WO2005079957A1 - Air conditioning method and air conditioning system - Google Patents

Air conditioning method and air conditioning system Download PDF

Info

Publication number
WO2005079957A1
WO2005079957A1 PCT/JP2005/002305 JP2005002305W WO2005079957A1 WO 2005079957 A1 WO2005079957 A1 WO 2005079957A1 JP 2005002305 W JP2005002305 W JP 2005002305W WO 2005079957 A1 WO2005079957 A1 WO 2005079957A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
air
temperature
condenser
condensation
Prior art date
Application number
PCT/JP2005/002305
Other languages
French (fr)
Japanese (ja)
Inventor
Chikayoshi Sato
Original Assignee
Chikayoshi Sato
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chikayoshi Sato filed Critical Chikayoshi Sato
Publication of WO2005079957A1 publication Critical patent/WO2005079957A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature

Definitions

  • the present invention relates to an air-conditioning method for cooling and dehumidifying indoor air with an evaporator, and more particularly, to an air-conditioning method and an air-conditioning method capable of greatly improving the amount of dehumidification as compared with a conventional dehumidification method. It relates to an air conditioner.
  • a dehumidifier there are various types of dehumidification methods of a dehumidifier such as a cooling type, a compression type, an absorption type and an adsorption type.
  • the cooling type is also called the direct expansion coil type, and the principle of dehumidification is to reduce the saturated water vapor pressure by cooling the air with a compression refrigerator to condense the moisture in the air.
  • This method has the advantage that the equipment cost is low, and is widely applied to home and commercial dehumidifiers.
  • a conventional cooling-type dehumidifier includes an evaporator (cooler) 1 arranged on the leeward side, a condenser (radiator) 2 arranged on the leeward side, and an evaporator. It has a blower (not shown) that forms a convection airflow from 1 to the condenser 2, cools the indoor air with the evaporator 1 and dehumidifies it, and then reheats the air with the condenser 2
  • the configuration is common.
  • the straight line connecting the points I and O is called the air operation line, and if the extension line is followed, it comes into contact with the saturation temperature curve, and the temperature F (5 ° C in this example) at this time It is called the dew point temperature (evaporation temperature). As the dew point temperature is lower, the temperature at the O point is lower, and a large amount of dehumidification can be obtained.
  • the sensible heat factor (SHF: Sensible Heat Factor) of the device can be obtained.
  • Sensible heat quantity QS is air temperature
  • Latent heat QL is the amount of heat required to condense the moisture in the air.
  • the sensible heat ratio is about 0.54, and the amount of heat required for temperature change (sensible heat QS) out of the heat of air is 54% of the total heat, and the remaining 46 % Is the latent heat, QL, to take up moisture.
  • the present applicant first arranges an evaporator and a condenser in this order from the windward side, cools the air flow to an evaporation temperature by an evaporator to remove moisture, and then converts the air flow into a condenser.
  • a dehumidification method for reheating to a predetermined temperature in the above-mentioned manner, and dehumidification by dehumidifying moisture in the air stream by drop condensation on the surface of the evaporator has been proposed (see Patent Document 1 below).
  • the condensate moisture in the air
  • the condensate becomes film-wise condensation that covers the surface (condensation surface) of the evaporator in a film-like manner, and the heat transfer on the condensation surface is Since this is performed through the liquid film, this liquid film has a large heat transfer resistance (Fig. 19A).
  • the area of the part where the air flow directly contacts the condensing surface is larger than in the case of film condensation, so that the heat transmission rate is lower. (Heat transfer coefficient) (Fig. 19B). Therefore, the condensation of water is promoted by the improvement of the heat transmission coefficient, and as a result, the dew point temperature of the apparatus is lowered, and the amount of dehumidification can be improved.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-130863
  • Non-patent document 1 Heat transfer engineering data revised 4th edition 7th edition Published by The Japan Society of Mechanical Engineers 1999 p. 151-p. 152
  • Non-Patent Document 2 Refrigeration and Air-Conditioning Handbook I Volume Basic Edition
  • droplet condensation is a process that shows a higher heat transfer coefficient than film condensation.
  • the phenomenon itself has not yet been sufficiently elucidated (see Non-Patent Document 1). It has been reported that the force of film-like condensation or droplet-like condensation depends on the surface properties of the above substances and solid walls (cooling surfaces) (see Non-Patent Document 2). Regarding the surface properties of the solid wall, the main focus is on the surface treatment for generating droplet-like condensation and the development of accelerators.
  • the present invention has been made in view of the above problems, and provides an inexpensive and high-performance air-conditioning method and an air-conditioning apparatus capable of stably maintaining a droplet-shaped condensation area and suppressing a manufacturing cost. As an issue.
  • the present inventor has determined that the difference between whether the form of condensation of water on the surface (cooling surface) of the evaporator is a film-like condensation, which is droplet condensation, The present inventors have found that the temperature difference between the inlet air temperature of the evaporator and the evaporation temperature of the evaporator has a great relationship, and have completed the present invention.
  • the condenser is arranged on the windward side of the evaporator, and the temperature difference between the inlet air temperature of the evaporator and the evaporation temperature of the evaporator is set to 24 ° C. or more. It is characterized in that moisture in the air is condensed in droplets on the surface of the vessel and dehumidified. At 23 ° C. or lower, a film-like condensed region is formed. At this temperature difference, it is difficult to form a condensed liquid droplet unless some treatment is performed on the cooling surface.
  • the moisture in the air can be stably condensed in a droplet form, and the amount of dehumidification can be improved. Further, since no special treatment is required for the evaporator surface, the production cost can be suppressed.
  • a sensible heat ratio larger than that in the film condensation is obtained.
  • most of the cooling capacity of the droplet condensation is used for the sensible heat, that is, the heat required for cooling the air, so that the function as the air conditioner can be satisfied at the same time.
  • the condenser arranged on the windward side of the evaporator preheats the inlet air temperature of the evaporator, and It has a function to give a temperature difference of 24 ° C or more between the inlet air temperature of the evaporator and the evaporator.
  • the heat transfer coefficient of droplet condensation is closely related to the size of the droplet on the condensation surface.
  • the rate tends to increase. Therefore, in order to quickly and efficiently separate water droplets adhering to the cooling fin surface of the evaporator, it is preferable to arrange the evaporator so that the upper part of the evaporator is inclined to the leeward side. And the next water droplets are more likely to adhere, and the amount of dehumidification is improved.
  • the condenser on the upwind side of the evaporator and the condenser on the downwind side of the evaporator divide one heat exchange and form a refrigerating circuit parallel to the evaporator. It is preferable to do so.
  • the condensation load is reduced, the condensation temperature is reduced, and the evaporation temperature is also reduced.
  • the heat radiation of the entire apparatus can be reduced while increasing the temperature difference between the inflow air and the evaporator, and the amount of dehumidification can be improved.
  • an increase in the room temperature during the dehumidifying operation can be suppressed.
  • the condenser arranged on the lee side of the evaporator is a preheating condenser and the condenser arranged on the lee side of the evaporator is a reheating condenser
  • the evaporator is visible.
  • a heater can be composed of these three heat exchangers.
  • the heat release ratio of the preheating condenser and the reheating condenser is set to 0.18: 0.82.
  • the system operates at an outlet air temperature of 65 ° C against an inlet air temperature of 20 ° C.
  • moisture in the air can be stably condensed on the surface of the evaporator during the cooling operation or the dehumidifying operation.
  • the dehumidification method using condensation and the dehumidification amount can be significantly improved compared to the conventional machine. Wear.
  • droplet condensation can be realized without requiring a surface treatment for promoting droplet condensation on the evaporator, high reliability can be ensured for a long time. Can be. Further, since power consumption can be reduced as compared with the conventional air conditioner, an air conditioner with low cost and low power consumption can be provided.
  • each of the cooling, dehumidifying, and heating operations can be performed by a single unit. Therefore, the present invention is configured as a substitute for a conventional air conditioner requiring an outdoor unit. It is possible.
  • FIG. 1 is an overall view of an air conditioner 20 according to an embodiment of the present invention.
  • FIG. 2 is an arrangement configuration diagram of a heat exchanger of the air conditioner 20.
  • FIG. 3 is a refrigeration circuit diagram of the air conditioner 20.
  • FIG. 4 is a psychrometric chart illustrating one operation of the air conditioner 20.
  • FIG. 5 is a view showing a relationship between an evaporator inlet air temperature and an evaporation temperature.
  • FIG. 6 is a diagram illustrating a comparison of the amount of dehumidification between the invented machine and the conventional machine.
  • FIG. 7 is a perspective view of a heat exchanger when a refrigerator is configured with the invented machine.
  • FIG. 8 is a side view showing a modification of the arrangement of the heat exchangers of the air conditioner 20.
  • FIG. 9 is a diagram showing a relationship between a detached droplet diameter and a heat transfer coefficient in droplet condensation.
  • FIG. 10 is a diagram showing the relationship between the degree of supercooling of the surface and the heat flow rate in a drop condensation area.
  • FIG. 11 is a diagram illustrating another example of arrangement of an evaporator.
  • FIG. 12 is another layout diagram of the heat exchanger of the air conditioner 20.
  • FIG. 13 is a view for explaining still another arrangement example of the evaporator.
  • FIG. 14 is a diagram illustrating a design example of each heat exchanger during a heating operation of the air conditioner 20.
  • FIG. 15 is a Mollier chart of a refrigerant during a heating operation of the air-conditioning apparatus 20.
  • FIG. 16 is a diagram illustrating the air temperature and the refrigerant temperature during the heating operation of the air-conditioning apparatus 20.
  • FIG. 17 is a layout view of a heat exchanger of a conventional dehumidifier.
  • FIG. 18 is a psychrometric chart of a conventional dehumidifier.
  • FIG. 19 is a diagram for explaining the difference between a condensation model based on film condensation and a condensation model based on droplet condensation.
  • FIGS. 1 and 2 show the configurations of an air conditioner 20 and heat exchangers 21 to 23 according to an embodiment of the present invention. First, the overall configuration of the air conditioner 20 will be described.
  • the air conditioner 20 in the present embodiment is configured as a handy-type household dehumidifier, a cooler or a heater, and mainly includes a first condenser (preheating condenser) 21 and a second condenser ( A condenser for reheating) 22, an evaporator 23, a blower 25, a compressor 27, and a main body 24 accommodating these devices.
  • the main body 24 has an air inlet 24A and an air outlet 24B.
  • the blower 25 When the blower 25 is driven, a force of the air inlet 24A is generated toward the air outlet 24B, so that a flow of air is formed.
  • the first condenser 21 is disposed closest to the air intake port 24A, and the evaporator 23, the second condenser 22, and the blower 25 are disposed in order in the leeward direction.
  • a tank 26 for storing the moisture in the air dehumidified by the evaporator 23, and a compressor 27 for circulating the refrigerant to the first and second condensers 21, 22 and the evaporator 23 are provided below the main body 24, a tank 26 for storing the moisture in the air dehumidified by the evaporator 23, and a compressor 27 for circulating the refrigerant to the first and second condensers 21, 22 and the evaporator 23 are provided. Is contained.
  • the radiating fin 38 includes a plurality of radiating fins 38 and a refrigerant circulation noise 39 disposed so as to penetrate the radiating fins 38.
  • both the heat radiation fins 38 and the circulation pipes 39 are made of aluminum.
  • FIG. 3 is a piping configuration diagram of a refrigeration circuit of the air conditioner 20.
  • the first and second condensers 21 and 22 divide one heat exchanger into two, and are connected in parallel to the upwind side and the downwind side of the evaporator 23, respectively.
  • the high-temperature and high-pressure refrigerant gas discharged from the compressor 27 is supplied to the first and second condensers 21 and 22 through the pipe 28, and releases heat to the surrounding air to condense and liquefy.
