WO2003082738A1 - Method for preparing monolayer carbon nanotube - Google Patents

Method for preparing monolayer carbon nanotube Download PDF

Info

Publication number
WO2003082738A1
WO2003082738A1 PCT/JP2003/003884 JP0303884W WO03082738A1 WO 2003082738 A1 WO2003082738 A1 WO 2003082738A1 JP 0303884 W JP0303884 W JP 0303884W WO 03082738 A1 WO03082738 A1 WO 03082738A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
walled carbon
based catalyst
producing
crystal substrate
Prior art date
Application number
PCT/JP2003/003884
Other languages
French (fr)
Japanese (ja)
Inventor
Sumio Iijima
Masako Yudasaka
Hiroo Hongoh
Original Assignee
Japan Science And Technology Agency
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Nec Corporation filed Critical Japan Science And Technology Agency
Priority to US10/509,575 priority Critical patent/US20050106093A1/en
Publication of WO2003082738A1 publication Critical patent/WO2003082738A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter

Definitions

  • the invention of this application relates to a method for producing single-walled carbon nanotubes. More specifically, the invention of this application is directed to the production of single-walled carbon nanotubes that can produce single-walled carbon nanotubes by controlling the diameter without requiring a porous material or catalyst fine particles as a catalyst carrier. It is about the method. Background art
  • the chemical vapor reaction (CVD) method As a method for producing high-quality single-walled carbon nanotubes (SWNTs) with high utility value in various industries, the chemical vapor reaction (CVD) method has been attracting attention. This is because this CVD method is capable of mass production of SWNTs, and has the potential to control the gas phase pyrolysis growth of SWNTs by manipulating the type of catalyst and its particle size. This is because it is a method to have.
  • SWNTs can be obtained by heating at J. H. Hafner et al. Report that SWNTs grow by flowing CO gas over nanometer-sized metal particles supported on alumina nanoparticles and heat-treating them.
  • salts of Fe and / or Mo were used as metal-based catalysts and alumina nanoparticles were used as their supports.
  • SWNTs can be produced by using a porous material such as zeolite, silica, or anodized silicon as a carrier for the production of SWNTs by another chemical vapor reaction. .
  • the invention of this application has been made in view of the circumstances described above, and does not require nanoparticles or a porous material as a carrier, and furthermore, manufactures single-walled carbon nanotubes by controlling the diameter. It is an object of the present invention to provide a method for producing a single-walled carbon nanotube that can be used. Disclosure of the invention
  • the invention of this application relates to a metal-based catalyst having a catalytic action in producing graphite, and a single-crystal substrate having a correspondence with the crystal grain size and crystal orientation of the metal-based catalyst.
  • a metal-based catalyst is dispersed in this single-crystal substrate, and a carbon material is supplied in a temperature range of 500 or more to obtain a single-layer carbon.
  • the invention of this application is a method for producing single-walled carbon nanotubes, which comprises using a single-crystal substrate coated with a metal-based catalyst thin film in the above-mentioned invention.
  • the method for producing single-walled carbon nanotubes characterized in that the thickness of the catalyst thin film is 0.1 to 10 nm or less.Fourth, the metal-based catalyst is composed of iron group, platinum group, rare earth metal,
  • a method for producing a single-walled carbon nanotube characterized by being a transition metal or a mixture of two or more of any of these metal compounds.
  • the method for manufacturing a single layer forces one carbon nanotube that wherein a stable material above at 0, the sixth, the single crystal substrate, Safuai ⁇ (a 1 2 0 3), silicon (S i) , to characterized in that either S i ⁇ 2, S i C, M g O
  • a method for producing single-walled carbon nanotubes characterized by using hydroxyapatite instead of a single-crystal substrate
  • a metal-based catalyst A method for producing a single-layer carbon nanotube, characterized in that a single-wall carbon nanotube having a diameter controlled by a combination of a substrate and a single-crystal substrate and a crystal plane thereof is grown by vapor phase pyrolysis.
  • the single-walled carbon nanotubes are characterized in that the combination of the metal-based catalyst and the single-crystal substrate and its crystal plane is any one of A, R, and C planes of Fe and sapphire.
  • the first method is a method for producing a single-walled carbon nanotube, wherein the carbon raw material is a carbon-containing substance that is a gas at 500 or more. Is the carbon Fee, provide methane, ethylene, Fuenatoren, a process for producing single-walled carbon nanotubes, wherein either benzene.
  • Fig. 1 shows the SEM of the deposit grown at 800 on the (a) A-plane, (b) R-plane, and (c) C-plane of sapphire coated with a 2 nm thick Fe thin film. It is the photograph which illustrated the image.
  • Figure 2 shows the SEM of the deposit grown at 800 on the (a) A-plane, (b) R-plane, and (c) C-plane of sapphire coated with a 5 nm thick Fe thin film. It is the photograph which illustrated the image.
  • FIG. 3 is a photograph illustrating a TEM image of a deposit grown on (a) A (2 nm), (b) R (2 nm), and (c) C (5 nm).
  • Fig. 4 shows the Raman scattering spectrum of the single-walled carbon nanotubes manufactured in the example, in the range of (a) to 500 cm- 1 and (b) in the range of 1200 to 180 cm- 1 .
  • the method for producing single-walled carbon nanotubes has a correspondence relationship between a metal-based catalyst having a catalytic action in producing graphite, and the crystal grain size and crystal orientation of the metal-based catalyst.
  • a metal-based catalyst is dispersed in the single-crystal substrate, and a carbon material is supplied in a temperature range of 500 or more, so that single-walled carbon nanotubes are grown by gas phase thermal decomposition. It is characterized by
  • the metal-based catalyst various metals having a catalytic action in the production of graphite, that is, in the gas phase pyrolysis growth of single-walled carbon nanotubes can be used.
  • iron group such as Ni, Fe, Co, etc.
  • platinum group such as Pd, Pt, Rh
  • rare earth metal such as La, Y, or Mo, Mn, etc.
  • the single crystal substrate it is possible to use one made of stable each class of materials in the above process temperature 5 0 0, for example, Safuai ⁇ (A 1 2 0 3), silicon (S i), S i 0 2 , S i C, M g O and the like can be exemplified. These need not be porous structures or nanoparticles as in the past, but may be, for example, planar ones. In the invention of this application, columnar crystals such as hydroxyapatite can be used instead of these single crystal substrates.
  • the metal-based catalyst and the single-crystal substrate have a certain relationship, and are formed by a solid-phase reaction such as precipitation and recrystallization of the metal-based catalyst at a processing temperature of 500 ⁇ or more.
  • a combination with a single crystal substrate that has an effect on the crystal grain size of the recrystallized grains and the correspondence of the crystal orientation between adjacent unrecrystallized grains can be used.
  • the crystal grain size of the metal-based catalyst is controlled in a range of about 0.1 to 10 nm, or Further, it is desirable that the relationship is such that the crystal plane of the metal-based catalyst has an effect of orienting the crystal plane with respect to the single crystal substrate.
  • a combination of such a metal-based catalyst and a single crystal substrate a combination of Fe and sapphire can be exemplified as a preferable combination.
  • the dispersion of the metal-based catalyst on the single-crystal substrate can be realized by uniformly dispersing the fine particles of the metal-based catalyst or by coating the single-crystal substrate with a metal-based catalyst thin film. .
  • the latter method is preferred because it is simple in the actual manufacturing process.
  • Various methods can be used for these dispersion methods. Specifically, for example, a vacuum deposition method, a sputtering method, etc.
  • a wet process such as a lye process, a solution dripping method, a spray coat method, or a spin coat method can be used.
  • the amount of the metal-based catalyst dispersed in the single-crystal substrate is not particularly limited, and may be arbitrary. For example, on a single crystal substrate
  • the temperature of the single crystal substrate in which the metal-based catalyst is dispersed is set to 500 or more, and then a carbon raw material is supplied.
  • the heating of the single crystal substrate to a temperature of 500 or more can be performed in an inert atmosphere.
  • the carbon raw material various carbon-containing substances which are gaseous at a temperature of 500 or more can be used. More specifically, for example, methane (CH 4 ), ethylene (C 2 H 4 ), carbon monoxide (CO), etc. are gaseous at room temperature, and solid or liquid at room temperature, such as phenathrene or benzene. In this case, it is possible to exemplify a material which is a gas at a temperature of 500 or more by heating.
  • single-walled carbon nanotubes can be grown by vapor phase pyrolysis on the surface of the single-crystal substrate.
  • the metal catalyst and the single crystal substrate As a result of conducting a more detailed study focusing on the interaction between the metal catalyst and the single-crystal substrate, the interaction between the metal-based catalyst and the single-crystal substrate It has been found that the crystal plane of the substrate can also be taken into consideration, and furthermore, the diameter of the single-walled carbon nanotube generated by the combination can be controlled to a specific diameter. The ability to control the diameter in the vapor phase pyrolysis growth of single-walled carbon nanotubes has not been known at all, and is realized for the first time by the inventors of the present application.
  • the method for producing single-walled carbon nanotubes is a method of producing single-walled carbon nanotubes whose diameter is controlled by a combination of a metal-based catalyst, a single-crystal substrate and its crystal plane. It is characterized by being thermally decomposed and grown.
  • the combination of Fe and sapphire which is a combination of the above-described preferred metal-based catalyst and single crystal substrate, is further combined with any combination of Fe and sapphire with the A-plane, R-plane, or C-plane.
  • the single-walled carbon nanotubes controlled to have different diameters for each of these combinations can be grown by gas phase pyrolysis.
  • the diameter of the growing single-layer bonano tube is 1.43 nm, 1.30 ⁇ m for A-plane, 1.20 nm, 1.45 nm, 1.24 nm, 1.18 nm for R-plane, 1.49 nm, 1.31 nm, 1.18 nm for C-plane It will be controlled to a specific value.
  • the yield of single-walled carbon nanotubes can be increased by controlling the thickness of the metal-based catalyst thin film for each crystal plane of the single-crystal substrate. More specifically, for example,
  • the yield of single-walled carbon nanotubes is within the above range for the A-plane and R-plane.
  • single-walled carbon nanotubes have various symmetry (chirality).
  • the chirality of the single-walled carbon nanotube can be expressed by the chirality index (m, n), and has a strong correlation with the diameter of the single-walled carbon nanotube. This suggests that the method of the present invention can control not only the diameter of the single-walled carbon nanotube but also the power irritation.
  • the interaction between the metal-based catalyst and the single-crystal substrate material plays an important role in the vapor-phase pyrolysis growth of single-walled carbon nanotubes.
  • a dispersed single crystal substrate single-walled carbon nanotubes can be grown by gas phase pyrolysis.
  • a single-walled carbon nanotube having a controlled diameter can be produced.
  • the yield of single-walled carbon nanotubes can be increased by adjusting the crystal plane of the single-crystal substrate and the thickness of the catalyst thin film.
  • methane (9.999%) as a carbon raw material was introduced at a flow rate of 0.61 / min. The introduction of methane was performed for 5 minutes, and then the argon was introduced again, and the tube furnace was cooled until it reached room temperature.
  • the heat-treated substrate was examined in detail by scanning electron microscope (SEM) observation, Raman spectroscopy, and transmission electron microscope (TEM) observation.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the sample for SEM observation was covered with a Pd-Pt thin film of about 2 nm in thickness for clearer observation.
  • the Raman spectrum was obtained by measurement using 488 nm light (30 mW) from an Ar laser with a focused spot size of ⁇ 1 m.
  • Samples for TEM observation were prepared by collecting sediments from a sapphire substrate, dispersing them in ethanol, dropping them on TEM grids, and drying.
  • Figures 1 (a), (b), and (c) show the S of the deposit grown at 800 on the A, R, and C planes of sapphire coated with a 2-nm-thick Fe thin film. EM images are shown. It was clearly observed that the amount of tubular sediment deposited on the A-side was greater than that on the R-side. The amount of tubular sediment on the C-plane was found to be the least of the three.
  • Figures 2 (a), (b), and (c) show deposits grown at 800 on the A, R, and C planes of sapphire coated with a 5-nm thick Fe thin film. The SEM image of each was shown. It was confirmed that tubular deposits similar to the above were formed on all three surfaces. These capillaries are either thick and short (20-50 nm in diameter, about 1 mm in length) or thin and long (less than 3 nm in diameter, more than 2 mm in length). I found it.
  • Figure 3 (a) shows a TEM image of the deposit grown on a sapphire surface (hereinafter referred to as A (2 nm)) coated with a 2 nm-thick Fe thin film.
  • a (2 nm) was found to contain SWNT s and a very small amount of amorphous carbon (hereinafter a-C).
  • R (2 nm) was coated with a 2 nm-thick Fe thin film shown in Fig. 3 (b)
  • R (2 nm) Is composed of SWNTs and a—C.
  • Figures 4 (a) and 4 (b) show the Raman scattering spectra of the deposits formed on the A, R, and C planes of sapphire covered with the 2-nm, 3-nm, and 5-nm-thick Fe thin films. .
  • peaks were observed at about 1592 cm- 1 and 1570 cm- 1 and 1 to 4 narrow peaks were observed in the range of 100 to 230 cm- 1 . These peaks are characteristic of SWNTs and indicate the presence of SWNTs in sediments.
  • About 1 5 9 2 cm—1 5 7 0 c m-1 peak corresponds to the tangential mode, 1 0 0 ⁇ 2 3 0 cm one first peak between is equivalent to the Raman breathing mode (RBM) of SWNT s.
  • RBM Raman breathing mode
  • SWNT s formed on the R (2 nm) plane has a strong RBM peak at 167 cm- 1 indicating SWNT Ts with a diameter of 1.4 nm. Although there is a weak peak at 203 cm- 1 indicating that it is a SWNT s of 1.2 nm, these peaks are not so prominent for a sample covered with a thicker Fe thin film. It turns out there is no.
  • the amount of SWNTs generated for the A-plane and R-plane decreases. I understand.
  • the SWNT amount was found to increase as the thickness of the Fe thin film increased from 2 nm to 5 nm.
  • the peak positions and RBM intensities of these SWNTs were different in individual sediments.
  • the width of the RBM peak was as narrow as approximately 7 to 12 cm- 1
  • the number of peaks was 1 to 4
  • the peak position was found to depend on the sapphire surface. More specifically, for example, for the A (2 nm) plane, the R (2 nm) plane, and the C (2 nm) plane, the average of the Raman spectra obtained from 10 locations is averaged, and the RBM peak is calculated.
  • Table 1 shows the diameters of the SWNTs obtained.
  • a silicon wafer provided with a mixture of F e (NO 3) 3 ⁇ ⁇ 20 and alumina nanoparticles (no Mo (acac) 2 ) was prepared as a substrate, and the same heat treatment as in the above example was performed. Was performed, and SWNTs were generated.
  • the Raman spectrum obtained for this SWNTs is also shown in FIG. This Raman spectrum has a broad RBM peak in the range of 120 to 200 cm- 1 and a wide range of SWNT s diameters of 2.0 to 1.2 nm. You.
  • alumina nanoparticles are metal-based catalyst support is the same A 1 2 ⁇ 3 and sapphire, alumina, because nanoparticles has internal various crystal faces and amorphous characteristics from the shape of its However, it was found that SWNTs could be grown, but their diameter could not be controlled, resulting in wide distribution.
  • the present invention relates to a method for producing a single-walled carbon nanotube. More specifically, the invention of this application relates to a method for producing a single-walled carbon nanotube capable of producing a single-walled carbon nanotube by controlling the diameter without using a porous material or catalyst fine particles. Provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

