WO2003087537A1 - Disk roller cutter and disk roller cutter monitoring system - Google Patents

Disk roller cutter and disk roller cutter monitoring system Download PDF

Info

Publication number
WO2003087537A1
WO2003087537A1 PCT/JP2003/004758 JP0304758W WO03087537A1 WO 2003087537 A1 WO2003087537 A1 WO 2003087537A1 JP 0304758 W JP0304758 W JP 0304758W WO 03087537 A1 WO03087537 A1 WO 03087537A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
disk
cutting head
cutter
roller cutter
Prior art date
Application number
PCT/JP2003/004758
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Motonami
Kazuyoshi Oishi
Original Assignee
Starloy Corporation
Oishi International Syscom Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Starloy Corporation, Oishi International Syscom Co., Ltd. filed Critical Starloy Corporation
Priority to AU2003227498A priority Critical patent/AU2003227498A1/en
Publication of WO2003087537A1 publication Critical patent/WO2003087537A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/1006Making by using boring or cutting machines with rotary cutting tools
    • E21D9/104Cutting tool fixtures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines

Definitions

  • the present invention relates to a disk roller cutter (hereinafter abbreviated as DRC) of a tunnel excavator used for mine excavation and tunnel construction.
  • DRC disk roller cutter
  • the present invention monitors the amount of disk wear, the number of rotations, and the applied load, monitors and evaluates the DRC usage status, and monitors the face condition.
  • DRC disk roller cutter
  • the life of the DRC of a tunnel machine is deeply related to the amount and manner of wear of the disk during cutting, the rotational state of the disk, and the load acting on the entire DRC. In order to operate the excavator safely and with high cutting efficiency, it is necessary to accurately measure these to accurately grasp the use of DRC and also to accurately grasp the condition of the face.
  • a system that uses ultrasonic waves requires a large amount of energy to oscillate ultrasonic waves, and the mechanism for transmitting this energy from the rear fixed part of the excavator to the front rotating part is complicated, making it difficult to construct the entire system. There is also. Disclosure of the invention
  • An object of the present invention is to make it possible to predict a DRC replacement time by accurately grasping the DRC usage status in real time, and to quickly find a factor that may be a problem for excavation, that is, to check the DRC and face condition. It is necessary to understand and respond accurately and to operate the excavator safely and efficiently.
  • the DRC of the present invention is mounted on a cutting head of an excavator, and detects a wear state of a disk including a steel disk or a cemented carbide chip, a sensor that detects a rotation state of the disk, A sensor for detecting a load acting from the cutting face in a direction perpendicular or inclined to the rotation axis of the DRC.
  • the wear sensor uses a sensor that captures the wear state of the periphery of the disk including the steel disk or the carbide alloy tip as a change in the magnetic field due to the decrease in the magnetic material, and outputs a signal of the displacement.
  • wear state measurement data such as the wear location of the disk, the wear amount at that location, and the average wear amount of the entire disk can be obtained.
  • the rotation sensor a sensor that detects the passage of a magnet attached to the rotating part of the DRC as a change in the magnetic field and outputs a signal each time the change is detected.
  • Rotation state measurement data such as the number of rotations of the disk can be obtained from the detection signal of the rotation sensor.
  • a stress sensor is used as the load sensor, which is installed on each of the shaft portions that support the left and right ends of the rotating shaft of the DRC. It is configured so that the magnitude and direction of the load acting from the direction or the inclined direction can be measured.
  • the load condition measurement data such as the magnitude and direction of the load acting on the disk can be obtained from the detection signal of the load sensor.
  • a support base as a load sensor having a built-in stress strain meter is provided in a housing fixed to the cutting head, and the support base supports the left and right shaft portions of the DRC, respectively.
  • a sensor support having an abrasion sensor and a rotation sensor on its upper surface is detachably provided below the support base or the housing.
  • the DRC is installed by fixing the left and right shaft portions of the DRC on a support base mounted on or in the housing, and further, a sensor support having a wear sensor and a rotation sensor installed on the upper surface. This is done by attaching the body to the lower part of a support stand or housing opposite the face. Since the load transmitted to the support base via the rotating shaft of the DRC is measured, the load acting on the DRC during cutting can be measured with high accuracy. Inspection and replacement of the sensor can be easily performed by removing the sensor support from the support base for the wear sensor and the rotation sensor, and removing the load sensor from the housing. If the sensor is easy to maintain, the cutter can be mounted in a single part housing or additionally in the power housing. The sensor may be installed on another component that is used.
  • each sensor in the DRC having the above-mentioned structure has a structure having a water pressure resistance of at least 3 bar.
  • the monitoring system of the present invention includes the DRC having the above-described configuration and a management computer that processes output signals of the sensors, and displays and outputs the state of disk wear, rotation, and applied load simultaneously with excavation of the face. It is characterized by the following.
  • the DRC by processing the detection signal of one or more DRCs attached to the cutting head, the DRC can be used accurately based on the disk wear, rotation, and load data, which are mutually correlated. By observing the situation, it is possible to manage DRC efficiently. From the data measured by each DRC during cutting, data obtained by accurately exploring the face, such as the condition of the DRC and the cutting head placed on the face, the rock strength of the face, and the presence or absence of cavities (information) From this data, the condition of the face can be grasped and the excavator can be operated efficiently.
  • each of the wear, rotation, and load data input from the DRC to the management computer and subjected to data processing is displayed as a numerical value, a table, or a graph on a display or a printer.
  • the data can be sent to another computer online from the signal output terminal of the management computer, or the processed data can be sequentially loaded into the internal memory of the management computer and recorded in an external memory such as a CD burning device, or offline. You may be able to get it on your computer.
  • the detection signal of each sensor is taken into the fixed portion of the excavator via a non-contact signal transmission device installed at the end of the rotation shaft of the excavator located at the center of the cutting head rotation.
  • the signal may be further amplified and input to the management computer.
  • the signal line of each sensor passes through the rotation shaft of the excavator, and It is connected to the movable part of the non-contact signal device that rotates integrally with the rotating shaft.
  • the output signal of each sensor is transmitted to the fixed part of the non-contact signaling device via the movable part, the signal is amplified and input to the management computer.
  • a shielded cable that cuts off the influence of electromagnetic waves from a motor or the like disposed inside and outside the excavator is used as a signal transmission path from each sensor to the management computer.
  • the components that make up the sensor of the excavator to the non-contact signal transmission device have a structure that can operate normally even under water pressure of 3 bar or more.
  • the diameter of the cutting head of an excavator is 1 Om, and the cutting head makes one revolution in 15 seconds to excavate the face, the cutting head was mounted near the outer periphery of the cutting head.
  • the rotation speed of the DRC is about 2 m / s, and if sensor detection signals are collected at intervals of seconds, the data collection interval becomes too large for the DRC's travel distance and rotation speed, and the DRC's Precise measurement data cannot be obtained. Therefore, in the system having the above configuration, the detection signal of each sensor is 0.0
  • It is configured to collect and process at intervals of about 1 second (100 Hz). In order to obtain more accurate data, further reducing the collection interval is performed appropriately according to the diameter of the cutting head and its rotation speed.
  • the system having the above-mentioned configuration includes means for detecting the wear, rotation and load acting on the DRC, which are attached to the cutting head of the excavator, means for detecting the rotation angle of the cutting head, and cutting head. And a means for displaying and outputting the wear and rotation of the DRC and the displacement of the load corresponding to the rotation angle of the drive.
  • the data detected by each of the detecting means is processed, and the data is simultaneously displayed on the display display or the like while having a correlation with the rotation angle of the cutting head. It is possible to clearly determine the situation of the DRC of the location. In addition, from the situation of such DRC, it is possible to accurately determine the situation of the face facing the DRC. It becomes possible to separate.
  • FIG. 1 is a diagram showing a DRC according to the present invention with a part thereof broken away.
  • FIG. 2 is a diagram showing a configuration of a monitoring system according to the present invention.
  • FIG. 3 is an example of a display screen when data processed by the monitoring system according to the present invention is output to a display monitor.
  • FIG. 1 shows a DRC of the present invention.
  • reference numeral 1 denotes a DRC
  • 2 denotes a cutter
  • 4 denotes a cutter support
  • 5 denotes a housing.
  • the DRC 1 includes a cutter 2 and a cutter support 4 that rotatably supports the cutter 2.
  • the cutter 2 has a disk 3a made of steel or a steel disk with a cemented carbide chip arranged around the periphery of the disk, and a hub 3 rotatably supported at both left and right ends by shaft portions la and la. It is configured to be fitted integrally on the outer circumference of b.
  • the force cutter 2 may be formed by integrally molding the disk 3a and the hap 3b.
  • the cutter support section 4 includes support housings 6 and 6 to which the left and right shaft sections 1 a and 1 a for supporting the cutter 1 are fixed in a housing 5 fixed to the cutting head. It comprises a wear sensor 7 for detecting the state, a rotation sensor 8 for detecting the rotation state of the disk 3a, and a load sensor 12 for detecting a load acting on the cutter 2 from the cutting face.
  • the wear sensor 7 is a sensor that detects displacement of a magnetic field caused by a decrease in mass due to wear or cracks of the outer circumference of the disk 3a formed of a magnetized substance, converts this into an electric signal, and outputs a signal. And is located in the lower center of the housing 5 close to the periphery of the disk 3a.
  • the rotation sensor 8 is a sensor that detects a magnetic field generated by a magnet 9 attached to the outer peripheral surface of the hub 3 b every time the power meter 2 rotates, converts this to an electric signal, and outputs a signal. Outer peripheral surface It is installed at the lower part of the housing 5 so as to be close to.
  • Both sensors are fixed to the upper surface of a sensor support 11 that is horizontally mounted between the support frames 6 and 6 at the lower portion of the housing 5 and attached to the support frames with screws 10. Both sensors are removed from the support base 6 together with the sensor support 11 by loosening the screw 10 so that maintenance such as inspection and replacement can be easily performed.