  • the refrigerant flowing out of the first and second condensers 21 and 22 is supplied to an electronic expansion valve 30 via a pipe 29 to be decompressed, and further supplied to an evaporator 23 to remove heat from the surrounding air to evaporate and gasify. I do.
  • the refrigerant with the power of the evaporator 23 is supplied to the suction port of the compressor 27 through the pipe 31.
  • the air conditioner 20 is operated by repeating the above refrigeration cycle.
  • the indoor air bl sucked from the air suction port 24A of the main body 24 is heated by passing through the first condenser 21, and is evaporated as the heated air b2 Container 23 is reached.
  • the heated air b2 comes into contact with the cooling surface of the evaporator 23 (the surface of the radiation fins 38) to be dehumidified and cooled.
  • the air b3 that has passed through the evaporator 23 is heated to the room temperature by the second condenser 22, and the heated dry air b3 is discharged into the room through the air outlet 24B of the main body 24. .
  • a first condenser 21 for preheating is arranged on the windward side of the evaporator 23.
  • the air in the room is introduced into the first condenser 21 by driving the blower 25, and the air whose temperature has been raised by a predetermined temperature is cooled by the evaporator 23 to dehumidify the moisture. Then, it is reheated to a predetermined temperature by the second condenser 22 at the subsequent stage, and is discharged indoors.
  • the air evaporates at a predetermined temperature (for example, 5 ° C). Since the air comes into contact with the surface of the evaporator 23, the suction air comes into contact with the evaporator 23 with a larger temperature difference than when the preheat condenser 21 is not provided. In addition, the condensation temperature decreases due to the distribution of the condenser, and the dew point temperature decreases.
  • a predetermined temperature for example, 5 ° C
  • the decrease in dew point temperature will be described with reference to a psychrometric chart shown in FIG. Assuming that the room air is at a standard point (temperature 27 ° C, relative humidity 60%), in the above example, the first condenser 21 preheats to 32 ° C and then evaporator 23. Cooled. At this time, the operating line touches the saturation temperature curve at -1 ° C, and this temperature becomes the dew point temperature of the device. This makes it possible to significantly reduce the dew point temperature compared to a conventional dehumidifier (operation line shown by a broken line in the figure) in which a condenser is arranged on the windward side of the evaporator.
  • a conventional dehumidifier operation line shown by a broken line in the figure
  • the temperature difference between the inlet air temperature of the evaporator 23 and the evaporation temperature of the evaporator 23 is set to 24 ° C or more. I have. As described later, by providing a temperature difference of 24 ° C. or more between the inlet air temperature of the evaporator 23 and the evaporator 23, the water in the air can be condensed in a droplet form.
  • Table 1 shows the experimental results when the condensation form of moisture in the air was measured according to the temperature difference between the evaporator inlet air temperature and the evaporator evaporation temperature. To check the form of water condensation, check the surface of the evaporator. The observation was performed. Table 1 shows that when the temperature difference (ti te) between the evaporator inlet air temperature (ti) and the evaporator evaporation temperature (te) is 24 ° C or more, the moisture in the air drops. It can be seen that it is condensed.
  • Example 2 2 8 4 V, 24 V Drop ⁇
  • FIG. 5 shows Example 1 in Table 1 with white circles, Example 2 with squares, Example 3 with triangles, Comparative Example 1 with double circles, and Comparative Example 2 with black circles.
  • the operating conditions of the air conditioner 20 for realizing the above-described droplet-type condensation include, for example, a condensation test at 27 ° C and 60% of a standard dehumidifier for household use specified in JIS C9617.
  • the evaporation temperature is set so that the difference between the evaporator inlet air temperature and the evaporation temperature is 24 ° C or less.
  • the specifications of the first condenser 21 and the second condenser 22 are not limited to being the same, and the specifications may be different from each other.
  • a flow control valve or the like may be arranged in the first condenser 21 so that the first and second condensers 21 and 22 have different refrigerant flow rates.
  • the first condenser 21 and the second condenser 22 are arranged on the upstream and downstream sides of the evaporator 23, so that the condensing capacity of the condenser 2 of the conventional dehumidifier is reduced.
  • the condensing capacity is increased and the condensing load is reduced so that the capacity of the compressor 27 is not reduced.
  • the condensation pressure (condensation temperature) can be lowered, so that the amount of dehumidification can be improved without lowering the refrigerating capacity, and an increase in the ambient temperature can be suppressed by reducing the condensation load.
  • the amount of circulating refrigerant is reduced, power consumption can be reduced.
  • Fig. 6 shows the amount of dehumidification performed in a prefabricated warehouse without temperature and humidity adjustment using the conventional home dehumidifier (Fig. 17). This is shown in comparison with the conventional machine shown in Fig. 1).
  • the solid line indicates the invented machine
  • the one-dot chain line indicates the conventional machine.
  • points A1 and A2 indicate data of the invented device and the conventional device at a temperature of 22.5 ° C. and a relative humidity of 47.6%, respectively. Comparing the amount of dehumidification, the conventional machine is 19 OccZh, while the invented machine is 300 ccZh, which is 1.58 times that of the conventional machine (the power consumption is 0.79 times that of the conventional machine).
  • points B1 and B2 are data for the inventor and the conventional machine at a temperature of 24.5 ° C and a relative humidity of 93.3% .
  • the dehumidification amount is 520 cc Zh for the conventional machine and 950 cc Zh for the invented machine. This is 1.8 times that of the conventional model (the power consumption is 0.76 times that of the conventional model).
  • points C1 and C2 indicate the dehumidification amount of the invented device and the conventional device at the temperature of 27 degrees and the relative humidity of 60%, that is, the standard point.
  • the details are not known because measurement was not actually performed at this point, but it is estimated that the invented machine has about twice the amount of dehumidification as compared to the conventional machine.
  • the sensible heat amount of the apparatus cannot be obtained from the psychrometric chart.
  • the approximate calculation can be calculated from the conventional air formula from the evaporating temperature of the device, the evaporator inlet air temperature, and the evaporator outlet air temperature.
  • the air volume (1.58 mVmin.) is a tentative set value, and the set value of the air volume does not always provide a sufficient amount of dehumidification, but is appropriately set according to the specifications.
  • Air volume 1.60m / min.
  • Sensible heat value QS 0.24X1.60X60X (1 / 0.855) X (27—20.5)
  • Sensible heat ratio SHF 175.2 / (175.2 + 155.8)
  • the sensible heat is proportional to the temperature difference of the air, naturally, even if the same compressor is used, the design conditions are different, so that the amount of sensible heat is larger in the droplet condensation than in the film condensation. That is, the cooling capacity increases.
  • Latent heat 1 55.8 kcal / h-Latent heat 5 92 2.6 kcal / h ⁇ 50 0-kcal / h
  • the dehumidifier of the present invention has a large amount of sensible heat (cooling capacity) (around SHFO. 9), and thus can have a cooling function.
  • the present invention can be configured as a completely new type of cooling device that can configure the cooling device only with the indoor unit without the need for the outdoor unit.
  • a configuration in which only the preheating condenser 21 is arranged on the windward side of the evaporator 23 can constitute an air conditioner for cooling.
  • a valve (not shown) capable of shutting off the supply of the refrigerant to the second condenser 22 arranged on the leeward side is installed. It can be configured to supply the refrigerant only to the upper first condenser 21.
  • K1 is the heat transmission coefficient in the film condensation
  • K2 is the heat transmission coefficient in the droplet condensation.
  • the flow rate is KKK2.
  • Tdl 12 ° C
  • Td2 16 ° C
  • the evaporator 23 of the invented machine is configured as shown in FIG. 8, for example.
  • the same reference numerals are given to the portions corresponding to FIG.
  • Reference numeral 14 in the figure denotes a shield for blocking the passage of air.
  • the area of the evaporator 23 is configured to be smaller than the area of the first and second condensers 22, and is 3.5 times smaller than the area of the evaporator 1 of the conventional machine.
  • the amount of dehumidification can be improved with a smaller evaporation area (capacity) than before, and the evaporator and the air conditioner can be downsized.
  • the heat transfer coefficient of droplet condensation is closely related to the size of droplets on the condensation surface.
  • Fig. 9 Fig. 10 shows the relationship between the heat transfer coefficient under droplet condensation and the diameter of detached droplets.
  • Fig. 10 shows the condensation curve of water vapor at 1 atm (both figures are from Non-Patent Document 1).
  • the condensation curve referred to here is a curve that shows how the heat flux changes when the degree of supercooling of the surface gradually increases on the condensation surface where droplet condensation occurs. (Non-Patent Document 1).
  • FIG. 11B is an example in which the evaporator is arranged perpendicular to the condenser arranged in the vertical direction.
  • one condenser is used as both the leeward condenser and the leeward condenser of the evaporator.
  • Fig. 11C is an arrangement example in which the upper part of the evaporator is inclined to the leeward side. If the wind force and the droplet force are the same, the water droplet will flow down in the B direction, and if the wind force becomes stronger than the water force of the droplet, it will scatter and fall in the range of B—C. Although the transmission distance and time of water droplets on the cooling surface are second to those in Figs. 11A and 11B, this example is superior in terms of the compactness of the heat exchanger arrangement and design flexibility.
  • the three heat exchangers (first condenser 21, evaporator 23 and second condenser 22) in the air conditioner 20 of the present invention are connected to the upper part of the evaporator 23 as shown in Fig. 12, for example.
  • the inclination angle of the evaporator 23 can be appropriately selected according to the strength of the air flow (air volume), the surface area of the evaporator, and the like, and is 45 degrees in this example.
  • an indoor heating function is performed using the configuration of the air conditioner 20 described above. This makes it possible to construct a heater using a gas-compression refrigerator that does not require an outdoor unit only by circulating indoor air. As a result, the heating efficiency can be increased because there is no problem of defrosting.
  • the evaporation temperature of the equipment at the inlet air dry bulb temperature of the heater at 20 ° C (wet bulb temperature of 15 ° C) and the relative humidity of 60% is about 12 ° C.
  • a design example will be described with reference to a Mollier diagram (ph diagram) in FIG. 15 and a distribution diagram of air temperature in each region of the refrigerant in FIG.
  • the conditions of the refrigeration cycle are as follows: refrigerant R410A, condensation temperature 60 ° C, evaporation temperature 12 ° C, superheat degree 20 ° C, supercooling degree 5 ° C.
  • (Amount of heat radiation) (air volume) X (air temperature difference), since the air volume of the first and second condensers 21 and 22 is the same, the amount of heat radiation of the first and second condensers 21 and 22 Is proportional to the temperature difference. Assuming that the total heat release of the condenser is 1.00,
  • the temperature conditions (standard conditions) of the JIS standard (JISC9612) of the room air conditioner at the time of heating are a room air temperature of 20 ° C and an outdoor air temperature of 7 ° C.
  • the arrangement of three heat exchangers and the circulation of room air In the case of heating, the temperature of the air flowing into the indoor evaporator is naturally higher than the standard condition of 7 ° C, and the evaporation temperature also increases, so the refrigerant circulation amount increases, and if the condensing pressure is the same, the compression ratio decreases. As a result, power consumption is reduced, and as a result, a heating effect with a large COP (heating capacity Z power consumption) is obtained.
  • one first condenser 21 for preheating is arranged on the windward side of the evaporator 23, but the first condenser 21 is divided into two instead. It may be installed on the windward side of the evaporator. This makes it possible to easily control the evaporator inlet temperature by controlling the supply of refrigerant to these two preheating condensers.
  • the design condition of the evaporator 23 is a non-condensing region with a sensible heat ratio of 100%.
  • a humidity sensor is arranged at each of the inlet and outlet of the evaporator 23, and a compressor that can be controlled by an inverter is adopted as the compressor 27, and the compressor is controlled by an inverter based on the output difference between the pair of humidity sensors. Then, the non-condensing region of the evaporator 23 can be stably maintained.