A method for preparing a monolayer carbon nanotube, which comprises using the combination of a metal based catalyst exhibiting catalytic function in the formation of graphite and a single crystal substrate exhibiting a certain correspondence with the metal based catalyst with respect to the crystal grain size and the crystal orientation of crystals formed by re-crystallization at a temperature of the following treatment, dispersing the metal based catalyst on the single crystal substrate, and supplying a raw material of carbon to the substrate at a temperature of 500˚C or higher, to thereby grow a monolayer carbon nanotube through a vapor phase thermal decomposition. The method allows the preparation of a monolayer carbon nanotube with controlled diameter without the need for a porous material as a catalyst carrier or fine catalyst particles. Combinations of the above metal based catalyst and a single crystal substrate include that of Fe and a sapphire substrate.

Description

明 細 書 単層力一ボンナノチューブの製造方法 技術分野  Description Method for producing single-walled carbon nanotubes
この出願の発明は、 単層カーボンナノチューブの製造方法に関 するものである。 さらに詳しくは、 この出願の発明は、 触媒担体 としての多孔質材料や触媒微粒子を必要とせずに、 直径を制御し て単層力一ボンナノチューブを製造することができる単層カーボ ンナノチューブの製造方法に関するものである。 背景技術  The invention of this application relates to a method for producing single-walled carbon nanotubes. More specifically, the invention of this application is directed to the production of single-walled carbon nanotubes that can produce single-walled carbon nanotubes by controlling the diameter without requiring a porous material or catalyst fine particles as a catalyst carrier. It is about the method. Background art
各種の産業において利用価値の高い高品質な単層カーボンナノ チューブ ( SWNT s ) を製造する方法として、 従来より、 化学 気相反応 (C VD) 法が注目されている。 なぜならば、 この C V D法は、 S WNT s の大量生産が可能とされ、 また触媒の種類や その粒径等を巧みに扱うことにより S WN T s の気相熱分解成長 をコントロールできる可能性を有する方法であるからである。  As a method for producing high-quality single-walled carbon nanotubes (SWNTs) with high utility value in various industries, the chemical vapor reaction (CVD) method has been attracting attention. This is because this CVD method is capable of mass production of SWNTs, and has the potential to control the gas phase pyrolysis growth of SWNTs by manipulating the type of catalyst and its particle size. This is because it is a method to have.
この化学気相反応による SWNT s の製造については、 様々な 研究者たちにより研究が行われており、 いくつかの報告がなされ ている。 例えば、 J . K i n gらは、 F e (N O 3) 3 · 9 Η20、 M o ( a c a c ) 2、 およびアルミナ · ナノ粒子の混合物で被った 基板を、 メタンガス気流下、 1 0 0 0でで加熱することにより、 S WNT sが得られることを報告している。 また、 J . H. H a f n e r らは、 アルミナ · ナノ粒子上に担持させたナノメータ一 サイズの金属粒子上に C Oガスを流して熱処理することにより S WNT sが成長することを報告している。 これらの実験において は、 F eおよび/または M oの塩が金属系触媒として、 アルミナ · ナノ粒子がその担体として使用されている。 さらに他の化学気相反応による SWN T s の製造については、 ゼォライ ト、 シリカ、 陽極酸化シリコンのような多孔質材料を担 体として利用することで、 SWNT s を製造できることが報告さ れている。 Various researchers have been investigating the production of SWNTs by this chemical vapor reaction, and some reports have been made. For example, J. K ing et al, F e (NO 3) 3 · 9 Η 2 0, M o (acac) 2, and the substrate was covered with a mixture of alumina nanoparticles under methane gas flow 1 0 0 0 It is reported that SWNTs can be obtained by heating at J. H. Hafner et al. Report that SWNTs grow by flowing CO gas over nanometer-sized metal particles supported on alumina nanoparticles and heat-treating them. In these experiments, salts of Fe and / or Mo were used as metal-based catalysts and alumina nanoparticles were used as their supports. In addition, it has been reported that SWNTs can be produced by using a porous material such as zeolite, silica, or anodized silicon as a carrier for the production of SWNTs by another chemical vapor reaction. .
しかしながら、 注目すべきことに、 以上の実験において、 担体 としてこのようなナノ粒子あるいは多孔質材料を用いないで化学 気相成長を行なった場合には、 金属系触媒の量および大きさに関 わらず、 S WN T sが生成されずに多層カーボンナノチューブの みが得られることになるのである。  However, it should be noted that, in the above experiments, when chemical vapor deposition was performed without using such nanoparticles or porous materials as a carrier, regardless of the amount and size of the metal-based catalyst, Instead, SWNTs are not generated, and only multi-walled carbon nanotubes can be obtained.
すなわち、 従来の化学気相反応による S WN T s の製造におい ては、 金属系触媒とともに金属系触媒の担体としてナノ粒子ある いは多孔質材料を用いることが必須の要件とされていたのである。 そして、 S WNT s の大量生産を考慮すると、 担体として、 ナノ 粒子あるいは多孔質材料に匹敵する微細構造を有し、 かつ表面積 の広い基板が必要とされることになる。  In other words, in the conventional production of SWNTs by chemical vapor reaction, it was essential to use nanoparticles or porous materials as a carrier for the metal-based catalyst together with the metal-based catalyst. . Considering the mass production of SWNTs, a substrate that has a fine structure comparable to nanoparticles or porous materials and has a large surface area is required as a carrier.
そこで、 この出願の発明は、 以上の通りの事情に鑑みてなされ たものであり、 担体としてナノ粒子や多孔質材料を必要とせず、 さらには直径を制御して単層カーボンナノチューブを製造するこ とができる単層力一ボンナノチューブの製造方法を提供すること を課題としている。 発明の開示  Accordingly, the invention of this application has been made in view of the circumstances described above, and does not require nanoparticles or a porous material as a carrier, and furthermore, manufactures single-walled carbon nanotubes by controlling the diameter. It is an object of the present invention to provide a method for producing a single-walled carbon nanotube that can be used. Disclosure of the invention
そこで、 この出願の発明は、 上記の課題を解決するものとして、 以下の通りの発明を提供する。  Therefore, the invention of this application provides the following inventions to solve the above problems.
すなわち、 まず第 1 には、 この出願の発明は、 グラフアイ トの 生成において触媒作用を有する金属系触媒と、 その金属系触媒の 結晶粒度および結晶方位とに対応関係を有する単結晶基板との組 み合わせを用い、 この単結晶基板に金属系触媒を分散させ、 5 0 0で以上の温度範囲で炭素原料を供給することで、 単層カーボン ナノチューブを気相熱分解成長させることを特徴とする単層カー ボンナノチューブの製造方法を提供する。 That is, first, the invention of this application relates to a metal-based catalyst having a catalytic action in producing graphite, and a single-crystal substrate having a correspondence with the crystal grain size and crystal orientation of the metal-based catalyst. Using a combination, a metal-based catalyst is dispersed in this single-crystal substrate, and a carbon material is supplied in a temperature range of 500 or more to obtain a single-layer carbon. Provided is a method for producing a single-walled carbon nanotube, wherein the nanotube is grown by vapor phase pyrolysis.
またこの出願の発明は、 上記の発明において、 第 2には、 金属 系触媒薄膜で被覆した単結晶基板を用いることを特徴とする単層 カーボンナノチューブの製造方法を、 第 3 には、 金属系触媒薄膜 の膜厚を 0. l〜 1 0 n m以下とすることを特徴とする単層カー ボンナノチューブの製造方法を、 第 4には、 金属系触媒が、 鉄族、 白金族、 希土類金属、 遷移金属およびこれらの金属化合物のいず れか 1種もしくは 2種以上の混合物であることを特徴とする単層 力一ボンナノチューブの製造方法を、 第 5には、 単結晶基板が、 5 0 0で以上で安定な物質であることを特徴とする単層力一ボン ナノチューブの製造方法を、 第 6には、 単結晶基板が、 サフアイ ァ (A 1 203)、 シリコン ( S i )、 S i 〇 2、 S i C、 M g Oの いずれかであることを特徴とする単層カーボンナノチューブの製 造方法を、 第 7 には、 単結晶基板に代えて、 ハイ ドロキシァパタ ィ トを用いることを特徴とする単層カーボンナノチューブの製造 方法を、 第 8には、 金属系触媒と単結晶基板およびその結晶面の 組み合わせによって、 直径が制御された単層カーボンナノチュー ブを気相熱分解成長させることを特徴とする単層力一ボンナノチ ュ一ブの製造方法を、 第 9には、 金属系触媒と単結晶基板および その結晶面の組み合わせが、 F e とサファイアの A面、 R面、 あ るいは C面のいずれかであることを特徴とする単層カーボンナノ チューブの製造方法を、 第 1 0には、 炭素原料が、 5 0 0で以上 の温度で気体である炭素含有物質であることを特徴とする単層力 一ボンナノチューブの製造方法を、 第 1 1 には、 炭素原料が、 メ タン、 エチレン、 フエナトレン、 ベンゼンのいずれかであること を特徴とする単層カーボンナノチューブの製造方法を提供する。 図面の簡単な説明 Also, the invention of this application is a method for producing single-walled carbon nanotubes, which comprises using a single-crystal substrate coated with a metal-based catalyst thin film in the above-mentioned invention. The method for producing single-walled carbon nanotubes, characterized in that the thickness of the catalyst thin film is 0.1 to 10 nm or less.Fourth, the metal-based catalyst is composed of iron group, platinum group, rare earth metal, A method for producing a single-walled carbon nanotube characterized by being a transition metal or a mixture of two or more of any of these metal compounds. the method for manufacturing a single layer forces one carbon nanotube that wherein a stable material above at 0, the sixth, the single crystal substrate, Safuai § (a 1 2 0 3), silicon (S i) , to characterized in that either S i 〇 2, S i C, M g O Seventh, a method for producing single-walled carbon nanotubes, characterized by using hydroxyapatite instead of a single-crystal substrate, and eighthly, a metal-based catalyst A method for producing a single-layer carbon nanotube, characterized in that a single-wall carbon nanotube having a diameter controlled by a combination of a substrate and a single-crystal substrate and a crystal plane thereof is grown by vapor phase pyrolysis. The single-walled carbon nanotubes are characterized in that the combination of the metal-based catalyst and the single-crystal substrate and its crystal plane is any one of A, R, and C planes of Fe and sapphire. The first method is a method for producing a single-walled carbon nanotube, wherein the carbon raw material is a carbon-containing substance that is a gas at 500 or more. Is the carbon Fee, provide methane, ethylene, Fuenatoren, a process for producing single-walled carbon nanotubes, wherein either benzene. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 厚さ 2 n mの F e薄膜で被覆したサファイアの ( a ) A面、 ( b ) R面、 ( c ) C面上に、 8 0 0でで成長させた堆積物 の S EM像を例示した写真である。  Fig. 1 shows the SEM of the deposit grown at 800 on the (a) A-plane, (b) R-plane, and (c) C-plane of sapphire coated with a 2 nm thick Fe thin film. It is the photograph which illustrated the image.
図 2は、 厚さ 5 n mの F e薄膜で被覆したサファイアの ( a ) A面、 ( b ) R面、 ( c ) C面上に、 8 0 0でで成長させた堆積物 の S EM像を例示した写真である。  Figure 2 shows the SEM of the deposit grown at 800 on the (a) A-plane, (b) R-plane, and (c) C-plane of sapphire coated with a 5 nm thick Fe thin film. It is the photograph which illustrated the image.
図 3は、 ( a ) A ( 2 nm)、 ( b) R ( 2 nm)、 ( c ) C ( 5 n m) で成長した堆積物の T EM像を例示した写真である。  FIG. 3 is a photograph illustrating a TEM image of a deposit grown on (a) A (2 nm), (b) R (2 nm), and (c) C (5 nm).
図 4は、 実施例で製造した単層カーボンナノチューブのラマン 散乱スペク トルの、 ( a) 〜 5 0 0 c m— 1の範囲、 (b) 1 2 0 0 〜 1 8 0 0 c m— 1の範囲について例示した図である。 発明を実施するための最良の形態 Fig. 4 shows the Raman scattering spectrum of the single-walled carbon nanotubes manufactured in the example, in the range of (a) to 500 cm- 1 and (b) in the range of 1200 to 180 cm- 1 . FIG. BEST MODE FOR CARRYING OUT THE INVENTION
この出願の発明は、 上記の通りの特徴を持つものであるが、 以 下にその実施の形態について説明する。  The invention of this application has the features as described above, and embodiments thereof will be described below.
まず、 この出願の発明が提供する単層カーボンナノチューブの 製造方法は、 グラフアイ 卜の生成において触媒作用を有する金属 系触媒と、 その金属系触媒の結晶粒度および結晶方位とに対応関 係を有する単結晶基板との組み合わせを用い、 この単結晶基板に 金属系触媒を分散させ、 5 0 0で以上の温度範囲で炭素原料を供 給することで、 単層カーボンナノチューブを気相熱分解成長させ ることを特徵としている。  First, the method for producing single-walled carbon nanotubes provided by the invention of the present application has a correspondence relationship between a metal-based catalyst having a catalytic action in producing graphite, and the crystal grain size and crystal orientation of the metal-based catalyst. Using a combination with a single-crystal substrate, a metal-based catalyst is dispersed in the single-crystal substrate, and a carbon material is supplied in a temperature range of 500 or more, so that single-walled carbon nanotubes are grown by gas phase thermal decomposition. It is characterized by
この出願の発明において、 金属系触媒としては、 グラフアイ ト の生成、 すなわち単層カーボンナノチューブの気相熱分解成長に おいて触媒作用を示す各種の金属を用いることができる。 具体的 には、 たとえば、 N i , F e , C oなどの鉄族、 P d, P t , R hなどの白金族, L a, Yなどの希土類金属、 あるいは M o , M nなどの遷移金属や、 これらの金属化合物のいずれか 1種、 もし  In the invention of the present application, as the metal-based catalyst, various metals having a catalytic action in the production of graphite, that is, in the gas phase pyrolysis growth of single-walled carbon nanotubes can be used. Specifically, for example, iron group such as Ni, Fe, Co, etc., platinum group such as Pd, Pt, Rh, rare earth metal such as La, Y, or Mo, Mn, etc. A transition metal or one of these metal compounds, if
4 Four
差替え用紙 0^IJ26) くはこれらの 2種以上の混合物等を用いることができる。 (Replacement paper 0 ^ IJ26) Alternatively, a mixture of two or more of these can be used.
また単結晶基板としては、 5 0 0で以上の処理温度で安定な各 種の材料からなるものを用いることができ、 たとえば、 サフアイ ァ (A 1 203)、 シリコン ( S i )、 S i 02、 S i C、 M g O等 を例示することができる。 これらは、 従来のように多孔質構造あ るいはナノ粒子である必要はなく、 たとえば平面状のものであつ てよい。 また、 この出願の発明においては、 これらの単結晶基板 に代えて、 たとえばハイ ドロキシアパタイ トのような、 柱状結晶 等を用いることができる。 As the single crystal substrate, it is possible to use one made of stable each class of materials in the above process temperature 5 0 0, for example, Safuai § (A 1 2 0 3), silicon (S i), S i 0 2 , S i C, M g O and the like can be exemplified. These need not be porous structures or nanoparticles as in the past, but may be, for example, planar ones. In the invention of this application, columnar crystals such as hydroxyapatite can be used instead of these single crystal substrates.
そしてこの出願の発明において特徵的なことは、 この金属系触 媒と単結晶基板との組み合わせである。 この出願の発明において、 金属系触媒と単結晶基板とはある対応関係を有するものであって、 5 0 0 ^以上の処理温度における金属系触媒の析出、 再結晶等の 固相反応により生成する再結晶粒の結晶粒度、 および隣接する未 再結晶粒との間の結晶方位の対応関係に作用を示す単結晶基板と の組み合わせとすることができる。 より具体的には、 たとえば、 単結晶基板が 5 0 0で以上の処理温度において、 金属系触媒の結 晶粒度を 0. l ~ 1 0 nm程度の範囲で制御することや、 あるい はさらに金属系触媒の結晶面を単結晶基板に対して配向させるよ うな作用を示す関係であることが望ましい。 この出願の発明にお いて、 このような金属系触媒と単結晶基板の組み合わせとしては、 F e とサファイアの組み合わせを好適なものとして例示すること ができる。  What is unique in the invention of this application is the combination of the metal catalyst and the single crystal substrate. In the invention of this application, the metal-based catalyst and the single-crystal substrate have a certain relationship, and are formed by a solid-phase reaction such as precipitation and recrystallization of the metal-based catalyst at a processing temperature of 500 ^ or more. A combination with a single crystal substrate that has an effect on the crystal grain size of the recrystallized grains and the correspondence of the crystal orientation between adjacent unrecrystallized grains can be used. More specifically, for example, when the single crystal substrate is at a processing temperature of 500 or more, the crystal grain size of the metal-based catalyst is controlled in a range of about 0.1 to 10 nm, or Further, it is desirable that the relationship is such that the crystal plane of the metal-based catalyst has an effect of orienting the crystal plane with respect to the single crystal substrate. In the invention of the present application, as a combination of such a metal-based catalyst and a single crystal substrate, a combination of Fe and sapphire can be exemplified as a preferable combination.