  • the load sensor 12 consists of a stress-strain meter that detects the expansion and contraction of the structure and outputs a signal, and the inside of the support bases 6 and 6 that abut and support the right and left shafts 1 &, 1 a of 0 ⁇ 1 It is provided so that the state of expansion and contraction inside both support bases 6 is detected, and the magnitude and direction of the load acting on cutter 2 are detected from the respective detection signals.
  • the support bases 6 and 6 with the built-in stress strain gauge have the function of the load sensor 12.
  • the support pedestal 6 is provided with a pair of convex steps at corresponding positions on the upper and lower surfaces thereof, and a convex step on the upper surface is joined to the lower surface of the shaft portion 1a. It is installed so that the part is supported. Therefore, when a load is applied to the cutter 2, the load is transmitted intensively between the upper and lower convex portions via the joint surface, and the stress acting inside the support base 6 can be accurately measured by the load sensor 12. It has become.
  • the support base 6 is integrally attached to the shaft portion 1a with screws 13 and further fixed between the housing 5 with screws 14 so that these screws can be loosened for easy removal. You can do it.
  • a sleeve 15 is inserted between the screw 14 and the housing 5 in order to suppress a change in the pretension due to the tightening force of the screw due to loosening of each of the above-mentioned screw cutters or a bite of each other. It is provided so that the change in pretension can be absorbed by the elasticity of the sleeve 15 and the change in load can be accurately measured.
  • a metal plate is inserted between a lower portion of the support base 6 and an inner surface of the housing 5 to absorb a shift due to a difference in shape of a joint surface between the support base 6 and the housing 5.
  • a signal cable (not shown) connected to each of these sensors is drawn into the protection section in the cutting head through the sensor support 11 to protect it from external impact such as cutting rock.
  • each sensor and signal cable must be at least
  • FIG. 2 shows the configuration of the monitoring system of the present invention.
  • reference numeral 20 denotes an excavator
  • 21 denotes a cutting head which is a rotating part of the excavator
  • 22 denotes a fixed part of the excavator
  • 23 denotes a center of rotation of the cutting head 21.
  • a rotating shaft 24, a partition wall separating the fixed part 22 and the cutting head 21 and a management computer 36 are provided.
  • muddy water is filled at a pressure of about 3 bar between the face and the bulkhead 24 of the excavator 20 in order to prevent the face from collapsing.
  • a plurality of DRCs 1 having the above-mentioned configuration are attached to a cutting head 21, and signal cables 25 of the respective sensors installed on the respective support portions 4 are respectively drawn into the cutting head 21.
  • Each signal cable 25 is connected, if necessary, via an extension cable 26 and a repeater 27, passes through the rotary shaft 23, and rotates inside the fixed part 22 of the excavator. It is connected to the non-contact signal transmission device 28 installed at the end of the shaft 23.
  • the non-contact signal transmitting device 28 includes a signal amplifier 29 and a rotating ring 30 that rotate integrally with the rotating shaft 23, and a fixed portion 22 facing the rotating ring 30 and opening an appropriate space. And a fixing ring 31 fixed therein. Signals input to the device from each signal cable 25 and extension cable 26 are arranged and amplified as transmission data in a signal amplifier 29, and then transmitted from the rotating ring 30 to the fixed ring 31 for cutting. Even when the head 21 is rotating, the sensor detection signal is taken into the fixed part 22 of the excavator 20 in a non-contact manner even when the head 21 is rotating. The driving current of the sensor is transmitted from the fixed ring 31 to the rotating ring 30 so as to be supplied to each sensor on the surface of the cutting head.
  • the non-contact signal transmission device 28 has a built-in sensor (not shown) for detecting the position of the rotating part in both rings 30 and 31, and the rotation angle of the cutting head 21. And a detection signal are output together with the sensor detection signal received by the fixed ring 31. Then, the output signal of the non-contact signal transmission device 28 is input to the management computer 36 via the signal cable 32. If there is a distance from the non-contact signal transmission device 28 to the installation position of the management computer 36, the signal is appropriately and appropriately increased via the repeater 33, the extension cable 34, and the signal amplifier 35. It is then transmitted to the management computer 36.
  • the management computer 36 is a data processing means for analyzing signals and performing arithmetic processing, a data input means such as a keyboard or a mouse, a display output means such as a display or a printer for displaying processed data, and a memory for storing data. And processing means such as signal input / output means.
  • the management computer 36 shown in FIG. 2 shows a form in which each of these processing means is stored in a console box 37 together with the signal amplifier 35, and in this embodiment, the processing means is inputted from the signal amplifier 35.
  • the data processing in the management computer 36 is performed by the operation unit 41 controlling the operation of each processing unit according to the operation program stored in the operation unit 41, and the data is transmitted to the keyboard and mouse 39 or the console box 37.
  • the data is sequentially taken in from the analysis unit 38 to the calculation unit 41 and processed, and the processing result is displayed and output on the display monitor 40.
  • the information is stored in the storage unit.
  • the measurement data of each sensor is set to be collected at 0.01 second intervals.
  • the processing unit 41 also has an external input / output interface, sends the processed data to a CD burning device, creates a CD on which the processed data is recorded, and imports the processed data to another computer 44 offline. , Can be processed.
  • a data output terminal is provided in the arithmetic section 41, and connected online with another computer 44 through this terminal, and the data detected and processed by each of the sensors is processed. Data may be output.
  • Each component constituting a signal transmission path from each of the sensors to the non-contact signal transmission device 28 is provided with a pressure-resistant seal so as to operate normally under a water pressure of at least 3 bar.
  • a shielded cable for removing the influence of an external electromagnetic field.
  • FIG. 3 shows an example of a display screen when the detection signal of each sensor is processed by the management computer 36 and the processed data is displayed on the display monitor 40.
  • This screen is displayed by selecting and selecting the DRC 1 whose rotation status is to be displayed by operating the switch 42 or 43 provided on the console box 37.
  • the number and position of the corresponding DRC 1 are displayed in the screen.
  • Information such as the amount of wear, the number of rotations, and the load acting on the face is displayed.
  • reference numeral 50 denotes a selected DRC 1 number display portion
  • 51 denotes a position of the corresponding DRC 1 with respect to the face.
  • the entire circular display panel represents a face
  • the position of the DRC 1 that is sequentially displaced with respect to the face as the cutting head 21 rotates is indicated by an arrow 52 in the display panel. It is specified and displayed at the tip.
  • the arrow 52 is set to make one rotation in the display panel in 36 seconds.
  • Reference numeral 53 denotes a display section of the wear state of the disk 3a obtained by processing the detection signal of the wear sensor 7 of the corresponding DRC 1, and the display section displays the average value of the wear amount of the entire circumference of the disk in mm.
  • a display section 53a for displaying the unit number and a display section 53b for displaying the degree of wear in three colors of green, yellow and red are arranged. Based on the difference between the average value of the wear amount and the preset wear amount, the color-coded display section 53 b shows green as a safety zone when the wear is small and a caution zone when the wear has advanced. When the wear reaches the use limit of the disc 3a, yellow is displayed as danger, and the operator who looks at the screen can intuitively know and judge the degree of wear of the disc 3a. Has become.
  • Symbols 5 and 4 indicate the detection signal of the wear sensor 7 and the rotation sensor 8 of the corresponding DRC 1.
  • This is a display section that continuously displays the disk wear state and the rotation state obtained by processing the detection signal in accordance with the rotation angle of the cutting head 21.
  • the horizontal axis indicates the rotation angle (0 to 360 degrees) when the cutting head 21 rotates toward the face, and the vertical axis indicates the amount of disk wear.
  • the wear value on the outer circumference of the disk corresponding to each rotation angle is continuously displayed by the output line 54a, and is arranged along with the output line 54a every time the cutter 1-2 rotates.
  • the pulse signal output to the disk 3a is continuously displayed by the output line 54b, and the two output lines displayed in this manner allow the operator viewing the screen to determine which part of the disk 3a is missing. Alternatively, it is possible to determine whether uneven wear has occurred and, at the same time, determine whether or not the force cutter 2 has slipped against the face and has caused irregular rotation.
  • the set value of the rotation speed of the cutter 2 obtained by the calculation formula is displayed on the display unit 55, and the measured value of the measured rotation speed of the cutter 2 is displayed on the display unit 56. Similarly, the measured value of the rotation speed of the cutting head 21 measured is displayed on the display unit 57.
  • Reference numeral 58 indicates the state of the load acting on the cutter 2 obtained by processing the detection signal of the load sensor 12 provided on the left and right shaft support portions of the corresponding DRC 1 and the cutting head 2 1
  • This is a display unit that continuously displays the image according to the rotation angle.
  • This display section is composed of a graph in which the horizontal axis indicates the rotation angle when the cutting head 21 rotates, and the vertical axis indicates the magnitude of the load acting on the force cutter 2. Changes in the load measured by the load sensors 12 and 12 in the gantry 6 and 6 are displayed separately on the continuous output lines 58a and 58a, respectively, and at the same time each time the cutting head 21 rotates The pulse signal to be output is also output and displayed side by side with the load output line on the output line 58b.
  • the display sections 59 and 60 are correction bars for calibrating the display zeros of the load sensors 12 and 12.
  • information such as the amount and location of wear of the disc 3a of the DRC 1 and the number of rotations of the cutter 2 and the magnitude and direction of the applied load are simultaneously displayed and output. Can be properly monitored.
  • To face The position of the DRC 1 and the rotation angle of the cutting head 21 with respect to the face are also displayed and output.For example, if there are cavities or high-strength rock in the face, the information on the rotation and load is used. It will be possible to grasp the position of the tunnel and excavate the tunnel efficiently.
  • the configuration of the illustrated DRC and its supporting base, the configuration of the monitoring system, and the layout of the data display screen are merely examples, and the present invention can be configured in various other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Earth Drilling (AREA)

Abstract

A disk roller cutter and a disk roller cutter monitoring system capable of safely and efficiently operating an excavator, the disk roller cutter (1) comprising a sensor (7) for detecting the worn state of a cutter (2), a sensor (8) for detecting the rotating state of the cutter (2), and sensors (12) for detecting a load acting on the rotating shaft (1a) of the cutter (2) from a cutting face in vertical or tilted direction; the disk roller cutter monitoring system wherein output signals from the sensors are taken in an administration computer (36) disposed behind a cutting head and processed by the computer to simultaneously display, on a monitor (40), the worn amount and rotational speed of a disk and the magnitude and direction of the load acting on the rotating shaft, whereby the use state of the disk roller cutter (1) fitted to the cutting head of the excavator can be monitored in real time even during excavation.

Description

明 細 書 ディスクローラー力ッター及びディスクローラー力ッターモニタリング システム 技術分野  Description Disc roller power meter and disc roller power meter monitoring system Technical field
本発明は、 鉱山の掘削やトンネルの工事な に利用される坑道掘進機のデ イスクローラーカッター (以下、 D R Cと略称する) に関する。 また、 本発 明は、 ディスクの摩耗量や回転数、 作用する荷重を検出し、 D R Cの使用状 況を監視し評価するとともに、 切り羽の状況を把握することを目的として構 成されるモニタリングシステムに関する。 背景技術  The present invention relates to a disk roller cutter (hereinafter abbreviated as DRC) of a tunnel excavator used for mine excavation and tunnel construction. In addition, the present invention monitors the amount of disk wear, the number of rotations, and the applied load, monitors and evaluates the DRC usage status, and monitors the face condition. About the system. Background art
坑道掘進機の D R Cの寿命は、 切削時におけるディスクの摩耗量や摩耗の 仕方、 ディスクの回転状態、 D R C全体に作用する荷重などと深く関係する 。 掘進機を安全に且つ切削効率を高めて稼働させるには、 これらを正確に測 定して D R Cの使用状況を的確に把握するとともに、 切り羽の状況も正確に 把握する必要がある。  The life of the DRC of a tunnel machine is deeply related to the amount and manner of wear of the disk during cutting, the rotational state of the disk, and the load acting on the entire DRC. In order to operate the excavator safely and with high cutting efficiency, it is necessary to accurately measure these to accurately grasp the use of DRC and also to accurately grasp the condition of the face.
ディスクの摩耗量や回転数、 作用する荷重の大きさや方向を測定する手段 は、 従来、 様々な方式のものが提案されている。 しかし、 何れの手段も正確 性に欠けるものである。 例えば、 ディスクの回転数を測定する手段として、 切削へッドの回転数を測定し、 これからディスクの回転数を演算によって求 めるものがある。 この手段ではディスクの回転数を直に測定していないので 、 回転数のばらつきが大きく、 正確なデータを得ることはできない。 また、 従来、 ディスクの摩耗や回転、 作用する荷重の状態を各々測定することはあ つても、 測定された各データの相関をとり、 包括的に処理することは行われ ていない。 そのため、 D R C全体の使用状況を切削中にリアルタイムで把握 することも、 同時に切り羽の状況を正確に把握することもできていない。 また、 掘進機前方の岩石の状態を探索するため、 超音波や電磁波などを利 用して切り羽の岩石の状態を調べたり、 切削時の推進シリンダ一の押付力や 切削へッドのトルクなどを基に D R Cに作用する押し付け力を算出し、 へッ ド前方の岩石強度を求めたりするシステムが知られている。 しかし、 これら も測定誤差が大きく、 正確な判断基準とはならない。 超音波を利用したシス テムでは、 超音波の発振に大きなエネルギーを必要とし、 このエネルギーを 掘進機の後方固定部から前方回転部へ伝達させる機構が複雑となり、 全体の システムが構築しにくいという問題もある。 発明の開示 Conventionally, various methods have been proposed for measuring the amount of wear, the number of rotations, and the magnitude and direction of the applied load. However, neither of these measures is accurate. For example, as a means for measuring the number of rotations of a disk, there is a method of measuring the number of rotations of a cutting head and calculating the number of rotations of the disk from the measurement. Since this method does not directly measure the number of revolutions of the disk, the variation in the number of revolutions is large and accurate data cannot be obtained. Conventionally, the state of wear, rotation, and applied load of a disk has been measured, but no comprehensive processing has been performed by correlating the measured data. For this reason, it is not possible to grasp the usage status of the entire DRC in real time during cutting, nor at the same time to accurately grasp the face condition. In addition, in order to search for the state of the rock in front of the excavator, the state of the rock on the face is examined using ultrasonic waves and electromagnetic waves, and the pressing force of the propulsion cylinder and the torque of the cutting head during cutting. There is known a system that calculates the pressing force acting on the DRC based on such information and obtains the rock strength ahead of the head. However, these also have large measurement errors and do not provide accurate judgment criteria. A system that uses ultrasonic waves requires a large amount of energy to oscillate ultrasonic waves, and the mechanism for transmitting this energy from the rear fixed part of the excavator to the front rotating part is complicated, making it difficult to construct the entire system. There is also. Disclosure of the invention
本発明の目的は、 D R Cの使用状況をリアルタイムで正確に把握すること によって D R Cの交換時期を予測できるようにするとともに、 掘削のトラブ ルとなる要因をいち早く見つけ出し、 すなわち D R Cと切り羽の状況を的確 に把握して対応し、 安全且つ効率的に掘進機を稼働できるようにすることに める。  An object of the present invention is to make it possible to predict a DRC replacement time by accurately grasping the DRC usage status in real time, and to quickly find a factor that may be a problem for excavation, that is, to check the DRC and face condition. It is necessary to understand and respond accurately and to operate the excavator safely and efficiently.
本発明の D R Cは、 掘進機の切削ヘッドに取り付けられるものであり、 鋼 鉄製ディスク或いは超硬合金チップを含んだディスクの摩耗状態を検出する センサと、 前記ディスクの回転状態を検出するセンサと、 切削切り羽から D R Cの回転軸に対して垂直又は傾斜した方向へ作用する荷重を検出するセン サとを備えて構成されることを特徴とする。  The DRC of the present invention is mounted on a cutting head of an excavator, and detects a wear state of a disk including a steel disk or a cemented carbide chip, a sensor that detects a rotation state of the disk, A sensor for detecting a load acting from the cutting face in a direction perpendicular or inclined to the rotation axis of the DRC.
この構成によれば、 D R Cにセンサを装備させることにより、 正確な測定 データを得ることができ、 ディスクの摩耗量や回転数、 作用する荷重の大き さなどを同時に測定することで相関性の有るデータが得られ、 D R Cの使用 状況を正確に把握することが可能となる。 本発明の D R Cを切削へッドに複 数設置し、 より好ましくは切削へッド全体にくまなく設置することにより、 例えば切削へッドの中心側と周辺側のように、 各々の設置位置における D R Cの使用状況を把握でき、 各位置のディスクの回転や作用する荷重の測定デ ータから、 切削へッド面内の切り羽の状況も正確に把握することが可能とな る。 According to this configuration, accurate measurement data can be obtained by equipping the DRC with a sensor, and there is a correlation by simultaneously measuring the amount of wear and rotation of the disk, the magnitude of applied load, etc. Data will be obtained and DRC usage will be accurately understood. By installing a plurality of DRCs of the present invention on the cutting head, and more preferably by installing them all over the entire cutting head, each of the installation positions, for example, the center side and the peripheral side of the cutting head, is set. It is possible to grasp the condition of the face in the plane of the cutting head from the measured data of the rotation of the disk at each position and the applied load. You.
前記構成の D R Cにおいて、 摩耗センサは、 鋼鉄製ディスク或いは超硬合 金チップを含んだディスク周縁の摩耗状態を磁化物質の減少に伴う磁場の変 化としてとらえ、 その変位を信号出力するセンサが用いられる。 摩耗センサ の検出信号から、 ディスクの摩耗箇所、 その箇所の摩耗量、 ディスク全体の 平均摩耗量などの摩耗状態測定データが得られる。 回転センサは、 D R Cの 回転部分に取り付けられた磁石の通過を磁場の変化としてとらぇ、 その変化 を検知した都度に信号出力するセンサが用いられる。 回転センサの検出信号 からディスクの回転数などの回転状態測定データが得られる。 荷重センサは 、 応力歪み計が用いられ、 これを D R Cの回転軸の左右両端部を支持する軸 部分にそれぞれ設置し、 回転軸の左右両方の計測値から、 D R Cの回転軸に 対して垂直な方向や傾斜した方向から作用する荷重の大きさとその向きが測 定され得るよう構成される。 荷重センサの検出信号からディスクに作用する 荷重の大きさ、 方向などの荷重状態測定データが得られる。  In the DRC having the above-described configuration, the wear sensor uses a sensor that captures the wear state of the periphery of the disk including the steel disk or the carbide alloy tip as a change in the magnetic field due to the decrease in the magnetic material, and outputs a signal of the displacement. Can be From the detection signal of the wear sensor, wear state measurement data such as the wear location of the disk, the wear amount at that location, and the average wear amount of the entire disk can be obtained. As the rotation sensor, a sensor that detects the passage of a magnet attached to the rotating part of the DRC as a change in the magnetic field and outputs a signal each time the change is detected. Rotation state measurement data such as the number of rotations of the disk can be obtained from the detection signal of the rotation sensor. A stress sensor is used as the load sensor, which is installed on each of the shaft portions that support the left and right ends of the rotating shaft of the DRC. It is configured so that the magnitude and direction of the load acting from the direction or the inclined direction can be measured. The load condition measurement data such as the magnitude and direction of the load acting on the disk can be obtained from the detection signal of the load sensor.
好ましい実施形態では、 前記構成の D R Cにおいて、 切削ヘッドに固着さ れるハウジング内に、 応力歪み計を内蔵した荷重センサとしての支持架台を 設け、 この支持架台で D R Cの左右軸部をそれぞれ支持するとともに、 この 支持架台又はハゥジングの下部に、 上面に摩耗センサと回転センサが設置さ れたセンサ支持体を着脱自在に設けて構成される。  In a preferred embodiment, in the DRC having the above-described configuration, a support base as a load sensor having a built-in stress strain meter is provided in a housing fixed to the cutting head, and the support base supports the left and right shaft portions of the DRC, respectively. A sensor support having an abrasion sensor and a rotation sensor on its upper surface is detachably provided below the support base or the housing.
この構成によれば、 D R Cの設置は、 D R Cの左右軸部をハウジング上或 いはハウジング内に設置された支持架台に乗せて固定し、 さらに上面に摩耗 センサと回転センサが設置されたセンサ支持体を、 切り羽と反対側になる支 持架台又はハゥジングの下部に取り付けて行われる。 D R Cの回転軸を介し て支持架台に伝わる荷重を測定するため、 切削中に D R Cに作用する荷重を 高精度で計測することができる。 センサの点検や交換は、 摩耗センサと回転 センサはセンサ支持体を支持架台から取り外し、 荷重センサはハウジングか ら取り外して容易に行える。 センサのメンテナンスが容易であれば、 カツタ 一部品ゃハゥジングの中、 或いは力ッターゃハゥジングに付加的に取り付け られる他の部品にセンサを設置してもよい。 According to this configuration, the DRC is installed by fixing the left and right shaft portions of the DRC on a support base mounted on or in the housing, and further, a sensor support having a wear sensor and a rotation sensor installed on the upper surface. This is done by attaching the body to the lower part of a support stand or housing opposite the face. Since the load transmitted to the support base via the rotating shaft of the DRC is measured, the load acting on the DRC during cutting can be measured with high accuracy. Inspection and replacement of the sensor can be easily performed by removing the sensor support from the support base for the wear sensor and the rotation sensor, and removing the load sensor from the housing. If the sensor is easy to maintain, the cutter can be mounted in a single part housing or additionally in the power housing. The sensor may be installed on another component that is used.
掘進機で切り羽を切削中に、 切り羽の崩れを防止するため、 掘進機の隔壁 と切り羽の間には泥水が充填されることがある。 従って、 前記構成の D R C における各センサは、 少なくとも 3バールの耐水圧性を備えた構造のものが 用いられる。  Mud water may be filled between the excavator bulkhead and the face to prevent the face from collapsing while the face is being cut by the excavator. Therefore, each sensor in the DRC having the above-mentioned structure has a structure having a water pressure resistance of at least 3 bar.
本発明のモニタリングシステムは、 前記構成の D R Cと各センサの出力信 号を処理する管理コンピュータとを備え、 ディスクの摩耗、 回転、 作用する 荷重の状態が、 切り羽の掘削と同時に表示出力されるように構成されること を特徴とする。  The monitoring system of the present invention includes the DRC having the above-described configuration and a management computer that processes output signals of the sensors, and displays and outputs the state of disk wear, rotation, and applied load simultaneously with excavation of the face. It is characterized by the following.
この構成によれば、 切削へッドに一個又は複数個取り付けられた各 D R C の検出信号を処理することで、 互いに相関性の有るディスクの摩耗、 回転、 荷重の各データから D R Cの正確な使用状況を観察して D R Cの管理を効率 的に行うことが可能となる。 切削中の各 D R Cの測定データから、 切り羽に 対して D R Cや切削へッドが置かれている状況や、 切り羽の岩石強度或いは 空洞の有無など切り羽を正確に探査したデータ (情報) が得られ、 このデー タから切り羽の状況を把握して掘進機を効率よく運転することができる。 好ましい実施形態では、 前記構成のシステムにおいて、 D R Cから管理コ ンピュータに入力され、 データ処理された摩耗、 回転、 荷重の各データは、 表示ディスプレイやプリンタなどに数値や表、 グラフで表示出力する他、 管 理コンピュータの信号出力端子からオンラインで他のコンピュータに送信し たり、 処理したデータを管理コンピュータ内部のメモリに逐次取り込み、 こ れを C D焼き付け装置などの外部メモリに記録し、 或いはオフラインで他の コンピュータで取り込めるようにしたりしてもよい。  According to this configuration, by processing the detection signal of one or more DRCs attached to the cutting head, the DRC can be used accurately based on the disk wear, rotation, and load data, which are mutually correlated. By observing the situation, it is possible to manage DRC efficiently. From the data measured by each DRC during cutting, data obtained by accurately exploring the face, such as the condition of the DRC and the cutting head placed on the face, the rock strength of the face, and the presence or absence of cavities (information) From this data, the condition of the face can be grasped and the excavator can be operated efficiently. In a preferred embodiment, in the system configured as described above, each of the wear, rotation, and load data input from the DRC to the management computer and subjected to data processing is displayed as a numerical value, a table, or a graph on a display or a printer. The data can be sent to another computer online from the signal output terminal of the management computer, or the processed data can be sequentially loaded into the internal memory of the management computer and recorded in an external memory such as a CD burning device, or offline. You may be able to get it on your computer.
また、 前記構成のシステムにおいて、 各センサの検出信号は、 切削ヘッド 回転の中心に位置する掘進機の回転軸端部に設置された非接点信号伝達装置 を介して掘進機の固定部に取り込まれ、 さらに信号増幅されて管理コンビュ ータに入力されるように構成してもよい。  Further, in the system having the above-described configuration, the detection signal of each sensor is taken into the fixed portion of the excavator via a non-contact signal transmission device installed at the end of the rotation shaft of the excavator located at the center of the cutting head rotation. Alternatively, the signal may be further amplified and input to the management computer.
この構成によれば、 各センサの信号線は掘進機の回転軸内を通されて当該 回転軸と一体に回転する非接点信号装置の可動部に接続される。 各センサの 出力信号は当該可動部を介して非接点信号装置の固定部に伝達され、 信号増 幅されて管理コンピュータに入力する。 このように、 非接点信号伝達装置を 用いることで、 システム全体を簡易に構築することが可能となる。 According to this configuration, the signal line of each sensor passes through the rotation shaft of the excavator, and It is connected to the movable part of the non-contact signal device that rotates integrally with the rotating shaft. The output signal of each sensor is transmitted to the fixed part of the non-contact signaling device via the movable part, the signal is amplified and input to the management computer. Thus, the use of the non-contact signal transmission device makes it possible to easily construct the entire system.
前記構成のシステムにおいて、 各センサから管理コンピュータまでの信号 伝送路は、 掘進機内外に配されたモータなどからの電磁波の影響をカツトす る遮蔽ケーブルが使用される。 掘進機のセンサから非接点信号伝達装置まで を構成する各部品は、 前述の通り、 3バール以上の水圧下でも正常に動作す る構造のものが用いられる。  In the system having the above-described configuration, a shielded cable that cuts off the influence of electromagnetic waves from a motor or the like disposed inside and outside the excavator is used as a signal transmission path from each sensor to the management computer. As described above, the components that make up the sensor of the excavator to the non-contact signal transmission device have a structure that can operate normally even under water pressure of 3 bar or more.
例えば掘進機の切削へッドの直径が 1 O mの場合に、 切削へッドが 1 5秒 で 1回転して切り羽を掘削したとすると、 切削へッドの外周近傍に取り付け られた D R Cの回転速度は毎秒 2 m程度となり、 センサ検出信号を秒単位の 間隔で収集したのでは、 D R Cの移動距離並びに回転速度に対してデータ収 集間隔が大きくなりすぎて、 掘削中の D R Cの精密な測定データは得られな い。 従って、 前記構成のシステムにおいて、 各センサの検出信号は、 0 . 0 For example, if the diameter of the cutting head of an excavator is 1 Om, and the cutting head makes one revolution in 15 seconds to excavate the face, the cutting head was mounted near the outer periphery of the cutting head. The rotation speed of the DRC is about 2 m / s, and if sensor detection signals are collected at intervals of seconds, the data collection interval becomes too large for the DRC's travel distance and rotation speed, and the DRC's Precise measurement data cannot be obtained. Therefore, in the system having the above configuration, the detection signal of each sensor is 0.0
1秒程度の間隔 (1 0 0 H z ) で収集して処理するように構成される。 より 精密なデータを得るため、 さらに収集間隔を小さくすることは、 切削ヘッド の直径とその回転速度に応じて適宜行われる。 It is configured to collect and process at intervals of about 1 second (100 Hz). In order to obtain more accurate data, further reducing the collection interval is performed appropriately according to the diameter of the cutting head and its rotation speed.
さらに、 前記構成のシステムは、 掘進機の切削ヘッドに取り付けられてい て D R Cの摩耗、 回転と作用する荷重をそれぞれ検出する手段と、 切削へッ ドの回転角度を検出する手段と、 切削へッドの回転角度に対応した D R Cの 摩耗及び回転と荷重の変位をそれぞれ表示出力する手段を備えた構成とする ことができる。  Further, the system having the above-mentioned configuration includes means for detecting the wear, rotation and load acting on the DRC, which are attached to the cutting head of the excavator, means for detecting the rotation angle of the cutting head, and cutting head. And a means for displaying and outputting the wear and rotation of the DRC and the displacement of the load corresponding to the rotation angle of the drive.
この構成によれば、 前記各検出手段で検出されたデータを処理し、 これを 表示デイスプレイなどに切削へッドの回転角度に相関性を持たせて同時に表 示することにより、 切り羽のどの位置の D R Cがどのような状況にあるのか を明瞭に判別することが可能となる。 また、 そのような D R Cの状況から、 当該 D R Cと対面する位置の切り羽がどのような状況にあるのかも的確に判 別することが可能となる。 図面の簡単な説明 According to this configuration, the data detected by each of the detecting means is processed, and the data is simultaneously displayed on the display display or the like while having a correlation with the rotation angle of the cutting head. It is possible to clearly determine the situation of the DRC of the location. In addition, from the situation of such DRC, it is possible to accurately determine the situation of the face facing the DRC. It becomes possible to separate. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明による D R Cを、 一部を破断して示した図である。  FIG. 1 is a diagram showing a DRC according to the present invention with a part thereof broken away.
図 2は、 本発明によるモニタリングシステムの構成を示した図である。 図 3は、 本発明によるモニタリングシステムで処理されたデータを表示モ エタに表示出力したときの表示画面の一例である。 発明を実施するための最良の形態  FIG. 2 is a diagram showing a configuration of a monitoring system according to the present invention. FIG. 3 is an example of a display screen when data processed by the monitoring system according to the present invention is output to a display monitor. BEST MODE FOR CARRYING OUT THE INVENTION
図 1は本発明の D R Cを示しており、 図中、 符号 1は D R C、 2はカツタ 一、 4はカッター支持部、 5はハウジングである。 図示されるように、 この D R C 1は、 カッター 2と、 カッター 2を回転自在に支持するカッター支持 部 4により構成されている。  FIG. 1 shows a DRC of the present invention. In the drawing, reference numeral 1 denotes a DRC, 2 denotes a cutter, 4 denotes a cutter support, and 5 denotes a housing. As shown in the figure, the DRC 1 includes a cutter 2 and a cutter support 4 that rotatably supports the cutter 2.
カッター 2は、 鋼鉄製の、 或いは鋼鉄製ディスク体の周辺部に超硬合金チ ップを配してなるディスク 3 aを、 左右両端が軸部 l a、 l aで回転自在に 支持されたハブ 3 bの外周に一体に嵌め入れて構成されている。 ディスク 3 aとハプ 3 bを一体に成形して力ッター 2を構成してもよい。  The cutter 2 has a disk 3a made of steel or a steel disk with a cemented carbide chip arranged around the periphery of the disk, and a hub 3 rotatably supported at both left and right ends by shaft portions la and la. It is configured to be fitted integrally on the outer circumference of b. The force cutter 2 may be formed by integrally molding the disk 3a and the hap 3b.
カッター支持部 4は、 切削ヘッドに固着されるハウジング 5内に、 カツタ 一 2を支持する前記左右軸部 1 a、 1 aが固定される支持架台 6、 6を設け 、 さらにディスク 3 aの摩耗状態を検出する摩耗センサ 7と、 ディスク 3 a の回転状態を検出する回転センサ 8と、 切削切り羽からカッター 2に作用す る荷重を検出する荷重センサ 1 2とを設けて構成されている。  The cutter support section 4 includes support housings 6 and 6 to which the left and right shaft sections 1 a and 1 a for supporting the cutter 1 are fixed in a housing 5 fixed to the cutting head. It comprises a wear sensor 7 for detecting the state, a rotation sensor 8 for detecting the rotation state of the disk 3a, and a load sensor 12 for detecting a load acting on the cutter 2 from the cutting face.