Abstract

A low-cost, high-performance air conditioning method capable of constantly keeping a dropwise condensation area, and an air conditioning system. An air conditioning method for dehumidifying an indoor air by cooling an indoor circulation air by an evaporator, wherein a condenser is disposed on the windward side of the evaporator, and the difference in temperature between the inlet air temperature of the evaporator and the evaporation temperature of the evaporator is kept at at least 24 ˚C to condense moisture in air dropwise on the surface of the evaporator and effect dehumidification. It may be favorable to dispose the evaporator tilted leeward so as to quickly remove drops deposited on the evaporator surface. This invention, capable of constantly keeping the dropwise condensation of an indoor air, can greatly increase dehumidification amount, and limit a rise in an indoor air temperature during a dehumidifying operation.

Description

明 細 書  Specification
空気調和方法及び空気調和装置  Air conditioning method and air conditioning device
技術分野  Technical field
[0001] 本発明は、室内の空気を蒸発器で冷却し除湿する空気調和方法に関し、更に詳し くは、従来の除湿方法に比べて除湿量を大幅に向上させることができる空気調和方 法及び空気調和装置に関する。  The present invention relates to an air-conditioning method for cooling and dehumidifying indoor air with an evaporator, and more particularly, to an air-conditioning method and an air-conditioning method capable of greatly improving the amount of dehumidification as compared with a conventional dehumidification method. It relates to an air conditioner.
背景技術  Background art
[0002] 従来、例えば除湿機の除湿方法には、冷却式、圧縮式、吸収式及び吸着式等の 種々の方式がある。このうち、冷却式は直膨コイル方式とも呼ばれ、圧縮式冷凍機で 空気を冷却することによって飽和水蒸気圧を低下させ、空気中の水分を凝縮させる ことを除湿の原理としている。この方式は、設備費が安価であるという長所を有し、家 庭用及び業務用除湿機として広く適用されて ヽる。  [0002] Conventionally, for example, there are various types of dehumidification methods of a dehumidifier such as a cooling type, a compression type, an absorption type and an adsorption type. Of these, the cooling type is also called the direct expansion coil type, and the principle of dehumidification is to reduce the saturated water vapor pressure by cooling the air with a compression refrigerator to condense the moisture in the air. This method has the advantage that the equipment cost is low, and is widely applied to home and commercial dehumidifiers.
[0003] 従来の冷却式除湿機は、図 17に示すように、風上側に配置される蒸発器 (冷却器) 1と、風下側に配置される凝縮器 (放熱器) 2と、蒸発器 1から凝縮器 2へ向カゝぅ空気 流を形成する送風機(図示略)とを有し、蒸発器 1で室内の空気を冷却して除湿した 後、凝縮器 2で当該空気を再熱する構成が一般的である。  [0003] As shown in Fig. 17, a conventional cooling-type dehumidifier includes an evaporator (cooler) 1 arranged on the leeward side, a condenser (radiator) 2 arranged on the leeward side, and an evaporator. It has a blower (not shown) that forms a convection airflow from 1 to the condenser 2, cools the indoor air with the evaporator 1 and dehumidifies it, and then reheats the air with the condenser 2 The configuration is common.
[0004] 通常、除湿量は、図 18に示す湿り空気線図から求めることができる。例えば、図中 I 点で示す標準点 (温度 27°C、相対湿度 60%)の状態にある空気を蒸発器 1で冷却し たときのその出口における空気が O点(温度 17°C)である場合、その除湿量は、 xl- x2 = 3. 67gZkg (DR)と算出される。なお、「DR」は乾燥空気を意味する。  [0004] Usually, the amount of dehumidification can be determined from a psychrometric chart shown in Fig. 18. For example, when air at the standard point indicated by point I in the figure (temperature 27 ° C, relative humidity 60%) is cooled by evaporator 1, the air at the outlet at point O (temperature 17 ° C) In some cases, the dehumidification amount is calculated as xl- x2 = 3.67 gZkg (DR). “DR” means dry air.
[0005] また、 I点と O点とを結ぶ直線は空気操作線と呼ばれ、さらに延長線をたどると飽和 温度曲線に接し、このときの温度 F (本例では 5°C)は、装置の露点温度 (蒸発温度) と呼ばれる。この露点温度が低いほど、上記 O点の温度が低下し、大きな除湿量を得 ることが可能となる。  [0005] The straight line connecting the points I and O is called the air operation line, and if the extension line is followed, it comes into contact with the saturation temperature curve, and the temperature F (5 ° C in this example) at this time It is called the dew point temperature (evaporation temperature). As the dew point temperature is lower, the temperature at the O point is lower, and a large amount of dehumidification can be obtained.
[0006] なお、この湿り空気線図から、装置の顕熱比(SHF: Sensible Heat Factor)を求める ことができる。顕熱比は、ある空間を冷却する場合、顕熱量が全熱量に占める割合で 、顕熱比 =顕熱量 QSZ (顕熱量 QS +潜熱量 QL)である。顕熱量 QSは空気の温度 を変化させるのに必要な熱量で、潜熱量 QLは空気中の水分を凝縮させるのに必要 な熱量である。ここで、上記の例の場合には、顕熱比は約 0. 54で、空気のもつ熱量 のうち温度変化に必要な熱量 (顕熱量 QS)は全体熱量の 54%であり、残りの 46%が 湿気をとる潜熱量 QLとなる。 [0006] From this psychrometric chart, the sensible heat factor (SHF: Sensible Heat Factor) of the device can be obtained. The sensible heat ratio is the ratio of the sensible heat amount to the total heat amount when cooling a certain space, and sensible heat ratio = sensible heat amount QSZ (sensible heat amount QS + latent heat amount QL). Sensible heat quantity QS is air temperature Latent heat QL is the amount of heat required to condense the moisture in the air. Here, in the case of the above example, the sensible heat ratio is about 0.54, and the amount of heat required for temperature change (sensible heat QS) out of the heat of air is 54% of the total heat, and the remaining 46 % Is the latent heat, QL, to take up moisture.
[0007] 冷却式の除湿方法で除湿量を増大させるためには、装置の最低露点温度を低下さ せることが必要となる。しかし、熱交 を上記のように配置して除湿する従来の方 法では、装置の最低露点温度を 5°C以下に下げることは不可能であった。  [0007] In order to increase the amount of dehumidification by the cooling type dehumidification method, it is necessary to lower the minimum dew point temperature of the apparatus. However, with the conventional method of arranging heat exchange as described above and dehumidifying, it was impossible to lower the minimum dew point temperature of the device to 5 ° C or less.
[0008] そこで、本出願人は先に、風上側から蒸発器及び凝縮器を順に配置し、空気流を 蒸発器で蒸発温度にまで冷却して水分を除去した後、当該空気流を凝縮器で所定 温度に再熱する除湿方法であって、空気流中の水分を蒸発器の表面で滴状凝縮さ せて除湿する除湿方法を提案した (下記特許文献 1参照)。  [0008] Accordingly, the present applicant first arranges an evaporator and a condenser in this order from the windward side, cools the air flow to an evaporation temperature by an evaporator to remove moisture, and then converts the air flow into a condenser. A dehumidification method for reheating to a predetermined temperature in the above-mentioned manner, and dehumidification by dehumidifying moisture in the air stream by drop condensation on the surface of the evaporator has been proposed (see Patent Document 1 below).
[0009] すなわち、従前の除湿方法では、凝縮液 (空気中の水分)が蒸発器の表面 (凝縮面 )を膜状に覆う膜状凝縮 (film wise condensation)となり、凝縮面の伝熱はこの液膜を 通して行われるため、この液膜が大きな伝熱抵抗となる(図 19A)。これに対し、凝縮 液が凝縮面を滴状に覆う滴状凝縮 (drop wise condensation)では、膜状凝縮に比べ て空気流が凝縮面と直接接触する部分の面積が増大するので、熱貫流率 (熱伝達 率)を高められる(図 19B)。従って、熱貫流率の向上により、水分の凝縮が促進され るので、結果的に装置の露点温度の低下をもたらし、除湿量の向上が図ることが可 能となる。  [0009] In other words, in the conventional dehumidifying method, the condensate (moisture in the air) becomes film-wise condensation that covers the surface (condensation surface) of the evaporator in a film-like manner, and the heat transfer on the condensation surface is Since this is performed through the liquid film, this liquid film has a large heat transfer resistance (Fig. 19A). On the other hand, in the case of drop wise condensation, in which the condensed liquid covers the condensing surface in a droplet form, the area of the part where the air flow directly contacts the condensing surface is larger than in the case of film condensation, so that the heat transmission rate is lower. (Heat transfer coefficient) (Fig. 19B). Therefore, the condensation of water is promoted by the improvement of the heat transmission coefficient, and as a result, the dew point temperature of the apparatus is lowered, and the amount of dehumidification can be improved.
[0010] なお、この出願の発明に関連する先行技術文献は以下のとおりである。  [0010] The prior art documents related to the invention of this application are as follows.
[0011] 特許文献 1:特開 2002 - 130863号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2002-130863
非特許文献 1 :伝熱工学資料改訂第 4版第 7刷 日本機械学会発行 1999年 151頁 一 152頁  Non-patent document 1: Heat transfer engineering data revised 4th edition 7th edition Published by The Japan Society of Mechanical Engineers 1999 p. 151-p. 152
非特許文献 2 :冷凍空調便覧 I卷 基礎編 新版 ·第 5版 日本冷凍空調学会 415 頁  Non-Patent Document 2: Refrigeration and Air-Conditioning Handbook I Volume Basic Edition
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 一般に、滴状凝縮は、膜状凝縮に比べて大きい熱伝達率を示す過程であるが、そ の現象自体については未だ十分に解明されていない (非特許文献 1参照)。膜状凝 縮になる力、あるいは滴状凝縮になるかは、上記物質や固体壁 (冷却面)の表面性 状に依存するとの報告もある (非特許文献 2参照)。固体壁の表面性状に関しては、 滴状凝縮を発生させるための表面処理や促進剤の開発等が中心となって 、る。 [0012] In general, droplet condensation is a process that shows a higher heat transfer coefficient than film condensation. The phenomenon itself has not yet been sufficiently elucidated (see Non-Patent Document 1). It has been reported that the force of film-like condensation or droplet-like condensation depends on the surface properties of the above substances and solid walls (cooling surfaces) (see Non-Patent Document 2). Regarding the surface properties of the solid wall, the main focus is on the surface treatment for generating droplet-like condensation and the development of accelerators.
[0013] し力しながら、この方法では蒸発器の製造コストが大きくなり、例えば家庭用除湿機 にあっては低価格ィ匕を実現することは困難となる。また、長時間にわたり滴状凝縮を 維持できるかどうかの信頼性に関しても不明なところがあり、経時変化による蒸発器 表面 (冷却面)の腐食の発生が報告されて!、るものもある(上記非特許文献 1参照)。  [0013] However, in this method, the manufacturing cost of the evaporator increases, and it becomes difficult to realize a low-cost e.g. It is also unknown how reliable the droplet condensation can be maintained over a long period of time. Corrosion of the evaporator surface (cooling surface) due to aging has been reported! Patent Document 1).
[0014] そこで、本発明は上述の問題に鑑みてなされ、滴状凝縮域を安定して維持でき、製 造コストも抑制できる安価で高性能な空気調和方法及び空気調和装置を提供するこ とを課題とする。  Therefore, the present invention has been made in view of the above problems, and provides an inexpensive and high-performance air-conditioning method and an air-conditioning apparatus capable of stably maintaining a droplet-shaped condensation area and suppressing a manufacturing cost. As an issue.
課題を解決するための手段  Means for solving the problem
[0015] 以上の課題を解決するに当たり、本発明者は、蒸発器の表面 (冷却面)における水 分の凝縮形態が滴状凝縮であるカゝ膜状凝縮であるかの違いは、蒸発器の入口空気 温度と蒸発器の蒸発温度との間の温度差が大きく関係していることを見出し、本発明 を完成するに至った。 [0015] In solving the above problems, the present inventor has determined that the difference between whether the form of condensation of water on the surface (cooling surface) of the evaporator is a film-like condensation, which is droplet condensation, The present inventors have found that the temperature difference between the inlet air temperature of the evaporator and the evaporation temperature of the evaporator has a great relationship, and have completed the present invention.
[0016] すなわち、本発明は、蒸発器の風上側に凝縮器を配置し、蒸発器の入口空気温度 と蒸発器の蒸発温度との間の温度差を 24°C以上とすることにより、蒸発器の表面で 空気中の水分を滴状に凝縮させて除湿することを特徴としている。 23°C以下では膜 状凝縮域となり、この温度差では冷却面に何らかの処理を施さない限り凝縮液の滴 状ィ匕は困難である。  [0016] That is, according to the present invention, the condenser is arranged on the windward side of the evaporator, and the temperature difference between the inlet air temperature of the evaporator and the evaporation temperature of the evaporator is set to 24 ° C. or more. It is characterized in that moisture in the air is condensed in droplets on the surface of the vessel and dehumidified. At 23 ° C. or lower, a film-like condensed region is formed. At this temperature difference, it is difficult to form a condensed liquid droplet unless some treatment is performed on the cooling surface.
[0017] これにより、空気中の水分を安定に滴状凝縮させて除湿量の向上を図ることができ る。また、蒸発器表面に特別な処理を必要とすることはないので、製造コストの抑制を 図ることができる。  [0017] Thereby, the moisture in the air can be stably condensed in a droplet form, and the amount of dehumidification can be improved. Further, since no special treatment is required for the evaporator surface, the production cost can be suppressed.