単結晶基板への金属系触媒の分散については特に制限はなく、 たとえば、 金属系触媒の微粒子を均一に分散させることや、 金属 系触媒薄膜で単結晶基板を被覆することで実現することができる。 特に後者の方法は、 実際の製造工程において簡便であるために好 ましい。 これらの分散の方法についても各種の方法を利用するこ とができ、 具体的は、 たとえば真空蒸着法、 スパッ夕一法等のド ライプロセスや、 溶液滴下法、 スプレーコート法、 スピンコート 法等のゥエツ トプロセス等を利用することができる。 There is no particular limitation on the dispersion of the metal-based catalyst on the single-crystal substrate.For example, the dispersion can be realized by uniformly dispersing the fine particles of the metal-based catalyst or by coating the single-crystal substrate with a metal-based catalyst thin film. . In particular, the latter method is preferred because it is simple in the actual manufacturing process. Various methods can be used for these dispersion methods. Specifically, for example, a vacuum deposition method, a sputtering method, etc. A wet process such as a lye process, a solution dripping method, a spray coat method, or a spin coat method can be used.
単結晶基板に分散させる金属系触媒の量については特に制限は なく、 任意のものとすることができる。 たとえば単結晶基板上に The amount of the metal-based catalyst dispersed in the single-crystal substrate is not particularly limited, and may be arbitrary. For example, on a single crystal substrate
1原子層程度の厚さで、 部分的にあるいは全面に分散されていれ ば良い。 単層カーボンナノチューブを比較的高収率で得たい場合 には、 金属系触媒と単結晶基板との組み合わせにもよるためー概 には言えないが、 たとえば金属系触媒を薄膜として分散させ、 そ の膜厚を 0 . l 〜 1 0 n m以下程度の範囲で調整することを目安 とすることができる。 この膜厚が厚すぎると、 金属系触媒薄膜の 表面部において単結晶基板と相互作用していない部分が局所的に 生じ、 金属系触媒粒子が制御されていない可能性があるために好 ましくない。 It only needs to be about one atomic layer thick and dispersed partially or entirely. If it is desired to obtain single-walled carbon nanotubes in a relatively high yield, it depends on the combination of the metal-based catalyst and the single-crystal substrate. It can be used as a guideline to adjust the film thickness in the range of 0.1 to 10 nm or less. If the thickness is too large, a portion not interacting with the single crystal substrate is locally formed on the surface of the metal-based catalyst thin film, and the metal-based catalyst particles may not be controlled. Absent.
このように金属系触媒を分散させた単結晶基板を 5 0 0で以上 の温度とし、 次いで炭素原料を供給する。  The temperature of the single crystal substrate in which the metal-based catalyst is dispersed is set to 500 or more, and then a carbon raw material is supplied.
単結晶基板の 5 0 0で以上の温度への加熱は、 不活性雰囲気で 行なうことができる。 また炭素原料としては、 5 0 0で以上の温 度で気体である各種の炭素含有物質を用いることができる。 より 具体的には、 たとえば、 メタン (C H 4 )、 エチレン (C 2 H 4 )、 一酸化炭素 (C O ) 等の常温で気体のものや、 フエナトレンやべ ンゼン等のように常温では固体あるいは液体であって、 加熱によ り 5 0 0で以上の温度で気体であるもの等を例示することができ る。 これによつて、 単結晶基板表面に単層カーボンナノチューブ を気相熱分解成長させることができる。 The heating of the single crystal substrate to a temperature of 500 or more can be performed in an inert atmosphere. As the carbon raw material, various carbon-containing substances which are gaseous at a temperature of 500 or more can be used. More specifically, for example, methane (CH 4 ), ethylene (C 2 H 4 ), carbon monoxide (CO), etc. are gaseous at room temperature, and solid or liquid at room temperature, such as phenathrene or benzene. In this case, it is possible to exemplify a material which is a gas at a temperature of 500 or more by heating. Thus, single-walled carbon nanotubes can be grown by vapor phase pyrolysis on the surface of the single-crystal substrate.
このように、 金属系触媒と単結晶基板との組合せを適切なもの とすることで、 従来のように単結晶基板を多孔質構造や粒子形状 とすること無く、 単層カーボンナノチューブを製造することがで さる。  By making the combination of a metal-based catalyst and a single-crystal substrate appropriate, it is possible to produce single-walled carbon nanotubes without making the single-crystal substrate into a porous structure or particle shape as in the past. There is a monkey.
さらにこの出願の発明においては、 金属系触媒と単結晶基板と の相互作用に着目してより詳細な研究を行なった結果、 金属系触 媒と単結晶基板との相互作用は、 上記のような金属系触媒と単結 晶基板の組み合わせだけではなく、 単結晶基板の結晶面について も考慮することができ、 さらにはその組み合わせによって生成す る単層カーボンナノチューブの直径を特定のものに制御できるこ とを見出すに至った。 単層カーボンナノチューブの気相熱分解成 長において直径を制御できることは今まで全く知られておらず、 この出願の発明者らによって初めて実現されるものである。 すな わち、 この出願の発明が提供する単層カーボンナノチューブの製 造方法は、 金属系触媒と単結晶基板およびその結晶面の組み合わ せによって、 直径が制御された単層カーボンナノチューブを気相 熱分解成長させることを特徴としている。 Further, in the invention of this application, the metal catalyst and the single crystal substrate As a result of conducting a more detailed study focusing on the interaction between the metal catalyst and the single-crystal substrate, the interaction between the metal-based catalyst and the single-crystal substrate It has been found that the crystal plane of the substrate can also be taken into consideration, and furthermore, the diameter of the single-walled carbon nanotube generated by the combination can be controlled to a specific diameter. The ability to control the diameter in the vapor phase pyrolysis growth of single-walled carbon nanotubes has not been known at all, and is realized for the first time by the inventors of the present application. In other words, the method for producing single-walled carbon nanotubes provided by the invention of the present application is a method of producing single-walled carbon nanotubes whose diameter is controlled by a combination of a metal-based catalyst, a single-crystal substrate and its crystal plane. It is characterized by being thermally decomposed and grown.
より具体的には、 たとえば上記の好ましい金属系触媒と単結晶 基板の組み合わせである F e とサファイアについては、 さらに F e とサファイアの A面、 R面、 あるいは C面のいずれかとの組み 合わせとして考慮することができ、 これらの組み合わせごとに異 なる直径に制御された単層カーボンナノチューブを気相熱分解成 長させることができる。 たとえば、 F e とサファイアの A面、 R 面、 あるいは C面の組み合わせにより、 成長する単層力一ボンナ ノチューブの直径は、 A面については 1. 4 3 nm、 1. 3 0 η m、 1. 2 0 nm、 R面については 1. 4 5 nm、 1. 2 4 n m, 1. 1 8 nm、 C面については 1. 4 9 nm、 1. 3 1 nm、 1. 1 8 n mの特定の値に制御されることになる。  More specifically, for example, the combination of Fe and sapphire, which is a combination of the above-described preferred metal-based catalyst and single crystal substrate, is further combined with any combination of Fe and sapphire with the A-plane, R-plane, or C-plane. This can be taken into account, and the single-walled carbon nanotubes controlled to have different diameters for each of these combinations can be grown by gas phase pyrolysis. For example, due to the combination of Fe and sapphire A-plane, R-plane, or C-plane, the diameter of the growing single-layer bonano tube is 1.43 nm, 1.30 ηm for A-plane, 1.20 nm, 1.45 nm, 1.24 nm, 1.18 nm for R-plane, 1.49 nm, 1.31 nm, 1.18 nm for C-plane It will be controlled to a specific value.
また、 この出願の発明においては、 単結晶基板の結晶面ごとに、 金属系触媒薄膜の膜厚を制御することで、 単層カーボンナノチュ ーブの収率を高めることができる。 より具体的には、 たとえば、 Further, in the invention of this application, the yield of single-walled carbon nanotubes can be increased by controlling the thickness of the metal-based catalyst thin film for each crystal plane of the single-crystal substrate. More specifically, for example,
F e とサファイアの A面、 R面、 あるいは C面の組み合わせにつ いて、 単層力一ボンナノチューブの収率は、 A面および R面につ いては F e薄膜の膜厚を前記の範囲内で薄くするほど高めること ができ、 C面については F e薄膜の膜厚を厚くするほど高めるこ とができる。 For the combination of Fe and sapphire A-plane, R-plane, or C-plane, the yield of single-walled carbon nanotubes is within the above range for the A-plane and R-plane. The thinner the inside, the higher The thickness of the C-plane can be increased by increasing the thickness of the Fe thin film.