摩耗センサ 7は、 磁化物質により形成されたディスク 3 aの外周が摩耗し 或いは割れて質量が減少することに伴う磁場の変位を検知し、 これを電気信 号に変換して信号出力するセンサであり、 ディスク 3 aの周縁に近接させて ハウジング 5の下部中央に設置されている。 回転センサ 8は、 ハブ 3 bの外 周面に取り付けられた磁石 9による磁場を力ッター 2が回転する毎に検知し 、 これを電気信号に変換して信号出力するセンサであり、 ハブ 3 bの外周面 に近接させてハウジング 5の下部に設置されている。 両センサは、 ハウ グ 5の下部で支持架台 6、 6間に横架していてネジ 1 0で両支持架台に取り 付けられたセンサ支持体 1 1の上面に固定されている。 両センサは、 ネジ 1 0を緩めてセンサ支持体 1 1とともに支持架台 6から取り外し、 点検や交換 などのメンテナンスを容易に行えるようにもなつている。 The wear sensor 7 is a sensor that detects displacement of a magnetic field caused by a decrease in mass due to wear or cracks of the outer circumference of the disk 3a formed of a magnetized substance, converts this into an electric signal, and outputs a signal. And is located in the lower center of the housing 5 close to the periphery of the disk 3a. The rotation sensor 8 is a sensor that detects a magnetic field generated by a magnet 9 attached to the outer peripheral surface of the hub 3 b every time the power meter 2 rotates, converts this to an electric signal, and outputs a signal. Outer peripheral surface It is installed at the lower part of the housing 5 so as to be close to. Both sensors are fixed to the upper surface of a sensor support 11 that is horizontally mounted between the support frames 6 and 6 at the lower portion of the housing 5 and attached to the support frames with screws 10. Both sensors are removed from the support base 6 together with the sensor support 11 by loosening the screw 10 so that maintenance such as inspection and replacement can be easily performed.
荷重センサ 1 2は、 構造物の伸び縮みを検知し、 信号出力する応力歪み計 よりなり、 0 〇 1の左右軸部1 &、 1 aに当接しこれを支持する支持架台 6、 6の内部に設置され、 両支持架台 6内部の伸縮状態を検知し、 それぞれ の検出信号からカッター 2に作用する荷重の大きさと方向が検出されるよう に設けてある。 つまり、 応力歪み計を内蔵した支持架台 6、 6自体が荷重セ ンサ 1 2としての機能を備えている。  The load sensor 12 consists of a stress-strain meter that detects the expansion and contraction of the structure and outputs a signal, and the inside of the support bases 6 and 6 that abut and support the right and left shafts 1 &, 1 a of 0〇1 It is provided so that the state of expansion and contraction inside both support bases 6 is detected, and the magnitude and direction of the load acting on cutter 2 are detected from the respective detection signals. In other words, the support bases 6 and 6 with the built-in stress strain gauge have the function of the load sensor 12.
詳しくは、 支持架台 6はその上下両面の対応位置に凸段部がそれぞれ一対 設けられ、 前記軸部 1 aの下面に上面の凸段部が接合し、 ハウジング 5の内 面で下面の凸段部が支持されるように設置してある。 そのため、 カッター 2 に荷重が作用した場合に、 接合面を介してその荷重が上下の凸段部間に集中 的に伝わって支持架台 6内部に作用する応力を荷重センサ 1 2で正確に測定 できるようになっている。  More specifically, the support pedestal 6 is provided with a pair of convex steps at corresponding positions on the upper and lower surfaces thereof, and a convex step on the upper surface is joined to the lower surface of the shaft portion 1a. It is installed so that the part is supported. Therefore, when a load is applied to the cutter 2, the load is transmitted intensively between the upper and lower convex portions via the joint surface, and the stress acting inside the support base 6 can be accurately measured by the load sensor 12. It has become.
支持架台 6は、 ネジ 1 3で前記軸部 1 aに一体に取り付けられ、 さらにネ ジ 1 4でハウジング 5との間に挟持状態で固定されており、 これらネジを緩 めて容易に取り外しができるようになつている。 また、 前記各ネジゃカツタ 一部品の緩みや互いの食い込みなどによってネジの締め付け力によるプレテ ンションの変化を小さく抑えるため、 ネジ 1 4とハウジング 5との間にスリ ーブ 1 5を揷入し、 スリーブ 1 5の弾性によってプレテンションの変化を吸 収し、 荷重の変化を正確に測定できるように設けてある。  The support base 6 is integrally attached to the shaft portion 1a with screws 13 and further fixed between the housing 5 with screws 14 so that these screws can be loosened for easy removal. You can do it. In addition, a sleeve 15 is inserted between the screw 14 and the housing 5 in order to suppress a change in the pretension due to the tightening force of the screw due to loosening of each of the above-mentioned screw cutters or a bite of each other. It is provided so that the change in pretension can be absorbed by the elasticity of the sleeve 15 and the change in load can be accurately measured.
さらに、 支持架台 6の下部とハウジング 5の内面間には、 支持架台 6とハ ウジング 5との互いの接合面部の形状の違いによるずれを吸収するため金属 製のプレートが揷入されている。 これにより、 支持架台 6をハウジング 5內 に安定的に支持して、 再現性のある荷重測定を行えるようになっている。 これら各センサと接続した信号ケーブル (図示せず) は、 切削岩石などの 外部衝撃から保護するため、 センサ支持体 1 1内を通して切削ヘッド内の保 護部に引き入れられている。 また、 各センサと信号ケーブルは、 少なくともFurther, a metal plate is inserted between a lower portion of the support base 6 and an inner surface of the housing 5 to absorb a shift due to a difference in shape of a joint surface between the support base 6 and the housing 5. As a result, the support base 6 is stably supported on the housing 5 內, and the load measurement with reproducibility can be performed. A signal cable (not shown) connected to each of these sensors is drawn into the protection section in the cutting head through the sensor support 11 to protect it from external impact such as cutting rock. Also, each sensor and signal cable must be at least
3バール以上の水圧下においても正常に動作する仕様に設けてある。 It is designed to operate normally even at a water pressure of 3 bar or more.
図 2は、 本発明のモニタリングシステムの構成を示している。 図中、 符号 2 0は掘進機、 2 1は掘進機の回転部である切削へッド、 2 2は掘進機の固 定部、 2 3は切削へッド 2 1の回転の中心に位置する回転軸、 2 4は固定部 2 2と切削ヘッド 2 1を隔てる隔壁、 3 6は管理コンピュータである。 なお 、 掘進機 2 0で切り羽を掘削中、 切り羽と掘進機 2 0の隔壁 2 4までの間は 、 切り羽の崩落を防ぐために 3バール程度の圧力で泥水が充填される。 同図において、 前記構成の D R C 1は切削ヘッド 2 1に複数取り付けられ 、 その各支持部 4に設置された各センサの信号ケーブル 2 5は各々切削へッ ド 2 1内に引き入れられる。 各信号ケーブル 2 5は、 必要に応じ、 延長ケー ブル 2 6と中継器 2 7とを介して接続され、 回転軸 2 3内を通されて、 掘進 機の固定部 2 2内であって回転軸 2 3の端部に設置された非接点信号伝達装 置 2 8に接続される。  FIG. 2 shows the configuration of the monitoring system of the present invention. In the figure, reference numeral 20 denotes an excavator, 21 denotes a cutting head which is a rotating part of the excavator, 22 denotes a fixed part of the excavator, and 23 denotes a center of rotation of the cutting head 21. A rotating shaft 24, a partition wall separating the fixed part 22 and the cutting head 21 and a management computer 36 are provided. During excavation of the face by the excavator 20, muddy water is filled at a pressure of about 3 bar between the face and the bulkhead 24 of the excavator 20 in order to prevent the face from collapsing. In the figure, a plurality of DRCs 1 having the above-mentioned configuration are attached to a cutting head 21, and signal cables 25 of the respective sensors installed on the respective support portions 4 are respectively drawn into the cutting head 21. Each signal cable 25 is connected, if necessary, via an extension cable 26 and a repeater 27, passes through the rotary shaft 23, and rotates inside the fixed part 22 of the excavator. It is connected to the non-contact signal transmission device 28 installed at the end of the shaft 23.
非接点信号伝達装置 2 8は、 回転軸 2 3と一体に回転する信号増幅器 2 9 及び回転リング 3 0と、 この回転リング 3 0と向かい合わせに且つ適宜な間 隔を開けて固定部 2 2内に固定された固定リング 3 1とを備えて構成されて いる。 各信号ケーブル 2 5や延長ケーブル 2 6から装置に入力される信号は 、 信号増幅器 2 9において送信データとして整理され且つ増幅された後、 回 転リング 3 0から固定リング 3 1に伝送され、 切削へッド 2 1が回転中であ つても、 非接触でセンサ検出信号が掘進機 2 0の固定部 2 2に取り込まれる ようになつている。 なお、 センサの駆動電流は、 固定リング 3 1から回転リ ング 3 0に伝送されて、 切削へッド表面の各センサへと供給されるように設 けてある。  The non-contact signal transmitting device 28 includes a signal amplifier 29 and a rotating ring 30 that rotate integrally with the rotating shaft 23, and a fixed portion 22 facing the rotating ring 30 and opening an appropriate space. And a fixing ring 31 fixed therein. Signals input to the device from each signal cable 25 and extension cable 26 are arranged and amplified as transmission data in a signal amplifier 29, and then transmitted from the rotating ring 30 to the fixed ring 31 for cutting. Even when the head 21 is rotating, the sensor detection signal is taken into the fixed part 22 of the excavator 20 in a non-contact manner even when the head 21 is rotating. The driving current of the sensor is transmitted from the fixed ring 31 to the rotating ring 30 so as to be supplied to each sensor on the surface of the cutting head.
また、 非接点信号伝達装置 2 8は、 両リング 3 0、 3 1に回転部位の位置 を検知するセンサを内蔵しており (図示せず) 、 切削ヘッド 2 1の回転角度 と検出信号を前記固定リング 3 1で受信したセンサ検出信号とともに信号出 力するように設けてある。 そして、 非接点信号伝達装置 2 8の出力信号は、 信号ケーブル 3 2を介して管理コンピュータ 3 6に入力される。 なお、 非接 点信号伝達装置 2 8から管理用コンピュータ 3 6の設置位置まで距離がある 場合は、 中継器 3 3や延長ケーブル 3 4、 信号増幅器 3 5を介し、 信号を適 宜適正な大きさに維持して管理コンピュータ 3 6まで伝送される。 The non-contact signal transmission device 28 has a built-in sensor (not shown) for detecting the position of the rotating part in both rings 30 and 31, and the rotation angle of the cutting head 21. And a detection signal are output together with the sensor detection signal received by the fixed ring 31. Then, the output signal of the non-contact signal transmission device 28 is input to the management computer 36 via the signal cable 32. If there is a distance from the non-contact signal transmission device 28 to the installation position of the management computer 36, the signal is appropriately and appropriately increased via the repeater 33, the extension cable 34, and the signal amplifier 35. It is then transmitted to the management computer 36.
管理コンピュータ 3 6は、 信号を解析 '演算処理するデータ処理手段、 キ 一ボードゃマウスなどのデータ入力手段、 処理されたデータを表示するディ スプレイやプリンタなどの表示出力手段、 データを記憶する記憶手段、 信号 の入出力手段などの各処理手段を有して構成される。  The management computer 36 is a data processing means for analyzing signals and performing arithmetic processing, a data input means such as a keyboard or a mouse, a display output means such as a display or a printer for displaying processed data, and a memory for storing data. And processing means such as signal input / output means.
図 2に示した管理コンピュータ 3 6は、 これら処理手段をそれぞれュニッ トイ匕し、 前記信号増幅器 3 5とともにコンソールボックス 3 7内に収納した 形態を示し、 この形態では、 信号増幅器 3 5より入力される各信号を解析処 理する解析部 3 8と、 キーボード及びマウス 3 9と、 表示モエタ 4 0と、 記 憶部を備えた演算部 4 1により構成されている。  The management computer 36 shown in FIG. 2 shows a form in which each of these processing means is stored in a console box 37 together with the signal amplifier 35, and in this embodiment, the processing means is inputted from the signal amplifier 35. An analysis unit 38 for analyzing and processing each signal to be processed, a keyboard and mouse 39, a display moeta 40, and an arithmetic unit 41 having a storage unit.