[0018] 本発明に係る除湿方法においては、膜状凝縮よりも大きな顕熱比が得られる。つま り、滴状凝縮の冷却能力のほとんどが顕熱量、即ち空気を冷却するのに必要な熱量 に使用されるので、冷房機としての機能も同時に満たすことができる。  [0018] In the dehumidifying method according to the present invention, a sensible heat ratio larger than that in the film condensation is obtained. In other words, most of the cooling capacity of the droplet condensation is used for the sensible heat, that is, the heat required for cooling the air, so that the function as the air conditioner can be satisfied at the same time.
[0019] 蒸発器の風上側に配置した凝縮器は、蒸発器の入口空気温度を予熱し、蒸発器 の入口空気温度と蒸発器の蒸発温度との間に 24°C以上の温度差をもたせる機能を 有する。 [0019] The condenser arranged on the windward side of the evaporator preheats the inlet air temperature of the evaporator, and It has a function to give a temperature difference of 24 ° C or more between the inlet air temperature of the evaporator and the evaporator.
[0020] 滴状凝縮の熱伝達率は、凝縮面上の液滴の大きさと密接な関連をもっており、蒸 気速度が早いほど離脱液滴直径が小さくなり、液滴の径が小さいほど熱伝達率が大 きくなる傾向にある。そこで、蒸発器の冷却フィン表面に付着した水滴を短時間で効 率よく離脱させるために、蒸発器の上部を風下側に傾倒させて配置する構成が好ま しぐこれにより、水滴を早く冷却面から離脱させ、次の水滴が付着し易くなり、除湿 量が向上する。  [0020] The heat transfer coefficient of droplet condensation is closely related to the size of the droplet on the condensation surface. The faster the vapor speed, the smaller the diameter of the separated droplet, and the smaller the diameter of the droplet, the smaller the heat transfer. The rate tends to increase. Therefore, in order to quickly and efficiently separate water droplets adhering to the cooling fin surface of the evaporator, it is preferable to arrange the evaporator so that the upper part of the evaporator is inclined to the leeward side. And the next water droplets are more likely to adhere, and the amount of dehumidification is improved.
[0021] 一方、蒸発器の風下側に凝縮器を配置し、当該凝縮器で蒸発器の出口空気温度 を再熱する方法を採用することにより、室内空気温度を低下させない通常の除湿機 會を得ることができる。  On the other hand, by adopting a method in which a condenser is arranged on the lee side of the evaporator and the outlet air temperature of the evaporator is reheated by the condenser, a normal dehumidification meeting that does not lower the indoor air temperature is realized. Obtainable.
[0022] このとき、蒸発器風上側の凝縮器と蒸発器風下側の凝縮器とは、一台の熱交翻 を分割し、蒸発器に対して並列的な冷凍回路を形成するように構成するのが好まし い。これにより、凝縮負荷が低減されて凝縮温度が低下すると共に蒸発温度も低下 するので、流入空気と蒸発器との間の温度差を大きくしながら装置全体の放熱量を 低減でき、除湿量の向上と同時に除湿運転時の室内温度の上昇を抑制できる。  [0022] At this time, the condenser on the upwind side of the evaporator and the condenser on the downwind side of the evaporator divide one heat exchange and form a refrigerating circuit parallel to the evaporator. It is preferable to do so. As a result, the condensation load is reduced, the condensation temperature is reduced, and the evaporation temperature is also reduced.Therefore, the heat radiation of the entire apparatus can be reduced while increasing the temperature difference between the inflow air and the evaporator, and the amount of dehumidification can be improved. At the same time, an increase in the room temperature during the dehumidifying operation can be suppressed.
[0023] ところで、蒸発器の風上側に配置した凝縮器を予熱用凝縮器とし、蒸発器の風下 側に配置した凝縮器を再熱用凝縮器とした上述の構成例において、蒸発器を顕熱 量 100%の無凝縮域に設定することにより、これら 3台の熱交^^で暖房機を構成す ることがでさる。  Meanwhile, in the above configuration example in which the condenser arranged on the lee side of the evaporator is a preheating condenser and the condenser arranged on the lee side of the evaporator is a reheating condenser, the evaporator is visible. By setting a non-condensing area with 100% heat, a heater can be composed of these three heat exchangers.
[0024] 運転方法の一例としては、予熱用凝縮器と再熱用凝縮器の放熱比を 0. 18 : 0. 82 とし、更に、 20°Cの標準試験条件下において、これら各凝縮器の凝縮温度を 60°C、 蒸発器の蒸発温度を 12°Cに設定することにより、装置入口空気温度 20°Cに対して 吹出空気温度 65°Cで運転する。  [0024] As an example of the operation method, the heat release ratio of the preheating condenser and the reheating condenser is set to 0.18: 0.82. By setting the condensing temperature to 60 ° C and the evaporator evaporating temperature to 12 ° C, the system operates at an outlet air temperature of 65 ° C against an inlet air temperature of 20 ° C.
発明の効果  The invention's effect
[0025] 以上述べたように、本発明によれば、冷房運転時又は除湿運転時において空気中 の水分を蒸発器表面にて安定して滴状凝縮させることができ、これにより従来の膜状 凝縮を利用した除湿方法及び従来機に比べて除湿量の大幅な向上を図ることがで きる。 [0025] As described above, according to the present invention, moisture in the air can be stably condensed on the surface of the evaporator during the cooling operation or the dehumidifying operation. The dehumidification method using condensation and the dehumidification amount can be significantly improved compared to the conventional machine. Wear.
[0026] また、本発明によれば、蒸発器に対して滴状凝縮を促進するための表面処理を必 要とすることなく滴状凝縮を実現できるので、長期にわたって高い信頼性を確保する ことができる。また、従来機に比べて消費電力の低減を図ることができるので、低コス ト低消費電力の空気調和装置を提供できる。  [0026] Further, according to the present invention, since droplet condensation can be realized without requiring a surface treatment for promoting droplet condensation on the evaporator, high reliability can be ensured for a long time. Can be. Further, since power consumption can be reduced as compared with the conventional air conditioner, an air conditioner with low cost and low power consumption can be provided.
[0027] 更に、本発明の空気調和装置によれば、一台で冷房、除湿及び暖房の各運転が 行えるので、室外機を必要とする従来のエアコンディショナの代替機として本発明を 構成することが可能である。  [0027] Further, according to the air conditioner of the present invention, each of the cooling, dehumidifying, and heating operations can be performed by a single unit. Therefore, the present invention is configured as a substitute for a conventional air conditioner requiring an outdoor unit. It is possible.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]本発明の実施の形態による空気調和装置 20の全体図である。 FIG. 1 is an overall view of an air conditioner 20 according to an embodiment of the present invention.
[図 2]空気調和装置 20の熱交換器の配置構成図である。  FIG. 2 is an arrangement configuration diagram of a heat exchanger of the air conditioner 20.
[図 3]空気調和装置 20の冷凍回路図である。  FIG. 3 is a refrigeration circuit diagram of the air conditioner 20.
[図 4]空気調和装置 20の一作用を説明する湿り空気線図である。  FIG. 4 is a psychrometric chart illustrating one operation of the air conditioner 20.
[図 5]蒸発器入口空気温度と蒸発温度との関係を示す図である。  FIG. 5 is a view showing a relationship between an evaporator inlet air temperature and an evaporation temperature.
[図 6]発明機と従来機の除湿量の比較を説明する図である。  FIG. 6 is a diagram illustrating a comparison of the amount of dehumidification between the invented machine and the conventional machine.
[図 7]発明機で冷凍機を構成する場合の熱交換器の斜視図である。  FIG. 7 is a perspective view of a heat exchanger when a refrigerator is configured with the invented machine.
[図 8]空気調和装置 20の熱交換器の配列の変形例を示す側面図である。  FIG. 8 is a side view showing a modification of the arrangement of the heat exchangers of the air conditioner 20.
[図 9]滴状凝縮における離脱液滴直径と熱伝達率との関係を示す図である。  FIG. 9 is a diagram showing a relationship between a detached droplet diameter and a heat transfer coefficient in droplet condensation.
[図 10]滴状凝縮域における表面過冷度と熱流速との関係を示す図である。  FIG. 10 is a diagram showing the relationship between the degree of supercooling of the surface and the heat flow rate in a drop condensation area.
[図 11]蒸発器の他の配置例を説明する図である。  FIG. 11 is a diagram illustrating another example of arrangement of an evaporator.
[図 12]空気調和装置 20の熱交換器の他の配置構成図である。  FIG. 12 is another layout diagram of the heat exchanger of the air conditioner 20.
[図 13]蒸発器の更に他の配置例を説明する図である。  FIG. 13 is a view for explaining still another arrangement example of the evaporator.
[図 14]空気調和装置 20の暖房運転時における各熱交換機の一設計例を説明する 図である。  FIG. 14 is a diagram illustrating a design example of each heat exchanger during a heating operation of the air conditioner 20.
[図 15]空気調和装置 20の暖房運転時における冷媒のモリエル線図である。  FIG. 15 is a Mollier chart of a refrigerant during a heating operation of the air-conditioning apparatus 20.
[図 16]空気調和装置 20の暖房運転時における空気温度と冷媒温度とを説明する図 である。  FIG. 16 is a diagram illustrating the air temperature and the refrigerant temperature during the heating operation of the air-conditioning apparatus 20.
[図 17]従来の除湿機の熱交換器の配置図である。 [図 18]従来の除湿機における湿り空気線図である。 FIG. 17 is a layout view of a heat exchanger of a conventional dehumidifier. FIG. 18 is a psychrometric chart of a conventional dehumidifier.
[図 19]膜状凝縮による凝縮モデルと滴状凝縮による凝縮モデルとの相違を説明する 図である。  FIG. 19 is a diagram for explaining the difference between a condensation model based on film condensation and a condensation model based on droplet condensation.
符号の説明  Explanation of symbols
[0029] 20 空気調和装置 [0029] 20 air conditioner
21 第 1 (予熱用)凝縮器  21 1st (for preheating) condenser
22 第 2 (再熱用)凝縮器  22 Second (for reheating) condenser
23 蒸発器  23 Evaporator
24 本体  24 body
24A 空気吸入口  24A air inlet
24B 空気排出口  24B air outlet
25 送風機  25 blower
26 タンク  26 tank
27 圧縮機  27 compressor
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、本発明の実施の形態について図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0031] 図 1及び図 2は本発明の実施の形態による空気調和装置 20及び熱交換器 21— 2 3の構成を示している。先ず、空気調和装置 20の全体構成について説明する。  FIGS. 1 and 2 show the configurations of an air conditioner 20 and heat exchangers 21 to 23 according to an embodiment of the present invention. First, the overall configuration of the air conditioner 20 will be described.
[0032] 本実施の形態における空気調和装置 20は、ハンディタイプの家庭用除湿機、冷房 機又は暖房機として構成され、主として、第 1凝縮器 (予熱用凝縮器) 21、第 2凝縮器 (再熱用凝縮器) 22、蒸発器 23、送風機 25、圧縮機 27、及びこれらの機器を収容す る本体 24とを備えている。  [0032] The air conditioner 20 in the present embodiment is configured as a handy-type household dehumidifier, a cooler or a heater, and mainly includes a first condenser (preheating condenser) 21 and a second condenser ( A condenser for reheating) 22, an evaporator 23, a blower 25, a compressor 27, and a main body 24 accommodating these devices.
[0033] 本体 24は空気吸入口 24A及び空気排出口 24Bを有し、送風機 25の駆動により、 空気吸入口 24A側力も空気排出口 24B側へ向力 空気の流れが形成されるようにな つている。第 1凝縮器 21は最も空気吸入口 24A側に配置され、風下側に向力つて蒸 発器 23、第 2凝縮器 22及び送風機 25が順に配置されている。本体 24の下方には、 蒸発器 23にて除湿された空気中の水分を貯えるタンク 26と、第 1,第 2凝縮器 21, 2 2及び蒸発器 23へ冷媒を循環流通させる圧縮機 27が収容されている。 [0034] 鉛直方向に立設配置される第 1,第 2凝縮器 21, 22及び蒸発器 23はそれぞれ同 様な構成を有しており、図 2に示すように、等ピッチに配置された複数枚の放熱フィン 38と、これら放熱フィン 38を貫通するように配置された冷媒の循環ノイブ 39とを備え ている。本実施の形態では、これら放熱フィン 38及び循環パイプ 39を共にアルミニゥ ム製としている力 勿論これに限らない。 [0033] The main body 24 has an air inlet 24A and an air outlet 24B. When the blower 25 is driven, a force of the air inlet 24A is generated toward the air outlet 24B, so that a flow of air is formed. I have. The first condenser 21 is disposed closest to the air intake port 24A, and the evaporator 23, the second condenser 22, and the blower 25 are disposed in order in the leeward direction. Below the main body 24, a tank 26 for storing the moisture in the air dehumidified by the evaporator 23, and a compressor 27 for circulating the refrigerant to the first and second condensers 21, 22 and the evaporator 23 are provided. Is contained. [0034] The first and second condensers 21, 22 and the evaporator 23, which are erected vertically, have the same configuration, and are arranged at equal pitches as shown in FIG. The radiating fin 38 includes a plurality of radiating fins 38 and a refrigerant circulation noise 39 disposed so as to penetrate the radiating fins 38. In the present embodiment, both the heat radiation fins 38 and the circulation pipes 39 are made of aluminum.
[0035] 図 3は、空気調和装置 20の冷凍回路を構成する配管構成図である。第 1,第 2凝縮 器 21, 22は、一台の熱交換器を 2つに分割し、蒸発器 23の風上側及び風下側にそ れぞれ並列的に接続されて!、る。  FIG. 3 is a piping configuration diagram of a refrigeration circuit of the air conditioner 20. The first and second condensers 21 and 22 divide one heat exchanger into two, and are connected in parallel to the upwind side and the downwind side of the evaporator 23, respectively.
[0036] 圧縮機 27から吐出される高温高圧の冷媒ガスは配管 28を介して第 1,第 2凝縮器 21, 22へ供給され、周囲外気に熱を放出して凝縮、液化する。第 1,第 2凝縮器 21 , 22から出る冷媒は配管 29を介して電子膨張弁 30へ供給されて減圧され、更に蒸 発器 23へ供給されて周囲の外気から熱を奪い蒸発、ガス化する。そして、蒸発器 23 力も出た冷媒は配管 31を介して圧縮機 27の吸込口へ供給される。以上の冷凍サイ クルが繰り返し行われることにより空気調和装置 20が運転される。  [0036] The high-temperature and high-pressure refrigerant gas discharged from the compressor 27 is supplied to the first and second condensers 21 and 22 through the pipe 28, and releases heat to the surrounding air to condense and liquefy. The refrigerant flowing out of the first and second condensers 21 and 22 is supplied to an electronic expansion valve 30 via a pipe 29 to be decompressed, and further supplied to an evaporator 23 to remove heat from the surrounding air to evaporate and gasify. I do. Then, the refrigerant with the power of the evaporator 23 is supplied to the suction port of the compressor 27 through the pipe 31. The air conditioner 20 is operated by repeating the above refrigeration cycle.
[0037] 上記構成により、除湿運転時においては、本体 24の空気吸入口 24Aから吸入され た室内の空気 blは、第 1凝縮器 21を通過することによって加熱され、加熱空気 b2と なって蒸発器 23へ至る。加熱空気 b2は、蒸発器 23の冷却面 (放熱フィン 38の表面) に接触して除湿されると共に冷却される。蒸発器 23を通過した空気 b3は第 2凝縮器 22により室内温度にまで加熱され、この加熱乾燥空気 b3が本体 24の空気排出口 2 4Bを介して室内へ排出されるようになって 、る。  With the above configuration, during the dehumidifying operation, the indoor air bl sucked from the air suction port 24A of the main body 24 is heated by passing through the first condenser 21, and is evaporated as the heated air b2 Container 23 is reached. The heated air b2 comes into contact with the cooling surface of the evaporator 23 (the surface of the radiation fins 38) to be dehumidified and cooled. The air b3 that has passed through the evaporator 23 is heated to the room temperature by the second condenser 22, and the heated dry air b3 is discharged into the room through the air outlet 24B of the main body 24. .
[0038] さて次に、以上のように構成される本実施の形態の空気調和装置 20を用いた空気 調和方法について説明する。  Next, an air conditioning method using the air conditioning apparatus 20 of the present embodiment configured as described above will be described.
[0039] 〔除湿 Z冷房運転〕  [0039] [Dehumidification Z cooling operation]
本実施の形態では、蒸発器 23の風上側に予熱用の第 1凝縮器 21を配置している 。このような構成により、送風機 25の駆動により室内の空気は第 1凝縮器 21へ導入さ れ、ここで所定温度上昇された空気は蒸発器 23で冷却され水分が除湿される。その 後、後段の第 2凝縮器 22によって所定温度に再熱され、室内へ放出される。  In the present embodiment, a first condenser 21 for preheating is arranged on the windward side of the evaporator 23. With such a configuration, the air in the room is introduced into the first condenser 21 by driving the blower 25, and the air whose temperature has been raised by a predetermined temperature is cooled by the evaporator 23 to dehumidify the moisture. Then, it is reheated to a predetermined temperature by the second condenser 22 at the subsequent stage, and is discharged indoors.
[0040] 第 1凝縮器 21の通過により、空気は所定温度 (例えば 5°C)高められた状態で蒸発 器 23の表面に接触するため、当該予熱凝縮器 21がない場合に比べて大きな温度 差で吸込空気が蒸発器 23と接触することになる。また、凝縮器の分配配置により凝 縮温度が低下し、露点温度が低下する。 [0040] By passing through the first condenser 21, the air evaporates at a predetermined temperature (for example, 5 ° C). Since the air comes into contact with the surface of the evaporator 23, the suction air comes into contact with the evaporator 23 with a larger temperature difference than when the preheat condenser 21 is not provided. In addition, the condensation temperature decreases due to the distribution of the condenser, and the dew point temperature decreases.
[0041] 露点温度の低下を図 4に示す湿り空気線図を用いて説明する。室内の空気が例え ば標準点(温度 27°C、相対湿度 60%)にあるとすると、上述の例では、第 1凝縮器 2 1により 32°Cにまで予熱された後、蒸発器 23で冷却される。このとき操作線は— 1°C で飽和温度曲線と接し、この温度が装置の露点温度となる。これにより、蒸発器の風 上側に凝縮器が配置されて ヽな ヽ従来の除湿機(図中破線で示す操作線)に比べ て、露点温度を大幅に低下させることができるようになる。  The decrease in dew point temperature will be described with reference to a psychrometric chart shown in FIG. Assuming that the room air is at a standard point (temperature 27 ° C, relative humidity 60%), in the above example, the first condenser 21 preheats to 32 ° C and then evaporator 23. Cooled. At this time, the operating line touches the saturation temperature curve at -1 ° C, and this temperature becomes the dew point temperature of the device. This makes it possible to significantly reduce the dew point temperature compared to a conventional dehumidifier (operation line shown by a broken line in the figure) in which a condenser is arranged on the windward side of the evaporator.
[0042] そこで、本実施の形態の空気調和装置 20にお 、ては、蒸発器 23の入口空気温度 と蒸発器 23の蒸発温度との間の温度差が 24°C以上となるようにしている。後述する ように、蒸発器 23の入口空気温度と蒸発器 23の蒸発温度との間に 24°C以上の温度 差をもたせることにより、空気中の水分を滴状に凝縮させることができる。  [0042] Therefore, in the air conditioner 20 of the present embodiment, the temperature difference between the inlet air temperature of the evaporator 23 and the evaporation temperature of the evaporator 23 is set to 24 ° C or more. I have. As described later, by providing a temperature difference of 24 ° C. or more between the inlet air temperature of the evaporator 23 and the evaporator 23, the water in the air can be condensed in a droplet form.
[0043] 一般に、蒸気が低温固体面に触れて冷却され液化する凝縮過程にお!ヽては、凝 縮液が固体面に広がり薄い液膜を形成する膜状凝縮と、凝縮液が固体面に広がら ず液滴の形で付着する滴状凝縮とが知られている。滴状凝縮は、膜状凝縮に比べて 大きい熱伝達率を示すことは、上述した通りである。  [0043] Generally, during the condensation process in which the vapor contacts the low-temperature solid surface and is cooled and liquefied! Formerly, film-like condensation in which the condensate spreads on the solid surface to form a thin liquid film, and droplet-like condensation in which the condensate does not spread on the solid surface and adheres in the form of droplets are known. As described above, droplet condensation shows a higher heat transfer coefficient than film condensation.
[0044] 表 1は、蒸発器の入口空気温度と蒸発器の蒸発温度との間の温度差による空気中 の水分の凝縮形態を測定したときの実験結果である。水分の凝縮形態の確認は、蒸 発器表面の目?見観察で行った。表 1から、蒸発器の入口空気温度 (ti)と蒸発器の蒸 発温度 (te)との間の温度差 (ti te)が 24°C以上の場合には、空気中の水分が滴状 に凝縮することがわかる。  [0044] Table 1 shows the experimental results when the condensation form of moisture in the air was measured according to the temperature difference between the evaporator inlet air temperature and the evaporator evaporation temperature. To check the form of water condensation, check the surface of the evaporator. The observation was performed. Table 1 shows that when the temperature difference (ti te) between the evaporator inlet air temperature (ti) and the evaporator evaporation temperature (te) is 24 ° C or more, the moisture in the air drops. It can be seen that it is condensed.
[0045] [表 1] t ί t e t i - t e 凝縮形態 図 5中の記号 [Table 1] t ί teti-te Condensation form Symbol in Fig. 5
実施例 1 2 V, - s x: 2 7 °C 滴状 〇  Example 1 2 V,-s x: 27 ° C Drop 〇
実施例 2 2 8 : 4 V, 2 4 V 滴状 □  Example 2 2 8: 4 V, 24 V Drop □
実施例 3 3 o 6 V 2 4で 滴状 Δ  Example 3 Droplet Δ at 3 o 6 V 24
比較例 1 2 7 V 1 9 膜状 ©  Comparative Example 1 2 7 V 1 9 Membrane ©
比較例 2 2 7 X s 2 膜状
Figure imgf000011_0001
Comparative Example 2 2 7 X s 2
Figure imgf000011_0001
t ί :蒸発器入口空気温度  t ί: Evaporator inlet air temperature
t e :蒸発温度  t e: evaporation temperature
[0046] 表 1の結果から、図 5に示すような凝縮域境界線図を作成することができる。図にお V、て縦軸は蒸発器の入口空気温度 (ti)、横軸は蒸発器の蒸発温度 (te)である。 また、表 1における実施例 1を白丸、実施例 2を四角、実施例 3を三角、比較例 1を 二重丸、比較例 2を黒丸でそれぞれ表して図 5に示している。 From the results in Table 1, a condensation area boundary diagram as shown in FIG. 5 can be created. In the figure, V represents the evaporator inlet air temperature (ti) on the vertical axis, and the evaporator evaporation temperature (te) on the horizontal axis. FIG. 5 shows Example 1 in Table 1 with white circles, Example 2 with squares, Example 3 with triangles, Comparative Example 1 with double circles, and Comparative Example 2 with black circles.
[0047] 図 5に示したように、蒸発器入口空気温度と蒸発温度との間の温度差が 23°C以下 では膜状凝縮域、 23°C以上が滴状凝縮域、 23°C付近が膜状凝縮域と滴状凝縮域 との共存対流凝縮域境界線が存在すると推定できる。  [0047] As shown in Fig. 5, when the temperature difference between the evaporator inlet air temperature and the evaporating temperature is 23 ° C or less, a film condensed region, when 23 ° C or more is a droplet condensed region, and around 23 ° C. It can be inferred that there exists a convective condensed zone boundary where the film-shaped condensed zone and the droplet-shaped condensed zone exist.
[0048] 以上の結果から、蒸発器入口空気温度と蒸発温度との間の温度差を 24°C以上に することにより、蒸発器 23表面において空気中の水分を安定して滴状凝縮させること が可能となる。これにより、図 17を参照して説明した従来の膜状凝縮域に設定された 除湿機に比べて高い除湿能力を得ることができる。  [0048] From the above results, by setting the temperature difference between the evaporator inlet air temperature and the evaporating temperature to 24 ° C or more, it is possible to stably condense the water in the air on the evaporator 23 surface. Becomes possible. Thereby, a higher dehumidification capacity can be obtained as compared with the conventional dehumidifier set in the film-form condensation area described with reference to FIG.
[0049] なお、上記滴状凝縮を実現させるための空気調和装置 20の運転条件としては、 JI S規格 C9617に規定されている家庭用除湿機の標準試験条件 27°C60%において 、例えば凝縮温度 40°C以下、蒸発温度は、蒸発器入口空気温度と蒸発温度との差 が 24°C以上となるように設定する。第 1凝縮器 21及び第 2凝縮器 22の仕様は同一 である場合に限らず、それぞれ仕様を異ならせてもよい。例えば、第 1凝縮器 21に流 量制御用のバルブ等を配置し、第 1,第 2凝縮器 21, 22で冷媒流量を異ならせること ができる。  [0049] The operating conditions of the air conditioner 20 for realizing the above-described droplet-type condensation include, for example, a condensation test at 27 ° C and 60% of a standard dehumidifier for household use specified in JIS C9617. The evaporation temperature is set so that the difference between the evaporator inlet air temperature and the evaporation temperature is 24 ° C or less. The specifications of the first condenser 21 and the second condenser 22 are not limited to being the same, and the specifications may be different from each other. For example, a flow control valve or the like may be arranged in the first condenser 21 so that the first and second condensers 21 and 22 have different refrigerant flow rates.
[0050] また、本実施の形態では、蒸発器 23の風上側及び風下側に第 1凝縮器 21及び第 2凝縮器 22を配置したので、その凝縮能力は従来の除湿機における凝縮器 2の凝 縮能力より増加し、しカゝも、圧縮機 27の能力を低下させないように凝縮負荷を低減し て凝縮圧力(凝縮温度)を低くすることができるため、冷凍能力を低下させることなく 除湿量を向上させることができると共に、凝縮負荷の低減により周囲温度の上昇を抑 制することができる。更に、冷媒の循環量の低下をもたらすため、消費電力の減少も 図れること〖こなる。 [0050] Further, in the present embodiment, the first condenser 21 and the second condenser 22 are arranged on the upstream and downstream sides of the evaporator 23, so that the condensing capacity of the condenser 2 of the conventional dehumidifier is reduced. The condensing capacity is increased and the condensing load is reduced so that the capacity of the compressor 27 is not reduced. As a result, the condensation pressure (condensation temperature) can be lowered, so that the amount of dehumidification can be improved without lowering the refrigerating capacity, and an increase in the ambient temperature can be suppressed by reducing the condensation load. Furthermore, since the amount of circulating refrigerant is reduced, power consumption can be reduced.
[0051] 図 6に、以上のように構成される空気調和装置 20 (発明機)で、温湿度の調整のな いプレハブ倉庫で行ったときの除湿量を従来の家庭用除湿機(図 17に示した従来 機)と対比して示す。ここで、実線は発明機を、一点鎖線は従来機をそれぞれ示して いる。  [0051] Fig. 6 shows the amount of dehumidification performed in a prefabricated warehouse without temperature and humidity adjustment using the conventional home dehumidifier (Fig. 17). This is shown in comparison with the conventional machine shown in Fig. 1). Here, the solid line indicates the invented machine, and the one-dot chain line indicates the conventional machine.
[0052] 図 6において、 A1点及び A2点は、温度 22. 5°C、相対湿度 47. 6%における発明 機及び従来機のデータをそれぞれ示している。除湿量を比較すると、従来機では 19 OccZhであるのに対して、発明機では 300ccZhで、従来機の 1. 58倍 (消費電力 は従来機の 0. 79倍)である。  In FIG. 6, points A1 and A2 indicate data of the invented device and the conventional device at a temperature of 22.5 ° C. and a relative humidity of 47.6%, respectively. Comparing the amount of dehumidification, the conventional machine is 19 OccZh, while the invented machine is 300 ccZh, which is 1.58 times that of the conventional machine (the power consumption is 0.79 times that of the conventional machine).
また、図において B1点及び B2点は、温度 24. 5°C、相対湿度 93. 3%における発 明機及び従来機のデータであり、除湿量は、従来機で 520ccZh、発明機で 950cc Zhであり、従来機の 1. 8倍 (消費電力は従来機の 0. 76倍)である。  In the figure, points B1 and B2 are data for the inventor and the conventional machine at a temperature of 24.5 ° C and a relative humidity of 93.3% .The dehumidification amount is 520 cc Zh for the conventional machine and 950 cc Zh for the invented machine. This is 1.8 times that of the conventional model (the power consumption is 0.76 times that of the conventional model).
更に、図において C1点及び C2点は、温度 27度、相対湿度 60%、即ち標準点に おける発明機及び従来機の除湿量を示している。しかし実際にはこの点で測定して いないので詳細は不明であるが、発明機の方が従来機に比べて約 2倍の除湿量を 有することが推定される。  Further, in the figure, points C1 and C2 indicate the dehumidification amount of the invented device and the conventional device at the temperature of 27 degrees and the relative humidity of 60%, that is, the standard point. However, the details are not known because measurement was not actually performed at this point, but it is estimated that the invented machine has about twice the amount of dehumidification as compared to the conventional machine.
[0053] 滴状凝縮の場合、膜状凝縮の場合とは異なり、空気線図から装置の顕熱量を求め ることはできない。しかし、装置の蒸発温度、蒸発器入口空気温度、蒸発器出口空気 温度から概略計算は従来の空気公式から計算できる。 In the case of the droplet condensation, unlike the case of the film condensation, the sensible heat amount of the apparatus cannot be obtained from the psychrometric chart. However, the approximate calculation can be calculated from the conventional air formula from the evaporating temperature of the device, the evaporator inlet air temperature, and the evaporator outlet air temperature.
[0054] (発明機運転条件) (Invention machine operating conditions)
蒸発器入口空気温度 (ti): 30°C  Evaporator inlet air temperature (ti): 30 ° C
蒸発器出口空気温度: 10°C  Evaporator outlet air temperature: 10 ° C
温度 30°C相対湿度 50%の空気の比容積: 0. 88m3/kg Specific volume of air at a temperature of 30 ° C and a relative humidity of 50%: 0.88 m 3 / kg
空気の比熱: 0. 24kcal/kg°C 顕熱量 QS = 0.24X1.58X60X (1/0.88) X (30—10) Specific heat of air: 0.24kcal / kg ° C Sensible heat quantity QS = 0.24X1.58X60X (1 / 0.88) X (30-10)
= 517kcal/h  = 517kcal / h
なお、風量(1.58mVmin. )は仮設定値であり、当該風量の設定値で十分な除 湿量が得られるとは限らず、仕様に応じて適宜設定されるものである。  Note that the air volume (1.58 mVmin.) Is a tentative set value, and the set value of the air volume does not always provide a sufficient amount of dehumidification, but is appropriately set according to the specifications.
[0055] (従来機運転条件) [0055] (Conventional machine operating conditions)
この例では、表 1における実験例 4の従来機を適用する。  In this example, the conventional machine of Experimental Example 4 in Table 1 is applied.
蒸発器入口空気温湿度: 27°C60%  Evaporator inlet air temperature and humidity: 27 ° C 60%
蒸発器出口空気温度: 20.5°C  Evaporator outlet air temperature: 20.5 ° C
蒸発温度: 8°C  Evaporation temperature: 8 ° C
蒸発温度 8°Cにおける潜熱: 592.6kcal/kg  Latent heat at an evaporation temperature of 8 ° C: 592.6kcal / kg
凝縮温度: 43°C  Condensing temperature: 43 ° C
温度 27°C相対湿度 60%の空気の比容積: 0.855mVkg  Specific volume of air at a temperature of 27 ° C and a relative humidity of 60%: 0.855mVkg
空気の比熱: 0.24kcal/kg°C  Specific heat of air: 0.24kcal / kg ° C
風量: 1.60m / min.  Air volume: 1.60m / min.
顕熱量 QS = 0.24X1.60X60X (1/0.855) X (27— 20.5)  Sensible heat value QS = 0.24X1.60X60X (1 / 0.855) X (27—20.5)
= 175.2kcal/h  = 175.2kcal / h
除湿量: 0.263kg/h(6.3LZ日)  Dehumidification amount: 0.263kg / h (6.3LZ days)
潜熱量 QL = 0.263X592.6 = 155.8kcal/h  Latent heat QL = 0.263X592.6 = 155.8kcal / h
顕熱比 SHF=175.2/(175.2+155.8)  Sensible heat ratio SHF = 175.2 / (175.2 + 155.8)
= 175.2/331 = 0.53 (計算値)  = 175.2 / 331 = 0.53 (calculated value)
なお、空気線図を見ると SHFは 0.53であり、計算値とほぼ一致する。  In the psychrometric chart, SHF is 0.53, which is almost the same as the calculated value.
[0056] 顕熱量は、空気の温度差に比例するので、当然、同じ圧縮機であっても設計条件 が異なるので膜状凝縮より滴状凝縮の方が顕熱量が大きくなる。即ち、冷却能力が 増加する。 [0056] Since the sensible heat is proportional to the temperature difference of the air, naturally, even if the same compressor is used, the design conditions are different, so that the amount of sensible heat is larger in the droplet condensation than in the film condensation. That is, the cooling capacity increases.
[0057] [表 2] 膜状凝縮 滴状凝縮 [Table 2] Film condensation Drop condensation
圧縮機の出力 100 W 100 w  Compressor output 100 W 100 W
総冷却能力 3 3 1 kcal/h ―  Total cooling capacity 3 3 1 kcal / h ―
顕熱量 1 7 5 . 2 kcal/h 5 1 7 kcal h  Sensible heat 1 75.2 kcal / h 5 17 kcal h
除湿量 6 . 3 L Z日 8 . 0 L Z日  Dehumidification amount 6.3 L Z day 8.0 L Z day
潜熱量 1 5 5 . 8 kcal/h - 潜熱 5 9 2 . 6 kcal/h 〜 5 0〜 kcal/h  Latent heat 1 55.8 kcal / h-Latent heat 5 92 2.6 kcal / h 〜 50 0-kcal / h
[0058] 表 2に示すように、滴状凝縮の顕熱量、即ち空気を冷却するのに必要な熱量が増 加することがわかる。これにより、除湿機としては放熱量を減少できるので、容易に室 温の上昇をコントロールすることができる。 [0058] As shown in Table 2, it can be seen that the sensible heat of the droplet condensation, that is, the heat required to cool the air increases. As a result, the amount of heat dissipated by the dehumidifier can be reduced, and the rise in room temperature can be easily controlled.
[0059] 現行冷房機の SHFが 0. 7付近が多い中、本発明の除湿機は顕熱量 (冷却能力) が大きいので (SHFO. 9前後)、冷房機能をもたせることができる。これにより、室外 機を必要とせず室内側装置だけで冷房機を構成することが可能な全く新規な形態の 冷房機としても、本発明を構成することができる。  [0059] While the SHF of the current air conditioner is mostly around 0.7, the dehumidifier of the present invention has a large amount of sensible heat (cooling capacity) (around SHFO. 9), and thus can have a cooling function. Thus, the present invention can be configured as a completely new type of cooling device that can configure the cooling device only with the indoor unit without the need for the outdoor unit.
[0060] この場合、図 7に示すように、蒸発器 23の風上側に予熱用の凝縮器 21のみ配置す る構成で、冷房用の空気調和機を構成できる。また、本実施の形態の空気調和装置 20においては、例えば、風下側に配置されている第 2凝縮器 22への冷媒の供給を 遮断できる弁(図示略)を設置し、冷房運転時は風上側の第 1凝縮器 21へのみ冷媒 を供給するように構成できる。  In this case, as shown in FIG. 7, a configuration in which only the preheating condenser 21 is arranged on the windward side of the evaporator 23 can constitute an air conditioner for cooling. Further, in the air-conditioning apparatus 20 of the present embodiment, for example, a valve (not shown) capable of shutting off the supply of the refrigerant to the second condenser 22 arranged on the leeward side is installed. It can be configured to supply the refrigerant only to the upper first condenser 21.
[0061] 続いて、蒸発器の理論設計式より、発明機の蒸発器 23と従来機の蒸発器 1との容 量の関係を下記計算式で確認する。  Subsequently, the relationship between the capacities of the evaporator 23 of the invented device and the evaporator 1 of the conventional device is confirmed by the following calculation formula from the theoretical design formula of the evaporator.
[0062] Qe=K-A-Td …… (1)  [0062] Qe = K-A-Td …… (1)
Td= (ti+to) /2-te …… (2)  Td = (ti + to) / 2-te …… (2)
ここで、  here,
Qe:蒸発器の冷却能力(kcalZh)  Qe: Evaporator cooling capacity (kcalZh)
K:蒸発器の熱貫流率 (kcal/°Cm2h) K: Heat transfer coefficient of evaporator (kcal / ° Cm 2 h)
A:蒸発器の空気側冷却面の有効面積 (m2) A: Effective area of air-side cooling surface of evaporator (m 2 )
ti:蒸発器入口空気温度 (°C) to :蒸発器出口空気温度 (°C) ti: Evaporator inlet air temperature (° C) to: Evaporator outlet air temperature (° C)
te :蒸発器の蒸発温度 (°C)  te: Evaporator evaporation temperature (° C)
[0063] 発明機の設計条件としては、従来機と同一の圧縮機を使用して、かつ冷却能力も ほぼ同じとする。従来機の蒸発器の冷却能力 Qelと、発明機の蒸発器の冷却能力 Q e2との関係は、 Qel = Qe2となる。 [0063] As the design conditions of the invented machine, the same compressor as that of the conventional machine is used, and the cooling capacity is almost the same. The relationship between the cooling capacity Qel of the evaporator of the conventional machine and the cooling capacity Qe2 of the evaporator of the invention machine is Qel = Qe2.
また、従来機の蒸発器の熱貫流率 K1と、発明機の蒸発器の熱貫流率を K2の関係 については、 K1は膜状凝縮における熱貫流率であり、 K2は滴状凝縮における熱貫 流率であるため、 KKK2となる。  Regarding the relationship between the heat transmission coefficient K1 of the conventional evaporator and the heat transmission coefficient K2 of the evaporator of the invented device, K1 is the heat transmission coefficient in the film condensation, and K2 is the heat transmission coefficient in the droplet condensation. The flow rate is KKK2.
更に、 Tdに関しては、(2)式より、  Furthermore, regarding Td, from equation (2),
従来機を Tdl = (til— tol)Z2— tel、  Tdl = (til—tol) Z2—tel,
発明機を Td2= (ti2— to2)Z2— te2とすれば、  If the invention machine is Td2 = (ti2—to2) Z2—te2,
til = 27。C、 tol = 17。C、 tel = 10。C、  til = 27. C, tol = 17. C, tel = 10. C,
ti2 = 32。C、 to2= 14。C、 te2 = 7°C  ti2 = 32. C, to2 = 14. C, te2 = 7 ° C
とした場合、 Tdl = 12°C、 Td2= 16°Cとなり、 Tdl <Td2となる。  Tdl = 12 ° C, Td2 = 16 ° C, and Tdl <Td2.
[0064] 従って、(1)式より、 Qel = Qe2となるためには、蒸発器の表面積 Aに関しては従 来機を Al、発明機を A2としたとき、 A1 >A2となるので、結論として、従来機の蒸発 器の容量よりも、発明機の蒸発器の容量の方が小さいものでなければならないことが 分かる。 [0064] Therefore, from the equation (1), in order to satisfy Qel = Qe2, regarding the surface area A of the evaporator, when the conventional machine is Al and the inventor is A2, A1> A2. It can be seen that the capacity of the evaporator of the invented device must be smaller than the capacity of the evaporator of the conventional device.
[0065] この結果、発明機及び従来機の冷却能力を同一とした場合、発明機の蒸発器 23 は、例えば図 8に示すように構成されることになる。なお、図において図 2と対応する 部分については同一の符号を付している。また、図中符号 14は、空気の通過を遮蔽 するシールドである。図示の例では、蒸発器 23の面積は、第 1,第 2凝縮器 22の面 積よりも小さく構成されており、従来機の蒸発器 1の面積の 3. 5分の 1である。  As a result, when the cooling capacity of the invented machine and the conventional machine are the same, the evaporator 23 of the invented machine is configured as shown in FIG. 8, for example. In the figure, the same reference numerals are given to the portions corresponding to FIG. Reference numeral 14 in the figure denotes a shield for blocking the passage of air. In the illustrated example, the area of the evaporator 23 is configured to be smaller than the area of the first and second condensers 22, and is 3.5 times smaller than the area of the evaporator 1 of the conventional machine.
これにより、従来よりも小さい蒸発面積 (容量)で除湿量の向上が図れると共に、蒸 発器の小型化及び空気調和装置の小型化を図ることが可能となる。  As a result, the amount of dehumidification can be improved with a smaller evaporation area (capacity) than before, and the evaporator and the air conditioner can be downsized.
[0066] 続いて、本発明の空気調和装置 20において、蒸発器 23の表面に滴状凝縮した液 滴と除湿量の関係について検討する。  Next, in the air-conditioning apparatus 20 of the present invention, the relationship between the amount of dehumidified droplet and the droplet condensed on the surface of the evaporator 23 will be examined.
[0067] 滴状凝縮の熱伝達率は、凝縮面上の液滴の大きさと密接な関連をもっている。図 9 は滴状凝縮下における熱伝達率と離脱液滴直径の関係を示しており、図 10は 1気圧 の水蒸気の凝縮曲線を示している (何れの図も出典は非特許文献 1)。なお、ここで いう凝縮曲線とは、滴状凝縮が生じるような凝縮面において、表面の過冷度をしだい に大きくしていった場合に、熱流束がどのように変化するかを表す曲線をいう(非特 許文献 1)。 [0067] The heat transfer coefficient of droplet condensation is closely related to the size of droplets on the condensation surface. Fig. 9 Fig. 10 shows the relationship between the heat transfer coefficient under droplet condensation and the diameter of detached droplets. Fig. 10 shows the condensation curve of water vapor at 1 atm (both figures are from Non-Patent Document 1). The condensation curve referred to here is a curve that shows how the heat flux changes when the degree of supercooling of the surface gradually increases on the condensation surface where droplet condensation occurs. (Non-Patent Document 1).
[0068] 図 9及び図 10に示すように、蒸気速度が早いほど離脱液滴直径が小さくなり、液滴 の径が小さいほど熱伝達率が大きくなる傾向にある。したがって、水滴の小さい間に 素早く蒸発器 23から液滴を離脱させることが設計上重要となってくる。風速も影響す るが、風の流れ方向と蒸発器の傾斜角度も重要な項目である。  As shown in FIGS. 9 and 10, there is a tendency that the larger the vapor velocity is, the smaller the detached droplet diameter is, and the smaller the droplet diameter is, the larger the heat transfer coefficient is. Therefore, it is important in design to quickly release the droplet from the evaporator 23 while the water droplet is small. The wind speed also affects, but the flow direction of the wind and the inclination angle of the evaporator are also important items.