一方で、 単層カーボンナノチューブには様々な対称性 (カイラ リティー) を有するものの存在が知られている。 この単層カーボ ンナノチューブのカイラリティ一は、 カイラリティーインデック ス (m, n ) で表すことができ、 単層力一ボンナノチューブの直 径とも強い相関性を有している。 このことから、 この出願の発明 の方法により、 単層力一ボンナノチューブの直径のみならず、 力 イラリティ一をも制御できる可能性が示唆される。  On the other hand, it is known that single-walled carbon nanotubes have various symmetry (chirality). The chirality of the single-walled carbon nanotube can be expressed by the chirality index (m, n), and has a strong correlation with the diameter of the single-walled carbon nanotube. This suggests that the method of the present invention can control not only the diameter of the single-walled carbon nanotube but also the power irritation.
以上のこの出願の発明によって、 金属系触媒と単結晶基板材料 の間の相互作用が単層カーボンナノチューブを気相熱分解成長に 重要な役割を果たすことが示され、 このような金属系触媒を分散 させた単結晶基板を用いることで、 単層カーボンナノチューブを 気相熱分解成長させることができる。 また、 金属系触媒と単結晶 基板および結晶面の組み合わせを適切に選択することで、 直径が 制御された単層カーボンナノチューブを製造することができる。 さらに単結晶基板の結晶面および触媒薄膜の膜厚を調整すること により単層カーボンナノチューブの収率を高めることが可能とさ れる。  According to the invention of this application described above, it has been shown that the interaction between the metal-based catalyst and the single-crystal substrate material plays an important role in the vapor-phase pyrolysis growth of single-walled carbon nanotubes. By using a dispersed single crystal substrate, single-walled carbon nanotubes can be grown by gas phase pyrolysis. In addition, by appropriately selecting the combination of the metal-based catalyst, the single-crystal substrate, and the crystal plane, a single-walled carbon nanotube having a controlled diameter can be produced. Further, the yield of single-walled carbon nanotubes can be increased by adjusting the crystal plane of the single-crystal substrate and the thickness of the catalyst thin film.
以下、 添付した図面に沿って実施例を示し、 この発明の実施の 形態についてさらに詳しく説明する。 実 施 例  Hereinafter, embodiments will be described with reference to the accompanying drawings, and embodiments of the present invention will be described in further detail. Example
内径 2インチのチューブ炉と、 炭素原料としてのメタンガスを 用いて S W N T sの製造を試みた。 単結晶基板としては、 サファ ィァの A面、 R面、 C面をそれぞれ用いた。 単結晶基板上には、 金属系触媒としての F e薄膜を厚さ 2〜 5 n mとなるように、 〜 4 X 1 0— 6 T o r rの真空下で電子線蒸着した。 An attempt was made to produce SWNTs using a 2-inch inner diameter tube furnace and methane gas as a carbon source. A-plane, R-plane and C-plane of sapphire were used as single-crystal substrates. On the single crystal substrate, such that F e film thickness. 2 to 5 nm as a metal catalyst, and an electron beam deposition under a vacuum of ~ 4 X 1 0- 6 T orr .
これらの基板をチューブ炉に導入し、 まずはアルゴン雰囲気に て加熱し、 6 0 0 :〜 8 0 0 "Cの所定の温度に達した後、 0. 6 1 /m i nの流量で炭素原料としてのメタン ( 9 9. 9 9 9 %) を導入した。 このメタンの導入は 5分間とし、 次いで再びアルゴ ンを導入し、 チューブ炉が室温となるまで冷却した。 After introducing these substrates into a tube furnace, After reaching a predetermined temperature of 600: 800 "C, methane (9.999%) as a carbon raw material was introduced at a flow rate of 0.61 / min. The introduction of methane was performed for 5 minutes, and then the argon was introduced again, and the tube furnace was cooled until it reached room temperature.
熱処理後の基板を、 走査型電子顕微鏡 ( S E M) 観察、 ラマン 分光分析、 および透過型電子顕微鏡 (T EM) 観察により詳細に 調べた。 なお、 S EM観察のための試料は、 より明瞭な観察を行 なうために、 厚さ約 2 nmの P d— P t薄膜で被覆した。 ラマン · スぺク トルは、 集光スポッ ト · サイズが〜 1 mの A r レーザ一 からの 4 8 8 n m光 ( 3 0 mW) を用いることにより測定するこ とで得た。 T E M観察のための試料は、 サファイア基板から堆積 物を集めてエタノール中に分散させ、 T E Mグリッ ド上に滴下し て乾燥させることで調整した。  The heat-treated substrate was examined in detail by scanning electron microscope (SEM) observation, Raman spectroscopy, and transmission electron microscope (TEM) observation. The sample for SEM observation was covered with a Pd-Pt thin film of about 2 nm in thickness for clearer observation. The Raman spectrum was obtained by measurement using 488 nm light (30 mW) from an Ar laser with a focused spot size of ~ 1 m. Samples for TEM observation were prepared by collecting sediments from a sapphire substrate, dispersing them in ethanol, dropping them on TEM grids, and drying.
く S EM観察 > K SEM observation>
図 1 ( a ) ( b) ( c ) に、 厚さ 2 n mの F e薄膜で被覆したサ ファイアの A面、 R面、 C面上に、 8 0 0でで成長させた堆積物 の S EM像をそれぞれ示した。 A面上に堆積した管状堆積物の量 が、 R面のものよりも多いことが明確に観察された。 また、 C面 上の管状堆積物の量は、 3つの中で最も少量であることがわかつ た。  Figures 1 (a), (b), and (c) show the S of the deposit grown at 800 on the A, R, and C planes of sapphire coated with a 2-nm-thick Fe thin film. EM images are shown. It was clearly observed that the amount of tubular sediment deposited on the A-side was greater than that on the R-side. The amount of tubular sediment on the C-plane was found to be the least of the three.
また図 2 ( a ) ( b ) ( c ) に、 厚さ 5 nmの F e薄膜で被覆し たサファイアの A面、 R面、 C面上に、 8 0 0でで成長させた堆 積物の S EM像をそれぞれ示した。 3つの面全てに前記と同様の 管状堆積物が形成されていることが確認された。 これらの細管は、 太くて短いもの (直径 2 0〜 5 0 nm, 長さ約 l mm) か、 ある いは細くて長いもの (直径 3 nm未満, 長さ 2 mm以上) のどち らかであることがわかった。  Figures 2 (a), (b), and (c) show deposits grown at 800 on the A, R, and C planes of sapphire coated with a 5-nm thick Fe thin film. The SEM image of each was shown. It was confirmed that tubular deposits similar to the above were formed on all three surfaces. These capillaries are either thick and short (20-50 nm in diameter, about 1 mm in length) or thin and long (less than 3 nm in diameter, more than 2 mm in length). I found it.
さ らに、 厚さ 2 n mの F e薄膜で被覆したサファイアに 6 0 0での熱処理を施した場合は、 A面および R面には管状の堆積物 はほとんど成長していなかつたが、 C面上には少数だがより太目 の細管(直径約 3 0〜 5 0 nm)が成長しているのが確認された。 これらの細管の構造について、 T EM観察およびラマンスぺク ト ルによって検討した。 In addition, when sapphire coated with a 2-nm-thick Fe thin film was subjected to a heat treatment at 600, tubular deposits were formed on the A and R surfaces. Although little had grown, small but thicker tubules (approximately 30-50 nm in diameter) were observed growing on the C-plane. The structures of these capillaries were examined by TEM observation and Raman spectra.
<T EM観察 > <TEM observation>
厚さ 2 nmの F e薄膜で被覆したサファイア Α面 (以下、 A ( 2 n m) と示す) 上で成長した堆積物の T E M像を図 3 ( a ) に示 した。 この A ( 2 nm) には、 SWNT s と極少量の不定形炭素(以 下、 a— Cと示す)が含まれていることがわかった。 図 3 (b ) に 示した厚さ 2 nmの F e薄膜で被覆したサファイア R面 (以下、 R ( 2 n m) と示す) 上で成長した堆積物の T E M像からは、 R ( 2 n m) が S WNT s と a— Cから構成されていることがわか つた。 図 3 ( c ) に示した厚さ 5 n mの F e薄膜で被覆したサフ アイァ C面 (以下、 C ( 5 nm) と示す) 上で成長した堆積物の T E M像から、 C ( 5 n m) には a— Cの量が最も多く、 また S W N T sはほとんど見られないことが確認された。 また図 3 ( c ) には示されていないものの、 C ( 5 n m) には二層カーボンナノ チューブがいく らか成長していることが確認された。  Figure 3 (a) shows a TEM image of the deposit grown on a sapphire surface (hereinafter referred to as A (2 nm)) coated with a 2 nm-thick Fe thin film. This A (2 nm) was found to contain SWNT s and a very small amount of amorphous carbon (hereinafter a-C). From the TEM image of the deposit grown on the sapphire R surface (hereinafter referred to as R (2 nm)) coated with a 2 nm-thick Fe thin film shown in Fig. 3 (b), R (2 nm) Is composed of SWNTs and a—C. From the TEM image of the deposit grown on the sapphire C-plane (hereinafter referred to as C (5 nm)) coated with a 5 nm-thick Fe thin film shown in Fig. 3 (c), the C (5 nm) It was confirmed that the amount of a—C was the highest and that SWNT s was hardly found. Although not shown in Fig. 3 (c), it was confirmed that some double-walled carbon nanotubes grew on C (5 nm).
T E M観察からは、 A面、 R面、 C面上で束状となっている S W N T s の直径が、 およそ 1. 0〜: L . 7 nmであることがわか つた。  From TEM observation, it was found that the diameter of SWNTs bunched on the A-plane, R-plane, and C-plane was approximately 1.0 to: 0.7 nm.
<ラマンスぺク トル >  <Ramance vector>
厚さ 2 nm, 3 n m, 5 n mの F e薄膜で被覆したサファイア A面、 R面、 C面上に形成された堆積物のラマン散乱スペク トル を図 4 ( a) ( b ) に示した。 全ての試料について約 1 5 9 2 c m 一 1と 1 5 7 0 c m— 1にピークが見られ、 1 0 0〜 2 3 0 c m— 1 の範囲に 1〜 4つの細いピークが見られた。 これらのピークは S WN T s に特徴的なピークであって、 堆積物中に S WNT sが存 在していることを示すものである。 この約 1 5 9 2 c m— 1 5 7 0 c m- 1のピークは接線モードに相当し、 1 0 0〜 2 3 0 c m 一 1の間のピークは SWNT s のラマンブリージングモード (R B M) に相当するものである。 Figures 4 (a) and 4 (b) show the Raman scattering spectra of the deposits formed on the A, R, and C planes of sapphire covered with the 2-nm, 3-nm, and 5-nm-thick Fe thin films. . For all samples, peaks were observed at about 1592 cm- 1 and 1570 cm- 1 and 1 to 4 narrow peaks were observed in the range of 100 to 230 cm- 1 . These peaks are characteristic of SWNTs and indicate the presence of SWNTs in sediments. About 1 5 9 2 cm—1 5 7 0 c m-1 peak corresponds to the tangential mode, 1 0 0~ 2 3 0 cm one first peak between is equivalent to the Raman breathing mode (RBM) of SWNT s.
そして例えば、 R ( 2 n m) 面上に形成された SWNT s は、 直径 1. 4 nmの S WN T sであることを示す 1 6 7 c m— 1に強 い R B Mピークを有し、 また直径 1. 2 nmの SWNT sである ことを示す 2 0 3 c m— 1に弱いピークを有しているが、 これより も厚い F e薄膜で覆われている試料についてはこれらのピークが それほど顕著ではないことがわかる。 このように、 接線のモード および R B Mのピーク強度から、 F e薄膜の厚さが 2 nmから 5 nmに増加するにつれて、 A面および R面の場合には生成する S WNT sの量が減少することがわかった。 一方の C面の場合には、 F e薄膜の厚さが 2 nmから 5 n mに増加するにつれて、 SWN T量が増加することがわかった。 And, for example, SWNT s formed on the R (2 nm) plane has a strong RBM peak at 167 cm- 1 indicating SWNT Ts with a diameter of 1.4 nm. Although there is a weak peak at 203 cm- 1 indicating that it is a SWNT s of 1.2 nm, these peaks are not so prominent for a sample covered with a thicker Fe thin film. It turns out there is no. Thus, from the tangential mode and the peak intensity of the RBM, as the thickness of the Fe thin film increases from 2 nm to 5 nm, the amount of SWNTs generated for the A-plane and R-plane decreases. I understand. On the other hand, in the case of the C-plane, the SWNT amount was found to increase as the thickness of the Fe thin film increased from 2 nm to 5 nm.
また、 これらの S WN T s のピーク位置および R BM強度は、 個々の堆積物の所々で異なっていた。 しかし、 それぞれの堆積物 についてさらに 1 0箇以上の異なる場所をより注意深く調べた結 果、 以下の傾向が見られることが明らかとなった。 すなわち、 R B Mピークの幅はおよそ 7〜 1 2 c m— 1と狭く、 ピーク数は 1〜 4で、 ピーク位置はサファイアの面に依存することがわかった。 より具体的には、 たとえば、 A ( 2 n m) 面、 R ( 2 n m) 面、 C ( 2 n m) 面についてそれぞれ 1 0箇所から得たラマンスぺク トルを平均し、 その R B Mピークと、 算出した SWNT s の直径 を表 1 に示した。 RBMピーク(cm—1) In addition, the peak positions and RBM intensities of these SWNTs were different in individual sediments. However, a more careful examination of more than 10 different sites for each sediment revealed the following trends: In other words, the width of the RBM peak was as narrow as approximately 7 to 12 cm- 1 , the number of peaks was 1 to 4, and the peak position was found to depend on the sapphire surface. More specifically, for example, for the A (2 nm) plane, the R (2 nm) plane, and the C (2 nm) plane, the average of the Raman spectra obtained from 10 locations is averaged, and the RBM peak is calculated. Table 1 shows the diameters of the SWNTs obtained. RBM peak (cm- 1 )
試 料  Sample
SWNT直径(nm) SWNT diameter ( nm )
170 188 203  170 188 203
A (2nm)  A (2nm)
1.43 1.30 1.20  1.43 1.30 1.20
168 194 207  168 194 207
R (2nm)  R (2nm)
1.45 1.24 1.18  1.45 1.24 1.18
164 186 206  164 186 206
C (2nm)  C (2nm)
1.49 1.31 1.18 このように、 サファイア基板の結晶面を選択することにより、 1.49 1.31 1.18 Thus, by selecting the crystal plane of the sapphire substrate,
S WNT s の直径を特定の値に制御して製造できることがされた < (比較例 1 ) It was demonstrated that the diameter of S WNT s can be controlled to a specific value. <(Comparative Example 1)
上記実施例におけるサファイアの代わりにシリ コン単結晶面 (あるいはシリコン上に熱成長した S i 02面) を使用した場合に は、 F e薄膜の厚さにかかわらず、 8 0 0 の(: 0にょって 3When using the silicon single crystal surface instead of the sapphire (or S i 0 2 surface that is thermally grown on silicon) in the above embodiment, regardless of the thickness of the F e film, 8 0 0 (: 0 3
WN T s を生成させることはできなかった。 WN T s could not be generated.
(比較例 2 )  (Comparative Example 2)
サファイア基板を、 上記実施例における F e薄膜の代わりに N i 薄膜で覆い、 後は同様にしたところ、 SWN T s を生成させる ことはでさなかった。  When the sapphire substrate was covered with a Ni thin film instead of the Fe thin film in the above-described embodiment, and thereafter the same operation was performed, SWNTs was not generated.
(比較例 3 )  (Comparative Example 3)
F e (N O 3 ) 3 · Η20とアルミナ · ナノ粒子の混合物 (M o ( a c a c ) 2は無し) を配設したシリコン ' ウェハ一を基板とし て用意し、 上記実施例と同様の熱処理を行なったところ、 S WN T sが生成した。 この S WN T s について得られたラマンスぺク トルを図 4に併せて示した。 このラマンスぺク トルは R B Mピー クが 1 2 0〜 2 0 0 c m— 1の範囲でブロードであって、 SWNT s の直径が 2. 0〜 1. 2 nmの広い範囲にわたって分布してい る。 A silicon wafer provided with a mixture of F e (NO 3) 3 · Η 20 and alumina nanoparticles (no Mo (acac) 2 ) was prepared as a substrate, and the same heat treatment as in the above example was performed. Was performed, and SWNTs were generated. The Raman spectrum obtained for this SWNTs is also shown in FIG. This Raman spectrum has a broad RBM peak in the range of 120 to 200 cm- 1 and a wide range of SWNT s diameters of 2.0 to 1.2 nm. You.
このことから、 金属系触媒担体であるアルミナ · ナノ粒子はサ ファイアと同じ A 1 23であるものの、 アルミナ , ナノ粒子はそ の形状から様々な結晶面や無定形特性が備わっているため、 S W N T s を成長させることができるもののその直径を制御すること はできず、 広く分布させてしまうことがわかった。 Therefore, although the alumina nanoparticles are metal-based catalyst support is the same A 1 23 and sapphire, alumina, because nanoparticles has internal various crystal faces and amorphous characteristics from the shape of its However, it was found that SWNTs could be grown, but their diameter could not be controlled, resulting in wide distribution.
以上のことから、 従来の S W N T s の気相熱分解成長による製 造では、 触媒担体として多孔性材料やナノ粒子が必須のものとし て使用されている。 しかしながら、 この出願の発明によると、 基 板となる結晶、 その結晶面、 金属系触媒、 その膜厚および成長温 度等を適切に選択することで、 平滑な結晶基板上であっても S W N T sの製造が可能なことが示された。 またこれらの要件が、 触 媒金属の拡散係数やそれに付随する触媒金属の結晶粒度および結 晶方位に影響を与え、 その結果として S W N T sが特定の直径に 成長されるものと結論付けることができる。  From the above, in the conventional production of SWNTs by vapor phase pyrolysis growth, porous materials and nanoparticles are used as essential catalyst carriers. However, according to the invention of this application, the SWNT s can be obtained even on a smooth crystal substrate by appropriately selecting the substrate crystal, its crystal plane, the metal-based catalyst, its film thickness and the growth temperature. Was shown to be possible. It can also be concluded that these requirements affect the diffusion coefficient of the catalyst metal and the associated grain size and orientation of the catalyst metal, resulting in SWNTs growing to a specific diameter. .
もちろん、 この発明は以上の例に限定されるものではなく、 細 部については様々な態様が可能であることは言うまでもない。 産業上の利用可能性  Of course, the present invention is not limited to the above-described example, and it goes without saying that various aspects can be applied to the details. Industrial applicability
以上詳しく説明した通り、 この発明によって、 単層カーボンナ ノチューブの製造方法に関するものである。 さらに詳しくは、 こ の出願の発明は、 多孔質材料や触媒微粒子を必要とせずに、 直径 を制御して単層力一ボンナノチューブを製造することができる単 層力一ボンナノチューブの製造方法が提供される。  As described in detail above, the present invention relates to a method for producing a single-walled carbon nanotube. More specifically, the invention of this application relates to a method for producing a single-walled carbon nanotube capable of producing a single-walled carbon nanotube by controlling the diameter without using a porous material or catalyst fine particles. Provided.

Claims

請求の範囲 The scope of the claims
1 . グラフアイ トの生成において触媒作用を有する金属系触媒 と、 その金属系触媒の結晶粒度および結晶方位とに対応関係を有 する単結晶基板との組み合わせを用い、 この単結晶基板に金属系 触媒を分散させ、 5 0 0で以上の温度範囲で炭素原料を供給する ことで、 単層カーボンナノチューブを気相熱分解成長させること を特徴とする単層カーボンナノチューブの製造方法。 1. A combination of a metal-based catalyst having a catalytic action in producing graphite and a single-crystal substrate having a correspondence relationship with the crystal grain size and crystal orientation of the metal-based catalyst is used. A method for producing single-walled carbon nanotubes, comprising dispersing a catalyst and supplying a carbon raw material in a temperature range of 500 or more to grow the single-walled carbon nanotubes by gas phase pyrolysis.
2 . 金属系触媒薄膜で被覆した単結晶基板を用いることを特徴 とする請求項 1記載の単層カーボンナノチューブの製造方法。 2. The method for producing single-walled carbon nanotubes according to claim 1, wherein a single-crystal substrate coated with a metal-based catalyst thin film is used.
3 . 金属系触媒薄膜の膜厚を 0 . 1 〜 1 0 n m以下とすること を特徴とする請求項 1 または 2記載の単層カーボンナノチューブ の製造方法。 3. The method for producing single-walled carbon nanotubes according to claim 1 or 2, wherein the thickness of the metal-based catalyst thin film is 0.1 to 10 nm or less.
4 . 金属系触媒が、 鉄族、 白金族、 希土類金属、 遷移金属およ びこれらの金属化合物のいずれか 1種もしくは 2種以上の混合物 であることを特徴とする請求項 1ないし 3いずれかに記載の単層 カーボンナノチューブの製造方法。  4. The metal-based catalyst according to any one of claims 1 to 3, wherein the metal-based catalyst is an iron group, a platinum group, a rare earth metal, a transition metal, or a mixture of any one or more of these metal compounds. A method for producing a single-walled carbon nanotube.
5 . 単結晶基板が、 5 0 0で以上で安定な物質であることを特 徵とする請求項 1ないし 4いずれかに記載の単層カーボンナノチ ユ ーブの製造方法。  5. The method for producing a single-walled carbon nanotube according to any one of claims 1 to 4, wherein the single-crystal substrate is a material which is stable at 500 or more.
6 . 単結晶基板が、 サファイア (A 1 2 O 3 )、 シリコン ( S i )、 S i 〇2 、 S i C 、 M g Oのいずれかであることを特徴とする請求 項 5記載の単層力一ボンナノチューブの製造方法。 6. Single crystal substrate, sapphire (A 1 2 O 3), silicon (S i), S i 〇 2, S i C, single of claim 5, wherein a is any one of M g O A method for producing a monolayer nanotube.
7 . 単結晶基板に代えて、 八イ ドロキシアパタイ トを用いるこ とを特徴とする請求項 1ないし 4いずれかに記載の単層カーボン ナノチューブの製造方法。  7. The method for producing single-walled carbon nanotubes according to claim 1, wherein octyl hydroxyapatite is used instead of the single-crystal substrate.
8 . 金属系触媒と単結晶基板およびその結晶面の組み合わせに よって、 直径が制御された単層カーボンナノチューブを気相熱分 解成長させることを特徵とする請求項 1ないし 7いずれかに記載 の単層カーボンナノチューブの製造方法。 8. The gas-phase thermal decomposition growth of a single-walled carbon nanotube having a controlled diameter by a combination of a metal-based catalyst, a single-crystal substrate, and a crystal plane thereof, according to any one of claims 1 to 7, Of producing single-walled carbon nanotubes.
9 . 金属系触媒と単結晶基板およびその結晶面の組み合わせが、 F e とサファイアの A面、 R面、 あるいは C面のいずれかである ことを特徴とする請求項 8記載の単層力一ボンナノチューブの製 造方法。  9. The combination of a metal-based catalyst, a single-crystal substrate, and a crystal plane thereof, wherein the combination of Fe and sapphire is any one of A-plane, R-plane, and C-plane. A method for producing bon nanotubes.
1 0 . 炭素原料が、 5 0 0で以上の温度で気体である炭素含有 物質であることを特徴とする請求項 1ないし 9いずれかに記載の 単層カーボンナノチューブの製造方法。  10. The method for producing single-walled carbon nanotubes according to any one of claims 1 to 9, wherein the carbon raw material is a carbon-containing substance which is a gas at 500 or more.
1 1 . 炭素原料が、 メタン、 エチレン、 フエナトレン、 ベンゼ ンのいずれかであることを特徴とする請求項 1 0記載の単層カー ボンナノチューブの製造方法。  11. The method for producing a single-walled carbon nanotube according to claim 10, wherein the carbon raw material is any one of methane, ethylene, phenanthrene, and benzene.
PCT/JP2003/003884 2002-03-29 2003-03-27 Method for preparing monolayer carbon nanotube WO2003082738A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/509,575 US20050106093A1 (en) 2002-03-29 2003-03-27 Method for preparing monolayer carbon nanotube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-097768 2002-03-29
JP2002097768A JP3537811B2 (en) 2002-03-29 2002-03-29 Method for producing single-walled carbon nanotube

Publications (1)

Publication Number Publication Date
WO2003082738A1 true WO2003082738A1 (en) 2003-10-09

Family

ID=28671927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003884 WO2003082738A1 (en) 2002-03-29 2003-03-27 Method for preparing monolayer carbon nanotube

Country Status (3)

Country Link
US (1) US20050106093A1 (en)
JP (1) JP3537811B2 (en)
WO (1) WO2003082738A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083486A (en) * 2004-09-15 2006-03-30 National Institute For Materials Science Carbon fiber body, member containing the same and method for producing them
US20070116631A1 (en) * 2004-10-18 2007-05-24 The Regents Of The University Of California Arrays of long carbon nanotubes for fiber spinning
US7713577B2 (en) * 2005-03-01 2010-05-11 Los Alamos National Security, Llc Preparation of graphitic articles
JP5049474B2 (en) * 2005-08-22 2012-10-17 株式会社アルバック Method for producing graphite nanofiber
WO2007116434A1 (en) * 2006-03-30 2007-10-18 Fujitsu Limited Process for producing carbon nanotube
JP4979296B2 (en) 2006-08-02 2012-07-18 富士通株式会社 Method for producing carbon nanotube
US8753602B2 (en) * 2006-10-19 2014-06-17 University Of Cincinnati Composite catalyst and method for manufacturing carbon nanostructured materials
US7678672B2 (en) * 2007-01-16 2010-03-16 Northrop Grumman Space & Mission Systems Corp. Carbon nanotube fabrication from crystallography oriented catalyst
JP2009283303A (en) * 2008-05-22 2009-12-03 Keio Gijuku Carbon nanotube light-emitting element and method of manufacturing the same
WO2010117392A1 (en) * 2008-12-19 2010-10-14 Bosnyak Clive P Exfoliated carbon nanotubes, methods for production thereof and products obtained therefrom
US20130059124A1 (en) * 2010-03-01 2013-03-07 Shigeo Maruyama Method of manufacturing carbon nanotube, single-crystal substrate for manufacturing carbon nanotube, and carbon nanotube
JP2011178631A (en) * 2010-03-02 2011-09-15 Nagoya Univ Method for producing carbon nanotube, single crystal substrate for producing carbon nanotube, and carbon nanotube
JP5603119B2 (en) * 2010-03-29 2014-10-08 京セラクリスタルデバイス株式会社 Method for producing carbon nanotube
WO2012080158A1 (en) 2010-12-14 2012-06-21 Styron Europe Gmbh Improved elastomer formulations
KR101999866B1 (en) 2011-06-23 2019-07-12 몰레큘라 레바 디자인 엘엘씨 Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom
US9997785B2 (en) 2011-06-23 2018-06-12 Molecular Rebar Design, Llc Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom
JP6042314B2 (en) * 2012-12-04 2016-12-14 本田技研工業株式会社 Carbon nanotube growth substrate and manufacturing method thereof
JP6041775B2 (en) * 2013-09-13 2016-12-14 本田技研工業株式会社 Carbon nanotube growth substrate and manufacturing method thereof
CN105565292B (en) * 2014-10-29 2018-04-06 北京大学 A kind of VHD single-walled carbon nanotube horizontal array and its controllable method for preparing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0972821A3 (en) * 1998-07-15 2001-04-04 Nippon Mitsubishi Oil Corporation Grease composition suitable for a constant velocity joint
US6232706B1 (en) * 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
JP2000273480A (en) * 1999-03-29 2000-10-03 Asahi Denka Kogyo Kk Lubricating composition
US6329327B1 (en) * 1999-09-30 2001-12-11 Asahi Denka Kogyo, K.K. Lubricant and lubricating composition
JP4620219B2 (en) * 2000-06-02 2011-01-26 Jx日鉱日石エネルギー株式会社 Grease composition
US6420293B1 (en) * 2000-08-25 2002-07-16 Rensselaer Polytechnic Institute Ceramic matrix nanocomposites containing carbon nanotubes for enhanced mechanical behavior

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HONGO H. ET AL.: "Chemical vapor deposition of single-wall carbon nanotubes on iron-film-coated sapphire substrates", CHEM. PHYS. LETTERS, vol. 361, no. 3/4, 30 June 2002 (2002-06-30), pages 349 - 354, XP002969514 *
HUANG Z.P. ET AL.: "Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition", APPLIED PHYSICS LETTERS, vol. 73, no. 26, 1998, pages 3845 - 3847, XP000802256 *
JING KONG ET AL.: "Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers", NATURE, vol. 395, 1998, pages 878 - 881, XP000960753 *
MING SU ET AL.: "Lattice-oriented growth of single-walled carbon nanotubes", J. PHYS. CHEM. B, vol. 104, no. 28, 20 July 2000 (2000-07-20), pages 6508 - 6508, XP002969511 *
PING LI ET AL: "Atomic force microscopy of carbon nanotubes and nanoparticles", MATER. RES. SOC. SYMP. PROC., vol. 359, 1995, pages 87 - 91, XP002969513 *
ROTKINA L. ET AL.: "The oriented growth of carbon nanotubes on Si(100)", AIP CONFERENCE PROCEEDINGS, vol. 591, 2001, pages 247 - 250, XP002969512 *
YIHONG WU ET AL.: "Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition", ADV. MATER., vol. 14, no. 1, 4 January 2002 (2002-01-04), pages 64 - 67, XP001129572 *

Also Published As

Publication number Publication date
US20050106093A1 (en) 2005-05-19
JP2003292313A (en) 2003-10-15
JP3537811B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
WO2003082738A1 (en) Method for preparing monolayer carbon nanotube
US7235159B2 (en) Methods for producing and using catalytic substrates for carbon nanotube growth
Hongo et al. Chemical vapor deposition of single-wall carbon nanotubes on iron-film-coated sapphire substrates
US8178203B2 (en) Aligned single-walled carbon nanotube aggregate, bulk aligned single-walled carbon nanotube aggregate, and powdered aligned single-walled carbon nanotube aggregate
CN100462301C (en) Method for preparing carbon nano tube array
Hong et al. Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts
Fu et al. Synthesis of large arrays of aligned α-Fe2O3 nanowires
US7431965B2 (en) Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
JP5102633B2 (en) Method for growing long carbon single-walled nanotubes
JP5550833B2 (en) Method and apparatus for high quality single-walled carbon nanotube growth
US8163263B2 (en) Catalyst for the growth of carbon single-walled nanotubes
US20100062229A1 (en) Aligned single-walled carbon nanotube aggregate, bulk aligned single-walled carbon nanotube aggregate, powdered aligned single-walled carbon nanotube aggregate, and production method thereof
US20050214197A1 (en) Methods for producing and using catalytic substrates for carbon nanotube growth
JP2004250306A (en) Method of growing matrix of carbon nanotube
CA2578725A1 (en) Carbon nanotube assembly and manufacturing method thereof
EP1713951A2 (en) Control of carbon nanotube diameter using cvd or pecvd growth
JP6202359B2 (en) Method for producing carbon nanotube
JP2007015890A (en) Substrate for carbon nanotube formation, its manufacturing method, and carbon nanotube
WO2007116434A1 (en) Process for producing carbon nanotube
US9458017B2 (en) Carbon nanotubes conformally coated with diamond nanocrystals or silicon carbide, methods of making the same and methods of their use
Chen et al. Synthesis of SiC/SiO2 core–shell nanowires with good optical properties on Ni/SiO2/Si substrate via ferrocene pyrolysis at low temperature
JP3913583B2 (en) Method for producing carbon nanotube
JP2008169092A (en) Carbon nanotube production method
Zhang et al. Growth and field emission property of coiled carbon nanostructure using copper as catalyst
JP2006298684A (en) Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10509575

Country of ref document: US

122 Ep: pct application non-entry in european phase