管理コンピュータ 3 6におけるデータ処理は、 演算部 4 1に格納された動 作プログラムに従って演算部 4 1が各処理部の動作制御することにより行わ れ、 キーボード及びマウス 3 9、 又はコンソールボックス 3 7に設けられた スィッチ 4 2、 4 3から入力される処理指示信号に基づいて、 解析部 3 8か ら演算部 4 1にデータを逐次取り入れて処理し、 処理結果を表示モニタ 4 0 に表示出力するとともに記憶部にも記憶するようになっている。 なお、 各セ ンサの測定データの取り込みは、 0 . 0 1秒間隔で収集するように設定され ている。  The data processing in the management computer 36 is performed by the operation unit 41 controlling the operation of each processing unit according to the operation program stored in the operation unit 41, and the data is transmitted to the keyboard and mouse 39 or the console box 37. Based on the processing instruction signal input from the provided switches 42 and 43, the data is sequentially taken in from the analysis unit 38 to the calculation unit 41 and processed, and the processing result is displayed and output on the display monitor 40. At the same time, the information is stored in the storage unit. The measurement data of each sensor is set to be collected at 0.01 second intervals.
また、 演算部 4 1は外部入出力インターフェイスを備えており、 処理した データを C D焼付け装置に送信して処理データを記録した C Dを作成し、 処 理データをオフラインで他のコンピュータ 4 4に取り込み、 処理できるよう になっている。 演算部 4 1にデータ出力端子を設け、 この端子を介して他の コンピュータ 4 4とオンライン接続し、 前記各センサで検出し処理されたデ ータを出力するよう構成してもよい。 The processing unit 41 also has an external input / output interface, sends the processed data to a CD burning device, creates a CD on which the processed data is recorded, and imports the processed data to another computer 44 offline. , Can be processed. A data output terminal is provided in the arithmetic section 41, and connected online with another computer 44 through this terminal, and the data detected and processed by each of the sensors is processed. Data may be output.
なお、 前記各センサから非接点信号伝達装置 2 8までの信号伝送路を構成 する各部品には、 少なくとも 3バールの水圧下で正常に動作するよう耐圧シ ールが施してある。 また、 各センサから管理コンピュータ 3 6までを接続す る各信号ケーブルは、 外部電磁場の影響を除去する遮蔽ケーブルの利用が好 適である。  Each component constituting a signal transmission path from each of the sensors to the non-contact signal transmission device 28 is provided with a pressure-resistant seal so as to operate normally under a water pressure of at least 3 bar. In addition, as for each signal cable connecting each sensor to the management computer 36, it is preferable to use a shielded cable for removing the influence of an external electromagnetic field.
図 3は、 前記各センサの検出信号を管理コンピュータ 3 6で処理し、 処理 データを表示モエタ 4 0に表示出力したときの、 表示画面の一例を示してい る。 この画面は、 回転状態を表示したい D R C 1を、 コンソールボックス 3 7に設けられたスィツチ 4 2又は 4 3を操作■選択して表示され、 同画面内 には、 該当の D R C 1の番号、 位置、 摩耗量や回転数、 切り羽から作用する 荷重などの情報が表示される。  FIG. 3 shows an example of a display screen when the detection signal of each sensor is processed by the management computer 36 and the processed data is displayed on the display monitor 40. This screen is displayed by selecting and selecting the DRC 1 whose rotation status is to be displayed by operating the switch 42 or 43 provided on the console box 37.The number and position of the corresponding DRC 1 are displayed in the screen. Information such as the amount of wear, the number of rotations, and the load acting on the face is displayed.
同図において、 符号 5 0は選択した D R C 1の番号表示部であり、 5 1は 該当の D R C 1の切り羽に対する位置の表示部である。 この表示部 5 1は、 円形の表示盤全体が切り羽を表し、 切削へッド 2 1の回転に伴って切り羽に 対して逐次変位する D R C 1の位置が表示盤内の矢印 5 2の先端で特定して 表示されるようになっている。 また、 切削ヘッド 2 1が停止している状態で は、 矢印 5 2が 3 6秒間で表示盤内を一回転するように設定してある。 符号 5 3は該当する D R C 1の摩耗センサ 7の検出信号を処理して得られ るディスク 3 aの摩耗状況の表示部であり、 この表示部にはディスク全周の 摩耗量の平均値を mm単位の数字で表示する表示部 5 3 aと、 摩耗の程度を 緑、 黄、 赤の 3色で色分けして表示する表示部 5 3 bが配置されている。 色 分け表示部 5 3 bは、 前記摩耗量の平均値と予め設定された摩耗量との差か ら、 摩耗が少ないときは安全圏として緑色を、 摩耗が進んできたときは要注 意圏として黄色を、 摩耗がディスク 3 aの使用限界に達したときは危険とし て赤色をそれぞれ表示し、 画面を見るオペレータがディスク 3 aの摩耗の程 度を直感的に知得し判断できるようになっている。  In the figure, reference numeral 50 denotes a selected DRC 1 number display portion, and 51 denotes a position of the corresponding DRC 1 with respect to the face. In the display section 51, the entire circular display panel represents a face, and the position of the DRC 1 that is sequentially displaced with respect to the face as the cutting head 21 rotates is indicated by an arrow 52 in the display panel. It is specified and displayed at the tip. In addition, when the cutting head 21 is stopped, the arrow 52 is set to make one rotation in the display panel in 36 seconds. Reference numeral 53 denotes a display section of the wear state of the disk 3a obtained by processing the detection signal of the wear sensor 7 of the corresponding DRC 1, and the display section displays the average value of the wear amount of the entire circumference of the disk in mm. A display section 53a for displaying the unit number and a display section 53b for displaying the degree of wear in three colors of green, yellow and red are arranged. Based on the difference between the average value of the wear amount and the preset wear amount, the color-coded display section 53 b shows green as a safety zone when the wear is small and a caution zone when the wear has advanced. When the wear reaches the use limit of the disc 3a, yellow is displayed as danger, and the operator who looks at the screen can intuitively know and judge the degree of wear of the disc 3a. Has become.
符号 5 4は該当する D R C 1の摩耗センサ 7の検出信号と回転センサ 8の 検出信号を処理して得られるディスクの摩耗状況と回転状況とを、 切削へッ ド 2 1の回転角度に対応させて連続表示する表示部である。 この表示部は、 横軸に切り羽に向かって切削へッド 2 1がー回転するときの回転角度 (0〜 3 6 0度) をとり、 縦軸にディスクの摩耗量の大きさをとつたグラフにより 構成されており、 各回転角度に対応したディスク外周の摩耗値が出力線 5 4 aによって連続的に表示するとともに、 この出力線 5 4 aと並べて、 カツタ 一 2がー回転する毎に出力されるパルス信号を出力線 5 4 bによって連続的 に表示し、 このように上下に並べて表示された二つの出力線によって、 画面 を見るオペレータがディスク 3 aのどの部分が欠けているか、 或いは偏摩耗 が発生しているかを判断し、 同時に切り羽に対して力ッター 2が滑って不規 則な回転が起こっているか否かを判断することができるようになっている。 また、 切削中、 計算式によって求められるカッター 2の回転数設定値は表 示部 5 5に表示出力され、 測定されたカッター 2の回転数実測値は表示部 5 6に表示出力される。 同様に、 測定された切削ヘッド 2 1の回転数実測値は 表示部 5 7に表示出力される。 Symbols 5 and 4 indicate the detection signal of the wear sensor 7 and the rotation sensor 8 of the corresponding DRC 1. This is a display section that continuously displays the disk wear state and the rotation state obtained by processing the detection signal in accordance with the rotation angle of the cutting head 21. The horizontal axis indicates the rotation angle (0 to 360 degrees) when the cutting head 21 rotates toward the face, and the vertical axis indicates the amount of disk wear. The wear value on the outer circumference of the disk corresponding to each rotation angle is continuously displayed by the output line 54a, and is arranged along with the output line 54a every time the cutter 1-2 rotates. The pulse signal output to the disk 3a is continuously displayed by the output line 54b, and the two output lines displayed in this manner allow the operator viewing the screen to determine which part of the disk 3a is missing. Alternatively, it is possible to determine whether uneven wear has occurred and, at the same time, determine whether or not the force cutter 2 has slipped against the face and has caused irregular rotation. During cutting, the set value of the rotation speed of the cutter 2 obtained by the calculation formula is displayed on the display unit 55, and the measured value of the measured rotation speed of the cutter 2 is displayed on the display unit 56. Similarly, the measured value of the rotation speed of the cutting head 21 measured is displayed on the display unit 57.
符号 5 8は、 該当する D R C 1の左右軸支持部に設けられた荷重センサ 1 2の検出信号を処理して得られる、 カッター 2に作用する荷重の状況を、 切 削へッド 2 1の回転角度に対応させて連続表示する表示部である。 この表示 部は、 横軸に切削ヘッド 2 1がー回転するときの回転角度をとり、 縦軸に力 ッター 2に作用する荷重の大きさをとつたグラフにより構成されており、 前 記両支持架台 6、 6内の荷重センサ 1 2、 1 2によって測定された荷重の変 移が連続した出力線 5 8 a、 5 8 aでそれぞれ別々に表示され、 同時に切削 ヘッド 2 1がー回転する毎に出力されるパルス信号も出力線 5 8 bで、 荷重 出力線に並べて表示出力されるようになっている。 表示部 5 9、 6 0は、 荷 重センサ 1 2、 1 2の表示零点を校正するための補正バーである。  Reference numeral 58 indicates the state of the load acting on the cutter 2 obtained by processing the detection signal of the load sensor 12 provided on the left and right shaft support portions of the corresponding DRC 1 and the cutting head 2 1 This is a display unit that continuously displays the image according to the rotation angle. This display section is composed of a graph in which the horizontal axis indicates the rotation angle when the cutting head 21 rotates, and the vertical axis indicates the magnitude of the load acting on the force cutter 2. Changes in the load measured by the load sensors 12 and 12 in the gantry 6 and 6 are displayed separately on the continuous output lines 58a and 58a, respectively, and at the same time each time the cutting head 21 rotates The pulse signal to be output is also output and displayed side by side with the load output line on the output line 58b. The display sections 59 and 60 are correction bars for calibrating the display zeros of the load sensors 12 and 12.
このように、 D R C 1のディスク 3 aの摩耗量や摩耗箇所、 カッター 2の 回転数、 作用する荷重の大きさや方向などの情報が同時に表示出力されるの で、 切削中の D R C 1の使用状況を適正に監視することができる。 切り羽に 対する D R C 1の位置と切削へッド 2 1の切り羽に対する回転角度も表示出 力されるので、 例えば切り羽に空洞や高強度の岩石があった場合に、 前記回 転や荷重に関する情報からその位置を把握して坑道の掘削を効率的に進める ことが可能となる。 In this way, information such as the amount and location of wear of the disc 3a of the DRC 1 and the number of rotations of the cutter 2 and the magnitude and direction of the applied load are simultaneously displayed and output. Can be properly monitored. To face The position of the DRC 1 and the rotation angle of the cutting head 21 with respect to the face are also displayed and output.For example, if there are cavities or high-strength rock in the face, the information on the rotation and load is used. It will be possible to grasp the position of the tunnel and excavate the tunnel efficiently.
なお、 図示した D R Cやその支持架台の構成、 モニタリングシステムの構 成、 データ表示画面のレイアウトは一例であり、 本発明は他の様々な形態で 構成することが可能である。  It should be noted that the configuration of the illustrated DRC and its supporting base, the configuration of the monitoring system, and the layout of the data display screen are merely examples, and the present invention can be configured in various other forms.