[0069] 蒸発器の冷却フィン表面に付着した水滴を最短冷却面通過距離で短時間で効率 よく離脱させるには、図 11A, Bに示すように、水滴の体積力(重力)と風の流れが同 じになる蒸発器の配置が望ましい。水滴を早く冷却面力 離脱させることにより、次の 水滴が付着し易くなり、除湿量が増加することが容易に推測できるからである。  [0069] To efficiently and quickly separate water droplets adhering to the cooling fin surface of the evaporator at the shortest cooling surface passage distance, as shown in Figs. It is desirable that the evaporator be arranged in the same manner. This is because it is easy to presume that the water droplets are quickly released from the cooling surface force, so that the next water droplets are likely to adhere and the amount of dehumidification increases.
[0070] なお、図 11Bは鉛直方向に配置した凝縮器に対して蒸発器を直交させて配置した 例である。この例では、一台の凝縮器で蒸発器の風上側凝縮器及び風下側凝縮器 を兼用させている。  FIG. 11B is an example in which the evaporator is arranged perpendicular to the condenser arranged in the vertical direction. In this example, one condenser is used as both the leeward condenser and the leeward condenser of the evaporator.
[0071] 一方、図 11Cは、蒸発器の上部を風下側に傾斜させた配置例である。風力と水滴 の体積力が同じである場合、水滴は B方向に流れ落ち、風力が水滴の体積力を上回 るほど強くなれば、 B— C方向の範囲内で飛散、落下する。冷却面における水滴の通 過距離、時間等は図 11A, Bの例に次ぐものの、熱交換器の配置構成のコンパクト化 、設計自由度は本例が優れる。  [0071] On the other hand, Fig. 11C is an arrangement example in which the upper part of the evaporator is inclined to the leeward side. If the wind force and the droplet force are the same, the water droplet will flow down in the B direction, and if the wind force becomes stronger than the water force of the droplet, it will scatter and fall in the range of B—C. Although the transmission distance and time of water droplets on the cooling surface are second to those in Figs. 11A and 11B, this example is superior in terms of the compactness of the heat exchanger arrangement and design flexibility.
[0072] そこで、本発明の空気調和装置 20における 3台の熱交換器 (第 1凝縮器 21、蒸発 器 23及び第 2凝縮器 22)を、例えば図 12に示すように蒸発器 23の上部が風下の第 2凝縮器 22側に傾倒するように配置することによって、装置構成の小型化を確保しな 力 凝縮液滴の離脱効果を高めて除湿効率の更なる向上を図ることが可能となる。 蒸発器 23の傾斜角は、空気流の強さ (風量)や蒸発器の表面積等に応じて適宜選 定でき、本例では 45度としている。  [0072] Therefore, the three heat exchangers (first condenser 21, evaporator 23 and second condenser 22) in the air conditioner 20 of the present invention are connected to the upper part of the evaporator 23 as shown in Fig. 12, for example. By disposing so that it is inclined to the second condenser 22 side downwind, it is possible to further reduce the dehumidifying efficiency by increasing the separating effect of the condensed liquid droplets while keeping the size of the device compact. Become. The inclination angle of the evaporator 23 can be appropriately selected according to the strength of the air flow (air volume), the surface area of the evaporator, and the like, and is 45 degrees in this example.
[0073] なお、図 13に示すように蒸発器の上部を風上側に傾倒させる構成例も考えられる 力 この場合、風力と水滴の体積力が同じである場合、蒸発器上の水滴は矢印の方 向に流れ、水滴が重なり合って大径化し離脱効率が悪化する。 [0073] As shown in Fig. 13, a configuration example in which the upper part of the evaporator is tilted to the windward side is also conceivable. Force In this case, when the wind force and the volume force of the water droplet are the same, the water droplet on the evaporator flows in the direction of the arrow, and the water droplet overlaps, the diameter increases, and the separation efficiency deteriorates.
[0074] 〔暖房運転〕  [Heating operation]
次に、本実施の形態の空気調和装置 20による室内の暖房機能について説明する  Next, the indoor heating function of the air-conditioning apparatus 20 of the present embodiment will be described.
[0075] 本実施の形態では、上述した空気調和装置 20の構成を利用して室内暖房機能を 行わせるようにしている。これにより、室内空気の循環のみで、室外機不要のガス圧 縮式冷凍機による暖房機を構成することができる。その結果、除霜の問題もないので 暖房効率を高くすることができるようになる。 In the present embodiment, an indoor heating function is performed using the configuration of the air conditioner 20 described above. This makes it possible to construct a heater using a gas-compression refrigerator that does not require an outdoor unit only by circulating indoor air. As a result, the heating efficiency can be increased because there is no problem of defrosting.
[0076] 設計条件としては、図 14を参照して、  As the design conditions, referring to FIG.
(1)暖房機入口吸込空気乾球温度 20°C (湿球温度 15°C)、相対湿度 60%時の装置 の蒸発温度を約 12°Cとする。  (1) The evaporation temperature of the equipment at the inlet air dry bulb temperature of the heater at 20 ° C (wet bulb temperature of 15 ° C) and the relative humidity of 60% is about 12 ° C.
(2)暖房時の乾燥を防ぐため、蒸発器で除湿しない、顕熱量 100% (顕熱比 SHF= 1. 00)の無凝縮域とする。  (2) In order to prevent drying during heating, a non-condensing area with 100% sensible heat (sensible heat ratio SHF = 1.00), not dehumidified by an evaporator.
(3) 3台の熱交換器 (第 1凝縮器 21、蒸発器 23、第 2凝縮器 22)に流れる風量は同 一とする。  (3) The air volume flowing through the three heat exchangers (first condenser 21, evaporator 23, second condenser 22) is the same.
(4)吹出空気温度と凝縮温度の関係は、過熱域の影響により、凝縮温度 =吹出空気 温度 5°C前後であるので、吹出空気温度を 65°Cとして凝縮温度は 60°Cで設計する  (4) The relationship between the outlet air temperature and the condensing temperature is about 5 ° C due to the effect of the superheated area, so the condensing temperature should be 60 ° C with the outlet air temperature of 65 ° C.
[0077] 設計例を図 15のモリエル線図(p— h線図)及び図 16の冷媒各域における空気温度 の分布図を用いて説明する。冷凍サイクルの条件は、冷媒 R410A、凝縮温度 60°C 、蒸発温度 12°C、過熱度 20°C、過冷却度 5°Cとする。 A design example will be described with reference to a Mollier diagram (ph diagram) in FIG. 15 and a distribution diagram of air temperature in each region of the refrigerant in FIG. The conditions of the refrigeration cycle are as follows: refrigerant R410A, condensation temperature 60 ° C, evaporation temperature 12 ° C, superheat degree 20 ° C, supercooling degree 5 ° C.
なお、設計例はこれに限らな 、のは勿論である。  Note that the design example is not limited to this.
[0078] (冷媒各域のェンタルピー差)  [0078] (Enthalpy difference of each region of refrigerant)
(a)過熱域でのェンタルピー比率: 485— 418 = 67kj/kg  (a) Enthalpy ratio in superheated area: 485—418 = 67kj / kg
(b)飽和域でのェンタルピー比率: 418-305 = 113kj/kg  (b) Enthalpy ratio in the saturation region: 418-305 = 113kj / kg
(c)液域でのェンタルピー比率: 305— 295 = lOkjZkg  (c) Enthalpy ratio in liquid area: 305—295 = lOkjZkg
トータルの放熱量: 67+ 113 + 10= 190kj/kg [0079] (冷媒各域の放熱比) Total heat dissipation: 67 + 113 + 10 = 190kj / kg (Heat radiation ratio of each region of refrigerant)
(a)過熱域での放熱比: 67Z 190 = 0. 35  (a) Heat dissipation ratio in the superheated area: 67Z 190 = 0.35
(b)飽和域での放熱比: 113Z190 = 0. 60  (b) Heat dissipation ratio in the saturation region: 113Z190 = 0.60
(c)液域での放熱比: 10Z190 = 0. 05  (c) Heat dissipation ratio in liquid area: 10Z190 = 0.05
[0080] (冷媒各域の空気温度) (Air temperature in each region of refrigerant)
設計空気の温度差: 65°C - 20°C =45°C  Design air temperature difference: 65 ° C-20 ° C = 45 ° C
(a)過熱域での空気温度の上昇度: 45°C X 0. 35 (放熱量分担率) = 15. 8°C (a) Air temperature rise in superheated area: 45 ° C x 0.35 (radiation share) = 15.8 ° C
(b)飽和域での空気温度の上昇度: 45°C X 0. 60 = 27. 0°C (b) Air temperature rise in the saturation region: 45 ° C X 0.60 = 27.0 ° C
(c)液域でのェンタルピー比率: 45°C X 0. 05 = 2. 2°C  (c) Enthalpy ratio in liquid area: 45 ° C X 0.05 = 2.2 ° C
[0081] 冷媒と空気の流れ方向は、対向流とする。これにより、 [0081] The flow directions of the refrigerant and the air are counterflow. This allows
(1)暖房機入口空気温度: 20°C  (1) Heater inlet air temperature: 20 ° C
(2)液域から飽和域に入る空気温度: 20°C + 2. 2°C = 22. 2°C  (2) Air temperature from the liquid area to the saturation area: 20 ° C + 2.2 ° C = 22.2 ° C
(3)飽和域出口空気温度: 22. 2°C + 27. 0°C=49. 2°C  (3) Saturation zone outlet air temperature: 22.2 ° C + 27.0 ° C = 49.2 ° C
(4)暖房機出口空気温度: 49. 2°C + 15. 8°C = 65°C  (4) Heater outlet air temperature: 49.2 ° C + 15.8 ° C = 65 ° C
[0082] 次に、第 1,第 2凝縮器 21, 22の放熱量の配分を試算検討する。  Next, the distribution of the heat radiation of the first and second condensers 21 and 22 is estimated and examined.
[0083] 図 14を参照して、入口出口空気の温度差は、 Referring to FIG. 14, the temperature difference between the inlet and outlet air is
蒸発器(23) : 30°C— 20°C = 10°C  Evaporator (23): 30 ° C-20 ° C = 10 ° C
第 1凝縮器(21) : 30°C - 20°C = 10°C  First condenser (21): 30 ° C-20 ° C = 10 ° C
第 2凝縮器(22) : 65°C-20°C=45°C  Second condenser (22): 65 ° C-20 ° C = 45 ° C
[0084] (放熱量) = (風量) X (空気の温度差)、第 1,第 2凝縮器 21, 22の風量は同一で あるので、第 1,第 2凝縮器 21, 22の放熱量は温度差に比例する。凝縮器全体の放 熱量を 1. 00とすると、 [0084] (Amount of heat radiation) = (air volume) X (air temperature difference), since the air volume of the first and second condensers 21 and 22 is the same, the amount of heat radiation of the first and second condensers 21 and 22 Is proportional to the temperature difference. Assuming that the total heat release of the condenser is 1.00,
第 1凝縮器 21の放熱量: 10°CZ(10°C+45°C) =約 0. 18  Heat dissipation of the first condenser 21: 10 ° CZ (10 ° C + 45 ° C) = about 0.18
第 2凝縮器 22の放熱量: 45°CZ(10°C+45°C) =約 0. 82  Heat dissipation of the second condenser 22: 45 ° CZ (10 ° C + 45 ° C) = about 0.82
となる。  It becomes.
[0085] ここで、暖房時におけるルームエアコンディショナの JIS規格 (JISC9612)の温度条 件 (標準条件)は、室内空気温度 20°C、室外空気温度 7°Cである。  [0085] Here, the temperature conditions (standard conditions) of the JIS standard (JISC9612) of the room air conditioner at the time of heating are a room air temperature of 20 ° C and an outdoor air temperature of 7 ° C.
[0086] したがって、本実施の形態によれば、 3台の熱交換機の配置と室内空気の循環で の暖房では、室内蒸発器に流入する空気温度は標準条件の 7°Cよりも当然高くなり、 蒸発温度も高くなるので冷媒循環量が増加し、凝縮圧力が同じであれば圧縮比も小 さくなるので消費電力も少なくなり、結果的に、 COP (暖房能力 Z消費電力)が大き い暖房効果が得られる。 [0086] Therefore, according to the present embodiment, the arrangement of three heat exchangers and the circulation of room air In the case of heating, the temperature of the air flowing into the indoor evaporator is naturally higher than the standard condition of 7 ° C, and the evaporation temperature also increases, so the refrigerant circulation amount increases, and if the condensing pressure is the same, the compression ratio decreases. As a result, power consumption is reduced, and as a result, a heating effect with a large COP (heating capacity Z power consumption) is obtained.
[0087] 以上、本発明の実施の形態について説明した力 勿論、本発明はこれに限定され ることなく、本発明の技術的思想に基づいて種々の変形が可能である。  [0087] The power described in the embodiment of the present invention is, of course, not limited to this, and various modifications can be made based on the technical idea of the present invention.
[0088] 例えば以上の実施の形態では、蒸発器 23の風上側に予熱用の第 1凝縮器 21を一 台配置したが、これに代えて、当該第 1凝縮器を更に 2台に分割して蒸発器の風上 側にそれぞれ設置するようにしてもよい。これにより、これら 2台の予熱用凝縮器に対 する冷媒供給を制御することによって、蒸発器入口温度を容易に制御できるようにな る。  [0088] For example, in the above-described embodiment, one first condenser 21 for preheating is arranged on the windward side of the evaporator 23, but the first condenser 21 is divided into two instead. It may be installed on the windward side of the evaporator. This makes it possible to easily control the evaporator inlet temperature by controlling the supply of refrigerant to these two preheating condensers.
[0089] また、暖房運転時において、蒸発器 23の設計条件は顕熱比 100%の無凝縮域とさ れるが、蒸発器 23による空気中水分の無凝縮条件を維持するために、例えば、蒸発 器 23の入口及び出口に湿度センサをそれぞれ配置すると共に、圧縮機 27としてィ ンバータ制御可能な圧縮機を採用し、上記一対の湿度センサの出力差に基づいて 圧縮機をインバータ制御するようにすれば、蒸発器 23の無凝縮領域を安定に維持 することが可能となる。  Further, during the heating operation, the design condition of the evaporator 23 is a non-condensing region with a sensible heat ratio of 100%. In order to maintain the non-condensing condition of the moisture in the air by the evaporator 23, for example, A humidity sensor is arranged at each of the inlet and outlet of the evaporator 23, and a compressor that can be controlled by an inverter is adopted as the compressor 27, and the compressor is controlled by an inverter based on the output difference between the pair of humidity sensors. Then, the non-condensing region of the evaporator 23 can be stably maintained.

Claims

請求の範囲 The scope of the claims
[1] 室内循環空気を蒸発器で冷却して室内を除湿する空気調和方法であって、 前記蒸発器の風上側に凝縮器を配置し、前記蒸発器の入口空気温度と前記蒸発 器の蒸発温度との間の温度差を 24°C以上とすることにより、前記蒸発器の表面で空 気中の水分を滴状に凝縮させて除湿することを特徴とする空気調和方法。  [1] An air conditioning method for dehumidifying a room by cooling indoor circulating air with an evaporator, wherein a condenser is disposed on the windward side of the evaporator, and the inlet air temperature of the evaporator and the evaporation of the evaporator An air conditioning method, characterized in that a temperature difference between the temperature and the temperature is set to 24 ° C. or more, so that moisture in the air is condensed in a droplet form on the surface of the evaporator and dehumidified.
[2] 前記蒸発器の風下側に凝縮器を配置し、前記蒸発器の出口空気を当該凝縮器で 再熱する請求の範囲第 1項に記載の空気調和方法。 [2] The air conditioning method according to claim 1, wherein a condenser is arranged on the lee side of the evaporator, and outlet air of the evaporator is reheated by the condenser.
[3] 前記蒸発器を風下側に傾倒させる請求の範囲第 1項に記載の空気調和方法。 3. The air-conditioning method according to claim 1, wherein the evaporator is tilted to the leeward side.
[4] 前記蒸発器を顕熱量 100%の無凝縮域に設定して室内を暖房する請求の範囲第[4] The room is heated by setting the evaporator in a non-condensing region having a sensible heat of 100%.
2項に記載の空気調和方法。 Item 2. The air conditioning method according to item 2.
[5] 空気吸入口と空気排出口とが形成された本体と、この本体の内部に配置された凝 縮器及び蒸発器と、前記凝縮器及び前記蒸発器へ冷媒を循環流通させる圧縮機と[5] A main body having an air inlet and an air outlet formed therein, a condenser and an evaporator disposed inside the main body, and a compressor for circulating a refrigerant to the condenser and the evaporator.
、前記空気流入口側から前記空気排出口側への空気の流れを形成する送風機とを 備えた空気調和装置において、 A blower for forming a flow of air from the air inlet side to the air outlet side,
前記蒸発器の風上側に予熱用の凝縮器が配置され、除湿又は冷房運転時、前記 蒸発器の入口空気温度と前記蒸発器の蒸発温度との差が 24°C以上に設定されて A condenser for preheating is arranged on the windward side of the evaporator, and the difference between the inlet air temperature of the evaporator and the evaporation temperature of the evaporator is set to 24 ° C or more during dehumidification or cooling operation.
Vヽることを特徴とする空気調和装置。 An air conditioner characterized by V ヽ.
[6] 前記蒸発器の風下側には再熱用の凝縮器が配置されている請求の範囲第 5項に 記載の空気調和装置。 6. The air conditioner according to claim 5, wherein a condenser for reheating is disposed downstream of the evaporator.
[7] 前記蒸発器は、風下側に向カゝつて傾倒するように傾斜配置されて ヽる請求の範囲 第 5項に記載の空気調和装置。  7. The air conditioner according to claim 5, wherein the evaporator is inclined so as to incline toward the leeward side.
[8] 前記蒸発器の表面積は前記凝縮器の表面積よりも小さく形成されて 、る請求の範 囲第 5項に記載の空気調和装置。 [8] The air conditioner according to claim 5, wherein the surface area of the evaporator is formed smaller than the surface area of the condenser.
[9] 前記蒸発器を顕熱量 100%の無凝縮域に設定することにより暖房運転を可能とし た請求の範囲第 6項に記載の空気調和装置。 9. The air conditioner according to claim 6, wherein a heating operation is enabled by setting the evaporator in a non-condensing region having a sensible heat of 100%.
PCT/JP2005/002305 2004-02-23 2005-02-16 Air conditioning method and air conditioning system WO2005079957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004045750A JP2005233562A (en) 2004-02-23 2004-02-23 Air conditioning method and device
JP2004-045750 2004-02-23

Publications (1)

Publication Number Publication Date
WO2005079957A1 true WO2005079957A1 (en) 2005-09-01

Family

ID=34879411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002305 WO2005079957A1 (en) 2004-02-23 2005-02-16 Air conditioning method and air conditioning system

Country Status (3)

Country Link
JP (1) JP2005233562A (en)
TW (1) TW200533871A (en)
WO (1) WO2005079957A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190024932A1 (en) * 2016-06-06 2019-01-24 Delta Electronics, Inc. Hybrid air conditioning apparatus
CN110337320A (en) * 2017-02-23 2019-10-15 三菱电机株式会社 Dehumidifier

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278541A (en) * 2006-04-03 2007-10-25 Sanden Corp Cooling system
JP2015010766A (en) * 2013-06-28 2015-01-19 株式会社デンソー Outdoor unit for heat pump cycle
WO2016170592A1 (en) * 2015-04-21 2016-10-27 三菱電機株式会社 Air conditioning device
DE112015006816T5 (en) * 2015-08-20 2018-05-03 Mitsubishi Electric Corporation AIR CONDITIONING
CN107461842A (en) * 2016-06-06 2017-12-12 台达电子工业股份有限公司 Combined air adjustment equipment
TWI605229B (en) * 2016-06-06 2017-11-11 台達電子工業股份有限公司 Hybrid air conditioning apparatus
CN112228997A (en) * 2020-11-17 2021-01-15 珠海格力电器股份有限公司 Fresh air device and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106521A (en) * 1979-02-13 1980-08-15 Toshiba Corp Dehumidifier
JPH036228U (en) * 1989-06-02 1991-01-22
JP2002130863A (en) * 2000-10-19 2002-05-09 Chikayoshi Sato Dehumidifying method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189015U (en) * 1983-06-02 1984-12-14 シャープ株式会社 dehumidifier
JP2003175312A (en) * 1997-06-13 2003-06-24 Cosmo Denki Kk Dehumidifier for space under floor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106521A (en) * 1979-02-13 1980-08-15 Toshiba Corp Dehumidifier
JPH036228U (en) * 1989-06-02 1991-01-22
JP2002130863A (en) * 2000-10-19 2002-05-09 Chikayoshi Sato Dehumidifying method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190024932A1 (en) * 2016-06-06 2019-01-24 Delta Electronics, Inc. Hybrid air conditioning apparatus
CN110337320A (en) * 2017-02-23 2019-10-15 三菱电机株式会社 Dehumidifier
CN110337320B (en) * 2017-02-23 2022-06-17 三菱电机株式会社 Dehumidifier

Also Published As

Publication number Publication date
JP2005233562A (en) 2005-09-02
TW200533871A (en) 2005-10-16

Similar Documents

Publication Publication Date Title
WO2005079957A1 (en) Air conditioning method and air conditioning system
US7340912B1 (en) High efficiency heating, ventilating and air conditioning system
JP6494765B2 (en) Air conditioning system
JP4835688B2 (en) Air conditioner, air conditioning system
JP4864109B2 (en) Air conditioning apparatus and control method thereof
Zhang et al. A frost-free dedicated outdoor air system with exhaust air heat recovery
US11649974B2 (en) Pre-cooling device dehumidifier
Ling et al. Theoretical study on separate sensible and latent cooling air-conditioning system
CN103890495B (en) Refrigerating air conditioning device and humidity control device
US20080276640A1 (en) Evaporative cooler and desiccant assisted vapor compression AC system
JPH09145187A (en) Air conditioner
JP2005147623A (en) Air conditioner, and operating method for air conditioner
US8104306B1 (en) Freezable squirrel cage evaporator
TWI753323B (en) Dehumidifier
CN1156662C (en) Heat pump system
CN106556067A (en) The indoor set component of two control multi-connected machines and the two control multi-connected machines with which
JP5359037B2 (en) Dehumidifier
CN108472579B (en) Dehumidifying device
JP2005133976A (en) Air-conditioner
JP2006317012A (en) Air conditioner
US9557093B2 (en) Industrial dehumidifier system
TWI311187B (en)
JP2007333377A (en) Heat pump type air conditioner
JP7126611B2 (en) air conditioner
WO2003087683A1 (en) Dehumidifying method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase