β mの導電性接 着剤を塗布 し固定層 4 0 を形成する。 そ して、 固定層 4 0 上 に F e — 5 0 % N i か らなる厚さ 2 0 0 mの導電体 3 3 を 載置 した後、 固定層を乾燥 し、 導電体 3 3 を配線上に固着す る。  Subsequently, a conductive adhesive having a thickness of 5 βm is applied to a predetermined position on the wiring 21 of the second substrate 12 in a shape substantially similar to the tip of the second spacer 30b, and the fixing layer 4 is formed. Form a 0. Then, after placing a conductor 33 of 200 m thick made of Fe—50% Ni on the fixed layer 40, the fixed layer is dried, and the conductor 33 is wired. Stick on top.
その後、 第 1 の実施の形態と 同様に、 スぺーサア ッセ ンブ リ 2 2 を第 2基板 1 2 上に位置決め配置する。 この際、 第 2 スぺーサ 3 0 b の延出端がそれぞれ導電体 3 3 と接触する よ う にスぺーサア ッセ ンブ リ 2 2 を位置決めする。 この状態で、 第 1 基板 1 0 、 第 2 基板 1 2 、 およびスぺーサア ッセ ンプリ 2 2 を真空チャ ンバ内に配置 し、 真空チャ ンバ内を真空排気 した後、 側壁 1 4 を介 して第 1 基板を第 2 基板に接合する。 これによ り 、 S E Dが製造される。 After that, similarly to the first embodiment, the spacer assembly 22 is positioned and arranged on the second substrate 12. At this time, the extending ends of the second spacers 30b are in contact with the conductors 33, respectively. Position the spacer assembly 22 as shown. In this state, the first substrate 10, the second substrate 12, and the spacer assembly 22 are placed in a vacuum chamber, and the inside of the vacuum chamber is evacuated. To join the first substrate to the second substrate. Thereby, the SED is manufactured.
以上構成の S E D によれば、 第 1 の実施の形態と 同様の作 用効果を得る こ と ができる。 更に、 第 2 の実施の形態では、 導電体 3 3 を配線 2 1 に固定 した固定層 4 0 を、 スぺーザの 高さ ばらつきを補正する補正層 と して用いる こ とができ る。 そのため、 スぺーサの高い加工精度を必要と しな く な リ 、 ス ぺーサの製造コ ス ト低減を図る こ とが可能と なる。  According to the SED having the above configuration, the same operation and effect as those of the first embodiment can be obtained. Further, in the second embodiment, the fixed layer 40 in which the conductor 33 is fixed to the wiring 21 can be used as a correction layer for correcting variations in the height of the spacer. For this reason, it is possible to reduce the manufacturing cost of the spacer without requiring high processing accuracy of the spacer.
また、 第 2 の実施の形態に係る S E D と、 導電体 3 3 が設 けられていない S E D と を用意 し、 電子 ビームの移動量を比 較 した。 その結果、 導電体が設け られていない S E Dでは電 子 ビームがスぺ一サ側に約 1 5 0 U m吸引 されたのに対 し、 本実施の形態に係る S E Dでは、 電子 ビームの移動量がほぼ 0 と な り 、 表示画像の色純度も改善された。  Further, the SED according to the second embodiment and the SED without the conductor 33 were prepared, and the movement amount of the electron beam was compared. As a result, in the SED without the conductor, the electron beam was suctioned to the spacer side by about 150 Um, whereas in the SED according to the present embodiment, the moving amount of the electron beam was Was almost zero, and the color purity of the displayed image was also improved.
次に、 この発明の第 3 の実施の形態に係る S E D について 説明する。 図 5 に示すよ う に、 第 3 の実施の形態によれば、 導電体 3 3 は、 金属ある いは合金によ り 第 2 スぺーサ 3 0 b の延出端と相似形状に形成されている。 例えば、 導電体 3 3 は、 F e — 5 0 % N i から厚さ 2 0 0 jU mの金属板によ り 形 成され、 絶縁性の接着剤、 例えば、 フ リ ッ トガラスから なる 固定層 4 2 によ り 第 2 スぺーサ 3 0 b の延出端に固定されて いる。 スぺーサア ッセンプ リ 2 2 は、 導電体 3 3 の固着され た各第 2 スぺーサ 3 0 b の延出端が第 2基板 1 2上の配線 2 1 に当接 した状態で、 第 1 および第 2基板 1 0 、 1 2間に配 置されている。 Next, an SED according to a third embodiment of the present invention will be described. As shown in FIG. 5, according to the third embodiment, the conductor 33 is formed of a metal or an alloy in a shape similar to the extended end of the second spacer 30b. ing. For example, the conductor 33 is formed of a metal plate having a thickness of 200 jUm from F e —50% Ni and a fixed layer made of an insulating adhesive, for example, a flat glass. It is fixed to the extended end of the second spacer 30b by 42. The spacer assembly 22 is fixed to the conductor 33. Are disposed between the first and second substrates 10 and 12 with the extended end of each second spacer 30 b contacting the wiring 21 on the second substrate 12. .
なお、 他の構成は前述した第 1 の実施の形態と同一であ り 、 同一の部分には同一の参照符号を付してその詳細な説明を省 略する。  The other configuration is the same as that of the above-described first embodiment, and the same portions are denoted by the same reference numerals and detailed description thereof will be omitted.
上記のよ う に構成された第 3 の実施の形態に係る S E D を 製造する場合、 第 1 の実施の形態と同様の工程によ り 、 第 1 および第 2基板 1 0 、 1 2 、 およびスぺーサア ッセ ンプリ 2 2 を形成する。 この際、 第 1 スぺーサ 3 0 a の高さは 0 · 2 m m、 第 2スぺーサ 3 0 b の高さは 1 . O m mと した。  When manufacturing the SED according to the third embodiment configured as described above, the first and second substrates 10, 12, and the substrate are manufactured by the same steps as those in the first embodiment. Form the user assembly 22. At this time, the height of the first spacer 30a was 0.2 mm, and the height of the second spacer 30b was 1.0 mm.
続いて、 スぺーサアッセンプリ 2 2 の各第 2スぺーサ 3 0 bの先端に、 フ リ ッ トガラスを塗布し固定層 4 2 とする。 固 定層 4 2上に F e — 5 0 % N i からなる厚さ 2 0 0 〃 mの導 電体 3 3 を載置 した後、 固定層を乾燥し、 焼成する こ と によ リ 、 導電体 3 3 を第 2スぺーサ 3 O b先端に固着する。  Subsequently, a flat glass is applied to the tip of each second spacer 30 b of the spacer assembly 22 to form a fixed layer 42. After the conductor 33 having a thickness of 200 μm made of Fe—50% Ni is placed on the fixed layer 42, the fixed layer is dried and fired. The conductor 33 is fixed to the tip of the second spacer 3 Ob.
次に、 スぺーサアッセンプリ 2 2 を第 2基板 1 2上に位置 決め配置する。 この際、 導電体 3 3 が固着されている第 2 ス ぺーサ 3 0 bの延出端がそれぞれ第 2基板 1 2の配線 2 1 上 に位置するよ う にスぺーサアッセンプリ 2 2 を位置決めする。 この状態で、 第 1 基板 1 0、 第 2基板 1 2、 およびスぺ一サ ア ッセンプ リ 2 2 を真空チャ ンバ内に配置し、 真空チャ ンバ 内を真空排気した後、 側壁 1 4 を介 して第 1 基板を第 2基板 に接合する。 これによ り 、 S E Dが製造される。  Next, the spacer assembly 22 is positioned and arranged on the second substrate 12. At this time, the spacer assembly 22 is placed such that the extended ends of the second spacers 30b to which the conductors 33 are fixed are located on the wirings 21 of the second substrate 12 respectively. Position. In this state, the first substrate 10, the second substrate 12, and the spacer assembly 22 are arranged in a vacuum chamber, and the inside of the vacuum chamber is evacuated. Then, the first substrate is joined to the second substrate. Thereby, SED is manufactured.
以上のよ う に構成された S E Dによれば、 第 1 の実施の形 9 According to the SED configured as described above, the first implementation form 9
1 9 態と 同様の作用効果を得る こ とができる。 第 3 の実施の形態 では、 導電体 3 3 を第 2スぺーサ先端に固定 している固定層 4 2 を、 スぺーザの高さばらつきを補正する補正層と して用 いる こ とができる。 そのため、 スぺーザの高い加工精度を必 要と しな く な リ 、 スぺーサの製造コス ト低減を図る こ とが可 能となる。  The same operational effects as in the nineteenth embodiment can be obtained. In the third embodiment, the fixed layer 42 that fixes the conductor 33 to the tip of the second spacer may be used as a correction layer that corrects the height variation of the spacer. it can. Therefore, it is possible to reduce the manufacturing cost of the spacer without requiring high processing accuracy of the spacer.
また、 第 3の実施の形態に係る S E D と、 導電体 3 3 が設 けられていない S E D と を用意 し、 電子ビームの移動量を比 較した。 その結果、 導電体が設けられていない S E Dでは電 子ビームがスぺ一サ側に約 1 5 0 jt m吸引されたのに対し、 本実施の形態に係る S E Dでは、 電子ビームの移動量がほぼ 0 とな り 、 表示画像の色純度も改善された。  Further, the SED according to the third embodiment and the SED without the conductor 33 were prepared, and the movement amount of the electron beam was compared. As a result, in the SED without the conductor, the electron beam was attracted to the spacer side by about 150 jtm, whereas in the SED according to the present embodiment, the movement amount of the electron beam was small. It was almost zero, and the color purity of the displayed image was also improved.
この発明は上述した実施の形態に限定される こ となく 、 こ の発明の範囲内で種々変形可能である。 例えば、 この発明は、 グリ ッ ドを備えた画像表示装置に限らず、 グリ ッ ドを持たな い画像表示装置にも適用可能である。 この場合、 それぞれ一 体に形成された柱状あるいは板状のスぺーサを用い、 各スぺ 一ザの第 2基板側の先端と第 2基板との間に導電体を設ける こ とによ り 、 上記と同様の作用効果を得る こ とができる。  The present invention is not limited to the above-described embodiment, but can be variously modified within the scope of the present invention. For example, the present invention is applicable not only to an image display device having a grid but also to an image display device having no grid. In this case, a columnar or plate-shaped spacer formed integrally is used, and a conductor is provided between the second substrate-side tip of each spacer and the second substrate. Thus, the same operation and effect as described above can be obtained.
また、 この発明において、 スぺーサの径や高さ、 その他の 構成要素の寸法、 材質等は必要に応 じて適宜選択可能である。 更に、 上述した実施の形態において、 導電体は第 2基板上の 配線とスぺーサ先端との間に設ける構成と したが、 配線上に 限らず、 電子放出素子を避けた位置で第 2基板とスぺ一サ先 端との間に設けられていればよい。 電子源は、 表面伝導型電子放出素子に限らず、 電界放出型、 カーボンナノ チューブ等の真空中に電子が放出される電子源 を用いた F E Dなら どのタイ プにも適用可能である。 Further, in the present invention, the diameter and height of the spacer, and the dimensions and materials of other components can be appropriately selected as necessary. Furthermore, in the above-described embodiment, the conductor is provided between the wiring on the second substrate and the tip of the spacer. However, the conductor is not limited to the wiring, and the second substrate may be provided at a position avoiding the electron-emitting device. It is sufficient if it is provided between and the tip of the spreader. The electron source is not limited to a surface conduction electron-emitting device, but can be applied to any type of FED using an electron source that emits electrons in a vacuum such as a field emission type or a carbon nanotube.
産業上の利用可能性 Industrial applicability
以上詳述したよ う に、 この発明によれば、 温度の上昇や消 費電力の増加を引き起こすこ とな く 、 電子ビームの軌道ずれ を防止し、 画像品位の向上 した画像表示装置およびその製造 方法を提供するこ とができる。  As described in detail above, according to the present invention, without causing a rise in temperature or an increase in power consumption, it is possible to prevent a trajectory shift of an electron beam and improve an image quality of an image display device and its manufacture. A method can be provided.

