WO2003081805A1 - Emetteur/recepteur a antenne multi-faisceaux, procede d'emission/reception et procede de selection de faisceau d'emission - Google Patents

Emetteur/recepteur a antenne multi-faisceaux, procede d'emission/reception et procede de selection de faisceau d'emission Download PDF

Info

Publication number
WO2003081805A1
WO2003081805A1 PCT/JP2003/001791 JP0301791W WO03081805A1 WO 2003081805 A1 WO2003081805 A1 WO 2003081805A1 JP 0301791 W JP0301791 W JP 0301791W WO 03081805 A1 WO03081805 A1 WO 03081805A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception
transmission
user
receiving
path delay
Prior art date
Application number
PCT/JP2003/001791
Other languages
English (en)
French (fr)
Inventor
Yasushi Maruta
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to AU2003211535A priority Critical patent/AU2003211535A1/en
Priority to US10/509,017 priority patent/US7274951B2/en
Priority to EP03705327.9A priority patent/EP1492252B1/en
Publication of WO2003081805A1 publication Critical patent/WO2003081805A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • H04B7/0897Space-time diversity using beamforming per multi-path, e.g. to cope with different directions of arrival [DOA] at different multi-paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0817Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection
    • H04B7/082Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection selecting best antenna path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Definitions

  • Multi-beam antenna transmission / reception apparatus Description: Multi-beam antenna transmission / reception apparatus, transmission / reception method, and transmission beam selection method
  • the present invention relates to an array antenna transmitting / receiving apparatus that suppresses other-user interference by controlling antenna directivity, and more particularly to a multi-beam antenna transmitting / receiving apparatus, a transmitting / receiving method, and a transmitting / receiving method for selecting transmitting / receiving directivity from a plurality of fixed directivity patterns (multi-beams). The method of selecting the game.
  • the transmission / reception gain is increased in the desired signal direction.
  • a method of forming a directional pattern (beam) that reduces the transmission / reception gain is being studied.
  • the multi-beam method which selects transmission / reception beams from multiple fixed directivity patterns (multi-beams), is one such method.
  • multi-beam antenna transmission / reception apparatus for example, as disclosed in “Multi-beam antenna system for wireless base station” (Japanese Patent Laid-Open No. 11-266282), a plurality of fixed receptions are performed at the time of reception. Selects a receive beam with a delay path with excellent reception quality from among the beams and performs reception.At the time of transmission, the path delay selected at the time of reception Z is the same as the set with excellent reception quality from the set of receive beam numbers. Select the transmit beam in the direction and transmit.
  • FIG. 7 is a block diagram showing an example of a conventional multi-beam antenna transmitting / receiving apparatus.
  • the conventional multi-beam antenna transceiver apparatus a receiving array antenna 2 0 1, receiving antenna elements 2 0 2, 2 0 2 corresponding to the N antenna 1 radio receiver 2 0 3, ⁇ ⁇ antenna N radio receiving sections 2 0 3 N , receive beam 1 forming section 204> to receive beam M forming section 204 M (also referred to as receive beam forming section 204), user 1 demodulation block 205 i to user L demodulation block 20 5 (also referred to as user demodulation block 205), user 1 modulation processing unit 2 11 1 user L modulation processing unit 2 1 1, and user 1 transmission beam Switching circuit 21 2, to user L transmission beam switching circuit 2 1 2, and transmission beam 1 forming section 2 13 i to transmission beam J forming section 21 3, and transmitting antenna elements 216 i to 216 ⁇
  • the antenna 1 includes a wireless transmission unit 214, an antenna ⁇ a wireless transmission unit 2 14
  • the receiving array antenna 201 is composed of ⁇ ⁇ receiving antenna elements 202 i to 202 N.
  • the N receiving antenna elements 202 »to 202 N are arranged close so that the received signals of each antenna element have a correlation.
  • the arrangement method include a circular arrangement and a linear arrangement at half wavelength intervals of the carrier wave.
  • Each signal received by the N receiving antenna elements 202 i to 202 N includes a desired user signal component, a plurality of interference signal components, and thermal noise. Furthermore, a plurality of multipath components exist for each of the desired user signal component and the interference signal component. Usually, these signal components (a desired user signal component and an interference signal component) come from different directions. Therefore, there are multiple sets of the path delay of the desired user signal and the reception beam number (path delay Z reception beam number).
  • Antenna 1 Wireless receiver 203, to Antenna N Wireless receiver 203 N is a low-noise amplifier, band-limiting filter, mixer, local oscillator, AGC (Au to Ga in
  • the antenna 1 wireless receiving unit 203 receives the output of the receiving antenna element 202, amplifies the input signal, and adjusts the frequency from the wireless band to the base band. It performs reception processing such as conversion, quadrature detection, analog / digital conversion, etc., and outputs it to the receive beam 1 forming section 204 to the receive beam M forming section 204M.
  • Receiving beam 1 forming section 204, to receiving beam M forming section 204 M receives the output of antenna 1 radio receiving section 203, to antenna N radio receiving section 203 N as input, and Then, a different fixed reception beam is formed for each reception beam forming unit, and is output to user 1 demodulation block 205 to user L demodulation block 205.
  • the receiving beam 1 forming unit 204! ⁇ Reception beam M forming unit 2 0 4 M antenna 1 radio receiver 2 0 3 is in the subsequent stage of ⁇ ⁇ antenna N radio receiving sections 2 0 3 N, bi for the digital signal of the baseband - performing beam forming
  • a beamforming method in a wireless band such as a noise matrix.
  • the receive beam 1 forming section 204 to the receive beam M forming section 204 M are used for input signals containing all user signal (user 1 signal to user L signal) components and multipath components of user signals. Then, a different fixed reception beam is formed for each reception beam forming section 204, and the input signal is separated for each direction of arrival.
  • User 1 demodulation block 2 05 i to user L demodulation block 205 includes reception beam 1 path detection unit 206, reception beam M path detection unit 206 M, and path delay reception beam selection unit 2 07, a transmission beam selection unit 209, and a demodulation processing unit 210.
  • User 1 demodulation block 205 to user L demodulation block 205 outputs user 1 reception data to user L reception data (user reception data) corresponding to each user. Since the functions of the user demodulation block 205 are the same, a description will be given below using the user 1 demodulation block 205 as an example.
  • the user 1 demodulation block 205 'receives the output of the reception beam 1 forming section 204, ..., the output of the reception beam M forming section 204M, and outputs the user 1 transmission beam number and the user 1 reception data.
  • the reception beam 1 path detection unit 206 to the reception beam M path detection unit 206M receives the output of the reception beam 1 formation unit 204, to the reception beam M formation unit 204M as an input, Detects the path delay of the user signal in each input signal, measures the reception quality of the user signal at the detected path delay, and outputs it to the path delay / receive beam selector 207 I do.
  • a user 1 signal to a user L signal are multiplexed on each input signal, and a multipath component of each user signal due to a propagation delay is multiplexed.
  • the reception beam 1 path detection section 206 to the reception beam M path detection section 206 use only known symbols (such as pilot symbols) of the user signal, and perform path detection and reception quality of the user signal at the detected path delay. Can also be measured.
  • the path delay reception beam selector 2 07 receives the reception signal information of the user signal at the path delay reception beam number output from the reception beam 1 path detector 2 06> to the reception beam M path detector 206. , And selects a set of path delay reception beam numbers to be used for demodulation based on the reception quality of the user signal, and transmits the reception quality information of the user signal at the selected path delay / reception beam number to the transmission beam selection unit 2. 09 and output to the demodulation processing unit 210.
  • the transmission beam selection unit 209 receives the reception quality information of the user signal at the path delay reception beam number output from the path delay reception beam selection unit 207, and performs reception in which a delay path with excellent reception quality exists.
  • the transmit beam number in the same direction as the beam is output to user 1 transmit beam switching circuit 2 1 2>.
  • the number of transmission beams selected is smaller than the number of path delay Z reception beam number sets used for demodulation. In many cases, the number of transmitted beams is one. The reason is to reduce interference with other users due to transmission using multiple beams.
  • the demodulation processing unit 210 receives the reception quality information of the user signal at the path delay / reception beam number output from the path delay / reception beam selection unit 207, and based on the input path delay reception beam number. To perform demodulation processing and output user 1 received data.
  • User 1 modulation processing section 2 1 1 ′ to user L modulation processing section 2 1 1 ij Input user 1 transmission data to user L transmission data (user transmission data), perform modulation processing, and switch user 1 transmission beam.
  • the user L transmission beam switching circuit 2 1 2 is composed of a user 1 transmission beam number to a user L transmission beam number output from the transmission beam selection unit 209 for each user, and a user 1 modulation processing unit 2 1 1 to 2.
  • User L modulation processing unit 2 1 1 The user-modulated signal, which is the output of the user, is input, and the transmit beam forming unit corresponding to the transmit beam number for each user is selected from the transmit beam 1 forming unit 2 13 and the transmit beam J forming unit 2 13 j And outputs a user modulation signal.
  • the transmission beam 1 forming section 2 1 3 to the transmission beam J forming section 2 1 3 j receive the output of the user 1 transmission beam switching circuit 2 1 2, to the user L transmission beam switching circuit 2 1 2, and input signals.
  • the transmitting beam 1 forming section 2 13 to the receiving beam J forming section 2 13; are located in front of the antenna 1 wireless transmitting section 2 14, and the antenna K wireless transmitting section 2 14 ⁇ .
  • beamforming is performed on digital signals in the band, it is also possible to use a beamforming method in a wireless band such as a Butler matrix.
  • Antenna 1 Radio transmission unit 2 14, to Antenna K radio transmission unit 2 14 ⁇ is composed of amplifier, band limiting filter, mixer, local oscillator, quadrature modulation, low-pass filter, digital-to-analog converter, etc. Is done.
  • the antenna 1 radio transmission unit 2 14 receives the outputs of the transmission beam 1 forming unit 2 13 to the transmission beam J forming unit 2 1 3 j It performs reception processing such as digital // analog conversion of input signals, quadrature modulation, frequency conversion from baseband to wireless band, signal amplification, and outputs the signals to the transmitting antenna element 2 16.
  • the transmission array antenna 2 15 is composed of K transmission antenna elements 2 16 ⁇ to 2 16. There is no restriction on the directivity in the horizontal and vertical planes of the transmitting antenna element 2 16, up to 2 16 ⁇ alone. Examples are omni (omnidirectional) and dipole (bipolar directivity). No.
  • the K transmitting antenna elements 2 16 i to 2 16 ⁇ are arranged close so that the transmission signals of each antenna element have a correlation.
  • the transmitting array antenna 2 15 has ⁇ receiving antenna elements 2 16, to 2 16 ⁇ arranged close to each other. There is no restriction on the arrangement. For example, half wave of carrier wave Circular arrangement and linear arrangement at long intervals are mentioned.
  • the K transmission antenna elements 2 16 i to 2 16 ⁇ are output from the antenna 1 radio transmission unit 2 14 ⁇ to antenna ⁇ radio transmission unit 2 14 ⁇ , A signal multiplexed with 1 signal to user L signal) is input and transmitted.
  • the conventional multi-beam transmission / reception device shown in Fig. 7 selects a reception beam with a delay path with excellent reception quality from among a plurality of fixed reception beams at the time of reception, and performs reception at the time of transmission. By selecting a transmission beam in the same direction as the group with excellent reception quality from the set of path delay reception beam numbers, and performing transmission, the transmission and reception gain is increased in the desired signal direction, In other directions, beams can be formed to reduce the transmission / reception gain.
  • the problem is that the transmission characteristics deteriorate in the conventional multi-beam antenna transmitting / receiving apparatus as shown in FIG.
  • the reason is that the transmission beam in the same direction as the set of path delay No. with excellent reception quality is selected from the set of path delay ⁇ receive beam number selected at the time of reception. That the transmission beam cannot be selected.
  • a transmission beam in the same direction as the set of path delay reception beam numbers having excellent reception quality is selected from the set of path delay / reception beam number selected during reception.
  • the total reception quality is obtained by calculating (for example, adding) a part or the whole of the reception quality for each multipath component (path delay) included in the reception beam.
  • the optimum transmission beam is a transmission beam in a direction that matches (same as) or is close to a reception beam with excellent total reception quality.
  • the optimum transmission beam is used in a multipath environment. Cannot be selected.
  • Path delay It is assumed that the reception beam selection unit 207 has selected the top two pairs (group, group) for the following four sets of path delay / reception beam numbers.
  • the transmission beam selecting section 209 selects one transmission beam
  • the reception quality of the pair is compared with that of the pair (10> 8).
  • a transmission beam in the same direction as the above is selected.
  • the conventional multi-beam antenna transmitting / receiving device it is impossible to select a truly optimal transmitting beam.
  • An object of the present invention is to provide a multi-beam antenna transmitting / receiving apparatus and a transmitting / receiving method and a transmitting beam selecting method which select an optimal transmitting beam even in a multi-path environment, and have excellent transmission characteristics and channel quality.
  • a multi-beam antenna transmission / reception apparatus of the present invention includes a plurality of reception beams and a plurality of transmission beams, and includes a reception quality of a path delay of a user signal existing in the plurality of reception beams.
  • the transmission beam is selected based on the calculated total reception quality.
  • the reception beam may be selected based on the total reception quality, and the transmission beam having a direction matching or approaching the direction of the selected reception beam may be selected.
  • reception power or SIR Signal to Interference Ratio
  • a receiving array antenna in which a receiving antenna element is arranged; a radio receiving unit that receives an output of the receiving antenna element as an input, performs reception processing on the input signal, and outputs the received signal;
  • a receiving beam forming means for forming a receiving beam by using an output of the radio receiving means as an input; a path delay of a user signal existing in the receiving beam as an input to the receiving beam forming means; To calculate the user
  • User demodulation means for outputting a user number, outputting user reception data using the path delay reception beam number, and user modulation processing means for inputting user transmission data, performing modulation processing, and outputting a user modulation signal
  • a user transmission beam switching unit that inputs the user transmission beam number and the user modulation signal, and outputs the user modulation signal so that a transmission beam corresponding to the user transmission beam number is formed;
  • a transmission beam forming unit that receives an output of the beam switching unit as an input, and forms the transmission beam;
  • a wireless transmission unit that receives an output of the transmission beam forming unit as an input, performs transmission processing of an input signal, and outputs the processed signal;
  • a transmission array antenna having a transmission antenna element for transmitting the output of the transmission means may be provided.
  • the user demodulation unit detects a path delay for each user from an output of the reception beam forming unit, and a reception beam path detection unit that outputs the path delay / reception beam number; and an output of the reception beam path detection unit.
  • the path delay reception beam selection means for selecting the path delay reception beam number used for demodulation from the reception quality of the user signal at the certain path delay Z reception beam number, and the path delay / reception beam selection means Demodulation processing means for performing demodulation using the path delay Z reception beam number; and total reception of user signals for each reception beam from reception quality of the user signal at the path delay reception beam number output from the reception beam path detection means.
  • Receiving beam calculation processing means for calculating reception quality; and It may also be one and a transmission beam selection means for notifying the user transmission beam switching means from the total reception quality of the user signal selecting the transmission beam of each beam Rere.
  • reception beam calculation processing means when calculating the total reception quality of the user signal for each reception beam from the reception quality of the user signal at the path delay / reception beam number which is the output of the reception beam path detection means,
  • the received power may be used as an index of the received quality, and the total received power may be calculated as the total received quality.
  • the reception beam calculation processing means outputs the reception beam path by the output of the reception beam path detection means.
  • the SIR is used as an index of the reception quality
  • the total SIR is calculated as the total reception quality.
  • the total reception quality of the user signal may be calculated for each of the reception beams by using the reception quality at the path delay / reception beam number selected based on the above criterion.
  • the reception beam calculation processing means may include, as the path delay Z reception beam number selected based on the predetermined criterion, the upper P (P is an integer of 2 or more) of the path delays having excellent reception quality.
  • the receiving beam number may be selected.
  • the reception beam calculation processing means may include a maximum of Q (Q is an integer of 2 or more) reception quality that satisfies a predetermined reception quality criterion as the path delay reception beam number selected based on the predetermined criterion.
  • Q is an integer of 2 or more
  • the reception beam calculation processing means uses the path delay / reception beam number selected by the path delay Z reception beam selection means as the path delay reception beam number selected based on the predetermined reference. You may.
  • the multi-beam antenna transmission / reception method of the present invention includes a plurality of reception beams and a plurality of transmission beams, based on a total reception quality calculated from reception qualities of path delays of user signals existing in the plurality of reception beams. And selecting the transmission beam.
  • the reception beam is selected based on the total reception quality, and the transmission beam having a direction matching or approaching the direction of the selected reception beam is selected. You may make it select.
  • reception power or SIR SimultEntrefReRenc eRatio: signal-to-interference power ratio
  • the user modulation signal is input, and a transmission beam corresponding to the user transmission beam number is formed.
  • the user demodulation step includes detecting a path delay for each user from an output of the reception beam forming step, and outputting a path delay / reception beam number; and a reception beam path detection step.
  • a path delay receiving beam number selecting step for selecting the path delay number receiving beam number to be used for demodulation from the reception quality of the user signal at the path delay Z number receiving beam number, which is an output, is notified from the path delay number receiving beam selecting step.
  • a reception beam calculation processing step of calculating a total reception quality of a user signal A transmission beam selection step of selecting the transmission beam from the total reception quality of the user signals for each of the reception beams notified from the frame calculation processing step, and notifying the user of the transmission beam switching step.
  • the reception beam calculation processing step when calculating the total reception quality of the user signal for each reception beam from the reception quality of the user signal at the path delay Z reception beam number output from the reception beam path detection step, The received power may be used as an index of the received quality, and the total received power may be calculated as the total received quality.
  • the reception beam calculation processing step when calculating the total reception quality of the user signal for each reception beam from the reception quality of the user signal at the path delay Z reception beam number output from the reception beam path detection step,
  • the SIR may be used as an index of the reception quality
  • the total SIR may be calculated as the total reception quality.
  • the receiving beam calculation processing step includes: receiving beam path detecting step ( ⁇ calculating the total reception quality of the user signal for each of the reception beams from the reception quality of the user signal at the path delay Z reception beam number that is the output, The total reception quality of the user signal may be calculated for each of the reception beams using the reception quality of the path delay reception beam number selected based on a predetermined criterion.
  • the reception beam calculation processing step may include, as the path delay reception beam number selected based on the predetermined criterion, the upper P (P is an integer of 2 or more) path delay Z reception beams having excellent reception quality. A number may be selected.
  • the reception beam calculation processing step may include: up to Q (Q is an integer of 2 or more) whose reception quality satisfies a predetermined reception quality criterion as the path delay reception beam number selected based on the predetermined criterion. , The path delay Z of the received beam number may be selected.
  • the reception beam calculation processing step uses the path delay / reception beam number selected in the path delay reception beam selection step as the path delay reception beam number selected based on the predetermined reference. You may.
  • Calculating a total reception quality by adding a value of the reception quality for each path delay of the user signal to each of the reception beams; selecting a reception beam having excellent total reception quality; Selecting a transmission beam having a direction matching or approaching the direction of the received reception beam.
