WO2003087683A1 - Dehumidifying method - Google Patents

Dehumidifying method Download PDF

Info

Publication number
WO2003087683A1
WO2003087683A1 PCT/JP2002/003717 JP0203717W WO03087683A1 WO 2003087683 A1 WO2003087683 A1 WO 2003087683A1 JP 0203717 W JP0203717 W JP 0203717W WO 03087683 A1 WO03087683 A1 WO 03087683A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
temperature
condenser
air
dehumidification
Prior art date
Application number
PCT/JP2002/003717
Other languages
French (fr)
Japanese (ja)
Inventor
Chikayoshi Sato
Original Assignee
Chikayoshi Sato
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000318852A priority Critical patent/JP2002130863A/en
Priority to TW091107041A priority patent/TW517149B/en
Application filed by Chikayoshi Sato filed Critical Chikayoshi Sato
Priority to PCT/JP2002/003717 priority patent/WO2003087683A1/en
Priority to CNB028003411A priority patent/CN100365359C/en
Publication of WO2003087683A1 publication Critical patent/WO2003087683A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature

Definitions

  • the present invention relates to a dehumidification method for cooling and dehumidifying indoor air with an evaporator, and more particularly, to a dehumidification method capable of greatly improving the amount of dehumidification as compared with a conventional dehumidification method.
  • dehumidification methods for dehumidifiers such as a cooling type, a compression type, an absorption type, and an adsorption type.
  • the cooling type is also called the direct expansion coil type, and the principle of dehumidification is to reduce the saturated steam pressure and condense the moisture in the air by cooling the air with a compression refrigerator.
  • This method has the advantage of low equipment costs, and is widely applied as a home or commercial dehumidifier.
  • the conventional cooling type dehumidifier forms an evaporator 1 arranged on the windward side, a condenser 2 arranged on the leeward side, and an air flow from the evaporator 1 to the condenser 2.
  • a blower (not shown) is provided, and the air in the room is cooled and dehumidified by the evaporator 1, and then the air is reheated by the condenser 2.
  • the amount of dehumidification can be obtained from the psychrometric chart shown in Fig. 6.
  • the straight line connecting the points I and 0 is called the air operation line.Following the extension line, the line touches the saturation temperature curve, and the temperature F (10 ° C in this example) at this time is usually It is called the dew point temperature (evaporation temperature). The lower the dew point temperature (evaporation temperature), the more O The temperature at the point decreases, and a large amount of dehumidification can be obtained.
  • the sensible heat factor (SHF) of the device can also be obtained.
  • Sensible heat QS is the amount of heat required to change the temperature of the air.
  • Latent heat QL is the amount of heat required to condense the moisture in the air.
  • the sensible heat ratio is about 0.54, and the amount of heat required for temperature change (sensible heat QS) of the heat of air is 54% of the total heat, and the remaining 46% is Latent heat QL to take moisture.
  • the lowest possible dew point temperature obtained by the conventional cooling type dehumidification method as described above is up to about 5 ° C from the psychrometric chart, and cannot be reduced to 0 ° C or less. If the air operating line deviates from the saturation temperature curve, the operating state (refrigeration cycle) becomes unstable.
  • the minimum dew point temperature of the device it is necessary to lower the minimum dew point temperature of the device, increase the latent heat (QL) taken from the air, and lower the sensible heat ratio (SHF).
  • QL latent heat
  • SHF sensible heat ratio
  • the present invention has been made in view of the above-described problems, and has as its object to provide a dehumidifying method capable of reducing the minimum dew point temperature of an apparatus to near 0 to increase the amount of dehumidifying. Disclosure of the invention
  • the above problem is to arrange an evaporator and a condenser in order from the windward side, cool the air flow to the dew point temperature by the evaporator to remove moisture, and then reduce the air flow to a predetermined temperature by the condenser.
  • a dehumidifying method for reheating characterized in that moisture in the air stream is dropped and condensed on the surface of the evaporator to dehumidify.
  • the condensate moisture in the air
  • the condensate becomes film-like condensation that covers the surface of the evaporator (condensation surface) in a film form, and the heat transfer on the condensation surface is performed through this liquid film.
  • the liquid film has a large heat transfer resistance.
  • the present invention condenses water in the air in the form of droplet condensation in which the condensed liquid covers the condensing surface in a droplet form, so that the air flow comes into direct contact with the condensing surface as compared with film condensation. Increase the area of the part and increase the heat transfer coefficient (heat transfer coefficient).
  • the condensation of water is promoted by the improvement of the heat transmission coefficient, the amount of latent heat taken from the air flow is increased, and as a result, the dew point temperature is reduced.
  • the dew point temperature can be reduced to around 0 ° C, and the amount of dehumidification can be significantly improved.
  • a preheater composed of a split condenser is placed on the windward side of the evaporator, and the temperature of the air passing through the evaporator is set by this preheater. Is preferable. This reduces the condensation load on the condenser, lowering the condensation temperature and lowering the evaporation temperature. Therefore, the temperature difference between the air flow and the surface of the evaporator is increased to promote the condensation of water in a droplet form, thereby improving the amount of dehumidification.
  • FIG. 1 is a side view of a heat exchanger illustrating a dehumidification method according to an embodiment of the present invention.
  • FIG. 2 is a piping system diagram of the heat exchanger.
  • FIG. 3 is a dew point temperature (evaporation temperature) according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a comparison of the amount of dehumidification between a dehumidifier to which the present invention is applied and a conventional dehumidifier
  • FIG. Fig. 6 is a psychrometric chart explaining the dew point temperature (evaporation temperature) by the conventional dehumidification method.
  • FIG. 1 shows an embodiment of the present invention.
  • a configuration is adopted in which the preheating condenser 11, the evaporator 12, and the reheating condenser 13 are vertically arranged in order from the windward side to dehumidify the air in the room.
  • a blower for forming an airflow from the preheat condenser .11 to the reheat condenser 13 is arranged on the lee side of the reheat condenser 13.
  • Reference numeral 14 in the figure denotes a shield for blocking the passage of air.
  • the preheated condenser 11 and the reheated condenser 13 consist of a single condenser divided into two and placed on the upwind side and downwind side of the evaporator 12, respectively, as shown in Fig. 2. There is a parallel relationship with respect to the flow of the refrigerant from the compressor 27.
  • reference numeral 32 denotes a capillary tube for adjusting the flow rate of the refrigerant.
  • the preheating condenser 11, the evaporator 12 and the reheating condenser 13 have the same configuration, respectively, and a plurality of radiating fins 1 1 1 1 2 1 These are composed of refrigerant circulation pipes 112, 122, 132, which are arranged so as to penetrate through the radiation fins.
  • the area of the evaporator 12 is configured to be smaller than the area of the evaporator 1 of the conventional dehumidifier described with reference to FIG. Comparing the evaporating area with the number of hairpins of the pipe 122, the evaporator 12 of the present embodiment has two evaporators and the conventional evaporator 1 has seven evaporators. Is 3.5 times smaller than the area of the conventional evaporator 1.
  • the air in the room is guided to the preheating condenser 11 by driving a blower (not shown), and the air whose temperature has been raised to a predetermined temperature (5 ° C in this embodiment) is cooled by the evaporator 12 to remove water. After that, it is reheated to a predetermined temperature by the reheat condenser 13 at the subsequent stage, and is discharged indoors.
  • the air is heated to a predetermined temperature by passing through the preheating condenser 11. Since it contacts the surface of evaporator 12 in this state, it comes into contact with evaporator 12 with a larger temperature difference than when the preheat condenser 11 is not provided.
  • the condensation temperature decreases due to the split arrangement of the condenser, and the dew point temperature (evaporation temperature) decreases. From the above, the droplet condensation of water is promoted, and the amount of latent heat taken from the air is increased to improve the amount of dehumidification.
  • the drop in dew point temperature on the psychrometric chart shown in Fig.
  • the preheat condenser 11 After it is preheated to 32 ° C, it is cooled by the evaporator 12.At this time, the operating line contacts the saturation temperature curve at 0 ° C or less (11 ° C in this example). This temperature becomes the dew point temperature (evaporation temperature).
  • the sensible heat ratio (SHF) of the device cannot be represented from this wet psychrometric chart. However, as will be described later, it is possible to calculate the sensible heat ratio by calculating from the evaporating temperature (dew point temperature) of the equipment, the amount of dehumidification, and the compressor capacity table.
  • Table 1 shows the standard points, 2 mm.
  • the relationship between the rising temperature of the air by the preheating condenser 11 and the lowest attained evaporation temperature based on the relative humidity (60%) is shown as an example. Setting the condensing temperature of the preheat condenser to raise the air by more than 3 ° C (for example, 40 ° C) will result in a minimum reached evaporation temperature of 11 ° C.
  • the conventional condenser 2 (see FIG. 5) is divided into a preheat condenser 11 and a reheat condenser 13 so that the condensing capacity of the conventional condenser 2 is reduced. Since the condensing capacity is increased from the condensing capacity of (1) and the condensing pressure (condensing temperature) can be lowered by reducing the condensing load so as not to lower the capacity of the compressor 27 (40 ° C in the present embodiment). However, the amount of dehumidification can be improved without lowering the refrigerating capacity. At the same time, an increase in ambient temperature can be suppressed by reducing the condensation load.
  • Fig. 4 shows the amount of dehumidification performed in a prefabricated warehouse without temperature and humidity adjustment in the dehumidifier configured as described above, in comparison with a conventional home dehumidifier.
  • the solid line indicates the invented machine
  • the dashed line indicates the conventional machine.
  • SHF sensible heat ratio
  • SHF sensible heat ratio
  • QS sensible heat ratio
  • points C1 and C2 indicate the dehumidification amounts of the inventive machine and the conventional machine, respectively, at a temperature of 27 ° C and a relative humidity of 60%, that is, at a standard point.
  • the details are not known because measurement was not actually performed at this point, but it is presumed that the invented machine has about twice the amount of dehumidification as compared to the conventional machine. Therefore, the sensible heat ratio of the invented machine is 0.5 or less, as in the case of the points A1 and B1.
  • the area of the evaporator 12 is 3.5 times smaller than the area of the conventional evaporator 1, and the dehumidification amount is about twice as large as that of the conventional machine as described above. Therefore, if it is assumed that the dehumidified water has a film shape on the surface of the evaporator 1 of the conventional machine on average, the film thickness of the dehumidified water of the evaporator 12 of the present embodiment is There will be a water film about 7 times thicker than 1 dehumidified water. Therefore, if the water film is about seven times that of the conventional machine, it can be expressed as a water droplet rather than a film. That is, in this embodiment, it can be said that moisture in the air is dehumidified in the form of droplet condensation.
  • the specific volume of the refrigerant increases due to a decrease in the condensing temperature and the evaporating temperature, which leads to a decrease in the amount of the circulating refrigerant. Can be achieved. That is, according to the present embodiment, for example, the amount of dehumidification can be improved with a smaller evaporation area (volume) than before.
  • the relationship between the capacity of the evaporator 12 of the present invention and the capacity of the conventional evaporator 1 is confirmed by the following formula.
  • K1 is the heat transfer coefficient in film-form condensation
  • K2 is the drop-rate condensation. Because of the heat transfer coefficient, it becomes 1 ⁇ 2.
  • the capacity of the evaporator of the invented machine must be smaller than the capacity of the evaporator of the conventional machine.
  • a method of lowering the evaporation temperature of the evaporator 12 in order to achieve the droplet condensation of the moisture in the air a method of reducing the capacity of the evaporator 12 compared to the conventional method is adopted.
  • the evaporating temperature can be reduced by reducing the air volume from the blower as compared with the conventional case.
  • the capillary tube 32 was used as the refrigerant flow rate adjusting means.
  • the refrigerant tube 32 was replaced with the capillary tube 32.
  • an electronic expansion valve may be employed. The invention's effect
  • the amount of latent heat deprived from air is increased by condensing water in the air in a droplet form to improve the heat transmission coefficient of the evaporator, thereby reducing the amount of dehumidification. Significant improvement can be achieved.
  • the temperature difference between the air flow and the surface of the evaporator is increased to promote the droplet condensation of the water, and the condensation temperature is reduced together with the evaporation temperature to reduce the refrigeration capacity.
  • Improvement that is, improvement in the amount of dehumidification can be achieved. Furthermore, it is possible to suppress the rise in the ambient temperature by reducing the condensing load, and to reduce the amount of refrigerant circulating, thereby reducing the size of the heat exchanger and reducing power consumption.
  • the third aspect of the present invention it is possible to improve the heat transfer coefficient of the evaporator, promote the droplet condensation of water, and improve the amount of dehumidification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Gases (AREA)

Abstract

A dehumidifying method capable of increasing a dehumidification amount by lowering the lowest dew point temperature of a device to near 0 ° C, comprising the steps of disposing a preheat condenser (11), an evaporator (12), and a reheat condenser (13) so that a sensible heat factor is less than 0.5, and condensing, dropwise, the moisture in the air on the surface of the evaporator (12) for dehumidification, whereby, since the condensation load of the condenser is lowered and, accordingly, a condensation temperature and an evaporation temperature are lowered, a temperature difference between an air flow and the surface of the evaporator is increased, and the dropwise condensation of the moisture is promoted to increase the dehumidification amount.

Description

明細 ΐ 除湿方法 技術分野  Description 湿 Dehumidification method Technical field
本発明は、 室内の空気を蒸発器で冷却し除湿する除湿方法に関し、 更に詳しく は、 従来の除湿方法に比べて除湿量を大幅に向上させることができる除湿方法に 関する。 背景技術  The present invention relates to a dehumidification method for cooling and dehumidifying indoor air with an evaporator, and more particularly, to a dehumidification method capable of greatly improving the amount of dehumidification as compared with a conventional dehumidification method. Background art
従来、 除湿機の除湿方法には、 冷却式、 圧縮式、 吸収式および吸着式などの種 々の方式がある。 このうち、 冷却式は直膨コイル方式とも呼ばれ、 圧縮式冷凍機 で空気を冷却することで、 飽和水蒸気圧を低下し空気中の水分を凝縮させること を除湿の原理としている。 この方式は、 設備費が安価であるという長所を有し、 家庭用除湿機または業務用除湿機として広く適用されている。  Conventionally, there are various types of dehumidification methods for dehumidifiers, such as a cooling type, a compression type, an absorption type, and an adsorption type. Of these, the cooling type is also called the direct expansion coil type, and the principle of dehumidification is to reduce the saturated steam pressure and condense the moisture in the air by cooling the air with a compression refrigerator. This method has the advantage of low equipment costs, and is widely applied as a home or commercial dehumidifier.
従来の冷却式除湿機は、 図 5に示すように風上側に配置される蒸発器 1と、 風 下側に配置される凝縮器 2と、 蒸発器 1から凝縮器 2へ向かう空気流を形成する 送風機 (図示略) とを有し、 蒸発器 1で室内の空気を冷却して除湿した後、 凝縮 器 2で当該空気を再熱する構成が一般的である。  As shown in Fig. 5, the conventional cooling type dehumidifier forms an evaporator 1 arranged on the windward side, a condenser 2 arranged on the leeward side, and an air flow from the evaporator 1 to the condenser 2. In general, a blower (not shown) is provided, and the air in the room is cooled and dehumidified by the evaporator 1, and then the air is reheated by the condenser 2.
通常、 除湿量は、 図 6に示す湿り空気線図から求めることができる。 例えば、 図中 I点で示す標準点 (温度 2 7 °C、 相対湿度 6 0 %) の状態にある空気を蒸発 器 1で冷却したときのその出口における空気が O点 (温度 1 7 °C) である場合、 その除湿量は、 x l—x 2 = 3 . 6 7 g / k g (D R) と算出される。  Usually, the amount of dehumidification can be obtained from the psychrometric chart shown in Fig. 6. For example, when air at the standard point (temperature 27 ° C, relative humidity 60%) indicated by point I in the figure is cooled by the evaporator 1, the air at the outlet at point O (temperature 17 ° C ), The dehumidification amount is calculated as xl—x 2 = 3.67 g / kg (DR).
また、 I点と 0点とを結ぶ直線は空気操作線と呼ばれ、 さらに延長線をたどる と飽和温度曲線に接し、 このときの温度 F (本例では 1 0 °C) は通常、 装置の露 点温度 (蒸発温度) と呼ばれる。 この露点温度 (蒸発温度) が低いほど、 上記 O 点の温度が低下し、 大きな除湿量を得ることが可能となる。 The straight line connecting the points I and 0 is called the air operation line.Following the extension line, the line touches the saturation temperature curve, and the temperature F (10 ° C in this example) at this time is usually It is called the dew point temperature (evaporation temperature). The lower the dew point temperature (evaporation temperature), the more O The temperature at the point decreases, and a large amount of dehumidification can be obtained.
この湿り空気線図から又、 装置の顕熱比 (SHF ; Sensible Heat Factor) を 求めることができる。 顕熱比は、 ある空間を冷却する場合、 顕熱量が全熱量に占 める割合で、 顕熱比=顕熱量 QS/ (顕熱量 QS+潜熱量 QL) である。 顕熱量 QSは空気の温度を変化.させるのに必要な熱量で、 潜熱量 QLは空気中の水分を 凝縮させるのに必要な熱量である。 ここで上記の例の場合では、 顕熱比は約 0. 54で、 空気のもつ熱量のうち温度変化に必要な熱量 (顕熱量 QS) が全体熱量 の 54%であり、 残りの 46 %が湿気をとる潜熱量 QLとなる。  From this psychrometric chart, the sensible heat factor (SHF) of the device can also be obtained. The sensible heat ratio is the ratio of the sensible heat to the total heat when cooling a certain space, and sensible heat ratio = sensible heat QS / (sensible heat QS + latent heat QL). Sensible heat QS is the amount of heat required to change the temperature of the air. Latent heat QL is the amount of heat required to condense the moisture in the air. Here, in the case of the above example, the sensible heat ratio is about 0.54, and the amount of heat required for temperature change (sensible heat QS) of the heat of air is 54% of the total heat, and the remaining 46% is Latent heat QL to take moisture.
さて、 上記したような従来の冷却式除湿方法で得られる最低可能到達露点温度 は、 湿り空気線図からでは約 5 °Cまでであり、 0°C以下にすることができない。 空気操作線が飽和温度曲線から離れると、 運転状態 (冷凍サイクル) が不安定と なるからである。 冷却式の除湿方法で除湿量を増加させるためには、 装置の最低 露点温度を下げ、 空気から奪う潜熱量 (QL) を増大して顕熱比 (SHF) を低 下させることが条件となるが、 熱交換器 (蒸発器 1, 凝縮器 2) を上記のように 配置して除湿する従来の方法では、 装置の最低露点温度を 5 以下に下げること は不可能であった。  Now, the lowest possible dew point temperature obtained by the conventional cooling type dehumidification method as described above is up to about 5 ° C from the psychrometric chart, and cannot be reduced to 0 ° C or less. If the air operating line deviates from the saturation temperature curve, the operating state (refrigeration cycle) becomes unstable. In order to increase the amount of dehumidification by the cooling type dehumidification method, it is necessary to lower the minimum dew point temperature of the device, increase the latent heat (QL) taken from the air, and lower the sensible heat ratio (SHF). However, it was impossible to lower the minimum dew point temperature of the equipment to 5 or less by the conventional method of arranging the heat exchangers (evaporator 1 and condenser 2) as described above to dehumidify.
本発明は上述の問題に鑑みてなされ、 装置の最低露点温度を 0 付近まで低下 させて除湿量の増大を図ることができる除湿方法を提供することを課題とする。 発明の開示  The present invention has been made in view of the above-described problems, and has as its object to provide a dehumidifying method capable of reducing the minimum dew point temperature of an apparatus to near 0 to increase the amount of dehumidifying. Disclosure of the invention
以上の課題は、 風上側から蒸発器および凝縮器を順に配置し、 空気流を前記蒸 発器で露点温度にまで冷却して水分を除去した後、 該空気流を前記凝縮器で所定 温度に再熱する除湿方法であって、 前記空気流中の水分を前記蒸発器の表面で滴 状凝縮させて、 除湿することを特徴とする除湿方法、 によって解決される。 従来の除湿方法では、 凝縮液 (空気中の水分) が蒸発器の表面 (凝縮面) を膜 状に覆う膜状凝縮となり、 凝縮面の伝熱はこの液膜を通して行われるため、 この 液膜が大きな伝熱抵抗となる。 これに対して本発明は、 空気中の水分を、 凝縮液 が凝縮面を滴状に覆う滴状凝縮の形態で凝縮させることにより、 膜状凝縮に比べ て空気流が凝縮面と直接接触する部分の面積を増大させ、 熱貫流率 (熱伝達率) を高める。 The above problem is to arrange an evaporator and a condenser in order from the windward side, cool the air flow to the dew point temperature by the evaporator to remove moisture, and then reduce the air flow to a predetermined temperature by the condenser. A dehumidifying method for reheating, characterized in that moisture in the air stream is dropped and condensed on the surface of the evaporator to dehumidify. In the conventional dehumidification method, the condensate (moisture in the air) becomes film-like condensation that covers the surface of the evaporator (condensation surface) in a film form, and the heat transfer on the condensation surface is performed through this liquid film. The liquid film has a large heat transfer resistance. In contrast, the present invention condenses water in the air in the form of droplet condensation in which the condensed liquid covers the condensing surface in a droplet form, so that the air flow comes into direct contact with the condensing surface as compared with film condensation. Increase the area of the part and increase the heat transfer coefficient (heat transfer coefficient).
したがって、 本発明によれば、 熱貫流率の向上により水分の凝縮が促進され、 空気流から奪う潜熱量が増大し、 結果的に露点温度の低下がもたらされる。 これ により、 露点温度を 0 °C付近まで低下させることができ、 除湿量の大幅な向上を 図ることが可能となる。  Therefore, according to the present invention, the condensation of water is promoted by the improvement of the heat transmission coefficient, the amount of latent heat taken from the air flow is increased, and as a result, the dew point temperature is reduced. As a result, the dew point temperature can be reduced to around 0 ° C, and the amount of dehumidification can be significantly improved.
空気中の水分を蒸発器の表面で滴状に凝縮させるには、 蒸発器の風上側に凝縮 器を分割して構成される予熱器を配置し、 この予熱器によって蒸発器を通る空気 の温度を上昇させる方法が好適である。 これにより、 凝縮器の凝縮負荷が低減さ れて凝縮温度が低下するとともに蒸発温度も低下する。 したがって、 空気流と蒸 発器表面との間の温度差が大きくなつて水分の滴状凝縮が促され、 除湿量の向上 が図られる。  In order to condense water in the air in a droplet form on the surface of the evaporator, a preheater composed of a split condenser is placed on the windward side of the evaporator, and the temperature of the air passing through the evaporator is set by this preheater. Is preferable. This reduces the condensation load on the condenser, lowering the condensation temperature and lowering the evaporation temperature. Therefore, the temperature difference between the air flow and the surface of the evaporator is increased to promote the condensation of water in a droplet form, thereby improving the amount of dehumidification.
特に、 顕熱比が 0 . 5未満となるように上記予熱器、 蒸発器および凝縮器を配 置構成することにより、 空気流の滴状凝縮化を促進させることができる。 図面の簡単な説明  In particular, by arranging the preheater, the evaporator, and the condenser so that the sensible heat ratio is less than 0.5, the droplet-like condensation of the air stream can be promoted. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態による除湿方法を説明する熱交換器の側面図であ り、 図 2は同配管系統図、 図 3は、 本発明の実施の形態による露点温度 (蒸発温 度) を説明する湿り空気線図であり、 図 4は、 本発明を適用した除湿機と従来の 除湿機との除湿量の比較を示す図、 図 5は従来の除湿方法を説明する各熱交換器 の配置図であり、 図 6は従来の除湿方法による露点温度 (蒸発温度) を説明する 湿り空気線図である。 発明を実施するための最良の形態 ' 以下、 本発明の実施の形態について図面を参照して説明する。 FIG. 1 is a side view of a heat exchanger illustrating a dehumidification method according to an embodiment of the present invention. FIG. 2 is a piping system diagram of the heat exchanger. FIG. 3 is a dew point temperature (evaporation temperature) according to the embodiment of the present invention. FIG. 4 is a diagram showing a comparison of the amount of dehumidification between a dehumidifier to which the present invention is applied and a conventional dehumidifier, and FIG. Fig. 6 is a psychrometric chart explaining the dew point temperature (evaporation temperature) by the conventional dehumidification method. BEST MODE FOR CARRYING OUT THE INVENTION '' Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は本発明の実施の形態を示している。 本実施の形態では、 風上側から順に 予熱凝縮器 1 1、 蒸発器 1 2および再熱凝縮器 1 3を鉛直方向に立設配置して室 内の空気を除湿する構成を採用している。 また、 図示せずとも、 再熱凝縮器 1 3 の風下側には予熱凝縮器.1 1から再熱凝縮器 1 3へ向かう空気流を形成するため の送風機が配置されている。 なお、 図中符号 1 4は、 空気の通過を遮断するシ一 レドである。  FIG. 1 shows an embodiment of the present invention. In the present embodiment, a configuration is adopted in which the preheating condenser 11, the evaporator 12, and the reheating condenser 13 are vertically arranged in order from the windward side to dehumidify the air in the room. Although not shown, a blower for forming an airflow from the preheat condenser .11 to the reheat condenser 13 is arranged on the lee side of the reheat condenser 13. Reference numeral 14 in the figure denotes a shield for blocking the passage of air.
予熱凝縮器 1 1と再熱凝縮器 1 3は、 1台の凝縮器を 2つに分割して蒸発器 1 2の風上側および風下側にそれぞれ配置して成るもので、 図 2に示すように圧縮 機 2 7からの冷媒の流れに関して並列的な関係にある。 なお、 図 2において符号 3 2は、 冷媒の流量調整用のキヤビラリチューブを示している。  The preheated condenser 11 and the reheated condenser 13 consist of a single condenser divided into two and placed on the upwind side and downwind side of the evaporator 12, respectively, as shown in Fig. 2. There is a parallel relationship with respect to the flow of the refrigerant from the compressor 27. In FIG. 2, reference numeral 32 denotes a capillary tube for adjusting the flow rate of the refrigerant.
予熱凝縮器 1 1, 蒸発器 1 2および再熱凝縮器 1 3はそれぞれ同様な構成を有 し、 等ピッチに配置される複数枚の放熱フィン 1 1 1, 1 2 1, 1 3 1と、 これ ら放熱フィンを貫通するように配置される冷媒の循環パイプ 1 1 2, 1 2 2 , 1 3 2とから構成される。  The preheating condenser 11, the evaporator 12 and the reheating condenser 13 have the same configuration, respectively, and a plurality of radiating fins 1 1 1 1 2 1 These are composed of refrigerant circulation pipes 112, 122, 132, which are arranged so as to penetrate through the radiation fins.
特に、 本実施の形態では蒸発器 1 2の面積が、 図 6を参照して説明した従来の 除湿機の蒸発器 1の面積に比べて小さく構成されている。 この蒸発面積はパイプ 1 2 2のヘアピン部分の本数で比較すると、 本実施の形態の蒸発器 1 2では 2本、 従来の蒸発器 1では 7本であり、 本実施の形態の蒸発器 1 2の面積は、 従来の蒸 発器 1の面積の 3 . 5分の 1である。  In particular, in the present embodiment, the area of the evaporator 12 is configured to be smaller than the area of the evaporator 1 of the conventional dehumidifier described with reference to FIG. Comparing the evaporating area with the number of hairpins of the pipe 122, the evaporator 12 of the present embodiment has two evaporators and the conventional evaporator 1 has seven evaporators. Is 3.5 times smaller than the area of the conventional evaporator 1.
次に、 本実施の形態の作用について説明する。  Next, the operation of the present embodiment will be described.
図示しない送風機の駆動により室内の空気が予熱凝縮器 1 1へ導かれ、 ここで 所定温度 (本実施の形態では 5 °C) 上昇された空気は蒸発器 1 2で冷却され、 水 分が除去された後、 後段の再熱凝縮器 1 3によって所定温度に再熱され、 室内へ 放出される。  The air in the room is guided to the preheating condenser 11 by driving a blower (not shown), and the air whose temperature has been raised to a predetermined temperature (5 ° C in this embodiment) is cooled by the evaporator 12 to remove water. After that, it is reheated to a predetermined temperature by the reheat condenser 13 at the subsequent stage, and is discharged indoors.
本実施の形態では、 予熱凝縮器 1 1の通過により、 空気は所定温度高められた 状態で蒸発器 12の表面に接触するため、 当該予熱凝縮器 1 1がない場合に比べ て大きな温度差で蒸発器 12と接触することになる。 また、 凝縮器の分割配置に より凝縮温度が低下し、 露点温度 (蒸発温度) が低下する。 以上から、 水分の滴 状凝縮が促進され、 空気から奪う潜熱量を増やして除湿量の向上が図られる。 露点温度の低下を図 3.に示す湿り空気線図上で説明すると、 室内の空気が例え ば標準点 (温度 27° (:、 相対湿度 60%) にあるとすると、 予熱凝縮器 1 1によ り 32°Cにまで予熱された後、 蒸発器 12で冷却されることになるが、 このとき 操作線は、 0°C以下 (本例では一 1°C) で飽和温度曲線と接し、 この温度が露点 温度 (蒸発温度) となる。 In this embodiment, the air is heated to a predetermined temperature by passing through the preheating condenser 11. Since it contacts the surface of evaporator 12 in this state, it comes into contact with evaporator 12 with a larger temperature difference than when the preheat condenser 11 is not provided. In addition, the condensation temperature decreases due to the split arrangement of the condenser, and the dew point temperature (evaporation temperature) decreases. From the above, the droplet condensation of water is promoted, and the amount of latent heat taken from the air is increased to improve the amount of dehumidification. Explaining the drop in dew point temperature on the psychrometric chart shown in Fig. 3, if the indoor air is at a standard point (temperature 27 ° (:, relative humidity 60%), the preheat condenser 11 After it is preheated to 32 ° C, it is cooled by the evaporator 12.At this time, the operating line contacts the saturation temperature curve at 0 ° C or less (11 ° C in this example). This temperature becomes the dew point temperature (evaporation temperature).
この湿り空気線図からでは装置の顕熱比 (SHF) を表すことはできない。 し かし、 後述するように、 装置の蒸発温度 (露点温度) 、 除湿量、 圧縮機の能力表 より計算にて、 顕熱比を算出することは可能である。  The sensible heat ratio (SHF) of the device cannot be represented from this wet psychrometric chart. However, as will be described later, it is possible to calculate the sensible heat ratio by calculating from the evaporating temperature (dew point temperature) of the equipment, the amount of dehumidification, and the compressor capacity table.
表 1に、 標準点 、2 Ί。 ヽ 相対湿度 60%) を基準とした、 予熱凝縮器 1 1に よる空気の上昇温度と最低到達蒸発温度との関係を例示的に示す。 空気を 3°C以 上上昇させるように予熱凝縮器の凝縮温度を設定すれば (例えば 40°C) 、 一 1 °Cの最低到達蒸発温度を得ることができる。 Table 1 shows the standard points, 2 mm. The relationship between the rising temperature of the air by the preheating condenser 11 and the lowest attained evaporation temperature based on the relative humidity (60%) is shown as an example. Setting the condensing temperature of the preheat condenser to raise the air by more than 3 ° C (for example, 40 ° C) will result in a minimum reached evaporation temperature of 11 ° C.
(表 1) (table 1)
Figure imgf000008_0001
また、 本実施の形態では、 従来の凝縮器 2 (図 5参照) を予熱凝縮器 1 1と再 熱凝縮器 1 3とに分割して配置しているため、 その凝縮能力は従来の凝縮器 1の 凝縮能力より増加し、 しかも、 圧縮機 27の能力を低下させないように凝縮負荷 を低減して凝縮圧力 (凝縮温度) を低くすることができるため (本実施の形態で は 40°C) 、 冷凍能力を低下させることなく除湿量を向上させることができる。 同時に、 凝縮負荷の低減により周囲温度の上昇を抑制することができる。
Figure imgf000008_0001
Also, in the present embodiment, the conventional condenser 2 (see FIG. 5) is divided into a preheat condenser 11 and a reheat condenser 13 so that the condensing capacity of the conventional condenser 2 is reduced. Since the condensing capacity is increased from the condensing capacity of (1) and the condensing pressure (condensing temperature) can be lowered by reducing the condensing load so as not to lower the capacity of the compressor 27 (40 ° C in the present embodiment). However, the amount of dehumidification can be improved without lowering the refrigerating capacity. At the same time, an increase in ambient temperature can be suppressed by reducing the condensation load.
図 4に、 以上のように構成される除湿機で、 温湿度の調整のないプレハブ倉庫 で行ったときの除湿量を、 従来の家庭用除湿機と対比して示す。 ここで、 実線は 発明機を、 一点鎖線は従来機をそれぞれ示している。  Fig. 4 shows the amount of dehumidification performed in a prefabricated warehouse without temperature and humidity adjustment in the dehumidifier configured as described above, in comparison with a conventional home dehumidifier. Here, the solid line indicates the invented machine, and the dashed line indicates the conventional machine.
図において A 1点および A2点は、 温度 22. 5 、 相対湿度47. 6%にお ける発明機および従来機のデ一タをそれぞれ示している。 除湿量を比較すると、 従来機では 190 c c/hであるのに対して、 発明機では 300 c cZhで、 従 来機の 1. 58倍である。 これから発明機の顕熱比 (SHF) を求めると、 従来 機の顕熱比 (QS) が 0. 54であるとすると (前述) 、 QLは 0. 46であり、 したがつて、 0. 46X 1. 58 = 0. 73より、 発明機の顕熱比は、 0. 27 となる。 In the figure, points A1 and A2 represent data of the invented device and the conventional device at a temperature of 22.5 and a relative humidity of 47.6%, respectively. Comparing the dehumidification amount, it is 190 cc / h in the conventional machine, but 300 ccZh in the invented machine, 1.58 times that of the conventional machine. From this, when the sensible heat ratio (SHF) of the inventor is found, Assuming that the sensible heat ratio (QS) of the machine is 0.54 (described above), the QL is 0.46, and therefore 0.46X1.58 = 0.73. Becomes 0.27.
また、 図において B 1点および B 2点は、 温度 24. 5°C、 相対湿度 93. 3 %における発明機および従来機のデータをそれぞれ示している。 除湿量を比較す ると、 従来機では 520 c cZhであるのに対して、 発明機では 950 c c/h で、 従来機の 1. 8倍である。 これから発明機の顕熱比 (SHF) を求めると、 従来機の顕熱比 (QS) が 0. 54であるとすると、 QLは 0. 46であり、 し たがって、 0. 46 X 1. 8 = 0. 83より、 発明機の顕熱比は、 0. 17とな る。  In the figure, points B1 and B2 represent data of the invented device and the conventional device at a temperature of 24.5 ° C and a relative humidity of 93.3%, respectively. Comparing the amount of dehumidification, the conventional machine is 520 cCh, whereas the invented machine is 950 cc / h, which is 1.8 times that of the conventional machine. From this, when the sensible heat ratio (SHF) of the invented machine is obtained, assuming that the sensible heat ratio (QS) of the conventional machine is 0.54, QL is 0.46 and therefore 0.46 X 1. From 8 = 0.83, the sensible heat ratio of the invented machine is 0.17.
なお、 図において C 1点および C 2点は、 温度 27°C、 相対湿度 60%、 すな わち標準点における発明機および従来機のそれぞれ除湿量を示している。 しかし 実際にはこの点で測定していないので詳細は不明であるが、 発明機の方が従来機 に比べて約 2倍の除湿量を有することが推定される。 したがって、 上記 A 1点お よび B 1点の場合と同様、 発明機の顕熱比は 0. 5以下となる。  In the figure, points C1 and C2 indicate the dehumidification amounts of the inventive machine and the conventional machine, respectively, at a temperature of 27 ° C and a relative humidity of 60%, that is, at a standard point. However, the details are not known because measurement was not actually performed at this point, but it is presumed that the invented machine has about twice the amount of dehumidification as compared to the conventional machine. Therefore, the sensible heat ratio of the invented machine is 0.5 or less, as in the case of the points A1 and B1.
特に、 本実施の形態では、 蒸発器 12の面積が従来の蒸発器 1の面積の 3. 5 分の 1であり、 しかも上述のように従来機の除湿量の約 2倍の除湿量を得ること ができることから、 従来機の蒸発器 1表面に平均に除湿水が膜状にあるものとす れば、 本実施の形態の蒸発器 12の除湿水の膜の厚さは、 従来の蒸発器 1の除湿 水の約 7倍の厚さの水膜があることになる。 したがって、 従来機の約 7倍の水膜 であれば、 それは膜というよりも水滴と表現することも可能である。 すなわち、 本実施の形態では、 空気中の水分を滴状凝縮の形態で除湿していると言うことが できる。  In particular, in the present embodiment, the area of the evaporator 12 is 3.5 times smaller than the area of the conventional evaporator 1, and the dehumidification amount is about twice as large as that of the conventional machine as described above. Therefore, if it is assumed that the dehumidified water has a film shape on the surface of the evaporator 1 of the conventional machine on average, the film thickness of the dehumidified water of the evaporator 12 of the present embodiment is There will be a water film about 7 times thicker than 1 dehumidified water. Therefore, if the water film is about seven times that of the conventional machine, it can be expressed as a water droplet rather than a film. That is, in this embodiment, it can be said that moisture in the air is dehumidified in the form of droplet condensation.
更に、 凝縮温度および蒸発温度の低下により、 冷媒の比容積が増大し、 これが 冷媒の循環量の低下をもたらすため、 消費電力の減少と、 蒸発器 12の小型化、 ひいては除湿機全体の小型化を図ることができる。 すなわち本実施の形態によれ ば、 従来よりも小さい蒸発面積 (容量) で除湿量の向上を図ることができる。 ここで、 蒸発器の理論設計式より、 本発明の蒸発器 12と従来の蒸発器 1との 容量の関係を、 下記の計算式にて確認する。 Further, the specific volume of the refrigerant increases due to a decrease in the condensing temperature and the evaporating temperature, which leads to a decrease in the amount of the circulating refrigerant. Can be achieved. That is, according to the present embodiment, For example, the amount of dehumidification can be improved with a smaller evaporation area (volume) than before. Here, from the theoretical design formula of the evaporator, the relationship between the capacity of the evaporator 12 of the present invention and the capacity of the conventional evaporator 1 is confirmed by the following formula.
Qe=K · F · t d …… (1) Qe = K · F · t d …… (1)
Qe :蒸発器の冷却能力 (kcal/h) 、 Qe: Evaporator cooling capacity (kcal / h),
K:蒸発器の熱貫流率 (kcal/°Cm2h) 、 K: heat transfer coefficient of the evaporator (kcal / ° Cm 2 h),
F:蒸発器の表面積 (m2) F: Evaporator surface area (m 2 )
t d= ( t a+ t b) /2- t e ······ (2)  t d = (t a + t b) / 2- t e (2)
t a :蒸発器入口の空気温度 (C) 、  t a: Air temperature at evaporator inlet (C),
t b :蒸発器出口の空気温度 (°C) 、  t b: Air temperature at evaporator outlet (° C),
t e :蒸発器の蒸発温度 (°C)  t e: Evaporator evaporation temperature (° C)
発明器の設計条件としては、 従来機と同一の圧縮機を使用して、 かつ冷却能力 もほぼ同じとする。  As the design conditions of the inventor, the same compressor as that of the conventional machine is used, and the cooling capacity is almost the same.
従来機の蒸発器の冷却能力を Qe 1とし、 発明機の蒸発器の冷却能力を Qe 2 とすると、 Qe l=Qe 2となる。  If the cooling capacity of the evaporator of the conventional machine is Qe1, and the cooling capacity of the evaporator of the invented machine is Qe2, then Qel = Qe2.
従来機の蒸発器の熱貫流率 K 1と発明機の蒸発器の熱貫流率 K 2との関係につ いては、 K1は膜状凝縮における熱貫流率であり、 K 2は滴状凝縮における熱貫 流率であるため、 1く1^2となる。  Regarding the relationship between the heat transfer coefficient K1 of the conventional evaporator and the heat transfer coefficient K2 of the inventor's evaporator, K1 is the heat transfer coefficient in film-form condensation, and K2 is the drop-rate condensation. Because of the heat transfer coefficient, it becomes 1 ^ 2.
そこで (2) 式より、 従来機 t d 1= (t a 1+ t 1) Z2— t e l、 発明 機 t d2= (t a 2+ t b 2) Z2— t e 2とすれば、 ΐ & 1 = 27 、 t a 2 = 32°C、 t b 1 = 17°C, t b 2 = 14°C> t e 1 = 10°C, t e 2 = 7°Cと した場合、 t d l = 12° (、 t d 2=16°Cとなり、 t d l<t d 2となる。 したがって、 Qe l=Qe 2、 K1く K2、 t d 1< t d 2の関係より、 蒸発 器の表面積 Fは、 (1) 式より、 F 1〉F2となるので、 結論として、 従来機の 蒸発器の容量より発明機の蒸発器の容量は小さいものでなければならないことが 分かる。 ' 以上、 本発明の実施の形態について説明したが、 勿論、 本発明はこれに限定さ れることなく、 本発明の技術的思想に基づいて種々の変形が可能である。 Therefore, from equation (2), if the conventional machine td 1 = (ta 1 + t 1) Z2—tel and the inventor t d2 = (ta 2 + tb 2) Z2—te 2, then ΐ & 1 = 27, ta 2 = 32 ° C, tb 1 = 17 ° C, tb 2 = 14 ° C> te 1 = 10 ° C, te 2 = 7 ° C, tdl = 12 ° (, td 2 = 16 ° C , Td l <td 2. Therefore, from the relation of Qe l = Qe 2, K1 and K2, and td 1 <td 2, the surface area F of the evaporator becomes F 1> F2 from the equation (1). In conclusion, it can be seen that the capacity of the evaporator of the invented machine must be smaller than the capacity of the evaporator of the conventional machine. Although the embodiments of the present invention have been described above, the present invention is, of course, not limited to these, and various modifications can be made based on the technical idea of the present invention.
例えば以上の実施の形態では、 空気中の水分の滴状凝縮を図るべく蒸発器 1 2 の蒸発温度を下げる方法として、 蒸発器 1 2の容量を従来よりも減少させる方法 を採用したが、 これに代えて、 送風機による風量を従来よりも減少させるように しても、 蒸発温度の低下を図ることができる。  For example, in the above-described embodiment, as a method of lowering the evaporation temperature of the evaporator 12 in order to achieve the droplet condensation of the moisture in the air, a method of reducing the capacity of the evaporator 12 compared to the conventional method is adopted. Alternatively, the evaporating temperature can be reduced by reducing the air volume from the blower as compared with the conventional case.
また、 以上の実施の形態では、 冷媒の流量調整手段としてキヤビラリチューブ 3 2を用いたが、 蒸発温度の低下による冷媒の流量調整を確実に行わせるため、 キヤビラリチューブ 3 2に代えて電子膨張弁を採用してもよい。 発明の効果  Further, in the above embodiment, the capillary tube 32 was used as the refrigerant flow rate adjusting means. However, in order to surely adjust the refrigerant flow rate due to the decrease in the evaporation temperature, the refrigerant tube 32 was replaced with the capillary tube 32. Alternatively, an electronic expansion valve may be employed. The invention's effect
以上述べたように、 本発明の除湿方法によれば、 空気中の水分を滴状凝縮させ て蒸発器の熱貫流率の向上を図ることによって、 空気から奪う潜熱量を増大し、 除湿量の大幅な向上を図ることができる。  As described above, according to the dehumidification method of the present invention, the amount of latent heat deprived from air is increased by condensing water in the air in a droplet form to improve the heat transmission coefficient of the evaporator, thereby reducing the amount of dehumidification. Significant improvement can be achieved.
請求の範囲第 2項の発明によれば、 空気流と蒸発器表面との間の温度差を大き くして水分の滴状凝縮を促し、 また、 蒸発温度とともに凝縮温度をも下げて冷凍 能力の向上、 すなわち除湿量の向上を図ることができる。 さらに、 凝縮負荷の低 減により周囲温度の上昇を抑制するとともに、 冷媒循環量の低減をもたらして熱 交換器の小型化を図り、 消費電力の低減を図ることができる。  According to the second aspect of the present invention, the temperature difference between the air flow and the surface of the evaporator is increased to promote the droplet condensation of the water, and the condensation temperature is reduced together with the evaporation temperature to reduce the refrigeration capacity. Improvement, that is, improvement in the amount of dehumidification can be achieved. Furthermore, it is possible to suppress the rise in the ambient temperature by reducing the condensing load, and to reduce the amount of refrigerant circulating, thereby reducing the size of the heat exchanger and reducing power consumption.
さらに請求の範囲第 3項の発明によれば、 蒸発器の熱貫流率を向上させて水分 の滴状凝縮を促進し、 除湿量の向上を図ることができる。  Further, according to the third aspect of the present invention, it is possible to improve the heat transfer coefficient of the evaporator, promote the droplet condensation of water, and improve the amount of dehumidification.