Claims

請 求 の 範 囲 The scope of the claims
1 . 画像表示面を有する第 1 基板と、  1. a first substrate having an image display surface;
上記第 1 基板に隙間を置いて対向配置されていると と もに、 電子を放出 して上記画像表示面を励起する複数の電子源が設 けられた第 2基板と、  A second substrate provided with a plurality of electron sources for emitting electrons to excite the image display surface while being opposed to the first substrate with a gap therebetween;
上記第 1 基板および第 2基板間に配設され、 第 1 および第 2基板に作用する大気圧荷重を支持する複数のスぺーザと、 上記スぺーザの上記第 2基板側の先端と上記第 2基板との 間にそれぞれ配置され、 上記電子源から放出された電子ビー ムを反発する導電体と、  A plurality of spacers disposed between the first substrate and the second substrate and supporting an atmospheric pressure load acting on the first and second substrates; a tip of the spacer on the second substrate side; A conductor disposed between the first substrate and the second substrate for repelling the electron beam emitted from the electron source;
を備えた画像表示装置。  An image display device comprising:
2 . 画像表示面を有する第 1 基板と、  2. a first substrate having an image display surface;
上記第 1 基板に隙間を置いて対向配置されていると と もに、 電子を放出 して上記画像表示面を励起する複数の電子源が設 けられた第 2基板と、  A second substrate provided with a plurality of electron sources for emitting electrons to excite the image display surface while being opposed to the first substrate with a gap therebetween;
上記第 1 基板と第 2基板との間に配設されていると と もに、 上記電子源から放出された電子が通過する複数の開孔を有し た板状のグリ ッ ドと、  A plate-like grid disposed between the first substrate and the second substrate and having a plurality of openings through which electrons emitted from the electron source pass;
上記グリ ツ ドに固定されている と と もに上記第 1 基板およ び第 2基板間に配設され、 第 1 および第 2基板に作用する大 気圧荷重を支持する複数のスぺ一ザと、  A plurality of spurs fixed to the grid and arranged between the first and second substrates and supporting an atmospheric load acting on the first and second substrates. When,
上記スぺーサの上記第 2基板側の先端と上記第 2基板との 間にそれぞれ配置され、 上記電子源から放出 された電子ビ一 ムを反発する導電体と、  A conductor disposed between the tip of the spacer on the side of the second substrate and the second substrate, for repelling an electron beam emitted from the electron source;
を備えた画像表示装置。 An image display device comprising:
3 . 上記導電体は、 導電性ペース ト を焼結 して形成され ている請求項 1 又は 2 に記載の画像表示装置。 3. The image display device according to claim 1, wherein the conductor is formed by sintering a conductive paste.
4 . 上記導電体は、 金属板ある いは合金板で形成されて いる請求項 1 又は 2 に記載の画像表示装置。  4. The image display device according to claim 1, wherein the conductor is formed of a metal plate or an alloy plate.
5 . 上記導電体は、 導電性の固定層を介 して上記第 2基 板に固定されている請求項 4 に記載の画像表示装置。  5. The image display device according to claim 4, wherein the conductor is fixed to the second substrate via a conductive fixing layer.
6 . 上記導電体は、 絶縁性の固定層を介 して上記スぺー ザの上記第 2 基板側の先端に固定されている請求項 4 に記載 の画像表示装置。  6. The image display device according to claim 4, wherein the conductor is fixed to a tip of the spacer on the second substrate side via an insulating fixing layer.
7 . 上記導電体は、 上記スぺーザの上記第 2基板側の先 端と相似形状を有 している こ と を特徴とする請求項 1 又は 2 に記載の画像表示装置。  7. The image display device according to claim 1, wherein the conductor has a shape similar to a tip of the spacer on the second substrate side.
8 . 上記電子源は、 表面伝導型の電子源である こ と を特 徵とする請求項 1 又は 2 に記載の画像表示装置。  8. The image display device according to claim 1, wherein the electron source is a surface conduction electron source.
9 . 上記第 2基板上に設けられ上記電子源に電位を供給 する複数の配線を備え、  9. A plurality of wirings provided on the second substrate for supplying a potential to the electron source,
上記各導電体は上記配線上に配置されている こ と を特徴と する請求項 1 又は 2 に記載の画像表示装置。  The image display device according to claim 1, wherein each of the conductors is disposed on the wiring.