  • the transmission beam selection method of the present invention selects a transmission beam based on the total reception quality calculated from the reception quality of the path delay of the user signal existing in the reception beam. It is characterized by the following.
  • the reception beam may be selected based on the total reception quality, and a transmission beam having a direction matching or approaching the direction of the selected reception beam may be selected.
  • a base station according to the present invention includes the above-described multi-beam antenna transmitting / receiving apparatus. Further, a mobile station according to the present invention includes the above-described multi-beam antenna transmitting / receiving device.
  • FIG. 1 is a block diagram showing an embodiment of a multi-beam antenna transmitting / receiving apparatus according to the present invention.
  • FIG. 2 is an explanatory diagram of transmission beam selection.
  • Figure 3 shows the reception quality table.
  • Figure 4 is a beam number comparison table.
  • FIG. 5 is a flowchart of the multi-beam antenna transmission / reception method of the present invention.
  • FIG. 6 is a flowchart of a user demodulation step of the multibeam antenna transmission / reception method of the present invention.
  • FIG. 7 is a block diagram showing an embodiment of a conventional multi-beam antenna transmitting / receiving apparatus. Detailed description of the embodiment
  • the number of users is L (L is an integer of 1 or more)
  • the number of receiving antenna elements is N (N is an integer of 1 or more)
  • the number of receive beams is M (M is an integer of 1 or more)
  • transmission is performed.
  • the number of beams is J (J is an integer of 1 or more)
  • the number of transmitting antenna elements is K (K is an integer of 1 or more). Therefore, the number of users is user 1 to user L, and there are L user signals, which are user 1 signal to user L signal.
  • the receive beams are receive beam 1 to receive beam M, and the transmit beam is transmit beam 1 to transmit beam J.
  • a multi-beam antenna transmitting / receiving apparatus includes a receiving array antenna 101, a receiving antenna element l OSil OSN constituting the receiving array antenna 101, and receiving antenna elements 102, to 102N.
  • antenna 1 wireless receiving section 103 to antenna N wireless receiving section 103 N (also called wireless receiving section 103), receiving beam 1 forming section 104, to receiving beam M forming section 104 M (receiving beam forming section 104
  • User 1 demodulation block 105 i to user L demodulation block 105 also referred to as user demodulation block 105) and user 1 modulation processing unit 1 1 1 i to user L modulation processing unit 1 1 (user modulation Processing section 1 1 1)
  • user 1 transmission beam switching circuit 1 1 2 to user L transmission beam switching circuit 1 1 2 L also referred to as user transmission beam switching circuit 1 1 2
  • transmission beam 1 forming section 1 1 3 ⁇ Transmission beam J formation 1 1 3; (also referred to as transmission beam forming unit 113), and antennas corresponding to transmission antenna elements 1 16, to 1 16 ⁇ 1 radio transmission unit 1 14 i to antenna K radio transmission unit 1 14 ⁇ (radio transmission unit 1 14), a transmitting antenna element 1 16 i to l 16 ⁇ corresponding to the radio transmit
  • the directivity in the horizontal plane and in the vertical plane of the receiving antenna element 102 t to 102 N there is no limitation on the directivity in the horizontal plane and in the vertical plane of the receiving antenna element 102 t to 102 N alone, and examples include omni (omnidirectional) and dipole (dipole directivity).
  • N receiving antenna elements 102, to 1 02 N the received signal is arranged in close proximity so as to have a correlation.
  • the receiving array antenna 101, receiving antenna elements 102, be disposed in proximity is to 102 N, the receiving antenna elements 1 02, to 1 02 N number of, and are not limited to how the arrangement.
  • Examples of the arrangement method include a circular arrangement and a linear arrangement at half wavelength intervals of carrier waves.
  • the receiving antenna elements 1 02 signals received by T ⁇ l 02 N contains desired user signal component and a plurality of interfering signal components, and thermal noise. Furthermore, there are multiple multipath components for each of the desired user signal component and the interference signal component. Usually, these signal components (desired user signal components including multipath components and interference signal components) come from different directions. Therefore, there are a plurality of sets of the path delay / received beam number of the desired user signal.
  • Antenna 1 Wireless receiver 103 t ⁇ Antenna N Wireless receiver 103 N has low noise It consists of an amplifier, a band-limiting filter, a mixer, a local oscillator, an automatic gain controller (AGC), a quadrature detector, a low-pass filter, and an analog / digital converter.
  • AGC automatic gain controller
  • the antenna 1 wireless receiving unit 103 receives the output of the receiving antenna element 102, amplifies the input signal, and sets the frequency from the wireless band to the base band. It performs reception processing such as conversion, quadrature detection, and analog-to-digital conversion, and outputs it to the receive beam 1 forming unit 104i to the receive beam M forming unit 104M.
  • Receive beam 1 forming part 104! ⁇ Reception beam M forming unit 104M receives the output of the antenna 1 radio reception section 103 i to antenna N radio receiving unit 103 N, and against the input signal for each reception beam forming unit 104 A different fixed reception beam is formed and output to the user 1 demodulation block 105i to the user L demodulation block 105L.
  • the reception in Figure 1 beam 1 forming part 104, - receiving the beam M forming unit 1 04M is in the subsequent stage of the antenna 1 radio reception section 103 i to antenna N radio receiving section 1 03 N, pairs into a digital signal of baseband
  • beam forming is performed, a beam forming method in a wireless band such as a Butler matrix can be used.
  • the receiving beam 1 forming section 104, to the receiving beam M forming section 104M receive the receiving beam for the input signal including all the user signal (user 1 signal to user signal) components and the multipath component of the user signal.
  • a different fixed reception beam is formed for each forming section 104, and an input signal is separated for each direction of arrival.
  • User 1 transmission beam number to user L transmission beam number User transmission beam number
  • user 1 received data to user L received data user received data
  • the user 1 demodulation block 105 and the user 1 demodulation block 105 of the user L demodulation block 105 ⁇ will be described as an example.
  • the user 1 demodulation block 105 receives the outputs of the reception beam 1 forming section 104 and the reception beam M forming section 104 as inputs and outputs the user 1 transmission beam number and the user 1 reception data.
  • Receive beam 1 path detector 1 06 - reception beam M path detector 106 M receives the output of the ⁇ reception beam M forming unit 104, the path of the user signals at the respective input signal The delay is detected, the reception quality of the user signal at the detected path delay is measured, and the path delay Z reception beam number and the like are determined by the path delay Z reception beam selection section 107 and reception beam 1 calculation processing section 108 to reception beam M calculation processing. Output to the control unit 08.
  • a user 1 signal to a user L signal are multiplexed on each input signal, and a multipath component of each user signal due to a propagation delay is multiplexed.
  • reception quality index examples include reception power (including reception level, reception electric field strength, etc.;) and SIR (Signal to Interference Ratio).
  • SI NR Signal-to-interference power + noise power ratio
  • SNR Signal-to-noise ratio
  • the reception beam 1 path detection section 106 to the reception beam M path detection section 106 uses only known symbols (such as pilot symbols) of the user signal to detect the path and the reception quality of the user signal in the path delay related to the detected path. It is also possible to make measurements.
  • the path delay reception beam selection unit 107 receives the reception beam 1 path detection unit 106, Beam M path detection unit 106 Receives user signal reception quality information at path delay / reception beam number output from 106 M, and sets path delay reception beam number used for demodulation based on user signal reception quality. And outputs the selected set of path delay / received beam number to the demodulation processing unit 110.
  • the method of selecting a set of path delay reception beam numbers used for demodulation there is no limitation on the method of selecting a set of path delay reception beam numbers used for demodulation.
  • B is an integer of 2 or more
  • Receive beam 1 calculation processing unit 108 t ⁇ Receive beam M calculation processing unit 108 M is a receive beam 1 path detection unit 106 corresponding to each reception beam, ⁇ reception beam M path detection unit 106 M
  • the path delay which is the output of the system, receives the reception quality information of the user signal at the reception beam number as input, calculates the total reception quality of the user signal for each reception beam, Are output to the transmission beam selection unit 109.
  • the total reception quality is obtained by calculating (for example, adding) a part or the whole of the reception quality for each multipath component (path delay) included in the reception beam.
  • an index of the total reception quality of the user signal calculated for each reception beam there is a method of using the reception power of the user signal at the path delay / reception beam number notified for each reception beam.
  • an index of the total reception quality of the user signal calculated for each reception beam a method using the SIR of the user signal at the path delay reception beam number notified for each reception beam can be cited.
  • the present invention also includes a method of calculating the total reception quality of the user signal for each reception beam using only the reception quality of the user signal at the reception beam number selected based on the path delay.
  • the upper P (P is an integer of 2 or more) path delay reception beam numbers with excellent reception quality of the user signal are used as the path delay Z reception beam number selected based on a certain criterion.
  • Method as the path delay beam number selected based on a certain criterion, up to Q (Q is an integer of 2 or more) path delay beam reception beams whose user signal reception quality satisfies the certain reception quality criterion. There is a method using a number.
  • a method using the path delay reception beam number selected by the path delay reception beam selector 107 as the path delay reception beam number selected based on a certain criterion may be used.
  • the transmission beam selection unit 109 receives the reception beam number output from the reception beam 1 calculation processing unit 108 to the reception beam M calculation processing unit 108 and the total reception quality information of the user signal in the reception beam.
  • user 1 transmit beam number to user L transmit beam number (user transmit beam number) that has a direction matching or approaching the receive beam number with excellent total reception quality
  • User 1 transmit beam switching circuit 1 1 2 Output to The demodulation processing unit 110 receives as input the reception quality information of the user signal at the path delay Z reception beam number output from the path delay reception beam selection unit 107, and based on the input path delay reception beam number. To perform demodulation processing and output user 1 received data.
  • User 1 modulation processing section 1 1 1 1 ′ to user L modulation processing section 1 1 1 L receives user 1 transmission data to user L transmission data (user transmission data) as input, performs modulation processing, and performs user 1 modulation signal to User 1 transmit beam switching circuit for user L modulation signal (user modulation signal) 1 1 2! ⁇ ⁇ ⁇ Output to the user L transmission beam switching circuit.
  • the user 1 transmission beam switching circuit 1 1 2, to the user L transmission beam switching circuit 1 1 2 L is a user 1 transmission beam number which is an output of the transmission beam selection unit 109 for each user (user 1 to user L).
  • the transmission beam forming unit 113 corresponding to the user transmission beam number for each user is selected from the units 113 to transmission beam J forming unit 113 to output a user modulated signal.
  • the transmit beam 1 forming unit 1 13 to transmit beam J forming unit 1 13 receives the output of the user 1 transmit beam switching circuit 1 1 2 to the user L transmit beam switching circuit 1 1 2 ,
  • the transmission beam 1 forming unit 1 3 ⁇ transmission beam J forming unit 1 1 3 A different fixed transmission beam is formed and output to antenna 1 wireless transmission section 114, to antenna K wireless transmission section 114 ⁇ .
  • the transmitting beam 1 forming unit 1 13, to the receiving beam J forming unit 1 13 are located in front of the antenna 1 wireless transmitting unit 1 14 i to the antenna K wireless transmitting unit 1 14 ⁇ ,
  • a beamforming method in a wireless band such as a Butler matrix may be used.
  • Antenna 1 wireless transmitter 1 1 -4 to antenna K wireless transmitter 1 1 14 ⁇ is composed of amplifier, band limiting filter, mixer, local oscillator, quadrature modulation, low-pass filter, digital-to-analog converter, etc.
  • the antenna 1 wireless transmission section 1 14 i takes the antenna 1 wireless transmission section 1 14 i as an example, the antenna 1 wireless transmission section 1 14 i outputs the output of the transmission beam 1 forming section 1 13 i to the transmission beam J forming section 1 13. And performs transmission processing such as digital Z-analog conversion, quadrature modulation, frequency conversion from baseband to wireless band, and signal amplification of the input signal, and outputs it to the transmission antenna element 116.
  • the transmission array antenna 1 15 is composed of ⁇ transmission antenna elements 1 16, to 1 16 ⁇ .
  • the transmitting antenna elements 1 16 to 1 16 ⁇ are arranged close so that the signals to be transmitted have a correlation.
  • there is no particular limitation on the arrangement of the transmission antenna 1115 as long as the transmission antenna elements 1116 and 1116k are arranged close to each other. Examples include a circular arrangement and a linear arrangement at half-wavelength intervals of carrier waves.
  • the transmitting antenna elements 1 16 i to l 16 ⁇ have the antenna 1 radio transmitting unit 1 14, to the antenna K radio transmitting unit 1 14 ⁇ , and the user signals from the respective transmitting beams are multiplexed. Sends a signal as input.
  • Fig. 2 is an explanatory diagram of transmission beam selection, focusing on the components required for the explanation.
  • Fig. 3 shows the reception quality table
  • Fig. 4 shows the beam number comparison table. The operation of transmitting beam selection when the user number is 1 and the receiving beam numbers are 1 and 2 will be described in detail.
  • FIG. 2 shows the receive beam 1 to the receive beam M (receive beam), here, the description will be made assuming that only the receive beam 1 and the receive beam 2 are provided.
  • the reception beam calculation processing unit 108 calculates (for example, adds) the total reception quality from the reception quality of the user 1 signal for each of the reception beams 1 and 2 as shown in FIG.
  • the reception beam number and the total reception quality information of the user 1 signal for each reception beam are output to the transmission beam selection unit 109.
  • the transmission beam selection unit 109 selects 2 as the reception beam number because the reception beam having the excellent total reception quality is the reception beam 2.
  • 1 is selected as the transmission beam number corresponding to the direction matching or approaching the reception beam 2.
  • the user 1 transmit beam number is set to 1 and output to the user 1 transmit beam switching circuit 112.
  • the user 1 transmit beam switching circuit 1 1 switches to the transmit beam 1 forming section 1 13, which forms the transmit beam 1, and the user 1 transmit data of user 1 is radiated by the formed transmit beam 1.
  • the multi-beam antenna transmitting / receiving apparatus of the present invention can be used for a base station and a mobile station constituting a mobile communication system.
  • FIG. 5 is a flowchart showing the multi-beam antenna transmission / reception method of the present invention.
  • FIG. 6 is a flowchart showing a user demodulation step of the multibeam antenna transmission / reception method of the present invention.
  • the multi-beam antenna transmission / reception method will be described below with reference to FIGS.
  • the wireless receiving step S1 is performed by the antenna 1 wireless receiving unit 103, to the antenna N wireless receiving unit 103N.
  • a reception beam is formed using the output of the radio reception step S1 as an input (reception Beam forming step S 2).
  • the receiving beam forming step S2 is performed by the receiving beam 1 forming unit 104i to the receiving beam M forming unit 104M.
  • the user demodulation step S3 is based on the user 1 demodulation block 105 to the user L demodulation block 105.
  • the user transmission data is input, modulation processing is performed, and a user modulation signal is output (user modulation processing step S4).
  • the user modulation processing step S4 is performed by the user modulation processing unit 111 to the user modulation processing unit 111.
  • a user transmission beam number and a user modulation signal are input, and a user modulation signal is output so that a transmission beam corresponding to the user transmission beam number is formed (user transmission beam switching step S5).
  • This user transmission beam switching step S5 is performed by the user 1 transmission beam switching circuit 1 1 2 to the user L transmission beam switching circuit 1 1 2.
  • the output of the user transmission beam switching step S5 is input and a transmission beam is formed (transmission beam forming step S6).
  • the transmission beam forming step S6 is performed in the transmission beam 1 forming section 1 1 3! ⁇ Based on the transmission beam J forming unit 1 1 3 j.
  • the output of the transmission beam forming step S6 is input, the input signal is subjected to transmission processing such as digital / analog conversion, quadrature modulation, frequency conversion, amplification, etc., and output to the transmission antenna element (wireless transmission step S7).
  • This wireless transmission step S7 is performed by the antenna 1 wireless transmission section 114, the antenna K wireless transmission section 114 ⁇ , and the transmission array antenna 115.
  • a path delay for each user is detected from the output of the reception beam forming step S2, and path delay / reception beam number and the like are output.
  • reception beam path detection step S31 The reception beam path detection step S31 is performed by the reception beam 1 path detection unit 106, to the reception beam ⁇ path detection unit 106M.
  • a path delay reception beam number used for demodulation is selected from the reception quality information of the user signal at the path delay reception beam number output from the reception beam path detection step S31 (path delay reception beam selection step S32).
  • path delay reception beam selection step S32 is performed by the path delay / reception beam selection unit 107.
  • demodulation is performed using the path delay Z reception beam number notified from the path delay reception beam selection step S32 (demodulation processing step S33).
  • the demodulation processing step S33 is performed by the demodulation processing unit 110.
  • reception beam calculation processing step S34 is performed by the reception beam 1 calculation processing section 108! ⁇ Receiving beam M calculation processing unit
  • a transmission beam is selected from the total reception quality information of the user signals for each reception beam notified from the reception beam calculation processing step S34, and is notified to the user transmission beam switching step S5 (the transmission beam selection step S3 Five ) .
  • the transmission beam selection step S35 is performed by the transmission beam selection unit 109.
  • the total reception quality of the user signal for each reception beam is obtained from the reception quality information of the user signal at the path delay / reception beam number output from the reception beam path detection step S31.
  • the received power is used as an index of the received quality, and the total received power is calculated as the total received quality.
  • the total reception quality of the user signal for each reception beam is calculated from the reception quality information of the user signal at the path delay Z reception beam number output from the reception beam path detection step S31.
  • SIR is used as an index of reception quality
  • total SIR is calculated as total reception quality.
  • the total reception quality of the user signal is calculated for each reception beam from the reception quality information of the user signal at the path delay reception beam number output from the reception beam path detection step S31. At this time, the total reception quality of the user signal is calculated for each reception beam using only the reception quality of the user signal at the path delay reception beam number selected based on a certain criterion.
  • the path delay / reception of the upper P (P is an integer of 2 or more) path delay / reception with excellent reception quality of the user signal at the reception beam number selected based on a predetermined criterion. Select a beam number. Further, in the reception beam calculation processing step S34, the maximum reception quality of the user signal at the path delay reception beam number selected based on the predetermined criterion satisfies the predetermined reception quality criterion (Q is an integer of 2 or more. Select the path delay reception beam number up to).
  • the path delay Z reception beam number selected by the path delay Z reception beam selection unit is used as the path delay / reception beam number selected based on a predetermined criterion.
  • the total reception quality of the user signals (user 1 signal to user L signal) for each reception beam (reception beam 1 to reception beam M) is calculated, and the same direction or proximity to the reception beam having the excellent total reception quality is calculated. Since the transmission beam in the direction is selected, the optimal transmission beam can be selected even in a multipath environment. Therefore, it has excellent transmission characteristics and excellent uplink and downlink or downlink line quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

明 細 書 マルチビームアンテナ送受信装置及び送受信方法並びに送信ビーム選択方法 発明の背景
本発明はアンテナ指向性制御により、 他ユーザ干渉を抑圧するアレーアンテナ 送受信装置に関し、 特に複数の固定指向性パターン (マルチビーム) から送受信 指向性を選択するマルチビームアンテナ送受信装置及び送受信方法並びに送信ビ ーム選択方法に関する。
セルラ移動通信システムなどにおいて、 信号の高速/高品質化、 加入者容量の 増大を目指し、 複数のアンテナ素子から成るアレーアンテナ送受信装置を用いて、 希望信号方向に対しては送受信利得を大きく し、 その他の方向に対しては送受信 利得を小さくするような指向性パターン (ビーム) を形成する方式が検討されて いる。 複数の固定指向性パターン (マルチビーム) から送受信ビームを選択する マルチビーム方式は、 その一方式である。
この種のマルチビームアンテナ送受信装置では、 例えば 「無線基地局のマルチ ビームアンテナシステム」 (特開平 1 1 _ 2 6 6 2 2 8号公報) に開示されてい るように、 受信時には複数の固定受信ビームの中から受信品質の優れた遅延パス の存在する受信ビームを選択して受信を行い、 送信時には受信時に選択したパス 遅延 Z受信ビーム番号の組の中から、 受信品質の優れた組と同一方向の送信ビー ムを選択して送信を行う。
図 7は、 従来のマルチビームアンテナ送受信装置の一例を示すブロック図であ る。 従来のマルチビームアンテナ送受信装置は、 受信アレーアンテナ 2 0 1と、 受信アンテナ素子 2 0 2 , 2 0 2 Nに対応するアンテナ 1無線受信部 2 0 3 ,〜ァ ンテナ N無線受信部 2 0 3 Nと、 受信ビーム 1形成部 2 0 4 >〜受信ビーム M形成 部 2 0 4 M (受信ビーム形成部 2 0 4とも称す) と、 ユーザ 1復調ブロック 2 0 5 i〜ユーザ L復調ブロック 2 0 5 (ユーザ復調ブロック 2 0 5とも称す) と、 ュ ザ 1変調処理部 2 1 1 ーザ L変調処理部 2 1 1 と、 ユーザ 1送信ビーム 切替回路 21 2 ,〜ユーザ L送信ビーム切替回路 2 1 2,.と、 送信ビーム 1形成部 2 1 3 i〜送信ビーム J形成部 21 3」と、 送信アンテナ素子 21 6 i〜21 6κに 対応するアンテナ 1無線送信部 214 ,〜アンテナ Κ無線送信部 2 14κと、 送信 アレーアンテナ 21 5とから構成される。
受信アレーアンテナ 20 1は、 Ν個の受信アンテナ素子 202 i〜202Nから 構成される。 受信アンテナ素子 202 !〜202 Nのアンテナ素子単体での水平面 内および垂直面内指向性に制限はなく、 例としてはォムニ (無指向性) 、 ダイポ ール (双極指向性) が挙げられる。 N個の受信アンテナ素子 202 »〜202Nは、 各々のアンテナ素子の受信信号が相関を有するように近接して配置される。 ここ で、 受信アレーアンテナ 201は、 N個の受信アンテナ素子 202 i〜202Nが 近接して配置されていれば、 受信アンテナ素子の数、 および配置の仕方に制限は ない。 配置の仕方の例としては搬送波の半波長間隔の円状配置、 線状配置が挙げ られる。
N個の受信アンテナ素子 202 i〜202Nによって受信された各信号には、 希 望ユーザ信号成分と複数の干渉信号成分、 及び熱雑音が含まれている。 さらに希 望ユーザ信号成分、 干渉信号成分それぞれに複数のマルチパス成分が存在する。 通常、 これらの信号成分 (希望ユーザ信号成分、 干渉信号成分) は異なる方向か ら到来する。 そのため、 希望ユーザ信号のパス遅延と受信ビーム番号 (パス遅延 Z受信ビーム番号) の組は複数存在する。
アンテナ 1無線受信部 203 ,〜アンテナ N無線受信部 203Nは、 ローノイズ アンプ、 帯域制限フィルタ、 ミキサ、 局部発振器、 AGC (Au t o Ga i n
C o n t r o l l e r) 、 直交検波器、 低域通過フィルタ、 アナログ デイジ タル変換器などから構成される。 ここで、 アンテナ 1無線受信部 203 ,を例にと ると、 アンテナ 1無線受信部 203 ,は、 受信アンテナ素子 202 ,の出力を入力 とし、 入力信号の増幅、 無線帯域から基底帯域への周波数変換、 直交検波、 アナ 口グ /ディジタル変換などの受信処理を行い、 受信ビーム 1形成部 204 ,〜受信 ビーム M形成部 204Mへと出力する。
受信ビーム 1形成部 204 ,〜受信ビーム M形成部 204 Mは、 アンテナ 1無線 受信部 203 ,〜アンテナ N無線受信部 203 Nの出力を入力とし、 入力信号に対 して受信ビーム形成部毎に異なる固定受信ビームを形成し、 ユーザ 1復調プロッ ク 2 0 5 ,〜ユーザ L復調ブロック 2 0 5 へと出力する。 固定受信ビームの数、 形状、 および固定受信ビームの形成方法に制限はなく、 固定受信ビームの形状の 例としては直交マルチビームがあり、 固定受信ビームの形成方法の例としてはデ ィジタル演算により各入力信号に固定複素ビーム重みを乗じ総和を求める手法
(ディジタルビームフォーミング) が挙げられる。 また、 図 7では受信ビーム 1 形成部 2 0 4!〜受信ビーム M形成部 2 0 4 Mがアンテナ 1無線受信部 2 0 3 ,〜ァ ンテナ N無線受信部 2 0 3 Nの後段にあり、 基底帯域のディジタル信号に対してビ —ム形成を行っているが、 ノくトラーマトリクス等の無線帯域におけるビーム形成 法を用いることも可能である。
受信ビーム 1形成部 2 0 4 〜受信ビーム M形成部 2 0 4 Mは、 すべてのユーザ 信号 (ユーザ 1信号〜ユーザ L信号) 成分とユーザ信号のマルチパス成分を含ん だ状態の入力信号に対して、 受信ビーム形成部 2 0 4毎に異なる固定受信ビーム を形成して、 到来方向毎に入力信号を分離する。
ユーザ 1復調プロック 2 0 5 i〜ユーザ L復調ブロック 2 0 5 は、 受信ビーム 1パス検出部 2 0 6 ,〜受信ビーム Mパス検出部 2 0 6 Mと、 パス遅延ノ受信ビー ム選択部 2 0 7と、 送信ビーム選択部 2 0 9と、 復調処理部 2 1 0とから構成さ れる。
ユーザ 1復調ブロック 2 0 5 ,〜ユーザ L復調ブロック 2 0 5 は、 ユーザ毎に 対応してユーザ 1受信データ〜ユーザ L受信データ (ユーザ受信データ) を出力 する。 ユーザ復調ブロック 2 0 5それぞれの機能は同一なので、 以下、 ユーザ 1 復調プロック 2 0 5 ,を例に挙げて説明する。
ユーザ 1復調ブロック 2 0 5 'は、 受信ビーム 1形成部 2 0 4 ,〜受信ビーム M 形成部 2 0 4 Mの出力を入力とし、 ユーザ 1送信ビーム番号とユーザ 1受信データ とを出力する。
受信ビーム 1パス検出部 2 0 6 ,〜受信ビーム Mパス検出部 2 0 6 Mは、 受信ビ ーム 1形成部 2 0 4 ,〜受信ビーム M形成部 2 0 4 Mの出力を入力とし、 それぞれ の入力信号におけるユーザ信号のパス遅延を検出し、 検出したパス遅延における ユーザ信号の受信品質を測定して、 パス遅延/受信ビーム選択部 2 0 7へと出力 する。 ここで、 それぞれの入力信号にはユーザ 1信号〜ユーザ L信号が多重され、 さらに伝搬遅延による各ユーザ信号のマルチパス成分が多重されている。
受信ビーム 1パス検出部 2 0 6 〜受信ビーム Mパス検出部 2 0 6 は、 ユーザ 信号の既知のシンボル (パイロットシンボル等) のみを用いて、 パス検出および 検出したパス遅延におけるユーザ信号の受信品質の測定を行うことも可能である。 パス遅延ノ受信ビーム選択部 2 0 7は、 受信ビーム 1パス検出部 2 0 6 >〜受信 ビーム Mパス検出部 2 0 6 の出力であるパス遅延ノ受信ビーム番号におけるユー ザ信号の受信品質情報を入力とし、 ユーザ信号の受信品質に基づいて復調に用い るパス遅延 受信ビーム番号の組を選択して、 選択したパス遅延/受信ビーム番 号におけるユーザ信号の受信品質情報を送信ビーム選択部 2 0 9と復調処理部 2 1 0へと出力する。
送信ビーム選択部 2 0 9は、 パス遅延 受信ビーム選択部 2 0 7の出力である パス遅延ノ受信ビーム番号におけるユーザ信号の受信品質情報を入力とし、 受信 品質の優れた遅延パスの存在する受信ビームと同一方向の送信ビーム番号をユー ザ 1送信ビーム切替回路 2 1 2 >へと出力する。
一般に、 復調に用いるパス遅延 Z受信ビーム番号の組の数よりも、 選択される 送信ビームの数は少ない。 送信ビームの数が 1という場合も多い。 理由は、 複数 ビームでの送信による他ユーザへの干渉を低減するためである。
復調処理部 2 1 0は、 パス遅延/受信ビーム選択部 2 0 7の出力であるパス遅 延 /受信ビーム番号におけるユーザ信号の受信品質情報を入力とし、 入力された パス遅延 受信ビーム番号に基づいて復調処理を行い、 ユーザ 1受信データを出 力する。
ユーザ 1変調処理部 2 1 1 '〜ユーザ L変調処理部 2 1 1 ijま、 それぞれユーザ 1送信データ〜ユーザ L送信データ (ユーザ送信データ) を入力とし、 変調処理 を行い、 ユーザ 1送信ビーム切替回路 2 1 2 ,〜ユーザ L送信ビーム切替回路 2 1 2 へと出力する。
ユーザ 1送信ビーム切替回路 2 1 2 !〜ユーザ L送信ビーム切替回路 2 1 2しは、 ユーザ毎の送信ビーム選択部 2 0 9の出力であるユーザ 1送信ビーム番号〜ユー ザ L送信ビーム番号と、 ユーザ 1変調処理部 2 1 1 〜ユーザ L変調処理部 2 1 1 しの出力であるユーザ変調信号とを入力とし、 送信ビーム 1形成部 2 1 3,〜送信 ビーム J形成部 2 1 3 jの中からユーザ毎の送信ビーム番号に相当する送信ビーム 形成部を選択してユーザ変調信号を出力する。
送信ビーム 1形成部 2 1 3 〜送信ビーム J形成部 2 1 3 jは、 ユーザ 1送信ビ —ム切替回路 2 1 2 ,〜ユーザ L送信ビーム切替回路 2 1 2 の出力を入力とし、 入力信号に対して送信ビーム 1形成部 2 1 3!〜送信ビーム J形成部 2 1 3』毎に 異なる固定送信ビームを形成し、 アンテナ 1無線送信部 2 1 4 ,〜アンテナ K無線 送信部 2 1 4 κへと出力する。 固定送信ビームの数、 形状、 および固定送信ビーム の形成方法に制限はなく、 固定送信ビームの形状の例としては直交マルチビーム、 固定送信ビームの形成方法の例としてはディジタル演算により各入力信号に固定 複素ビーム重みを乗じる手法 (ディジタルビームフォーミング) が挙げられる。 また、 図 7では送信ビーム 1形成部 2 1 3 〜受信ビーム J形成部 2 1 3 ;がアン テナ 1無線送信部 2 1 4 ,〜アンテナ K無線送信部 2 1 4 κの前段にあり、 基底帯 域のディジタル信号に対してビーム形成を行っているが、 バトラーマトリクス等 の無線帯域におけるビーム形成法を用いることも可能である。
アンテナ 1無線送信部 2 1 4 ,〜アンテナ K無線送信部 2 1 4 κは、 アンプ、 帯 域制限フィルタ、 ミキサ、 局部発振器、 直交変調、 低域通過フィルタ、 ディジタ ル Ζアナログ変換器などから構成される。 ここで、 アンテナ 1無線送信部 2 1 4 ,を例にとると、 アンテナ 1無線送信部 2 1 4 は、 送信ビーム 1形成部 2 1 3 〜 送信ビーム J形成部 2 1 3 jの出力を入力とし、 入力信号のディジタル/ /アナログ 変換、 直交変調、 基底帯域から無線帯域への周波数変換、 信号の増幅などの受信 処理を行い、 送信アンテナ素子 2 1 6 ,へと出力する。
送信アレーアンテナ 2 1 5は、 K個の送信アンテナ素子 2 1 6 ι〜2 1 6 から 構成される。 送信アンテナ素子 2 1 6 ,〜2 1 6 κのアンテナ素子単体での水平面 内および垂直面内指向性に制限はなく、 例としてはォムニ (無指向性) 、 ダイポ ール (双極指向性) が挙げられる。 K個の送信アンテナ素子 2 1 6 i〜2 1 6 κは、 各々のアンテナ素子の送信信号が相関を有するように近接して配置される。 ここ で、 送信アレーアンテナ 2 1 5は、 Κ個の受信アンテナ素子 2 1 6 ,〜2 1 6 κが 近接して配置されていれば。 配置の仕方に制限はない。 例としては搬送波の半波 長間隔の円状配置、 線状配置が挙げられる。
K個の送信アンテナ素子 2 1 6 i〜2 1 6 κは、 アンテナ 1無線送信部 2 1 4丄〜 アンテナ Κ無線送信部 2 1 4 κの出力であるそれぞれの送信ビームによるユーザ信 号 (ユーザ 1信号〜ユーザ L信号) が多重された信号を入力とし、 送信を行う。 図 7に示した従来のマルチビーム送受信装置は、 受信時には複数の固定受信ビ ームの中から受信品質の優れた遅延パスの存在する受信ビームを選択して受信を 行い、 送信時には受信時に選択したパス遅延ノ受信ビーム番号の組の中から、 受 信品質の優れた組と同一方向の送信ビームを選択して送信を行うことで、 希望信 号方向に対しては送受信利得を大きくし、 その他の方向には送受信利得を小さく するようなビームを形成することができる。
問題点は、 図 7に示したような従来のマルチビームアンテナ送受信装置では、 送信特性が劣化する、 ということである。 その理由は、 受信時に選択したパス遅 延 Ζ受信ビーム番号の組の中から、 受信品質の優れたパス遅延ノ受信ビーム番号 の組と同一方向の送信ビームを選択するため、 マルチパス環境において最適な送 信ビームを選択できないことにある。 マルチパス環境下では、 ユーザ信号成分に は複数のマルチパス成分が存在する。 通常、 これらの信号成分は異なる方向から 到来するので、 それぞれの受信ビームに複数のマルチパス成分が含まれる。
ここで、 従来のマルチビームアンテナ送受信装置では、 受信時に選択したパス 遅延 Ζ受信ビーム番号の組の中から、 受信品質の優れたパス遅延 受信ビーム番 号の組と同一方向の送信ビームを選択するが、 受信ビーム毎の総受信品質を比較 した場合、 選択した受信ビームとは別の受信ビームの方が総受信品質に優れる場 合が起こり うる。 ここで、 総受信品質とは、 受信ビームに含まれるマルチパス成 分 (パス遅延) 毎の受信品質の部分又は全体を計算 (例えば、 加算) したもので ある。 最適な送信ビームは、 総受信品質の優れた受信ビームと合致 (同一) する 方向又は近接する方向の送信ビームであり、 従来のマルチビームァンテナ送受信 装置では、 マルチパス環境下において最適な送信ビームを選択できないことにな る。
以下、 具体的に数値を示して説明するが、 本発明は、 この数値に限定されるも のではない。 パス遅延 受信ビーム選択部 207が、 以下の 4つのパス遅延/受信ビーム番 号の組に対して、 上位 2つの組 (組ィ、 組口) を選択したとする。
組ィ (パス遅延ィ/受信ビーム 1) の受信品質: 10
組口 (パス遅延ロ 受信ビーム 2) の受信品質: 8
組ハ (パス遅延ハ/受信ビーム 2) の受信品質: 5
組二 (パス遅延ニノ受信ビーム 1) の受信品質: 1
その際、 図 7に示す従来のマルチビームアンテナ送受信装置では、 送信ビーム 選択部 209が 1つの送信ビームを選択すると、 組ィと組口の受信品質を比較し て (10>8) 受信ビーム 1と同一方向の送信ビームを選択してしまう。 しかし、 受信ビーム毎の受信品質を計算して求めた総受信品質は受信ビーム 2の方が優れ ており (受信ビーム 1の総受信品質 = 10 + 1 <受信ビーム 2の総受信品質 = 8 + 5) 、 従来のマルチビームアンテナ送受信装置では、 本当に最適な送信ビーム を選択できないことになる。 発明の概要
本発明の目的は、 マルチパス環境においても最適な送信ビームを選択し、 送信 特性及び回線品質の優れたマルチビームアンテナ送受信装置及び送受信方法並び に送信ビーム選択方法を提供することにある。
上記の目的を達成するために、 本発明のマルチビームアンテナ送受信装置は、 複数の受信ビームと複数の送信ビームとを備え、 前記複数の受信ビームに存在す るユーザ信号のパス遅延の受信品質から計算した総受信品質に基づいて、 前記送 信ビームを選択することを特徴とする。
ここで、 前記総受信品質に基づいて前記受信ビームを選択し、 選択された前記 受信ビームの方向に合致する方向又は近接する方向を有する前記送信ビームを選 択するようにしてもよレ、。
また、 前記受信品質の指標として受信電力又は S I R (S i g n a l t o I n t e r f e r e n c e Ra t i o :信号対干渉電力比) を用いてもよい。 また、 受信アンテナ素子を配置した受信アレーアンテナと、 前記受信アンテナ 素子の出力を入力とし、 入力した信号を受信処理して出力する無線受信手段と、 前記無線受信手段の出力を入力として受信ビームを形成する受信ビーム形成手段 と、 前記受信ビーム形成手段の出力を入力とし、 前記受信ビームに存在するユー ザ信号のパス遅延 受信ビーム番号における総受信品質を計算してユーザ送信ビ
—ム番号を出力し、 前記パス遅延 受信ビーム番号を用いてユーザ受信データを 出力するユーザ復調手段と、 ユーザ送信データを入力し、 変調処理を行ってユー ザ変調信号を出力するユーザ変調処理手段と、 前記ユーザ送信ビーム番号及び前 記ユーザ変調信号を入力し、 前記ユーザ送信ビーム番号に相当する送信ビームが 形成されるように前記ユーザ変調信号を出力するユーザ送信ビーム切替手段と、 前記ユーザ送信ビーム切替手段の出力を入力とし、 前記送信ビームを形成する送 信ビーム形成手段と、 前記送信ビーム形成手段の出力を入力とし、 入力した信号 を送信処理して出力する無線送信手段と、 前記無線送信手段の出力を送信する送 信アンテナ素子を配置した送信ァレーアンテナとを備えるものであってもよい。 また、 前記ユーザ復調手段は、 前記受信ビーム形成手段の出力からユーザ毎の パス遅延を検出し、 前記パス遅延/受信ビーム番号を出力する受信ビームパス検 出手段と、 前記受信ビームパス検出手段の出力である前記パス遅延 Z受信ビーム 番号におけるユーザ信号の受信品質から復調に用いる前記パス遅延ノ受信ビーム 番号を選択するパス遅延ノ受信ビーム選択手段と、 前記パス遅延/受信ビーム選 択手段から通知された前記パス遅延 Z受信ビーム番号を用いて復調を行う復調処 理手段と、 前記受信ビームパス検出手段の出力である前記パス遅延 受信ビーム 番号におけるユーザ信号の受信品質から前記受信ビーム毎のユーザ信号の総受信 品質を計算する受信ビーム計算処理手段と、 前記受信ビーム計算処理手段から通 知された前記受信ビーム毎のユーザ信号の総受信品質から前記送信ビームを選択 し前記ユーザ送信ビーム切替手段に通知する送信ビーム選択手段とを備えるもの であってもよレヽ。
また、 前記受信ビーム計算処理手段は、 前記受信ビームパス検出手段の出力で ある前記パス遅延/受信ビーム番号におけるユーザ信号の受信品質から前記受信 ビーム毎のユーザ信号の総受信品質を計算する際に、 受信品質の指標として受信 電力を用い、 総受信品質として総受信電力を計算するようにしてもよい。
また、 前記受信ビーム計算処理手段は、 前記受信ビームパス検出手段の出力で ある前記パス遅延 受信ビーム番号におけるユーザ信号の受信品質から前記受信 ビーム毎のユーザ信号の総受信品質を計算する際に、 受信品質の指標として S I Rを用い、 総受信品質として総 S I Rを計算するようにしてもよレ、。
また、 前記受信ビーム計算処理手段は、 前記受信ビームパス検出手段の出力で ある前記パス遅延 Z受信ビーム番号におけるユーザ信号の受信品質から前記受信 ビーム毎にユーザ信号の総受信品質を計算する際、 一定の基準に基づいて選択し た前記パス遅延/受信ビーム番号における受信品質を用いて前記受信ビーム毎に ユーザ信号の総受信品質を計算するようにしてもよい。
また、 前記受信ビーム計算処理手段は、 前記一定の基準に基づいて選択した前 記パス遅延 Z受信ビーム番号として受信品質の優れた上位 P個 (Pは 2以上の整 数) の前記パス遅延/受信ビーム番号を選択するようにしてもよい。
また、 前記受信ビーム計算処理手段は、 前記一定の基準に基づいて選択した前 記パス遅延 受信ビーム番号として受信品質が一定の受信品質基準を満たす最大 Q個 (Qは 2以上の整数) までの前記パス遅延/受信ビーム番号を選択するよう にしてもよレ、。
また、 前記受信ビーム計算処理手段は、 前記一定の基準に基づいて選択した前 記パス遅延ノ受信ビーム番号として、 前記パス遅延 Z受信ビーム選択手段で選択 された前記パス遅延/受信ビーム番号を用いてもよい。
また、 前記複数の受信ビームを形成する手段と、 前記複数の送信ビームを形成 する手段と、 前記受信ビームのそれぞれに対し前記ユーザ信号のパス遅延毎の受 信品質の値を加算して総受信品質を計算する手段と、 前記総受信品質の優れた受 信ビームを選択し、 選択された受信ビームの方向に合致する方向又は近接する方 向を有する送信ビームを選択する手段とを備えるものであってもよい。
また、 本発明のマルチビームアンテナ送受信方法は、 複数の受信ビームと複数 の送信ビームとを備え、 前記複数の受信ビームに存在するユーザ信号のパス遅延 の受信品質から計算した総受信品質に基づいて、 前記送信ビームを選択すること を特徴とする。
ここで、 前記総受信品質に基づいて前記受信ビームを選択し、 選択された前記 受信ビ一ムの方向に合致する方向又は近接する方向を有する前記送信ビームを選 択するようにしてもよい。
また、 前記受信品質の指標として受信電力又は S I R ( S i g n a l t o I n t e r f e r e n c e R a t i o :信号対干渉電力比) を用いてもよい。 また、 受信ァレ一アンテナを構成する受信アンテナ素子の出力を入力とし、 入 力した信号を受信処理して出力する無線受信ステップと、 前記無線受信ステップ の出力を入力として受信ビームを形成する受信ビーム形成ステップと、 前記受信 ビーム形成ステップの出力を入力とし、 前記受信ビームに存在するユーザ信号の パス遅延 Z受信ビーム番号における総受信品質を計算してユーザ送信ビーム番号 を出力し、 前記パス遅延ノ受信ビーム番号を用いてユーザ受信データを出力する ユーザ復調ステップと、 ユーザ送信データを入力し、 変調処理を行ってユーザ変 調信号を出力するユーザ変調処理ステップと、 前記ユーザ送信ビーム番号及び前 記ユーザ変調信每を入力し、 前記ユーザ送信ビーム番号に相当する送信ビームが 形成されるように前記ユーザ変調信号を出力するユーザ送信ビーム切替ステップ と、 前記ユーザ送信ビーム切替ステップの出力を入力とし、 前記送信ビームを形 成する送信ビーム形成ステップと、 前記送信ビーム形成ステップの出力を入力と し、 入力した信号を送信処理して送信アレーアンテナを構成する送信アンテナ素 子へ出力する無線送信ステップとを備えるものであってもよい。
また、 前記ユーザ復調ステップは、 前記受信ビーム形成ステップの出力からュ 一ザ毎のパス遅延を検出し、 前記パス遅延/受信ビーム番号を出力する受信ビー ムパス検出ステップと、 前記受信ビームパス検出ステップの出力である前記パス 遅延 Z受信ビーム番号におけるユーザ信号の受信品質から復調に用いる前記パス 遅延ノ受信ビーム番号を選択するパス遅延 受信ビーム選択ステップと、 前記パ ス遅延ノ受信ビーム選択ステップから通知された前記パス遅延 Z受信ビーム番号 を用レ、て復調を行う復調処理ステップと、 前記受信ビームパス検出ステップの出 力である前記パス遅延/受信ビーム番号におけるユーザ信号の受信品質から前記 受信ビーム毎のユーザ信号の総受信品質を計算する受信ビーム計算処理ステップ と、 前記受信ビーム計算処理ステップから通知された前記受信ビーム毎のユーザ 信号の総受信品質から前記送信ビームを選択し前記ユーザ送信ビーム切替ステッ プに通知する送信ビーム選択ステップとを備えるものであってもよい。 また、 前記受信ビーム計算処理ステップは、 前記受信ビームパス検出ステップ の出力である前記パス遅延 Z受信ビーム番号におけるユーザ信号の受信品質から 前記受信ビーム毎のユーザ信号の総受信品質を計算する際に、 受信品質の指標と して受信電力を用い、 総受信品質として総受信電力を計算するようにしてもよい。 また、 前記受信ビーム計算処理ステップは、 前記受信ビームパス検出ステップ の出力である前記パス遅延 Z受信ビーム番号におけるユーザ信号の受信品質から 前記受信ビーム毎のユーザ信号の総受信品質を計算する際に、 受信品質の指標と して S I Rを用い、 総受信品質として総 S I Rを計算するようにしてもよい。 また、 前記受信ビーム計算処理ステップは、 前記受信ビームパス検出ステップ (^出力である前記パス遅延 Z受信ビーム番号におけるユーザ信号の受信品質から 前記受信ビーム毎にユーザ信号の総受信品質を計算する際、 一定の基準に基づい て選択した前記パス遅延 受信ビーム番号における受信品質を用いて前記受信ビ —ム毎にユーザ信号の総受信品質を計算するようにしてもよい。
また、 前記受信ビーム計算処理ステップは、 前記一定の基準に基づいて選択し た前記パス遅延 受信ビーム番号として受信品質の優れた上位 P個 (Pは 2以上 の整数) の前記パス遅延 Z受信ビーム番号を選択するようにしてもよい。
また、 前記受信ビーム計算処理ステップは、 前記一定の基準に基づいて選択し た前記パス遅延ノ受信ビーム番号として受信品質が一定の受信品質基準を満たす 最大 Q個 (Qは 2以上の整数) までの前記パス遅延 Z受信ビーム番号を選択する ようにしてもよレ、。
また、 前記受信ビーム計算処理ステップは、 前記一定の基準に基づいて選択し た前記パス遅延ノ受信ビーム番号として、 前記パス遅延 受信ビーム選択ステツ プで選択された前記パス遅延/受信ビーム番号を用いてもよい。
また、 前記受信ビームのそれぞれに対し前記ユーザ信号のパス遅延毎の受信品 質の値を加算して総受信品質を計算するステップと、 前記総受信品質の優れた受 信ビームを選択し、 選択された受信ビームの方向に合致する方向又は近接する方 向を有する送信ビームを選択するステップとを備えるものであってもよい。
また、 本発明の送信ビーム選択方法は、 受信ビームに存在するユーザの信号の パス遅延の受信品質から計算した総受信品質に基づいて、 送信ビームを選択する ことを特徴とする。
ここで、 前記総受信品質に基づいて前記受信ビームを選択し、 選択された前記 受信ビームの方向に合致する方向又は近接する方向を有する送信ビームを選択す るようにしてもよい。
また、 本発明の基地局は、 上述したマルチビームアンテナ送受信装置を具備す ることを特徴とする。 また、 本発明の移動局は、 上述したマルチビームアンテナ 送受信装置を具備することを特徴とする。 図面の簡単な説明
図 1は、 本発明によるマルチビームアンテナ送受信装置の実施例を示すプロッ ク図である。
図 2は、 送信ビーム選択説明図である。
図 3は、 受信品質テーブルである。
図 4は、 ビーム番号対比テーブルである。
図 5は、 本発明のマルチビームアンテナ送受信方法のフローチャートである。 図 6は、 本発明のマルチビームアンテナ送受信方法のユーザ復調ステップのフ ローチャートである。
図 7は、 従来のマルチビームアンテナ送受信装置の実施例を示すブロック図で ある。 実施例の詳細な説明
本発明の実施例について、 図面を参照して詳細に説明する。 ここでは、 ユーザ の数を L ( Lは 1以上の整数) 、 受信アンテナ素子の数を N (Nは 1以上の整 数) 、 受信ビームの数を M (Mは 1以上の整数) 、 送信ビームの数を J ( Jは 1 以上の整数) 、 送信アンテナ素子の数を K (Kは 1以上の整数) としている。 従 つて、 ユーザはユーザ 1〜ユーザ Lとなり、 ユーザ信号は L個あり、 ユーザ 1信 号〜ユーザ L信号となる。 また、 受信ビームは受信ビーム 1〜受信ビーム Mとな り、 送信ビームは送信ビーム 1〜送信ビーム Jとなる。 以下、 上記のように設定 した場合のマルチビームアンテナ送受信装置について説明する。 図 1を参照すると、 本発明によるマルチビームアンテナ送受信装置は、 受信ァ レーアンテナ 101と、 受信アレーアンテナ 101を構成する受信アンテナ素子 l O S i l O SNと、 受信アンテナ素子 1 02 ,〜102 Nに対応するアンテナ 1 無線受信部 103 ,〜アンテナ N無線受信部 1 03 N (無線受信部 103とも称 す) と、 受信ビーム 1形成部 104 ,〜受信ビーム M形成部 1 04M (受信ビーム 形成部 104とも称す) と、 ユーザ 1復調ブロック 1 05 i〜ユーザ L復調ブロッ ク 105し (ユーザ復調プロック 105とも称す) と、 ユーザ 1変調処理部 1 1 1 i〜ユーザ L変調処理部 1 1 (ユーザ変調処理部 1 1 1とも称す) と、 ユーザ 1送信ビーム切替回路 1 1 2 〜ユーザ L送信ビーム切替回路 1 1 2L (ユーザ送 信ビーム切替回路 1 1 2とも称す) と、 送信ビーム 1形成部 1 1 3 ,〜送信ビーム J形成部 1 1 3; (送信ビーム形成部 1 13とも称す) と、 送信アンテナ素子 1 1 6 ,〜1 16 κに対応するアンテナ 1無線送信部 1 14 i〜アンテナ K無線送信部 1 14κ (無線送信部 1 14とも称す) と、 無線送信部 1 14に対応する送信アンテ ナ素子 1 1 6 i〜l 1 6κと、 送信アンテナ素子 1 1 6 t〜l 1 6 κから成る送信ァ レ一アンテナ 1 1 5とを含んで構成される。
受信アンテナ素子 1 02 t〜l 02 Nのアンテナ素子単体での水平面内および垂 直面内指向性に制限はなく、 例としてはォムニ (無指向性) 、 ダイポール (双極 指向性) が挙げられる。 N個の受信アンテナ素子 102 ,〜1 02Nは、 受信信号 が相関を有するように近接して配置される。 ここで、 受信アレーアンテナ 101 は、 受信アンテナ素子 102 ,〜102 Nが近接して配置されていれば、 受信アン テナ素子 1 02 ,〜1 02Nの数、 および配置の仕方に制限はない。 配置の仕方の 例としては搬送波の半波長間隔の円状配置、 線状配置が挙げられる。
受信アンテナ素子 1 02 t〜l 02 Nによって受信された各信号には、 希望ユー ザ信号成分と複数の干渉信号成分、 及び熱雑音が含まれている。 さらに希望ユー ザ信号成分、 干渉信号成分それぞれに複数のマルチパス成分が存在する。 通常、 それらの信号成分 (マルチパス成分を含む希望ユーザ信号成分、 干渉信号成分) は異なった方向から到来する。 そのため、 希望ユーザ信号のパス遅延/受信ビー ム番号の組は複数存在する。
アンテナ 1無線受信部 1 03 t〜アンテナ N無線受信部 103Nは、 ローノイズ アンプ、 帯域制限フィルタ、 ミキサ、 局部発振器、 AGC (Au t o Ga i n C o n t r o l l e r) 、 直交検波器、 低域通過フィルタ、 アナログ/ディジ タル変換器などから構成される。 ここで、 アンテナ 1無線受信部 103 ,を例にと ると、 アンテナ 1無線受信部 103 ,は、 受信アンテナ素子 102 ,の出力を入力 とし、 入力信号の増幅、 無線帯域から基底帯域への周波数変換、 直交検波、 アナ 口グ Zディジタル変換などの受信処理を行い、 受信ビーム 1形成部 104 i〜受信 ビーム M形成部 1 04Mへと出力する。
受信ビーム 1形成部 104 !〜受信ビーム M形成部 104Mは、 アンテナ 1無線 受信部 103 i〜アンテナ N無線受信部 103 Nの出力を入力とし、 入力信号に対 して受信ビーム形成部 104毎に異なる固定受信ビームを形成し、 ユーザ 1復調 ブロック 105 i〜ユーザ L復調ブロック 105 Lへと出力する。 固定受信ビーム の数、 形状、 および固定受信ビームの形成方法に制限はなく、 固定受信ビームの 形状の例としては直交マルチビームがあり、 固定受信ビームの形成方法の例とし てはディジタル演算により各入力信号に固定複素ビーム重みを乗じ総和を求める 手法 (ディジタルビームフォーミング) が挙げられる。 また、 図 1では受信ビー ム 1形成部 104 ,〜受信ビーム M形成部 1 04Mがアンテナ 1無線受信部 103 i〜アンテナ N無線受信部 1 03Nの後段にあり、 基底帯域のディジタル信号に対 してビーム形成を行っているが、 バトラーマトリクス等の無線帯域におけるビー ム形成法を用いることも可能である。
受信ビーム 1形成部 104 ,〜受信ビーム M形成部 104Mは、 すべてのユーザ 信号 (ユーザ 1信号〜ユーザし信号) 成分とユーザ信号のマルチパス成分を含ん だ状態の入力信号に対して、 受信ビーム形成部 1 04毎に異なる固定受信ビーム を形成して、 到来方向毎に入力信号を分離する。
ユーザ 1復調ブロック 1 05 i〜ユーザ L復調ブロック 105 dま、 受信ビーム 1パス検出部 106 i〜受信ビーム Mパス検出部 106M (受信ビームパス検出部 106とも称す) と、 パス遅延 Z受信ビーム選択部 1 07と、 受信ビーム 1計算 処理部 108!〜受信ビーム M計算処理部 1 08M (受信ビーム計算処理部 108 とも称す) と、 送信ビーム選択部 109と、 復調処理部 1 10とから構成され、 ユーザ 1送信ビーム番号〜ユーザ L送信ビーム番号 (ユーザ送信ビーム番号) 及 びユーザ 1受信データ〜ユーザ L受信データ (ユーザ受信データ) を出力する。 以下、 ュ一ザ 1復調ブロック 1 05 ,〜ユーザ L復調ブロック 105 ^のうちュ 一ザ 1復調ブロック 105 ,を例にとって説明する。
ユーザ 1復調プロック 1 05 ,は、 受信ビーム 1形成部 104 ,〜受信ビーム M 形成部 104 の出力を入力とし、 ユーザ 1送信ビーム番号とユーザ 1受信データ とを出力する。
受信ビーム 1パス検出部 1 06 〜受信ビーム Mパス検出部 106Mは、 受信ビ ーム 1形成部 104 ,〜受信ビーム M形成部 104 の出力を入力とし、 それぞれ の入力信号におけるユーザ信号のパス遅延を検出し、 検出したパス遅延における ユーザ信号の受信品質を測定して、 パス遅延 Z受信ビーム番号などをパス遅延 Z 受信ビーム選択部 107と受信ビーム 1計算処理部 108 〜受信ビーム M計算処 理部 1 08 へと出力する。 ここで、 それぞれの入力信号にはユーザ 1信号〜ユー ザ L信号が多重されており、 さらに伝搬遅延による各ユーザ信号のマルチパス成 分が多重されている。 ユーザ信号の多重方法に制限はなく、 例としては TDMA (時分割多元接続) 、 CDMA (符号分割多元接続) が挙げられる。 また、 多重 された複数のユーザ信号の分離方法とマルチパス成分のパス遅延の検出方法およ び検出されるパス遅延の数に制限はない。 さらに、 測定する受信品質の指標と測 定方法に制限はない。 受信品質の指標の例としては、 受信電力 (受信レベル、 受 . 信電界強度なども含まれる。 ;) 、 S I R (S i g n a l t o I n t e r f e r e n c e Ra t i o :信号対干渉電力比) が挙げられる。 S I Rの他に、 S I NR (S i g n a l t o I n t e r i e r e n c e— p l u s— JN o i s e p o we r R a t i o :信号対干渉電力 +雑音電力比) 、 S N R (S i g n a 1 t o No i s e R a t i o :信号対雑音比) などで表現される指標も 含まれるものとする。
受信ビーム 1パス検出部 1 06 ,〜受信ビーム Mパス検出部 106 は、 ユーザ 信号の既知のシンボル (パイロットシンボル等) のみを用いて、 パス検出および 検出したパスに関するパス遅延におけるユーザ信号の受信品質の測定を行うこと も可能である。
パス遅延ノ受信ビーム選択部 107は、 受信ビーム 1パス検出部 106 ,〜受信 ビーム Mパス検出部 1 0 6 Mの出力であるパス遅延/受信ビーム番号におけるユー ザ信号の受信品質情報を入力とし、 ユーザ信号の受信品質に基づいて復調に用い るパス遅延 受信ビーム番号の組を選択して、 選択したパス遅延/受信ビーム番 号の組を復調処理部 1 1 0へと出力する。
ここで、 復調に用いるパス遅延ノ受信ビーム番号の組の選択方法に制限はなく、 例としては受信品質の優れた上位 A個 (Aは 2以上の整数) の組を選択する方法、 一定の受信品質基準を満たす組を最大 B個 (Bは 2以上の整数) まで選択する方 法が挙げられる。
受信ビーム 1計算処理部 1 0 8 t〜受信ビーム M計算処理部 1 0 8 Mは、 各受信 ビームに対応する受信ビーム 1パス検出部 1 0 6 ,〜受信ビーム Mパス検出部 1 0 6 Mの出力であるパス遅延 受信ビーム番号におけるユーザ信号の受信品質情報を 入力とし、 受信ビーム毎のユーザ信号の総受信品質を計算して、 受信ビーム番号 と受信ビーム毎のユーザ信号の総受信品質情報とを送信ビーム選択部 1 0 9へと 出力する。 総受信品質とは、 受信ビームに含まれるマルチパス成分 (パス遅延) 毎の受信品質の部分又は全体を計算 (例えば、 加算) したものである。
ここで、 受信ビーム毎に計算するユーザ信号の総受信品質の指標として、 受信 ビーム毎に通知されたパス遅延/受信ビーム番号におけるユーザ信号の受信電力 を用いる方法が挙げられる。
また、 受信ビーム毎に計算するユーザ信号の総受信品質の指標として、 受信ビ ーム毎に通知されたパス遅延 受信ビーム番号におけるユーザ信号の S I Rを用 いる方法が挙げられる。
受信ビーム 1計算処理部 1 0 8 ,〜受信ビーム M計算処理部 1 0 8 Mにおいて受 信ビーム毎のユーザ信号の総受信品質を計算する際、 計算を簡略化するために、 一定の基準に基づいて選択したパス遅延 受信ビーム番号におけるユーザ信号の 受信品質のみを用いて受信ビーム毎にユーザ信号の総受信品質を計算する手法も、 本発明に含まれる。
ここで、 一定の基準に基づいて選択したパス遅延 Z受信ビーム番号として、 ュ 一ザ信号の受信品質の優れた上位 P個 (Pは 2以上の整数) のパス遅延 受信ビ —ム番号を用いる方法が挙げられる。 また、 一定の基準に基づいて選択したパス遅延ノ受信ビーム番号として、 ユー ザ信号の受信品質が一定の受信品質基準を満たす最大 Q個 (Qは 2以上の整数) までのパス遅延ノ受信ビーム番号を用いる方法が挙げられる。
さらに、 一定の基準に基づいて選択したパス遅延ノ受信ビーム番号として、 パ ス遅延 受信ビーム選択部 1 0 7おいて選択されたパス遅延ノ受信ビーム番号を 用いる方法が挙げられる。
送信ビーム選択部 1 0 9は、 受信ビーム 1計算処理部 1 0 8 〜受信ビーム M計 算処理部 1 0 8 の出力である受信ビーム番号とその受信ビームにおけるユーザ信 号の総受信品質情報を入力とし、 総受信品質の優れた受信ビーム番号と合致する 方向又は近接する方向を有するユーザ 1送信ビーム番号〜ユーザ L送信ビーム番 号 (ユーザ送信ビーム番号) をユーザ 1送信ビーム切替回路 1 1 2 へ出力する。 復調処理部 1 1 0は、 パス遅延ノ受信ビーム選択部 1 0 7の出力であるパス遅 延 Z受信ビーム番号におけるユーザ信号の受信品質情報を入力とし、 入力された パス遅延 受信ビーム番号に基づいて復調処理を行い、 ユーザ 1受信データを出 力する。
ユーザ 1変調処理部 1 1 1 '〜ユーザ L変調処理部 1 1 1 Lは、 それぞれユーザ 1送信データ〜ユーザ L送信データ (ユーザ送信データ) を入力とし、 変調処理 を行い、 ユーザ 1変調信号〜ユーザ L変調信号 (ユーザ変調信号) をユーザ 1送 信ビーム切替回路 1 1 2!〜ユーザ L送信ビーム切替回路 1 1 2 しへと出力する。 ユーザ 1送信ビーム切替回路 1 1 2 ,〜ユーザ L送信ビーム切替回路 1 1 2 Lは、 ユーザ (ユーザ 1〜ユーザ L ) 毎の送信ビーム選択部 1 0 9の出力であるユーザ 1送信ビーム番号〜ユーザ L送信ビーム番号と、 ユーザ 1変調処理部 1 1 1 ,〜ュ 一ザ L変調処理部 1 1 1 しの出力であるユーザ 1変調信号〜ユーザ L変調信号とを 入力とし、 送信ビーム 1形成部 1 1 3 ,〜送信ビーム J形成部 1 1 3 の中からュ 一ザ毎のユーザ送信ビーム番号に相当する送信ビーム形成部 1 1 3を選択してュ 一ザ変調信号を出力する。
送信ビーム 1形成部 1 1 3 〜送信ビーム J形成部 1 1 3 は、 ユーザ 1送信ビ ーム切替回路 1 1 2 ,〜ユーザ L送信ビーム切替回路 1 1 2 しの出力を入力とし、 入力信号に対して送信ビーム 1形成部 1 1 3 ,〜送信ビーム J形成部 1 1 3 毎に 異なる固定送信ビームを形成し、 アンテナ 1無線送信部 1 1 4 ,〜アンテナ K無線 送信部 1 1 4 κへと出力する。
固定送信ビームの数、 形状、 および固定送信ビームの形成方法に特に制限はな く、 固定送信ビームの形状の例としては直交マルチビームがあり、 固定送信ビー ムの形成方法の例としてはディジタル演算により各入力信号に固定複素ビーム重 みを乗じる手法 (ディジタルビームフォーミング) が挙げられる。 また、 図 1で は送信ビーム 1形成部 1 1 3 ,〜受信ビーム J形成部 1 1 3 がアンテナ 1無線送 信部 1 1 4 i〜アンテナ K無線送信部 1 1 4 κの前段にあり、 基底帯域のディジタ ル信号に対してビーム形成を行っているが、 バトラーマトリクス等の無線帯域に おけるビーム形成法を用いることも可能である。
アンテナ 1無線送信部 1 1 4 ,〜アンテナ K無線送信部 1 1 4 κは、 アンプ、 帯 域制限フィルタ、 ミキサ、 局部発振器、 直交変調、 低域通過フィルタ、 ディジタ ル アナログ変換器などから構成される。 ここで、 アンテナ 1無線送信部 1 1 4 iを例にとると、 アンテナ 1無線送信部 1 1 4 iは、 送信ビーム 1形成部 1 1 3 i〜 送信ビーム J形成部 1 1 3」の出力を入力とし、 入力した信号のディジタル Zアナ ログ変換、 直交変調、 基底帯域から無線帯域への周波数変換、 信号の増幅などの 送信処理を行い、 送信アンテナ素子 1 1 6 ,へと出力する。
送信アレーアンテナ 1 1 5は、 Κ個の送信アンテナ素子 1 1 6 ,〜 1 1 6 κから 構成される。 送信アンテナ素子 1 1 6 ,〜 1 1 6 のアンテナ素子単体での水平面 内および垂直面内指向性に特に制限はなく、 例としてはォムニ (無指向性) 、 ダ ィポール (双極指向性) が挙げられる。 送信アンテナ素子 1 1 6 〜 1 1 6 κは、 送信する信号が相関を有するように近接して配置される。 ここで、 送信アレーァ ンテナ 1 1 5は、 送信アンテナ素子 1 1 6 ,〜 1 1 6 κが近接して配置されていれ ば、 配置の仕方に特に制限はない。 例としては搬送波の半波長間隔の円状配置、 線状配置が挙げられる。
送信アンテナ素子 1 1 6 i〜 l 1 6 κは、 アンテナ 1無線送信部 1 1 4 ,〜アンテ ナ K無線送信部 1 1 4 κの出力であるそれぞれの送信ビームによるユーザ信号が多 重された信号を入力とし、 送信を行う。
次に、 受信ビーム番号の選択と送信ビーム番号の選択について、 図 2、 図 3、 図 4を参照して詳細に説明する。
図 2は送信ビーム選択説明図で、 説明に必要な構成品を中心に記載している。 図 3は受信品質テーブル、 図 4はビーム番号対比テーブルである。 ユーザ番号が 1、 受信ビーム番号が 1、 2の場合における送信ビーム選択の動作を詳細に説明 する。 図 2では、 受信ビーム 1〜受信ビーム M (受信ビーム) を示しているが、 ここでは、 受信ビーム 1、 受信ビーム 2のみとして説明する。
受信ビーム計算処理部 1 0 8は、 受信ビーム 1、 受信ビーム 2ごとのユーザ 1 信号の受信品質から総受信品質を図 3のように計算 (例えば、 加算) する。 受信 ビーム番号と受信ビーム毎のユーザ 1信号の総受信品質情報とを送信ビーム選択 部 1 0 9へ出力する。 送信ビーム選択部 1 0 9は、 総受信品質の優れた受信ビー ムが受信ビーム 2であるので、 受信ビーム番号として 2を選択する。 次に、 ビー ム番号対比テーブル 1 0 9 >を参照して、 受信ビーム 2に合致する方向又は近接方 向として対応している送信ビーム番号として 1を選択する。 次に、 ユーザ 1のュ 一ザ 1送信ビーム番号を 1として、 ユーザ 1送信ビーム切替回路 1 1 2 ,へ出力す る。 ユーザ 1送信ビーム切替回路 1 1 2 ,が、 送信ビーム 1を形成する送信ビーム 1形成部 1 1 3 ,に切替えることで、 ユーザ 1のユーザ 1送信データは、 形成され た送信ビーム 1で放射される。
本発明のマルチビームアンテナ送受信装置は、 移動通信システムを構成する基 地局や移動局に使用できることは当然である。
図 5は、 本発明のマルチビームアンテナ送受信方法を示すフローチヤ一トであ る。 図 6は、 本発明のマルチビームアンテナ送受信方法のユーザ復調ステップを 示すフローチャートである。 図 1、 5、 6を使用して以下、 マルチビームアンテ ナ送受信方法を説明する。
受信アレーアンテナ 1 0 1を構成する受信アンテナ素子 1 0 2 〜受信アンテナ 素子 1 0 2 Nの出力を入力とし、 入力した信号の増幅、 周波数変換、 直交検波、 ァ ナログ/ディジタル変換などの受信処理を行って出力する (無線受信ステップ S 1 ) 。 この無線受信ステップ S 1は、 アンテナ 1無線受信部 1 0 3 ,〜アンテナ N 無線受信部 1 0 3 Nによる。
次に、 無線受信ステップ S 1の出力を入力として受信ビームを形成する (受信 ビーム形成ステ.ップ S 2 ) 。 この受信ビーム形成ステップ S 2は、 受信ビーム 1 形成部 1 0 4 i〜受信ビーム M形成部 1 0 4 Mによる。
受信ビーム形成ステップ S 2の出力を入力とし、 受信ビームに存在するユーザ 信号のパス遅延/受信ビーム番号における総受信品質を計算してユーザ送信ビー ム番号を出力し、 パス遅延/受信ビーム番号を用いてユーザ受信データを出力す る (ユーザ復調ステップ S 3 ) 。 このユーザ復調ステップ S 3は、 ユーザ 1復調 ブロック 1 0 5 ,〜ユーザ L復調ブロック 1 0 5 しによる。
ユーザ送信データを入力し、 変調処理を行ってユーザ変調信号を出力する (ュ 一ザ変調処理ステップ S 4 ) 。 このユーザ変調処理ステップ S 4は、 ユーザ変調 処理部 1 1 1 〜ユーザ変調処理部 1 1 1 しによる。
ユーザ送信ビーム番号及びユーザ変調信号を入力し、 ユーザ送信ビーム番号に 相当する送信ビームが形成されるようにユーザ変調信号を出力する (ユーザ送信 ビーム切替ステップ S 5 ) 。 このユーザ送信ビーム切替ステップ S 5は、 ユーザ 1送信ビーム切替回路 1 1 2 ,〜ユーザ L送信ビーム切替回路 1 1 2 しによる。 ユーザ送信ビーム切替ステップ S 5の出力を入力とし、 送信ビームを形成する (送信ビーム形成ステップ S 6 ) 。 この送信ビーム形成ステップ S 6は、 送信ビ ーム 1形成部 1 1 3!〜送信ビーム J形成部 1 1 3 jによる。
送信ビーム形成ステップ S 6の出力を入力とし、 入力した信号のディジタル/ アナログ変換、 直交変調、 周波数変換、 増幅などの送信処理を行って送信アンテ ナ素子へ出力する (無線送信ステップ S 7 ) 。 この無線送信ステップ S 7は、 ァ ンテナ 1無線送信部 1 1 4 ,〜アンテナ K無線送信部 1 1 4 κ、 送信アレーアンテ ナ 1 1 5によって行われる。
さらに、 ユーザ復調ステップ S 3において、 受信ビーム形成ステップ S 2の出 力からユーザ毎のパス遅延を検出し、 パス遅延/受信ビーム番号などを出力する
(受信ビームパス検出ステップ S 3 1 ) 。 この受信ビームパス検出ステップ S 3 1は、 受信ビーム 1パス検出部 1 0 6 ,〜受信ビーム Μパス検出部 1 0 6 Mによる。 次に、 受信ビームパス検出ステップ S 3 1の出力であるパス遅延 受信ビーム 番号におけるユーザ信号の受信品質情報から復調に用いるパス遅延 受信ビーム 番号を選択する (パス遅延 受信ビーム選択ステップ S 3 2 ) 。 このパス遅延 受信ビーム選択ステップ S 3 2は、 パス遅延/受信ビーム選択部 1 0 7による。 次に、 パス遅延 受信ビーム選択ステップ S 3 2から通知されたパス遅延 Z受 信ビーム番号を用いて復調を行う (復調処理ステップ S 3 3 ) 。 この復調処理ス テツプ S 3 3は、 復調処理部 1 1 0による。
次に、 受信ビームパス検出ステップ S 3 1の出力であるパス遅延/受信ビーム 番号におけるユーザ信号の受信品質情報から受信ビーム毎のユーザ信号の総受信 品質を計算する (受信ビーム計算処理ステップ S 3 4 ) 。 この受信ビーム計算処 理ステップ S 3 4は、 受信ビーム 1計算処理部 1 0 8!〜受信ビーム M計算処理部
1 0 8 による。
次に、 受信ビーム計算処理ステップ S 3 4から通知された受信ビーム毎のユー ザ信号の総受信品質情報から送信ビームを選択しユーザ送信ビーム切替ステップ S 5に通知する (送信ビーム選択ステップ S 3 5 ) 。 この送信ビーム選択ステツ プ S 3 5は、 送信ビーム選択部 1 0 9による。
なお、 受信ビーム計算処理ステップ S 3 4において、 受信ビームパス検出ステ ップ S 3 1の出力であるパス遅延/受信ビーム番号におけるユーザ信号の受信品 質情報から受信ビーム毎のユーザ信号の総受信品質を計算する際に、 受信品質の 指標として受信電力を用い、 総受信品質として総受信電力を計算する。
さらに、 受信ビーム計算処理ステップ S 3 4において、 受信ビームパス検出ス テツプ S 3 1の出力であるパス遅延 Z受信ビーム番号におけるユーザ信号の受信 品質情報から受信ビーム毎のユーザ信号の総受信品質を計算する際に、 受信品質 の指標として S I Rを用い、 総受信品質として総 S I Rを計算する。
さらに、 受信ビーム計算処理ステップ S 3 4において、 受信ビームパス検出ス テツプ S 3 1の出力であるパス遅延 受信ビーム番号におけるユーザ信号の受信 品質情報から受信ビーム毎にユーザ信号の総受信品質を計算する際、 一定の基準 に基づいて選択したパス遅延 受信ビーム番号におけるユーザ信号の受信品質の みを用いて受信ビーム毎にユーザ信号の総受信品質を計算する。
さらに、 受信ビーム計算処理ステップ S 3 4において、 一定の基準に基づいて 選択したパス遅延 受信ビーム番号におけるユーザ信号の受信品質の優れだ上位 P個 (Pは 2以上の整数) のパス遅延/受信ビーム番号を選択する。 さらに、 受信ビーム計算処理ステップ S 3 4において、 一定の基準に基づいて 選択したパス遅延ノ受信ビーム番号におけるユーザ信号の受信品質が一定の受信 品質基準を満たす最大 Q個 (Qは 2以上の整数) までのパス遅延ノ受信ビーム番 号を選択する。
さらに、 受信ビーム計算処理ステップ S 3 4において、 一定の基準に基づいて 選択したパス遅延/受信ビーム番号として、 パス遅延 Z受信ビーム選択部で選択 されたパス遅延 Z受信ビーム番号を用いる。
次に、 上述した実施例の効果について説明する。 本発明では、 受信ビーム (受 信ビーム 1〜受信ビーム M) 毎のユーザ信号 (ユーザ 1信号〜ユーザ L信号) の 総受信品質を計算し、 総受信品質の優れた受信ビームと同一方向又は近接方向の 送信ビームを選択するため、 マルチパス環境においても最適な送信ビームを選択 することができる。 したがって、 送信特性に優れるとともに、 上り及びノ又は下 りの回線品質に優れる。

Claims

請 求 の 範 囲
1. 複数の受信ビームと複数の送信ビームとを備え、 前記複数の受信ビームに存 在するユーザ信号のパス遅延の受信品質から計算した総受信品質に基づいて、 前 記送信ビームを選択することを特徴とするマルチビームァンテナ送受信装置。
2. 請求の範囲第 1項記載のマルチビームアンテナ送受信装置において、 前記総受信品質に基づいて前記受信ビームを選択し、 選択された前記受信ビー ムの方向に合致する方向又は近接する方向を有する前記送信ビームを選択するこ とを特徴とするマルチビームァンテナ送受信装置。
3. 請求の範囲第 1項記載のマルチビームアンテナ送受信装置において、 前記受信品質の指標として受信電力又は S I R (S i g n a l t o I n t e r f e r e n c e R a t i o :信号対干渉電力比) を用いることを特徴とす るマルチビームアンテナ送受信装置。
4. 請求の範囲第 1項記載のマルチビームアンテナ送受信装置において、 受信アンテナ素子を配置した受信アレーアンテナと、
前記受信アンテナ素子の出力を入力とし、 入力した信号を受信処理して出力す る無線受信手段と、
前記無線受信手段の出力を入力として受信ビームを形成する受信ビーム形成手 段と、
前記受信ビーム形成手段の出力を入力とし、 前記受信ビームに存在するユーザ 信号のパス遅延 受信ビーム番号における総受信品質を計算してユーザ送信ビー ム番号を出力し、 前記パス遅延 受信ビーム番号を用いてユーザ受信データを出 力するユーザ復調手段と、
ユーザ送信データを入力し、 変調処理を行ってユーザ変調信号を出力するユー ザ変調処理手段と、 前記ユーザ送信ビーム番号及び前記ユーザ変調信号を入力し、 前記ュ一ザ送信 ビーム番号に相当する送信ビームが形成されるように前記ユーザ変調信号を出力 するユーザ送信ビーム切替手段と、
前記ユーザ送信ビーム切替手段の出力を入力とし、 前記送信ビームを形成する 送信ビーム形成手段と、
前記送信ビーム形成手段の出力を入力とし、 入力した信号を送信処理して出力 する無線送信手段と、
前記無線送信手段の出力を送信する送信アンテナ素子を配置した送信アレーァ ンテナと、
を備えることを特徴とするマルチビームァンテナ送受信装置。
5 . 請求の範囲第 4項記載のマルチビームァンテナ送受信装置において、 前記ユーザ復調手段は、
前記受信ビーム形成手段の出力からユーザ毎のパス遅延を検出し、 前記パス遅 延 Z受信ビーム番号を出力する受信ビームパス検出手段と、
前記受信ビームパス検出手段の出力である前記パス遅延 受信ビーム番号にお けるユーザ信号の受信品質から復調に用いる前記パス遅延 z受信ビーム番号を選 択するパス遅延/受信ビーム選択手段と、
前記パス遅延 受信ビーム選択手段から通知された前記パス遅延 受信ビーム 番号を用いて復調を行う復調処理手段と、
前記受信ビームパス検出手段の出力である前記パス遅延 受信ビーム番号にお けるユーザ信号の受信品質から前記受信ビーム毎のユーザ信号の総受信品質を計 算する受信ビーム計算処理手段と、
前記受信ビーム計算処理手段から通知された前記受信ビーム毎のユーザ信号の 総受信品質から前記送信ビームを選択し前記ユーザ送信ビーム切替手段に通知す る送信ビーム選択手段と、
を備えることを特徴とするマルチビームァンテナ送受信装置。
6 . 請求の範囲第 5項記載のマルチビームアンテナ送受信装置において、 前記受信ビーム計算処理手段は、 前記受信ビームパス検出手段の出力である前 記パス遅延 Z受信ビーム番号におけるユーザ信号の受信品質から前記受信ビーム 毎のユーザ信号の総受信品質を計算する際に、 受信品質の指標として受信電力を 用い、 総受信品質として総受信電力を計算することを特徴とするマルチビームァ ンテナ送受信装置。
7 . 請求の範囲第 5項記載のマルチビームアンテナ送受信装置において、
前記受信ビーム計算処理手段は、 前記受信ビームパス検出手段の出力である前 記パス遅延ノ受信ビーム番号におけるユーザ信号の受信品質から前記受信ビーム 毎のユーザ信号の総受信品質を計算する際に、 受信品質の指標として S I Rを用 レ、、 総受信品質として総 S I Rを計算することを特徴とするマルチビームアンテ ナ送受信装置。
8 . 請求の範囲第 5項記載のマルチビームアンテナ送受信装置において、
前記受信ビーム計算処理手段は、 前記受信ビームパス検出手段の出力である前 記パス遅延ノ受信ビーム番号におけるユーザ信号の受信品質から前記受信ビーム 毎にユーザ信号の総受信品質を計算する際、 一定の基準に基づいて選択した前記 パス遅延/受信ビーム番号における受信品質を用いて前記受信ビーム毎にユーザ 信号の総受信品質を計算することを特徴とするマルチビームアンテナ送受信装置。
9 . 請求の範囲第 8項記載のマルチビームアンテナ送受信装置において、
前記受信ビーム計算処理手段は、 前記一定の基準に基づいて選択した前記パス 遅延/受信ビーム番号として受信品質の優れた上位 P個 (Pは 2以上の整数) の 前記パス遅延 受信ビーム番号を選択することを特徴とするマルチビームアンテ ナ送受信装置。
1 0 . 請求の範囲第 8項記載のマルチビームアンテナ送受信装置において、 前記受信ビーム計算処理手段は、 前記一定の基準に基づいて選択した前記パス 遅延/受信ビーム番号として受信品質が一定の受信品質基準を満たす最大 Q個 (Qは 2以上の整数) までの前記パス遅延 Z受信ビーム番号を選択することを特 徴とするマルチビームアンテナ送受信装置。
1 1 . 請求の範囲第 8項記載のマルチビームアンテナ送受信装置において、 前記受信ビーム計算処理手段は、 前記一定の基準に基づいて選択した前記パス 遅延 受信ビーム番号として、 前記パス遅延 Z受信ビーム選択手段で選択された 前記パス遅延 受信ビーム番号を用いることを特徴とするマルチビームアンテナ 送受信装置。
1 2 . 請求の範囲第 1項記載のマルチビ一ムアンテナ送受信装置において、 前記複数の受信ビームを形成する手段と、
前記複数の送信ビームを形成する手段と、
前記受信ビームのそれぞれに対し前記ユーザ信号のパス遅延毎の受信品質の値 を加算して総受信品質を計算する手段と、
前記総受信品質の優れた受信ビームを選択し、 選択された受信ビームの方向に 合致する方向又は近接する方向を有する送信ビームを選択する手段と、 を備えることを特徴とするマルチビームァンテナ送受信装置。
1 3 . 複数の受信ビームと複数の送信ビームとを備え、 前記複数の受信ビームに 存在するユーザ信号のパス遅延の受信品質から計算した総受信品質に基づいて、 前記送信ビームを選択することを特徴とするマルチビームァンテナ送受信方法。
1 4 . 請求の範囲第 1 3項記載のマルチビームアンテナ送受信方法において、 前記総受信品質に基づいて前記受信ビームを選択し、 選択された前記受信ビー ムの方向に合致する方向又は近接する方向を有する前記送信ビームを選択するこ とを特徴とするマルチビームアンテナ送受信方法。
1 5 . 請求の範囲第 1 3項記載のマルチビームアンテナ送受信方法において、 前記受信品質の指標として受信電力又は S I R ( S i g n a l t o I n t e r f e r e n c e R a t i o :信号対干渉電力比) を用いることを特徴とす るマルチビームアンテナ送受信方法。
1 6 . 請求の範囲第 1 3項記載のマルチビームアンテナ送受信方法において、 受信アレーアンテナを構成する受信アンテナ素子の出力を入力とし、 入力した 信号を受信処理して出力する無線受信ステップと、
前記無線受信ステップの出力を入力として受信ビームを形成する受信ビーム形 成ステップと、
前記受信ビーム形成ステップの出力を入力とし、 前記受信ビームに存在するュ 一ザ信号のパス遅延/受信ビーム番号における総受信品質を計算してユーザ送信 ビーム番号を出力し、 前記パス遅延 z受信ビーム番号を用いてユーザ受信データ を出力するユーザ復調ステップと、
ユーザ送信データを入力し、 変調処理を行ってユーザ変調信号を出力するユー ザ変調処理ステップと、
前記ユーザ送信ビーム番号及び前記ユーザ変調信号を入力し、 前記ユーザ送信 ビーム番号に相当する送信ビームが形成されるように前記ユーザ変調信号を出力 するユーザ送信ビーム切替ステップと、
前記ユーザ送信ビーム切替ステップの出力を入力とし、 前記送信ビームを形成 する送信ビーム形成ステップと、
前記送信ビーム形成ステップの出力を入力とし、 入力した信号を送信処理して 送信アレーアンテナを構成する送信アンテナ素子へ出力する無線送信ステップと、 を備えることを特徴とするマルチビ一ムアンテナ送受信方法。
1 7 . 請求の範囲第 1 6項記載のマルチビームアンテナ送受信方法において、 前記ユーザ復調ステップは、
前記受信ビーム形成ステップの出力からユーザ毎のパス遅延を検出し、 前記パ ス遅延/受信ビーム番号を出力する受信ビームパス検出ステップと、
前記受信ビームパス検出ステップの出力である前記パス遅延 受信ビーム番号 におけるユーザ信号の受信品質から復調に用いる前記パス遅延 Z受信ビーム番号 を選択するパス遅延 受信ビーム選択ステップと、
前記パス遅延/受信ビーム選択ステップから通知された前記パス遅延/受信ビ ーム番号を用いて復調を行う復調処理ステップと、
前記受信ビームパス検出ステップの出力である前記パス遅延 受信ビーム番号 におけるユーザ信号の受信品質から前記受信ビーム毎のユーザ信号の総受信品質 を計算する受信ビーム計算処理ステップと、
前記受信ビーム計算処理ステツプから通知された前記受信ビーム毎のユーザ信 号の総受信品質から前記送信ビームを選択し前記ユーザ送信ビーム切替ステップ に通知する送信ビーム選択ステップと、
を備えることを特徴とするマルチビームアンテナ送受信方法。
1 8 . 請求の範囲第 1 7項記載のマルチビームアンテナ送受信方法において、 前記受信ビーム計算処理ステップは、 前記受信ビームパス検出ステップの出力 である前記パス遅延ノ受信ビーム番号におけるユーザ信号の受信品質から前記受 信ビーム毎のユーザ信号の総受信品質を計算する際に、 受信品質の指標として受 信電力を用い、 総受信品質として総受信電力を計算することを特徴とするマルチ ビームアンテナ送受信方法。
1 9 . 請求の範囲第 1 7項記載のマルチビ一ムアンテナ送受信方法において、 前記受信ビーム計算処理ステップは、 前記受信ビームパス検出ステップの出力 である前記パス遅延 Z受信ビーム番号におけるユーザ信号の受信品質から前記受 信ビーム毎のユーザ信号の総受信品質を計算する際に、 受信品質の指標として S I Rを用い、 総受信品質として総 S I Rを計算することを特徴とするマルチビー ムアンテナ送受信方法。
2 0 . 請求の範囲第 1 7項記載のマルチビームアンテナ送受信方法において、 前記受信ビーム計算処理ステップは、 前記受信ビームパス検出ステップの出力 である前記パス遅延 Z受信ビーム番号におけるユーザ信号の受信品質から前記受 信ビーム毎にユーザ信号の総受信品質を計算する際、 一定の基準に基づいて選択 した前記パス遅延 受信ビーム番号における受信品質を用いて前記受信ビーム毎 にユーザ信号の総受信品質を計算することを特徴とするマルチビームアンテナ送 受信方法。
2 1 . 請求の範囲第 2 0項記載のマルチビ一ムアンテナ送受信方法において、 前記受信ビーム計算処理ステップは、 前記一定の基準に基づいて選択した前記 パス遅延/受信ビーム番号として受信品質の優れた上位 P個 (Pは 2以上の整 数) の前記パス遅延ノ受信ビーム番号を選択することを特徴とするマルチビーム •送受信方法。
2 2 . 請求の範囲第 2 0項記載のマルチビームアンテナ送受信方法において、 前記受信ビーム計算処理ステップは、 前記一定の基準に基づいて選択した前記 パス遅延 Z受信ビーム番号として受信品質が一定の受信品質基準を満たす最大 Q 個 (Qは 2以上の整数) までの前記パス遅延 Z受信ビーム番号を選択することを 特徴とするマルチビームァンテナ送受信方法。
2 3 . 請求の範囲第 2 0項記載のマルチビ一ムアンテナ送受信方法において、 前記受信ビーム計算処理ステップは、 前記一定の基準に基づいて選択した前記 パス遅延/受信ビーム番号として、 前記パス遅延ノ受信ビーム選択ステップで選 択された前記パス遅延/受信ビーム番号を用いることを特徴とするマルチビーム アンテナ送受信方法。
2 4 . 請求の範囲第 1 3項記載のマルチビームアンテナ送受信方法において、 前記受信ビームのそれぞれに対し前記ユーザ信号のパス遅延毎の受信品質の値 を加算して総受信品質を計算するステップと、
前記総受信品質の優れた受信ビームを選択し、 選択された受信ビームの方向に 合致する方向又は近接する方向を有する送信ビームを選択するステップと、 を備えることを特徴とするマルチビームアンテナ送受信方法。
2 5 . 受信ビームに存在するユーザの信号のパス遅延の受信品質から計算した総 受信品質に基づいて、 送信ビームを選択することを特徴とする送信ビーム選択方 法。
2 6 . 請求の範囲第 2 5項記載の送信ビーム選択方法において、
■前記総受信品質に基づいて前記受信ビームを選択し、 選択された前記受信ビー ムの方向に合致する方向又は近接する方向を有する送信ビームを選択することを 特徴とする送信ビーム選択方法。
2 7 . 複数の受信ビームと複数の送信ビームとを備え、 前記複数の受信ビームに 存在するユーザ信号のパス遅延の受信品質から計算した総受信品質に基づいて、 前記送信ビームを選択するマルチビームアンテナ送受信装置を具備することを特 徴とする基地局。
2 8 . 複数の受信ビームと複数の送信ビームとを備え、 前記複数の受信ビームに 存在するユーザ信号のパス遅延の受信品質から計算した総受信品質に基づいて、 前記送信ビームを選択するマルチビームアンテナ送受信装置を具備することを特 徴とする移動局。
PCT/JP2003/001791 2002-03-27 2003-02-19 Emetteur/recepteur a antenne multi-faisceaux, procede d'emission/reception et procede de selection de faisceau d'emission WO2003081805A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003211535A AU2003211535A1 (en) 2002-03-27 2003-02-19 Multi-beam antenna transmitter/receiver and transmitting/receiving method and transmission beam selection method
US10/509,017 US7274951B2 (en) 2002-03-27 2003-02-19 Multi-beam antenna transmitter/receiver and transmitting/receiving method and transmission beam selection method
EP03705327.9A EP1492252B1 (en) 2002-03-27 2003-02-19 Multi-beam antenna transmitter/receiver and transmitting/receiving method and transmission beam selection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-88967 2002-03-27
JP2002088967A JP3956739B2 (ja) 2002-03-27 2002-03-27 マルチビームアンテナ送受信装置及び送受信方法並びに送信ビーム選択方法

Publications (1)

Publication Number Publication Date
WO2003081805A1 true WO2003081805A1 (fr) 2003-10-02

Family

ID=28449480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001791 WO2003081805A1 (fr) 2002-03-27 2003-02-19 Emetteur/recepteur a antenne multi-faisceaux, procede d'emission/reception et procede de selection de faisceau d'emission

Country Status (6)

Country Link
US (1) US7274951B2 (ja)
EP (1) EP1492252B1 (ja)
JP (1) JP3956739B2 (ja)
CN (1) CN100440754C (ja)
AU (1) AU2003211535A1 (ja)
WO (1) WO2003081805A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286800B2 (en) 2002-12-12 2007-10-23 Nec Corporation Multi-beam antenna reception device and multi-beam reception method
US10448403B2 (en) 2015-10-06 2019-10-15 Sony Corporation Apparatus and method for beam selection in downlink transmission

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7482975B2 (en) 2003-12-01 2009-01-27 Nec Corporation Multi-beam transmitting/receiving apparatus and transmitting/receiving method
CN1910831B (zh) * 2003-12-16 2011-01-05 三菱电机株式会社 无线通信装置
JP4847874B2 (ja) * 2004-01-30 2011-12-28 ユニベルシテ ラバル マルチユーザ適応型アレイ受信機および方法
JP5588594B2 (ja) * 2007-12-26 2014-09-10 富士通株式会社 無線通信システムにおける通信方法並びに無線端末及び無線基地局
KR101513889B1 (ko) * 2008-02-14 2015-05-20 삼성전자주식회사 멀티 빔 결합을 이용한 스위치 빔 포밍 장치 및 방법
KR101410607B1 (ko) 2008-05-09 2014-06-20 애플 인크. 셀룰러 네트워크에서의 안테나 빔 형성을 지원하기 위한 시스템 및 방법
US9137698B2 (en) * 2012-02-24 2015-09-15 Samsung Electronics Co., Ltd. Beam management for wireless communication
KR20130124004A (ko) * 2012-05-04 2013-11-13 삼성전자주식회사 밀리미터 전파 통신 시스템에서 전송기법에 따른 자원할당 방법 및 장치
KR20130125903A (ko) 2012-05-10 2013-11-20 삼성전자주식회사 통신시스템에서 빔포밍을 수행하는 방법 및 장치
KR101877775B1 (ko) 2012-11-26 2018-07-13 삼성전자주식회사 무선통신 시스템에서 기지국 간 협업 통신을 위한 간섭 제거 코드를 할당하는 방법 및 장치
EP2938008B1 (en) * 2013-01-25 2017-06-14 Huawei Technologies Co., Ltd. Wave beam selection method and base station
WO2017105299A1 (en) * 2015-12-14 2017-06-22 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for pilot sequence allocation
US10595271B2 (en) 2017-01-05 2020-03-17 Samsung Electronics Co., Ltd Method, apparatus, and system for terminal identification and paging signal transmission for terminal in power saving state
KR101980429B1 (ko) * 2017-02-09 2019-05-20 한국과학기술원 수신 신호의 크기에 기초하여 빔을 선택하는 방법 및 장치
JP2018152723A (ja) * 2017-03-13 2018-09-27 株式会社東芝 無線通信装置および無線通信方法
KR102622030B1 (ko) * 2018-11-26 2024-01-08 삼성전자 주식회사 인공신경망 기반의 수신 빔 선택 방법 및 장치
CN111726820B (zh) * 2019-03-20 2024-02-20 株式会社Ntt都科摩 由基站执行的方法及相应的基站
US11871215B2 (en) * 2019-09-18 2024-01-09 Qualcomm Incorporated Uplink-centric handover in a wireless multi-hop network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541607A (ja) * 1991-08-06 1993-02-19 Kokusai Denshin Denwa Co Ltd <Kdd> アダプテイブアレイアンテナ制御方式
JPH10285092A (ja) * 1997-04-02 1998-10-23 Matsushita Electric Ind Co Ltd 適応送信ダイバーシチ装置及び適応送信ダイバーシチ方法
JP2001251233A (ja) * 1999-12-27 2001-09-14 Toshiba Corp アダプティブアンテナを用いた無線通信装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700116A3 (en) * 1994-08-29 1998-01-07 Atr Optical And Radio Communications Research Laboratories Apparatus and method for controlling array antenna comprising a plurality of antenna elements with improved incoming beam tracking
JP3866283B2 (ja) * 1994-09-14 2007-01-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線伝送システム及びこのシステムに用いる無線装置
JP3308835B2 (ja) * 1996-12-06 2002-07-29 株式会社日立製作所 無線通信システム
BR9916517A (pt) * 1998-12-23 2001-09-04 Ericsson Telefon Ab L M Estação radiotransceptora
JP3416597B2 (ja) * 1999-11-19 2003-06-16 三洋電機株式会社 無線基地局
US6369756B1 (en) * 2000-03-28 2002-04-09 Nokia Networks Oy Method and apparatus for optimizing the usage of an antenna array beamforming technique
JP4318389B2 (ja) * 2000-04-03 2009-08-19 三洋電機株式会社 アダプティブアレー装置、無線基地局、携帯電話機
US6728554B1 (en) * 2000-09-11 2004-04-27 International Systems, Llc Wireless communication network
EP1220475A3 (en) * 2000-12-25 2003-11-19 Kabushiki Kaisha Toshiba Mobile communication terminal apparatus with antenna array
JP3717789B2 (ja) * 2001-02-02 2005-11-16 富士通株式会社 通信システムおよび情報仲介方法並びに記録媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541607A (ja) * 1991-08-06 1993-02-19 Kokusai Denshin Denwa Co Ltd <Kdd> アダプテイブアレイアンテナ制御方式
JPH10285092A (ja) * 1997-04-02 1998-10-23 Matsushita Electric Ind Co Ltd 適応送信ダイバーシチ装置及び適応送信ダイバーシチ方法
JP2001251233A (ja) * 1999-12-27 2001-09-14 Toshiba Corp アダプティブアンテナを用いた無線通信装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286800B2 (en) 2002-12-12 2007-10-23 Nec Corporation Multi-beam antenna reception device and multi-beam reception method
US10448403B2 (en) 2015-10-06 2019-10-15 Sony Corporation Apparatus and method for beam selection in downlink transmission
US10827497B2 (en) 2015-10-06 2020-11-03 Sony Corporation Apparatus and method for beam selection in downlink transmission

Also Published As

Publication number Publication date
JP2003283394A (ja) 2003-10-03
EP1492252B1 (en) 2013-05-22
EP1492252A1 (en) 2004-12-29
JP3956739B2 (ja) 2007-08-08
US7274951B2 (en) 2007-09-25
CN1656711A (zh) 2005-08-17
US20050153657A1 (en) 2005-07-14
EP1492252A4 (en) 2010-12-29
CN100440754C (zh) 2008-12-03
AU2003211535A1 (en) 2003-10-08

Similar Documents

Publication Publication Date Title
WO2003081805A1 (fr) Emetteur/recepteur a antenne multi-faisceaux, procede d&#39;emission/reception et procede de selection de faisceau d&#39;emission
KR101162391B1 (ko) 다수의 빔 안테나 시스템용 방법 및 장치
JP3092798B2 (ja) 適応送受信装置
EP0807989B1 (en) Devices for transmitter path weights and methods therefor
US7092690B2 (en) Genetic algorithm-based adaptive antenna array processing method and system
US9160427B1 (en) Transmit diversity with formed beams in a wireless communications system using a common pilot channel
US8374132B2 (en) Base station device, method for controlling base station device, receiving device, adaptation algorithm control method, radio communication device, and radio communication method
US20070243831A1 (en) Wireless communication system
US7342912B1 (en) Selection of user-specific transmission parameters for optimization of transmit performance in wireless communications using a common pilot channel
JP2007532059A (ja) マルチアンテナまたはマルチビームを用いた無線送受信ユニット−無線送受信ユニット(wtru−wtru)干渉の緩和
AU2007215029A1 (en) Adaptive beam-steering method, apparatus having a transceiver adaptive beam forming method, transmitter and receiver
JPH08213948A (ja) 基地局構成
US7286800B2 (en) Multi-beam antenna reception device and multi-beam reception method
US7340281B2 (en) Method and system for enhancing reception of wireless communication signals
US7123943B2 (en) Method of generating directional antenna beams, and radio transmitter
JP3370621B2 (ja) 移動通信用基地局アンテナ装置
EP1583258B1 (en) Array antenna radio communication apparatuses
JP4198452B2 (ja) 無線装置およびアンテナ指向性制御方法
JP2007027908A (ja) アダプティブアレイアンテナ受信装置およびその制御方法
WO2007013267A1 (ja) 適応アンテナ受信装置
WO2004056012A1 (en) Method at multiple antennas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR NO SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003705327

Country of ref document: EP

Ref document number: 10509017

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038123282

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003705327

Country of ref document: EP