Claims

請求の範囲 The scope of the claims
1 . 風上側から蒸発器および凝縮器を順に配置し、 空気流を前記蒸発器で露点温 度にまで冷却して水分を除去した後、 該空気流を前記凝縮器で所定温度に再熱す る除湿方法であって、 -. 1. An evaporator and a condenser are arranged in order from the windward side. After the air flow is cooled to the dew point temperature by the evaporator to remove moisture, the air flow is reheated to a predetermined temperature by the condenser. -.
前記空気流中の水分を前記蒸発器の表面で滴状凝縮させて、 除湿することを特 徵とする除湿方法。  A dehumidifying method, characterized in that moisture in the air stream is dropped and condensed on the surface of the evaporator to dehumidify.
2 . 前記蒸発器の風上側に、 前記凝縮器を分割して構成される予熱器を配置し、 該予熱器により前記蒸発器を通る空気流の温度を上昇させることを特徴とする請 求の範囲第 1項に記載の除湿方法。  2. A preheater, which is configured by dividing the condenser, is arranged on the windward side of the evaporator, and the temperature of an air flow passing through the evaporator is increased by the preheater. 2. The dehumidifying method according to item 1.
3 . 前記予熱器、 前記蒸発器および前記凝縮器を、 顕熱比が 0 . 5未満となるよ うに配置構成することを特徴とする請求の範囲第 2項に記載の除湿方法。  3. The dehumidifying method according to claim 2, wherein the preheater, the evaporator, and the condenser are arranged so that a sensible heat ratio is less than 0.5.
PCT/JP2002/003717 2000-10-19 2002-04-15 Dehumidifying method WO2003087683A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000318852A JP2002130863A (en) 2000-10-19 2000-10-19 Dehumidifying method
TW091107041A TW517149B (en) 2000-10-19 2002-04-09 Dehumidifying method
PCT/JP2002/003717 WO2003087683A1 (en) 2000-10-19 2002-04-15 Dehumidifying method
CNB028003411A CN100365359C (en) 2000-10-19 2002-04-15 Dehumidifying method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000318852A JP2002130863A (en) 2000-10-19 2000-10-19 Dehumidifying method
PCT/JP2002/003717 WO2003087683A1 (en) 2000-10-19 2002-04-15 Dehumidifying method

Publications (1)

Publication Number Publication Date
WO2003087683A1 true WO2003087683A1 (en) 2003-10-23

Family

ID=30772089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003717 WO2003087683A1 (en) 2000-10-19 2002-04-15 Dehumidifying method

Country Status (4)

Country Link
JP (1) JP2002130863A (en)
CN (1) CN100365359C (en)
TW (1) TW517149B (en)
WO (1) WO2003087683A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8769970B2 (en) * 2005-11-28 2014-07-08 Hill Phoenix, Inc. Refrigerated case with reheat and preconditioning

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233562A (en) * 2004-02-23 2005-09-02 Chikayoshi Sato Air conditioning method and device
DK177003B1 (en) * 2009-08-20 2010-11-15 Maersk Container Ind As Dehumidifier
CN103604165A (en) * 2013-11-29 2014-02-26 苏州浩佳节能科技有限公司 High-efficiency dehumidification air conditioning indoor unit
CN114761107A (en) * 2019-12-12 2022-07-15 三菱电机株式会社 Dehumidifying device
JP7394993B2 (en) * 2020-06-05 2023-12-08 三菱電機株式会社 dehumidifier
CN114893828B (en) * 2022-03-30 2023-08-18 青岛海信日立空调系统有限公司 Air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623633Y2 (en) * 1982-02-20 1987-01-27
JPH05340643A (en) * 1992-06-12 1993-12-21 Toshiba Corp Air conditioner
JPH0942747A (en) * 1995-07-31 1997-02-14 Matsushita Seiko Co Ltd Air conditioner
JPH10148416A (en) * 1996-11-15 1998-06-02 Yasuhiko Arai Dehumidifier
JPH10197028A (en) * 1997-01-13 1998-07-31 Hitachi Ltd Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124434A (en) * 1999-10-29 2001-05-11 Daikin Ind Ltd Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623633Y2 (en) * 1982-02-20 1987-01-27
JPH05340643A (en) * 1992-06-12 1993-12-21 Toshiba Corp Air conditioner
JPH0942747A (en) * 1995-07-31 1997-02-14 Matsushita Seiko Co Ltd Air conditioner
JPH10148416A (en) * 1996-11-15 1998-06-02 Yasuhiko Arai Dehumidifier
JPH10197028A (en) * 1997-01-13 1998-07-31 Hitachi Ltd Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8769970B2 (en) * 2005-11-28 2014-07-08 Hill Phoenix, Inc. Refrigerated case with reheat and preconditioning

Also Published As

Publication number Publication date
CN100365359C (en) 2008-01-30
TW517149B (en) 2003-01-11
JP2002130863A (en) 2002-05-09
CN1483131A (en) 2004-03-17

Similar Documents

Publication Publication Date Title
JP4993014B2 (en) Controller and air conditioning system
JP4835688B2 (en) Air conditioner, air conditioning system
JP4321650B2 (en) Humidity control device
CN107429975A (en) Heat exchanger and air conditioner
JP2006017316A (en) Heat exchanger and air conditioner
CN103890495B (en) Refrigerating air conditioning device and humidity control device
WO2005079957A1 (en) Air conditioning method and air conditioning system
WO2003087683A1 (en) Dehumidifying method
JP6336101B2 (en) Dehumidifier
JP2002130863A5 (en)
JP5028927B2 (en) Air conditioner
JP2006317012A (en) Air conditioner
JP4505486B2 (en) Heat pump air conditioner
WO2021144909A1 (en) Air-conditioning device
JP2003139436A (en) Air conditioner
CN113375243A (en) Constant temperature control dehumidifier
CN111578396A (en) Built-in heat pump self-circulation regeneration runner dehumidification system
JP2006052882A (en) Heat pump type air conditioner
JP2007333378A (en) Heat pump type air conditioner
JP2006153321A (en) Heat pump type air conditioner
JP2004353893A (en) Air conditioner having variable sensible heat ratio
CN103900170A (en) Dehumidifier
CN215808937U (en) Constant temperature control dehumidifier
TWI784343B (en) Dehumidifier
CN218249436U (en) Three-pipe type hot gas bypass low-temperature working condition air-cooled condensation refrigeration dehumidification equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 02800341.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US