Claims

請 求 の 範 囲 The scope of the claims
1 . 掘進機の切削へッドに取り付けられるディスクローラーカッターにおい て、 鋼鉄製ディスク或いは超硬合金チップを含んだディスクの摩耗状態を検 出するセンサと、 前記ディスクの回転状態を検出するセンサと、 切削切り羽 からディスクローラー力ッターの回転軸に対して垂直又は傾斜した方向へ作 用する荷重を検出するセンサとを備えたことを特徴とするディスクローラー カッター。 1. A disk roller cutter attached to a cutting head of an excavator, a sensor for detecting a worn state of a disk including a steel disk or a cemented carbide chip, and a sensor for detecting a rotating state of the disk. And a sensor for detecting a load acting on the cutting face in a direction perpendicular or inclined to the rotation axis of the disc roller force cutter.
2 . 切削ヘッドに固着されるハウジング内に、 応力歪み計を内蔵した荷重 センサとしての支持架台を設け、 この支持架台でディスクローラー力ッター の左右軸部をそれぞれ支持するとともに、 この支持架台又はハウジングの下 部に、 上面に摩耗センサと回転センサが設置されたセンサ支持体を着脱自在 に設けた構成を有する請求項 1に記載のディスクローラー力ッター。  2. A support base as a load sensor with a built-in stress strain gauge is provided in the housing fixed to the cutting head. The support base supports the left and right shafts of the disc roller force meter, and the support base or housing. 2. The disc roller force meter according to claim 1, wherein a sensor support having a wear sensor and a rotation sensor installed on its upper surface is detachably provided at a lower portion of the disc roller force meter.
3 . 前記各センサは少なくとも 3バールの耐水圧性を備えた請求項 1又は 2 に記載のディスクローラーカッター。  3. The disk roller cutter according to claim 1, wherein each of the sensors has a water pressure resistance of at least 3 bar.
4 . 請求項 1〜3の何れかに記載のディスクローラーカッターと、 ディスク ローラー力ッターの各センサの出力信号を処理する管理コンピュータとを備 え、 ディスクの摩耗、 回転、 作用する荷重の状態が、 切り羽の掘削と同時に 表示出力されるように構成されたことを特徴とするディスクローラーカツタ 一モニタリングシステム。  4. A disc roller cutter according to any one of claims 1 to 3, and a management computer for processing output signals of the respective sensors of the disc roller force meter, the disc being worn, rotating, and the state of a load applied. A disc roller cutter-monitoring system characterized in that the display is output simultaneously with the excavation of the face.
5 . 前記各センサの検出信号は、 切削ヘッド回転の中心に位置する掘進機の 回転軸端部に設置された非接点信号伝達装置を介して掘進機の固定部に取り 込まれ、 さらに信号増幅されて管理コンピュータに入力されるように構成さ れた請求項 4に記載のディスクローラーカッターモニタリングシステム。 5. The detection signal of each sensor is taken into the fixed part of the excavator via the non-contact signal transmission device installed at the end of the rotating shaft of the excavator located at the center of the cutting head rotation, and further amplified. 5. The disc roller cutter monitoring system according to claim 4, wherein the disc roller cutter monitoring system is configured to be input to a management computer.
6 . 各センサの検出信号を 0 . 0 1秒程度の間隔で収集して処理するように 構成された請求項 4又は 5に記載のディスクローラーカッターモニタリング システム。 6. The disk roller cutter monitoring system according to claim 4, wherein the detection signal of each sensor is collected and processed at an interval of about 0.01 second.
7 - 掘進機の切削へッドに取り付けられていてディスクローラー力ッターの 摩耗及び回転とディスクローラーカッターに作用する荷重をそれぞれ検出す る手段と、 切削ヘッドの回転角度を検出する手段と、 切削ヘッドの回転角度 に対応したディスクローラー力ッターの摩耗及び回転と荷重の変位をそれぞ れ表示出力する手段を備えた請求項 4〜 6の何れかに記載のディスクローラ 一力ッターモエタリングシステム。 7-mounted on the cutting head of the machine Means for detecting wear and rotation and the load acting on the disc roller cutter, means for detecting the rotation angle of the cutting head, and the wear, rotation and load displacement of the disc roller force meter corresponding to the rotation angle of the cutting head 7. The disk roller one-way motering system according to claim 4, further comprising means for displaying and outputting the respective values.
PCT/JP2003/004758 2002-04-17 2003-04-15 Disk roller cutter and disk roller cutter monitoring system WO2003087537A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003227498A AU2003227498A1 (en) 2002-04-17 2003-04-15 Disk roller cutter and disk roller cutter monitoring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002114242A JP3919172B2 (en) 2002-04-17 2002-04-17 Disc roller cutter and disc roller cutter monitoring system
JP2002-114242 2002-04-17

Publications (1)

Publication Number Publication Date
WO2003087537A1 true WO2003087537A1 (en) 2003-10-23

Family

ID=29243378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004758 WO2003087537A1 (en) 2002-04-17 2003-04-15 Disk roller cutter and disk roller cutter monitoring system

Country Status (3)

Country Link
JP (1) JP3919172B2 (en)
AU (1) AU2003227498A1 (en)
WO (1) WO2003087537A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632645A1 (en) * 2004-09-07 2006-03-08 Bouygues Travaux Publics Method and device for providing continuous informations to the driver of a tunnelling machine regarding the material in front of the device
WO2011076616A1 (en) * 2009-12-22 2011-06-30 Bouygues Travaux Publics Method for replacing a tunnel boring machine disk cutter, handling device and disk cutter suited to such a method
CN103244138A (en) * 2013-05-18 2013-08-14 大连理工大学 Design method of slidingly-supported disc-shaped hob of heading machine
AT13486U1 (en) * 2012-09-19 2014-01-15 Montanuniv Leoben Easy-to-use sensor technology for determining a mechanical load on a mining machine of a tunnel boring machine
WO2015155124A1 (en) * 2014-04-08 2015-10-15 Montanuniversität Leoben High-precision sensors for detecing a mechanical load of a mining tool of a tunnel boring machine
AU2012320931B2 (en) * 2011-10-05 2015-11-26 Herrenknecht Ag Device for monitoring the state of rotation of a disk cutter arrangement of a shield tunnel boring machine and disk cutter arrangement for a shield tunnel boring machine
CN107389877A (en) * 2017-08-31 2017-11-24 京东方科技集团股份有限公司 Knife-edge test device, method and printing repairing type system
US9890504B2 (en) 2012-12-12 2018-02-13 Vermeer Manufacturing Company Systems and methods for sensing wear of reducing elements of a material reducing machine
CN108286438A (en) * 2018-02-01 2018-07-17 中铁工程装备集团有限公司 A kind of normal pressure tool changing cutterhead hobboing cutter stress real-time monitoring device and monitoring method
CN109098729A (en) * 2018-10-08 2018-12-28 中铁隧道局集团有限公司 A kind of center twolip disk cutter force measuring structure
CN110625554A (en) * 2019-10-23 2019-12-31 中铁隧道局集团有限公司 TBM cutter disc hob seat replacement, positioning and detecting device
EP3647533A1 (en) 2018-11-05 2020-05-06 Bouygues Travaux Publics Optimisation of the drilling of a tunnel-boring machine according to land/machine interactions
CN111577313A (en) * 2020-05-13 2020-08-25 中铁隧道局集团有限公司 Data acquisition terminal for real-time monitoring of hob load and rotating speed and acquisition method thereof
EP3951135A4 (en) * 2019-05-31 2022-12-07 Komatsu Ltd. Tunnel excavator, measurement method, and measurement system
TWI807734B (en) * 2022-03-14 2023-07-01 日商奧村組股份有限公司 Cutter board of shield tunneling machine and shield tunneling machine including the cutter board
TWI817421B (en) * 2022-03-14 2023-10-01 日商奧村組股份有限公司 Shield excavator
US12037906B2 (en) 2019-05-31 2024-07-16 Komatsu Ltd. Tunnel boring machine, measurement method, and measurement system