1 0 . 画像表示面を有する第 1 基板と 、 上記第 1 基板に 隙間を置いて対向配置されている と と も に、 電子を放出 し上 記画像表示面を励起する複数の電子源が設けられた第 2 基板 と 、 上記第 1 基板および第 2基板間に配設され、 第 1 および 第 2基板に作用する大気圧荷重を支持する複数のスぺーザと 、 を備えた画像表示装置の製造方法において、  10. A first substrate having an image display surface, and a plurality of electron sources that emit electrons and excite the image display surface are provided in addition to being arranged opposite to the first substrate with a gap therebetween. An image display device comprising: a second substrate provided; and a plurality of spacers disposed between the first substrate and the second substrate and supporting an atmospheric load acting on the first and second substrates. In the manufacturing method,
上記第 2 基板の所定位置と上記スぺーザの第 2 基板側の先 端との間に導電体を配置し、 A predetermined position of the second substrate and a tip of the spacer on the second substrate side. Place a conductor between the ends,
上記スぺーサをその第 2基板側の先端が上記導電体を挟ん で上記第 2基板に当接するよう に配置した状態で、 上記第 1 および第 2基板を互いに接合する画像表示装置の製造方法。  A method of manufacturing an image display device, wherein the first and second substrates are joined together in a state where the spacer is arranged such that the tip of the spacer on the second substrate side is in contact with the second substrate with the conductor interposed therebetween. .
1 1 . 上記導電体を配置する工程は、 上記第 2基板上の 所望位置に上記スぺーサ先端形状とほぼ相似形に導電性べ一 ス トを印刷し、 焼成して上記導電体を形成する請求項 1 0記 載の画像表示装置の製造方法。  11. The step of arranging the conductor includes printing a conductive base at a desired position on the second substrate in a shape substantially similar to the shape of the tip of the spacer, and firing the conductor to form the conductor. A method for manufacturing an image display device according to claim 10.
1 2 . 上記導電体を配置する工程は、 上記第 2基板上の 所望位置に導電性を有した固定層を形成し、 この固定層上に 金属または合金板からなる上記スぺーサ先端形状とほぼ相似 形の導電体を載置し、 固定する請求項 1 0記載の画像表示装 置の製造方法。  12. The step of arranging the conductor includes forming a fixed layer having conductivity at a desired position on the second substrate, and forming the tip of the spacer made of a metal or alloy plate on the fixed layer. 10. The method for manufacturing an image display device according to claim 10, wherein a conductor having a substantially similar shape is mounted and fixed.
1 3 . 上記導電体を配置する工程は、 上記スぺーザの第 2基板側の先端に、 絶縁性を有した固定層を形成し、 この固 定層を介 して、 金属または合金板からなるスぺーサ先端形状 とほぼ相似形の導電体を上記スぺーサ先端に固定する請求項 1 0記載の画像表示装置の製造方法。  13. The step of arranging the conductor includes forming a fixed layer having an insulating property at the tip of the above-mentioned spacer on the second substrate side, and forming a fixed layer from the metal or alloy plate through the fixed layer. The method for manufacturing an image display device according to claim 10, wherein a conductor substantially similar in shape to the spacer tip is fixed to the spacer tip.
PCT/JP2003/004109 2002-04-03 2003-03-31 Image display apparatus and its manufacturing method WO2003088300A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20030712989 EP1492150A1 (en) 2002-04-03 2003-03-31 Image display apparatus and its manufacturing method
KR10-2004-7015475A KR20040095351A (en) 2002-04-03 2003-03-31 Image display apparatus and its manufacturing method
US10/954,070 US20050104505A1 (en) 2002-04-03 2004-09-30 Image display apparatus and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002101575A JP2003297265A (en) 2002-04-03 2002-04-03 Image display device and method of manufacturing the same
JP2002-101575 2002-04-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/954,070 Continuation US20050104505A1 (en) 2002-04-03 2004-09-30 Image display apparatus and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2003088300A1 true WO2003088300A1 (en) 2003-10-23

Family

ID=29241874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004109 WO2003088300A1 (en) 2002-04-03 2003-03-31 Image display apparatus and its manufacturing method

Country Status (6)

Country Link
EP (1) EP1492150A1 (en)
JP (1) JP2003297265A (en)
KR (1) KR20040095351A (en)
CN (1) CN1647232A (en)
TW (1) TW200400530A (en)
WO (1) WO2003088300A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050156507A1 (en) 2002-09-27 2005-07-21 Shigeo Takenaka Image display device, method of manufacturing a spacer for use in the image display device, and image display device having spacers manufactured by the method
JP2004119296A (en) * 2002-09-27 2004-04-15 Toshiba Corp Image display device, manufacturing method of spacer used for image display device and image display device equipped with spacer manufactured by this method
JP2005197048A (en) * 2004-01-06 2005-07-21 Toshiba Corp Image display device and its manufacturing method
KR20050096536A (en) * 2004-03-31 2005-10-06 삼성에스디아이 주식회사 Electron emission display with grid electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000251785A (en) * 1999-02-24 2000-09-14 Canon Inc Electron beam device, and image display device
US6351065B2 (en) * 1997-03-31 2002-02-26 Canon Kabushiki Kaisha Image forming apparatus for forming image by electron irradiation
EP1189255A1 (en) * 2000-03-23 2002-03-20 Kabushiki Kaisha Toshiba Spacer assembly for plane surface display, method for manufacturing spacer assembly, method for manufacturing plane surface display, plane surface display and mold for use in manufacturing spacer assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351065B2 (en) * 1997-03-31 2002-02-26 Canon Kabushiki Kaisha Image forming apparatus for forming image by electron irradiation
JP2000251785A (en) * 1999-02-24 2000-09-14 Canon Inc Electron beam device, and image display device
EP1189255A1 (en) * 2000-03-23 2002-03-20 Kabushiki Kaisha Toshiba Spacer assembly for plane surface display, method for manufacturing spacer assembly, method for manufacturing plane surface display, plane surface display and mold for use in manufacturing spacer assembly

Also Published As

Publication number Publication date
TW200400530A (en) 2004-01-01
JP2003297265A (en) 2003-10-17
EP1492150A1 (en) 2004-12-29
CN1647232A (en) 2005-07-27
KR20040095351A (en) 2004-11-12

Similar Documents

Publication Publication Date Title
KR100730677B1 (en) Image disply unit and production method for spacer assembly used in image display unit
WO2003088300A1 (en) Image display apparatus and its manufacturing method
US7192327B2 (en) Image display device, method of manufacturing a spacer for use in the image display device, and image display device having spacers manufactured by the method
JP4021694B2 (en) Image display device
TWI241147B (en) Image display device, manufacturing method of spacer used for image display device and image display device equipped with spacer manufactured by this method
JP2003109524A (en) Image display device
WO2003028064A1 (en) Image display unit
JP2005197050A (en) Image display device and its manufacturing method
JP3984102B2 (en) Image display device and manufacturing method thereof
US20050104505A1 (en) Image display apparatus and method of manufacturing the same
JP2003123672A (en) Image display device
JP2005190789A (en) Image display device
JP2004296107A (en) Image display device and manufacturing method thereof
JPWO2003102999A1 (en) Image display device
WO2006035713A1 (en) Image display
JP3825703B2 (en) Image display device
JP2005197048A (en) Image display device and its manufacturing method
JP2003257343A (en) Image display
JP2004247260A (en) Manufacturing method of image forming apparatus, and image forming apparatus
JP2005100842A (en) Image display device and its manufacturing method
JP2005093322A (en) Image display device and manufacturing method therefor
JP2004319269A (en) Image display device with spacer structure, manufacturing method of spacer structure, and forming die used for manufacture of spacer structure
JP2005228672A (en) Image display device and manufacturing method of the same
JP2005302574A (en) Image display device
JP2006040675A (en) Image display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047015475

Country of ref document: KR

Ref document number: 10954070

Country of ref document: US

Ref document number: 2003807592X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003712989

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047015475

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003712989

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003712989

Country of ref document: EP