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4819010B2 (en) * 2007-09-04 2011-11-16 東京エレクトロン株式会社 Processing apparatus, processing method, and storage medium
WO2009155110A2 (en) * 2008-05-30 2009-12-23 The Robbins Company Apparatus and method for monitoring tunnel boring efficiency
JP5877117B2 (en) * 2012-04-20 2016-03-02 ジャパントンネルシステムズ株式会社 Bit wear detector
JP5654517B2 (en) * 2012-04-23 2015-01-14 株式会社スターロイ Roller cutter
JP6266336B2 (en) * 2013-12-25 2018-01-24 川崎重工業株式会社 Wear detection device for roller cutter
JP6273140B2 (en) * 2013-12-25 2018-01-31 川崎重工業株式会社 Roller cutter mechanism
JP6266335B2 (en) * 2013-12-25 2018-01-24 川崎重工業株式会社 Wear detection device for roller cutter
JP6618685B2 (en) * 2015-01-13 2019-12-11 日立造船株式会社 Tunnel machine
JP6777376B2 (en) * 2015-03-25 2020-10-28 五洋建設株式会社 Excavator and rotating bit
CN104792369A (en) * 2015-04-30 2015-07-22 中铁工程装备集团有限公司 Wireless detecting device for rotating speed and abrasion of hobbing cutter of shield machine
JP6672671B2 (en) * 2015-09-29 2020-03-25 株式会社大林組 Drilling monitoring device
KR101784181B1 (en) * 2016-02-18 2017-10-11 삼성물산 주식회사 Device for Measuring TBM Cutter Wear and Method for Measuring TBM Cutter Wear using the same
JP6654504B2 (en) 2016-05-17 2020-02-26 株式会社小松製作所 Tunnel machine
JP2017210820A (en) * 2016-05-26 2017-11-30 五洋建設株式会社 Rotary bit state identification device and excavator
JP6911554B2 (en) * 2017-06-14 2021-07-28 株式会社大林組 Wear detector
DE102018113788A1 (en) * 2018-06-08 2019-12-12 Herrenknecht Aktiengesellschaft tunnel boring machine
US11655617B2 (en) 2019-04-26 2023-05-23 Cnh Industrial America Llc System and method for monitoring the wear on a rotating ground engaging tool of an agricultural implement
CN110439583A (en) * 2019-09-12 2019-11-12 中铁南方投资集团有限公司 A kind of geology adaptive, scalable formula shield TBM hob device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2925867B2 (en) * 1992-11-30 1999-07-28 日立建機株式会社 Roller bit rotation detector of shield machine
JPH11270283A (en) * 1998-03-19 1999-10-05 Taisei Corp Tunnel boring machine
JP2000004773A (en) * 1998-06-23 2000-01-11 Nihon Career Ind Co Ltd Apparatus for dividing mince in chopper
JP2000213283A (en) * 1999-01-20 2000-08-02 Taisei Corp Cutter support structure for tunnel boring machine
JP3100289B2 (en) * 1994-07-13 2000-10-16 三菱重工業株式会社 Measuring device for cutter load of tunnel excavator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004773A (en) * 2000-06-20 2002-01-09 Ishikawajima Harima Heavy Ind Co Ltd Method and device for detecting displacement of cutter driving shaft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2925867B2 (en) * 1992-11-30 1999-07-28 日立建機株式会社 Roller bit rotation detector of shield machine
JP3100289B2 (en) * 1994-07-13 2000-10-16 三菱重工業株式会社 Measuring device for cutter load of tunnel excavator
JPH11270283A (en) * 1998-03-19 1999-10-05 Taisei Corp Tunnel boring machine
JP2000004773A (en) * 1998-06-23 2000-01-11 Nihon Career Ind Co Ltd Apparatus for dividing mince in chopper
JP2000213283A (en) * 1999-01-20 2000-08-02 Taisei Corp Cutter support structure for tunnel boring machine

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2874959A1 (en) * 2004-09-07 2006-03-10 Bouygues Travaux Publics Sa METHOD AND DEVICES FOR CONTINUOUSLY INFORMING THE CONDUCTOR OF A TUNNELIER OF THE NATURE OF THE LAND AT THE SIZE BOTTOM
WO2006027497A1 (en) * 2004-09-07 2006-03-16 Bouygues Travaux Publics Method and device for continuously informing the operator of a tunnelling machine on physical features of a ground to be tunnelled
EP1632645A1 (en) * 2004-09-07 2006-03-08 Bouygues Travaux Publics Method and device for providing continuous informations to the driver of a tunnelling machine regarding the material in front of the device
WO2011076616A1 (en) * 2009-12-22 2011-06-30 Bouygues Travaux Publics Method for replacing a tunnel boring machine disk cutter, handling device and disk cutter suited to such a method
AU2012320931B2 (en) * 2011-10-05 2015-11-26 Herrenknecht Ag Device for monitoring the state of rotation of a disk cutter arrangement of a shield tunnel boring machine and disk cutter arrangement for a shield tunnel boring machine
AT13486U1 (en) * 2012-09-19 2014-01-15 Montanuniv Leoben Easy-to-use sensor technology for determining a mechanical load on a mining machine of a tunnel boring machine
US10415195B2 (en) 2012-12-12 2019-09-17 Vermeer Manufacturing Company Systems and methods for sensing wear of reducing elements of a material reducing machine
US9890504B2 (en) 2012-12-12 2018-02-13 Vermeer Manufacturing Company Systems and methods for sensing wear of reducing elements of a material reducing machine
US10947678B2 (en) 2012-12-12 2021-03-16 Vermeer Manufacturing Company Systems and methods for sensing wear of reducing elements of a material reducing machine
CN103244138A (en) * 2013-05-18 2013-08-14 大连理工大学 Design method of slidingly-supported disc-shaped hob of heading machine
WO2015155124A1 (en) * 2014-04-08 2015-10-15 Montanuniversität Leoben High-precision sensors for detecing a mechanical load of a mining tool of a tunnel boring machine
US10151201B2 (en) 2014-04-08 2018-12-11 Herrenknecht Aktiengesellschaft High-precision sensors for detecting a mechanical load of a mining tool of a tunnel boring machine
RU2688997C2 (en) * 2014-04-08 2019-05-23 Монтануниверзитет Леобен High-precision sensor equipment for setting mechanical load of extraction tool of drilling tunnel boring machine
CN107389877A (en) * 2017-08-31 2017-11-24 京东方科技集团股份有限公司 Knife-edge test device, method and printing repairing type system
CN108286438A (en) * 2018-02-01 2018-07-17 中铁工程装备集团有限公司 A kind of normal pressure tool changing cutterhead hobboing cutter stress real-time monitoring device and monitoring method
CN108286438B (en) * 2018-02-01 2023-04-28 中铁工程装备集团有限公司 Device and method for monitoring stress of hob of normal-pressure tool changing cutterhead in real time
CN109098729A (en) * 2018-10-08 2018-12-28 中铁隧道局集团有限公司 A kind of center twolip disk cutter force measuring structure
FR3088089A1 (en) 2018-11-05 2020-05-08 Bouygues Travaux Publics OPTIMIZATION OF A TUNNEL'S DRILLING BASED ON FIELD / MACHINE INTERACTIONS
EP3647533A1 (en) 2018-11-05 2020-05-06 Bouygues Travaux Publics Optimisation of the drilling of a tunnel-boring machine according to land/machine interactions
US11448068B2 (en) 2018-11-05 2022-09-20 Bouygues Travaux Publics Optimization of boring by a tunnel boring machine as a function of ground/machine interactions
EP3951135A4 (en) * 2019-05-31 2022-12-07 Komatsu Ltd. Tunnel excavator, measurement method, and measurement system
AU2020282990B2 (en) * 2019-05-31 2023-11-30 Komatsu Ltd. Tunnel boring machine, measurement method, and measurement system
US12037906B2 (en) 2019-05-31 2024-07-16 Komatsu Ltd. Tunnel boring machine, measurement method, and measurement system
CN110625554B (en) * 2019-10-23 2021-01-22 中铁隧道局集团有限公司 TBM cutter disc hob seat replacement, positioning and detecting device
CN110625554A (en) * 2019-10-23 2019-12-31 中铁隧道局集团有限公司 TBM cutter disc hob seat replacement, positioning and detecting device
CN111577313A (en) * 2020-05-13 2020-08-25 中铁隧道局集团有限公司 Data acquisition terminal for real-time monitoring of hob load and rotating speed and acquisition method thereof
TWI807734B (en) * 2022-03-14 2023-07-01 日商奧村組股份有限公司 Cutter board of shield tunneling machine and shield tunneling machine including the cutter board
TWI817421B (en) * 2022-03-14 2023-10-01 日商奧村組股份有限公司 Shield excavator

Also Published As

Publication number Publication date
AU2003227498A1 (en) 2003-10-27
JP3919172B2 (en) 2007-05-23
JP2003307095A (en) 2003-10-31
AU2003227498A8 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
WO2003087537A1 (en) Disk roller cutter and disk roller cutter monitoring system
EP2295705B1 (en) Abrasion detecting apparatus detecting abrasion of component of cutter head and tunnel boring machine including abrasion detecting apparatus
JP2015124466A (en) Abrasion detection device for roller cutter
JP6273140B2 (en) Roller cutter mechanism
CN107655393A (en) A kind of TBM hob total state real time on-line monitoring system and its measuring method
KR20230098120A (en) Abrasion Measuring Apparatus for TBM Disc Cutter Wear Using Contact Type Probe
JP6775970B2 (en) Buried object exploration equipment, excavation system and buried object exploration method
JPH0344520A (en) Detection of abnormality in rotary roller for belt conveyor and vibration sensor therefor
KR102528635B1 (en) Rotary cutting unit with integrated monitoring unit
TWI768266B (en) Mixing device
JP3267511B2 (en) TBM cutter monitoring method and monitoring device
JPH10311717A (en) Roller bit wear detection device of tunnel-boring machine
JPH05309721A (en) Method for detection of friction between extruder's screw and cylinder and its apparatus
JP3511163B2 (en) Tunnel excavator and tunnel excavation method using the same
JP2002004772A (en) Method and device for detecting thrust load of driving shaft
CN112228093B (en) Method for judging damage of cutter head of shield tunneling machine
JP3806182B2 (en) Method for diagnosing wear of cutter face of tunnel excavator
Shanahan Cutter instrumentation system for tunnel boring machines
JPH0526784A (en) Central control method for malfunction generation in construction machine
JP7349971B2 (en) Predictive maintenance judgment device, predictive maintenance judgment method and program
JP2576053B2 (en) Disc cutter wear detection method, rotation detection device, and wear detection device
CN111009103B (en) Monitoring and alarming system and method for monitoring cutter head fracture condition in cutter drum on line
JP6777376B2 (en) Excavator and rotating bit
JPH07127380A (en) Abnormal diagnosis device for excavating machine
JPH09328779A (en) Bearing situation detection device of construction machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase