WO2003074618A1 - Von unlöslichen festkörpern freie elektrotauchlacke (etl) - Google Patents

Von unlöslichen festkörpern freie elektrotauchlacke (etl) Download PDF

Info

Publication number
WO2003074618A1
WO2003074618A1 PCT/EP2003/001891 EP0301891W WO03074618A1 WO 2003074618 A1 WO2003074618 A1 WO 2003074618A1 EP 0301891 W EP0301891 W EP 0301891W WO 03074618 A1 WO03074618 A1 WO 03074618A1
Authority
WO
WIPO (PCT)
Prior art keywords
etl
crosslinking
reactive functional
groups
functional groups
Prior art date
Application number
PCT/EP2003/001891
Other languages
English (en)
French (fr)
Inventor
Karl-Heinz Grosse Brinkhaus
Michael Hartung
Ursula Kaletta
Margret Neumann
Original Assignee
Basf Coatings Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Coatings Ag filed Critical Basf Coatings Ag
Priority to AU2003208756A priority Critical patent/AU2003208756A1/en
Publication of WO2003074618A1 publication Critical patent/WO2003074618A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8012Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with diols
    • C08G18/8019Masked aromatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/448Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications characterised by the additives used

Definitions

  • Electrodeposition coatings free from insoluble solids
  • the present invention relates to new electrodeposition paints (ETL) free of insoluble solids.
  • ETL electrodeposition paints
  • the present invention relates to a new process for the production of ETL free from insoluble solids.
  • the present invention relates to the use of the new ETL free of insoluble solids for the production of electrocoating.
  • Pigment-free, cathodically depositable ETL are known, for example, from German patent applications DE 199 30 060 A1, DE 100 01 222 A1 or DE 100 52 438 A1. They contain cationic resins as binders and blocked polyisocyanates as crosslinking agents. As a catalyst, they contain bismuth 2-ethylhexanoate, which is soluble in organic solvents.
  • the known pigment-free KTL have the advantage over the pigment-containing ones that no pigment pastes and elaborate grinding processes have to be used to manufacture them. Otherwise, they already have good application properties and provide electrocoating with good properties.
  • pigments in particular corrosion protection pigments, or other insoluble solids, such as microgels and catalyst powders, such as dibutyltin oxide, to provide electrodeposition coatings that guarantee excellent corrosion protection and edge protection.
  • the non-hardened or only partially hardened layers of the known pigment-free ETL can often only be poorly overlaid with aqueous coating materials, such as water primers or water fillers, without problems and baked together.
  • tin catalysts which are soluble in organic solvents, such as dibutyltin dilaurate, dioctyltin dilaurate or dibutyltin diacetate, is known. They are easy to handle and do not require any dispersion, but they only have insufficient compatibility with the binders, in particular the epoxy resins, of the ETL. This results in defective electrocoating.
  • dialkyltin dicarboxylates of aromatic carboxylic acids such as benzoic acid
  • European patent application EP 0 509 437 A1 European patent application EP 0 509 437 A1
  • at least one bismuth or zirconium compound such as bismuth trioxide or zirconium dioxide.
  • ETLs free from insoluble solids can therefore only be poorly or not at all realized with these dialkyltin dicarboxylates.
  • ETL contain as dialkyltin dicarboxylates of long-chain fatty acids with 14 to 22 carbon atoms in the alkyl radical, such as oleic acid, which are soluble in organic solvents.
  • dialkyltin dicarboxylates are preferably used in combination with dibutyltin oxide. ETLs free from insoluble solids can therefore only be poorly or not at all realized with these dialkyltin dicarboxylates.
  • the object of the present invention is to find new electrodeposition paints (ETL) which are free from insoluble solids and which can be produced just as easily as the known pigment-free ETL and which no longer have the disadvantages of the prior art, but which are in the form of a deposited, not or only partially hardened layer without problems and trouble-free wet-on-wet with aqueous Layer coating materials and let them burn together with them and deliver electro-dip coatings with excellent corrosion protection and edge protection.
  • ETL electrodeposition paints
  • ETL new electrodeposition paints free of insoluble solids
  • the object on which the invention is based could be achieved with the aid of the ETL according to the invention.
  • the ETLs according to the invention were simple to produce and were stable in storage. They could easily be deposited electrophoretically on electrically conductive substrates.
  • the deposited, unhardened or only partially hardened layers of the ETL according to the invention could be covered without problems wet-on-wet with aqueous coating materials, such as water primers or water fillers, and then baked together with them.
  • the resulting electrocoating offered excellent corrosion protection and edge protection.
  • the ETLs according to the invention are free of insoluble solids.
  • insoluble means that the solids in question do not dissolve, or only dissolve very slowly, in the aqueous media as contained in the ETL according to the invention and in customary and known polar and non-polar organic solvents.
  • insoluble solids are pigments, such as anti-corrosion pigments, or highly cross-linked microparticles or microgels.
  • the property "free from” means that the ETLs according to the invention contain no insoluble solids or only traces thereof which none Have an influence on the application properties of the ETL according to the invention.
  • the ETL according to the invention preferably have a solids content of 5 to 50, preferably 5 to 35,% by weight.
  • solid is to be understood as the proportion of an ETL that builds up the electro-dip coating produced from it.
  • the ETL according to the invention contain at least one binder (A).
  • the binders (A) can be self-crosslinking and / or externally crosslinking.
  • Self-crosslinking binders (A) contain reactive functional groups which can undergo thermal crosslinking reactions with themselves and / or with complementary reactive functional groups present in the self-crosslinking binders (A).
  • External crosslinking binders (A) contain reactive functional groups which can undergo thermal crosslinking reactions with complementary reactive functional groups present in crosslinking agents (B).
  • At least one externally crosslinking binder (A) is preferably used in combination with at least one crosslinking agent (B).
  • the binder (A) potentially contains cationic and / or cationic groups. Binders (A) of this type are used in cathodically depositable electrocoat materials (KTL). Examples of suitable potentially cationic groups which can be converted into cations by neutralizing agents and / or quatemizing agents are primary, secondary or tertiary amino groups, secondary sulfide groups or tertiary phosphine groups, in particular tertiary amino groups or secondary sulfide groups.
  • Suitable cationic groups are primary, secondary, tertiary or quaternary ammonium groups, tertiary sulfonium groups or quaternary phosphonium groups, preferably quaternary ammonium groups or tertiary sulfonium groups, but especially quaternary ammonium groups.
  • Suitable neutralizing agents for the potentially cationic groups are inorganic and organic acids such as sulfuric acid, hydrochloric acid, phosphoric acid, formic acid, acetic acid, lactic acid, dimethylolpropionic acid or citric acid, especially formic acid, acetic acid or lactic acid.
  • Suitable binders (A) for KTL are from the publications EP 0 082 291 A1, EP 0 234 395 A1, EP 0 227 975 A1, EP 0 178 531 A1
  • EP 0 261 385 A1 EP 0 245 786 A1, EP 0 414 199 A1, EP 0 476 514 A1
  • a 1, WO 98/33835, DE 33 00 570 A1, DE 37 38 220 A1, DE 35 18 732 A1 or DE 196 18 379 A1 are known. These are preferably primary, secondary, tertiary or quaternary amino or ammonium groups and / or containing tertiary sulfonium groups
  • amine numbers preferably between 20 and 250 mg KOH / g and a weight average molecular weight of 300 to 10,000 daltons.
  • amino (meth) acrylate resins amino (meth) acrylate resins
  • Amino epoxy resins amino epoxy resins with terminal Double bonds, amino epoxy resins with primary and / or secondary hydroxyl groups, aminopolyurethane resins, those containing amino groups
  • Polybutadiene resins or modified epoxy resin-carbon dioxide-amine reaction products are used.
  • binder (A) can potentially contain anionic and / or anionic groups. Binders (A) of this type are used in anionically depositable electrocoat materials (ATL).
  • Suitable potentially anionic groups which can be converted into anions by neutralizing agents are carboxylic acid, sulfonic acid or phosphonic acid groups, in particular carboxylic acid groups.
  • Suitable anionic groups are carboxylate, sulfonate or phosphonate groups, especially carboxylate groups.
  • Suitable neutralizing agents for the potentially anionic groups are ammonia, ammonium salts, such as, for example, ammonium carbonate or ammonium hydrogen carbonate, and amines, such as, for example, Trimethylamine, triethylamine, tributylamine, dimethylaniline, diethylaniline, triphenylamine, dimethylethanolamine, diethylethanolamine, methyldiethanolamine, triethanolamine and the like.
  • binders (A) for ATL are known from German patent application DE 28 24 418 A1. These are preferably polyesters, epoxy resin esters, poly (meth) acrylates, maleate oils or polybutadiene oils with a weight average molecular weight of 300 to 10,000 daltons and an acid number of 35 to 300 mg KOH / g.
  • the amount of neutralizing agent is chosen so that 1 to 100 equivalents, preferably 50 to 90 equivalents, of the potentially cationic or potentially anionic groups of a binder (A) are neutralized.
  • Suitable reactive functional groups are hydroxyl groups, thiol groups and primary and secondary amino groups, especially hydroxyl groups.
  • Suitable complementary reactive functional groups are blocked isocyanate groups, hydroxymethylene and
  • Alkoxymethylene groups preferably methoxymethylene and butoxymethylene groups and especially methoxymethylene groups.
  • Blocked isocyanate groups are preferably used.
  • suitable blocking agents are those described below.
  • KTL are preferably used as ETL.
  • the content of the binders (A) described above in the ETL according to the invention depends primarily on their solubility and dispersibility in the aqueous medium and on their functionality with regard to the crosslinking reactions with themselves or the constituents (B) and can therefore be described by the person skilled in the art on the basis of his general specialist knowledge if necessary with the help of simple preliminary tests.
  • Crosslinking agents which contain suitable complementary reactive functional groups.
  • the crosslinking agents which contain suitable complementary reactive functional groups.
  • Crosslinking agents (B) from the group consisting of blocked Polyisocyanates, melamine-formaldehyde resins,
  • Tris (alkoxycarbonylamino) triazines and polyepoxides are preferably selected from the group consisting of blocked polyisocyanates and highly reactive melamine-formaldehyde resins.
  • the blocked polyisocyanates are particularly preferably used.
  • the blocked polyisocyanates (B) are produced from customary and known paint polyisocyanates with aliphatic, cycloaliphatic, araliphatic and / or aromatically bound isocyanate groups.
  • Lacquer polyisocyanates with 2 to 5 isocyanate groups per molecule and with viscosities of 100 to 10,000, preferably 100 to 5,000 and in particular 100 to 2,000 mPas (at 23 ° C.) are preferably used.
  • the lacquer polyisocyanates can be modified in a conventional and known manner to be hydrophilic or hydrophobic.
  • lacquer polyisocyanates examples include lacquer polyisocyanates, for example, in "Methods of Organic Chemistry", Houben-Weyl, Volume 14/2, 4th Edition, Georg Thieme Verlag, Stuttgart 1963, pages 61 to 70, and by W. Siefken, Liebigs Annalen der Chemie, Volume 562, pages 75 to 136.
  • paint polyisocyanates are isocyanurate, biuret, allophanate, iminooxadiazinedione, urethane, urea, carbodiimide and / or uretdione polyisocyanates which are obtainable from customary and known diisocyanates.
  • Preferred diisocyanates are hexamethylene diisocyanate, isophorone diisocyanate, 2-isocyanatopropylcyclohexyl isocyanate, dicyclohexyl methane-2,4'-diisocyanate, dicyclohexyl methane-4,4'-diisocyanate or 1,3-
  • BIC Bis (isocyanatomethyl) cyclohexane
  • diisocyanates derived from Dimer fatty acids 1,8-diisocyanato-4-isocyanatomethyl-octane, 1,7-
  • phenols such as phenol, cresol, xylenol, nitrophenol, chlorophenol, ethylphenol, t-butylphenol, hydroxybenzoic acid, esters of this acid or 2,5-di-tert-butyl-4-hydroxytoluene;
  • lactams such as ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam or ß-propiolactam
  • active methylenic compounds such as diethyl malonate, dimethyl malonate, ethyl or methyl acetoacetate or acetylacetone;
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, n-amyl alcohol, t-amyl alcohol, lauryl alcohol, ethylene glycol monomethyl ether,
  • Ethylene glycol monoethyl ether ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether,
  • acid amides such as acetoanilide, acetoanisidinamide, acrylamide, methacrylamide, acetic acid amide, stearic acid amide or benzamide;
  • imides such as succinimide, phthalimide or maleimide
  • amines such as diphenylamine, phenylnaphthylamine, xylidine, N-phenylxylidine, carbazole, aniline, naphthylamine, butylamine, dibutylamine or butylphenylamine;
  • imidazoles such as imidazole or 2-ethylimidazole
  • ureas such as urea, thiourea, ethylene urea, ethylene thiourea or 1,3-diphenylurea;
  • xi) carbamates such as phenyl N-phenylcarbamate or 2-oxazolidone
  • imines such as ethyleneimine
  • oximes such as acetone oxime, formal doxime, acetaldoxime, acetoxime, methyl ethyl ketoxime, diisobutyl ketoxime, diacetyl monoxime,
  • xiv) salts of sulfurous acid such as sodium bisulfite or potassium bisulfite
  • xv) hydroxamic acid esters such as benzyl methacrylohydroxamate (BMH) or allyl methacrylohydroxamate
  • the ETLs according to the invention also contain at least one dialkyltin dicarboxylate (C) of the general formula I:
  • R 1 alkyl radical preferably straight-chain alkyl radical, having 4 to 10 carbon atoms, preferably selected from the group consisting of butyl, pentyl, hexyl, heptyl, octyl, nonyl and decyl, particularly preferably butyl and octyl, especially octyl;
  • R 2 tertiary, branched alkyl radical having 8 to 13, in particular 9 to 11, carbon atoms.
  • dialkyltin dicarboxylates (C) examples include the reaction products of dialkyltin oxides, in particular dioctyltin oxide, with Versatic® acids (cf. Römpp Lexikon Lacke und Druckmaschine, Georg Thieme Verlag, Stuttgart, New York, 1998, “Versatic ⁇ acids”, Pages 605 and 606).
  • the preparation of the dialkyltin dicarboxylates (C) has no special features in terms of method, but can be achieved by reacting dialkyltin oxides with the carboxylic acids at temperatures from 100 to 180 ° C. and removing the water of reaction formed, for example by azeotropic distillation.
  • the reaction products of dibutyltin oxide with Versatic ⁇ acids are commercially available compounds and are sold under the Formrez ⁇ brand by Witco Vinyl Additives GmbH.
  • (C) can vary widely and depends on the requirements of the individual case.
  • the content is preferably 1 to 4, preferably 1.5 to 3.5,% by weight, in each case based on the solid of the respective ETL.
  • the ETL according to the invention can contain at least one customary and known, soluble or dispersible additive (D) selected from the group consisting of catalysts other than dialkyltin dicarboxylates (C); Anti-crater additives; polyvinyl alcohols; thermally curable
  • D soluble or dispersible additive selected from the group consisting of catalysts other than dialkyltin dicarboxylates (C); Anti-crater additives; polyvinyl alcohols; thermally curable
  • Light stabilizers such as UV absorbers and reversible radical scavengers (HALS); antioxidants; low and high boiling ("long") organic solvents; Venting means; Wetting agents; emulsifiers; slip additives; polymerization inhibitors; thermolabile free radical initiators; Adhesion promoters; Leveling agents; film-forming aids;
  • HALS reversible radical scavengers
  • the ETLs according to the invention are produced by mixing and homogenizing the constituents described above with the aid of customary and known mixing processes and devices such as stirred kettles, agitator mills, extruders, kneaders, Ultraturrax, in-line dissolvers, static mixers, micromixers, gear rim dispersers, pressure relief nozzles and / or microfluidizers , At least the constituents (C) and optionally (B) and / or (D) are preferably mixed with an organic solution or melt of the binder (A). The resulting organic mixture is then dispersed in an aqueous medium containing water and at least one of the neutralizing agents described above.
  • customary and known mixing processes and devices such as stirred kettles, agitator mills, extruders, kneaders, Ultraturrax, in-line dissolvers, static mixers, micromixers, gear rim dispersers, pressure relief nozzles and / or microfluidizers , At least the
  • the ETL according to the invention is applied in a customary and known manner by immersing an electrically conductive substrate in an electrodeposition paint bath according to the invention, switching the substrate as a cathode or anode, preferably as a cathode, depositing an ETL layer on the substrate by direct current, the coated substrate is removed from the electrocoating bath and the deposited ETL layer is thermally hardened (baked) in the usual and known manner.
  • the resulting electrocoat can then be overcoated with a filler or a stone chip protection primer and a solid-color topcoat or alternatively with a basecoat and a clearcoat using the wet-on-wet method.
  • the filler layer or layer from the stone chip protection primer and the solid-color lacquer layer are preferably each baked on individually.
  • the basecoat and the clearcoat are preferably baked together.
  • the result is multi-layer coatings with excellent application properties
  • the multi-layer coatings are preferably produced by wet-on-wet methods, in which the deposited ETL layer is not or only partially thermally cured and immediately covered with the other coating materials, in particular aqueous coating materials, after which it is coated with at least one of the layers Coating materials (ETL layer + filler layer; ETL layer + filler layer + solid color lacquer layer; ETL layer + filler layer + basecoat layer or ETL layer + filler layer + basecoat layer + clear lacquer layer) are baked together.
  • This also results in multi-layer coatings with excellent application properties, the production processes being particularly economical and energy-saving. It can be seen that the ETL layers according to the invention can be overlayed wet-on-wet in a particularly trouble-free manner.
  • electro-dip coatings according to the invention are obtained which offer excellent corrosion protection and edge protection.
  • reaction mixture was then mixed with 73 parts by weight of a polypropylene glycol (Pluriol® P 600 from BASF Aktiengesellschaft) and cooled to 95 ° C. At this temperature, 52 parts by weight of diethanolamine were added, whereupon an exothermic reaction occurred and the temperature of the reaction mixture rose to 115 ° C. After 40 minutes they gave up 25.3 parts by weight of N, N-dimethylaminopropylamine were added to this temperature, whereupon the temperature of the reaction mixture rose to 140.degree. The reaction mixture was then stirred at 130 ° C. until the viscosity remained constant after two hours.
  • Pluriol® P 600 from BASF Aktiengesellschaft
  • Example 1 was repeated, except that dibutyltin dilaurate was added instead of dioctyltin di-Versatic ⁇ acid ester. A dispersion with the following key figures was obtained: Solid: 43% by weight
  • average particle size 150 nm (determined by photon correlation spectroscopy).
  • the resulting electrocoat baths were aged with stirring for two days at room temperature.
  • the electrodeposition coating layers were deposited for two minutes on cathodically connected, zinc-phosphated steel test panels which had not been rinsed with chromium (VI).
  • the coated steel test panels were removed from the electrocoating baths.
  • the electrocoat layers thereon were rinsed with deionized water.
  • Comparative experiment V 2 were coated wet-on-wet with a commercially available water filler from BASF Coatings AG, after which the
  • Example 2 and Comparative Experiment V 2 was then baked at an object temperature of 180 ° C. for 20 minutes.
  • the resulting electrodeposition coatings had a layer thickness of 20 ⁇ m.
  • the coated steel test panels were each scored and subjected to a climate change test (VDA-KWT). The infiltration of the scratch, flaking and degree of rust after shot-peening and the degree of rust on the edges were assessed. The results can be found in the table. They underline that the electrocoat materials according to the invention were also superior in corrosion protection and edge protection to those not according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Von unlöslichen Festkörpern freien Elektrotauchlacke (ETL), enthaltend (A) mindestens ein selbstvernetzendes und/oder fremdvernetzendes Bindemittel mit (potenziell) kationischen oder anionischen Gruppen und reaktiven funktionellen Gruppen, die (i) mit sich selbst oder mit im selbstvernetzenden Bindemittel vorhandenen komplementären reaktiven funktionellen Gruppen oder (ii) im Falle des fremdvernetzenden Bindemittels mit in Vernetzungsmitteln (B) vorhandenen komplementären reaktiven funktionellen Gruppenthermische Vernetzungsreaktionen eingehen können, (B) gegebenenfalls mindestens ein Vernetzungsmittel, enthaltend die komplementären reaktiven funktionellen Gruppen, und (C) mindestens ein Dialkylzinndicarboxylat der allgemeinen Formel I : (R1)2 Sn[O-(O)CR2] 2 (I), worin die Variablen die folgende Bedeutung haben, R1 = Alkylrest mit 4 bis 10 Kohlenstoffatomen und R2 = tertiärer, verzweigter Alkylrest mit 8 bis 13 Kohlenstoffatomen.

Description

Von unlöslichen Festkörpern freie Elektrotauchlacke (ETL)
Die vorliegende Erfindung betrifft neue, von unlöslichen Festkörpern freie Elektrotauchlacke (ETL). Außerdem betrifft die vorliegende Erfindung ein neues Verfahren zur Herstellung von von unlöslichen Festkörpern freien ETL. Des weiteren betrifft die vorliegende Erfindung die Verwendung der neuen, von unlöslichen Festkörpern freien ETL für die Herstellung von Elektrotauchlackierungen.
Pigmentfreie, kathodisch abscheidbare ETL (KTL) sind beispielsweise aus den deutschen Patentanmeldungen DE 199 30 060 A 1 , DE 100 01 222 A 1 oder DE 100 52 438 A 1 bekannt. Sie enthalten kationische Harze als Bindemittel und blockierte Polyisocyanate als Vernetzungsmittel. Als Katalysator enthalten sie das in organischen Lösemitteln lösliche Bismut- 2-ethylhexanoat.
Die bekannten pigmentfreien KTL haben gegenüber den pigmenthaltigen den Vorteil, dass zu ihrer Herstellung keine Pigmentpasten und aufwändige Mahlverfahren angewandt werden müssen. Ansonsten weisen sie bereits gute anwendungstechnische Eigenschaften auf und liefern Elektrotauchlackierungen mit guten Eigenschaften.
Sie müssen aber noch weiterentwickelt werden, damit sie auch ohne Zusatz von Pigmenten, insbesondere Korrosionsschutzpigmenten, oder von anderen unlöslichen Festkörpern, wie Mikrogele und Katalysatorpulvern, wie Dibutylzinnoxid, Elektrotauchlackierungen liefern, die einen hervorragenden Korrosionsschutz und Kantenschutz gewährleisten. Außerdem lassen sich die nicht oder nur partiell gehärteten Schichten aus den bekannten pigmentfreien ETL häufig nur schlecht mit wässrigen Beschichtungsstoffen, wie Wasserprimer oder Wasserfüller, nass-in-nass störungsfrei überschichten und gemeinsam einbrennen. Die Verwendung von in organischen Lösemitteln löslichen Zinnkatalysatoren, wie Dibutylzinndilaurat, Dioctylzinndilaurat oder Dibutylzinndiacetat ist bekannt. Sie sind einfach handhabbar und bedürfen keiner Dispergierung, sie die weisen aber nur eine ungenügende Verträglichkeit mit den Bindemitteln, insbesondere den Epoxidharzen, der ETL auf. Dadurch resultieren schadhafte Elektrotauchlackierungen.
In dieser Hinsicht sollen die aus der europäischen Patentanmeldung EP 0 509 437 A 1 bekannten Dialkylzinndicarboxylate von aromatischen Carbonsäuren, wie Benzoesäure, eine Verbesserung bewirken, allerdings müssen sie mit mindestens einer Bismut- oder Zirkoniumverbindung, wie Bismuttrioxid oder Zirkoniumdioxid, kombiniert werden. Von unlöslichen Festkörpern freie ETL können daher mit diesen Dialkylzinndicarboxylaten nur schlecht oder gar nicht realisiert werden.
Aus der internationalen Patentanmeldung WO 97/23574 sind ETL bekannt, die als Katalysatoren die in organischen Lösemitteln löslichen Dialkylzinndicarboxylate von langkettigen Fettsäuren mit 14 bis 22 Kohlenstoffatomen im Alkylrest, wie Ölsäure, enthalten. Vorzugsweise werden diese Dialkylzinndicarboxylate in Kombination mit Dibutylzinnoxid verwendet. Von unlöslichen Festkörpern freie ETL können daher auch mit diesen Dialkylzinndicarboxylaten nur schlecht oder gar nicht realisiert werden.
Aufgabe der vorliegenden Erfindung ist es, neue, von unlöslichen Festkörpern freie Elektrotauchlacke (ETL) zu finden, die sich ebenso einfach wie die bekannten pigmentfreien ETL herstellen lassen und die die Nachteile des Standes der Technik nicht mehr länger aufweisen, sondern die sich in Form einer abgeschiedenen, nicht oder nur partiell gehärteten Schicht problemlos und störungsfrei nass-in-nass mit wässrigen Beschichtungsstoffen überschichten und gemeinsam mit diesen einbrennen lassen und Elektrotauchlackierungen mit hervorragendem Korrosionsschutz und Kantenschutz liefern.
Demgemäß wurden die neuen, von unlöslichen Festkörpern freien Elektrotauchlacke (ETL) gefunden, enthaltend
(A) mindestens ein selbstvernetzendes und/oder fremdvernetzendes Bindemittel mit (potenziell) kationischen oder anionischen Gruppen und reaktiven funktionellen Gruppen, die
(i) mit sich selbst oder mit im selbstvernetzenden Bindemittel vorhandenen komplementären reaktiven funktionellen
Gruppen oder
(ii) im Falle des fremdvernetzenden Bindemittels mit in
Vernetzungsmitteln (B) vorhandenen komplementären reaktiven funktionellen Gruppen
thermische Vernetzungsreaktionen eingehen können,
(B) gegebenenfalls mindestens ein Vernetzungsmittel, enthaltend die komplementären reaktiven funktionellen Gruppen, und
(C) mindestens ein Dialkylzinndicarboxylat der allgemeinen Formel I:
(R1)2Sn[0-(0)CR2]2 (I),
worin die Variablen die folgende Bedeutung haben,
R1 Alkylrest mit 4 bis 10 Kohlenstoffatomen und R2 tertiärer, verzweigter Alkylrest mit 8 bis 13 Kohlenstoffatomen.
Im Folgenden werden die neuen, von unlöslichen Festkörpern freien Elektrotauchlacke (ETL) als »erfindungsgemäße ETL« bezeichnet.
Im Hinblick auf den Stand der Technik war es überraschend und für den Fachmann nicht vorhersehbar, dass die der Erfindung zugrunde liegende Aufgabe mit Hilfe der erfindungsgemäßen ETL gelöst werden konnte. Insbesondere war es überraschend, dass die erfindungsgemäßen ETL sich einfach herstellen ließen und lagerstabil waren. Sie ließen sich in einfacher Weise problemlos elektrophoretisch auf elektrisch leitfähigen Substraten abscheiden. Die abgeschiedenen, nicht oder nur partiell gehärteten Schichten der erfindungsgemäßen ETL konnten problemlos nass-in-nass mit wässrigen Beschichtungsstoffen, wie Wasserprimer oder Wasserfüller, störungsfrei überschichtet und danach gemeinsam mit diesen eingebrannt werden. Die resultierenden Elektrotauchlackierungen boten einen hervorragenden Korrosionsschutz und Kantenschutz.
Die erfindungsgemäßen ETL sind frei von unlöslichen Festkörpern.
Die Eigenschaft »unlöslich« bedeutet, dass sich die betreffenden Festkörper in den wässrigen Medien, wie sie in den erfindungsgemäßen ETL enthalten sind, und in üblichen und bekannten polaren und unpolaren organischen Lösemitteln nicht oder nur sehr langsam auflösen. Beispiele für unlösliche Festkörper sind Pigmente, wie Korrosionsschutzpigmente, oder hoch vernetzte Mikroteilchen oder Mikrogele.
Die Eigenschaft »frei von« bedeutet, dass die erfindungsgemäßen ETL keine unlösliche Festkörper oder nur Spuren hiervon enthalten, die keinen Einfluss auf die anwendungstechnischen Eigenschaften der erfindungsgemäßen ETL haben.
Die erfindungsgemäßen ETL weisen vorzugsweise einen Festkörpergehalt von 5 bis 50, bevorzugt 5 bis 35, Gew.% auf. Hierbei ist unter »Festkörper« der Anteil eines ETL zu verstehen, der die hieraus hergestellte Eletrotauchlackierung aufbaut.
Die erfindungsgemäßen ETL enthalten mindestens ein Bindemittel (A).
Die Bindemittel (A) können selbstvernetzend und/oder fremdvernetzend sein.
Selbstvernetzende Bindemittel (A) enthalten reaktive funktioneile Gruppen, die mit sich selbst und/oder mit in den selbstvernetzenden Bindemitteln (A) vorhandenen komplementären reaktiven funktionellen Gruppen thermische Vernetzungsreaktionen eingehen können.
Fremdvernetzende Bindemittel (A) enthalten reaktive funktioneile Gruppen, die mit in Vernetzungsmitteln (B) vorhandenen komplementären reaktiven funktionellen Gruppen thermische Vernetzungsreaktionen eingehen können.
Vorzugsweise wird mindestens ein fremdvernetzendes Bindemittel (A) in Kombination mit mindestens einem Vernetzungsmittel (B) eingesetzt.
Das Bindemittel (A) enthält potenziell kationische und/oder kationische Gruppen. Bindemittel (A) dieser Art werden in kathodisch abscheidbaren Elektrotauchlacken (KTL) eingesetzt. Beispiele geeigneter potenziell kationischer Gruppen, die durch Neutralisationsmittel und/oder Quartemisierungsmittel in Kationen überführt werden können, sind primäre, sekundäre oder tertiäre Aminogruppen, sekundäre Sulfidgruppen oder tertiäre Phosphingruppen, insbesondere tertiäre Aminogruppen oder sekundäre Sulfidgruppen.
Beispiele geeigneter kationischer Gruppen sind primäre, sekundäre, tertiäre oder quarternäre Ammoniumgruppen, tertiäre Sulfoniumgruppen oder quarternäre Phosphoniumgruppen, vorzugsweise quarternäre Ammoniumgruppen oder tertiäre Sulfoniumgruppen, insbesondere aber quarternäre Ammoniumgruppen.
Beispiele geeigneter Neutralisationsmittel für die potenziell kationischen Gruppen sind anorganische und organische Säuren wie Schwefelsäure, Salzsäure, Phosphorsäure, Ameisensäure, Essigsäure, Milchsäure, Dimethylolpropionsäure oder Zitronensäure, insbesondere Ameisensäure, Essigsäure oder Milchsäure.
Beispiele geeigneter Bindemittel (A) für KTL sind aus den Druckschriften EP 0 082 291 A 1 , EP 0 234 395 A 1 , EP 0 227 975 A 1 , EP 0 178 531 A
1 , EP 0 333 327, EP 0 310 971 A 1 , EP 0 456 270 A 1 , US 3,922,253 A,
EP 0 261 385 A 1 , EP 0 245 786 A 1 , EP 0 414 199 A 1 , EP 0 476 514 A
1 , EP 0 817 684 A 1 , EP 0 639 660A 1 , EP 0 595 186 A 1 , DE 41 26 476
A 1 , WO 98/33835, DE 33 00 570 A 1 , DE 37 38 220 A 1 , DE 35 18 732 A 1 oder DE 196 18 379 A 1 bekannt. Hierbei handelt es sich vorzugsweise um primäre, sekundäre, tertiäre oder quarternäre Amino- oder Ammoniumgruppen und/oder tertiäre Sulfoniumgruppen enthaltende
Harze (A) mit Aminzahlen vorzugsweise zwischen 20 und 250 mg KOH/g und einem gewichtsmittleren Molekulargewicht vongsweise 300 bis 10.000 Dalton. Insbesondere werden Amino(meth)acrylatharze,
Aminoepoxidharze, Aminoepoxidharze mit endständigen Doppelbindungen, Aminoepoxidharze mit primären und/oder sekundären Hydroxylgruppen, Aminopolyurethanharze, aminogruppenhaltige
Polybutadienharze oder modifizierte Epoxidharz-Kohlendioxid-Amin- Umsetzungsprodukte verwendet.
Alternativ kann das Bindemittel (A) potenziell anionische und/oder anionische Gruppen enthalten. Bindemittel (A) dieser Art werden in anionisch abscheidbaren Elektrotauchlacken (ATL) eingesetzt.
Beispiele geeigneter potenziell anionischer Gruppen, die durch Neutralisationsmittel in Anionen überführt werden können, sind Carbonsäure-, Sulfonsäure- oder Phosphonsäuregruppen, insbesondere Carbonsäuregruppen.
Beispiele geeigneter anionischer Gruppen sind Carboxylat-, Sulfonat- oder Phosphonatgruppen, insbesondere Carboxylatgruppen.
Beispiele für geeignete Neutralisationsmittel für die potenziell anionischen Gruppen sind Ammoniak, Ammoniumsalze, wie beispielsweise Ammoniumcarbonat oder Ammoniumhydrogencarbonat, sowie Amine, wie z.B. Trimethylamin, Triethylamin, Tributylamin, Dimethylanilin, Diethylanilin, Triphenylamin, Dimethylethanolamin, Diethylethanolamin, Methyldiethanolamin, Triethanolamin und dergleichen.
Beispiele geeigneter Bindemitel (A) für ATL sind aus der deutschen Patentanmeldung DE 28 24 418 A 1 bekannt. Hierbei handelt es sich vorzugsweise um Polyester, Epoxidharzester, Poly(meth)acrylate, Maleinatöle oder Polybutadienöle mit einem gewichtsmittleren Molekulargewicht von 300 bis 10.000 Dalton und einer Säurezahl von 35 bis 300 mg KOH/g. Im allgemeinen wird die Menge an Neutralisationsmittel wird so gewählt, daß 1 bis 100 Äquivalente, bevorzugt 50 bis 90 Äquivalente der potenziell kationischen oder potenziell anionischen Gruppen eines Bindemittels (A) neutralisiert werden.
Beispiele geeigneter reaktiver funktioneller Gruppen sind Hydroxylgruppen, Thiolgruppen und primäre und sekundäre Aminogruppen, insbesondere Hydroxylgruppen.
Beispiele geeigneter komplementärer reaktiver funktioneller Gruppen sind blockierte Isocyanatgruppen, Hydroxymethylen- und
Alkoxymethylengruppen, vorzugsweise Methoxymethylen- und Butoxymethylengruppen und insbesondere Methoxymethylengruppen. Bevorzugt werden blockierte Isocyanatgruppen verwendet. Beispiele geeigneter Blockierungsmittel sind die nachstehend beschriebenen.
Vorzugsweise werden KTL als ETL eingesetzt.
Der Gehalt der erfindungsgemäßen ETL an den vorstehend beschriebenen Bindemitteln (A) richtet sich vor allem nach ihrer Löslichkeit und Dispergierbarkeit im wässrigen Medium und nach ihrer Funktionalität hinsichtlich der Vernetzungsreaktionen mit sich selbst oder den Bestandteilen (B) und kann daher vom Fachmann aufgrund seines allgemeinen Fachwissens gegebenenfalls unter Zuhilfenahme einfacher Vorversuche leicht festgelegt werden.
Als Vernetzungsmittel (B) kommen alle üblichen und bekannten
Vernetzungsmittel in Betracht, die geeignete komplementäre reaktive funktioneile Gruppen enthalten. Vorzugsweise werden die
Vernetzungsmittel (B) aus der Gruppe, bestehend aus blockierten Polyisocyanaten, Melamin-Formaldehyd-Harzen,
Tris(alkoxycarbonylamino)triazinen und Polyepoxiden, ausgewählt. Bevorzugt werden die Vernetzungsmittel (B) aus der Gruppe, bestehend aus blockierten Polyisocyanaten und hoch reaktiven Melamin- Formaldehyd-Harzen, ausgewählt. Besonders bevorzugt werden die blockierten Polyisocyanate eingesetzt.
Die blockierten Polyisocyanate (B) werden aus üblichen und bekannten Lackpolyisocyanaten mit aliphatisch, cycloaliphatisch, araliphatisch und/oder aromatisch gebundenen Isocyanatgruppen hergestellt.
Bevorzugt werden Lackpolyisocyanate mit 2 bis 5 Isocyanatgruppen pro Molekül und mit Viskositäten von 100 bis 10.000, vorzugsweise 100 bis 5.000 und insbesondere 100 bis 2.000 mPas (bei 23°C) eingesetzt. Außerdem können die Lackpolyisocyanate in üblicher und bekannter Weise hydrophil oder hydrophob modifiziert sein.
Beispiele für geeignete Lackpolyisocyanate sind beispielsweise in "Methoden der organischen Chemie", Houben-Weyl, Band 14/2, 4. Auflage, Georg Thieme Verlag, Stuttgart 1963, Seite 61 bis 70, und von W. Siefken, Liebigs Annalen der Chemie, Band 562, Seiten 75 bis 136, beschrieben.
Weitere Beispiele geeigneter Lackpolyisocyanate sind Isocyanurat-, Biuret-, Allophanat-, Iminooxadiazindion-, Urethan-, Harnstoff-, Carbodiimid- und/oder Uretdiongruppen aufweisende Polyisocyanate, die aus üblichen und bekannten Diisocyanaten erhältlich sind. Vorzugsweise werden als Diisocyanate Hexamethylendiisocyanat, Isophorondiisocyanat, 2-lsocyanatopropylcyclohexylisocyanat, Dicyclohexylmethan-2,4'- diisocyanat, Dicyclohexylmethan-4,4'-diisocyanat oder 1,3-
Bis(isocyanatomethyl)cyclohexan (BIC), Diisocyanate, abgeleitet von Dimerfettsäuren, 1 ,8-Diisocyanato-4-isocyanatomethyl-octan, 1,7-
Diisocyanato-4-isocyanatomethyl-heptan, 1 -lsocyanato-2-(3- isocyanatopropyl)cyclohexan, 2,4- und/oder 2,6-Toluylendiisocyanat, 4,4'- Diphenylmethandiisocyanat, Naphthalindiisocyanat oder Mischungen aus diesen Polyisocyanaten eingesetzt.
Beispiele für geeignete Blockierungsmittel zur Herstellung der blockierten Polyisocyanate (B) sind
i) Phenole, wie Phenol, Cresol, Xylenol, Nitrophenol, Chlorophenol, Ethylphenol, t-Butylphenol, Hydroxybenzoesäure, Ester dieser Säure oder 2,5-Di-tert.-butyl-4-hydroxytoluol;
ii) Lactame, wie ε-Caprolactam, δ-Valerolactam, γ-Butyrolactam oder ß-Propiolactam;
iii) aktive methylenische Verbindungen, wie Diethylmalonat, Dimethylmalonat, Acetessigsäureethyl- oder -methylester oder Acetylaceton;
iv) Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n- Butanol, Isobutanol, t-Butanol, n-Amylalkohol, t-Amylalkohol, Laurylalkohol, Ethylenglykolmonomethylether,
Ethylenglykolmonoethylether, Ethylenglykolmonobutylether, Diethylenglykolmonomethylether, Diethylenglykolmonoethylether,
Propylenglykolmonomethylether, Methoxymethanol, Glykolsäure, Glykolsäureester, Milchsäure, Milchsäureester, Methylolhamstoff, Methylolmelamin, Diacetonalkohol, Ethylenchlorohydrin,
Ethylenbromhydrin, 1 ,3-Dichloro-2-propanol, 1 ,4- Cyclohexyldimethanol oder Acetocyanhydrin; v) Mercaptane wie Butylmercaptan, Hexylmercaptan, t- Butylmercaptan, t-Dodecylmercaptan, 2-Mercaptobenzothiazol, Thiophenol, Methylthiophenol oder Ethylthiophenol;
vi) Säureamide wie Acetoanilid, Acetoanisidinamid, Acrylamid, Methacrylamid, Essigsäureamid, Stearinsäureamid oder Benzamid;
vii) Imide wie Succinimid, Phthalimid oder Maleimid;
viii) Amine wie Diphenylamin, Phenylnaphthylamin, Xylidin, N- Phenylxylidin, Carbazol, Anilin, Naphthylamin, Butylamin, Dibutylamin oder Butylphenylamin;
ix) Imidazole wie Imidazol oder 2-Ethylimidazol;
x) Harnstoffe wie Harnstoff, Thioharnstoff, Ethylenharnstoff, Ethylen- thioharnstoff oder 1 ,3-Diphenylharnstoff;
xi) Carbamate wie N-Phenylcarbamidsäurephenylester oder 2- Oxazolidon;
xii) Imine wie Ethylenimin;
xiii) Oxime wie Acetonoxim, Formaldoxim, Acetaldoxim, Acetoxim, Methylethylketoxim, Diisobutylketoxim, Diacetylmonoxim,
Benzophenonoxim oder Chlorohexanonoxime;
xiv) Salze der schwefeligen Säure wie Natriumbisulfit oder Kaliumbisulfit; xv) Hydroxamsäureester wie Benzylmethacrylohydroxamat (BMH) oder Allylmethacrylohydroxamat; oder
xvi) substituierte Pyrazole, Imidazole oder Triazole; sowie
xvii) Gemische dieser Blockierungsmittel.
Erfindungsgemäß enthalten die erfindungsgemäßen ETL noch mindestens ein Dialkylzinndicarboxylat (C) der allgemeinen Formel I:
(R1)2Sn[0-(O)CR2]2 (I),
worin die Variablen die folgende Bedeutung haben:
R1 Alkylrest, vorzugsweise geradkettiger Alkylrest, mit 4 bis 10 Kohlenstoffatomen, bevorzugt ausgewählt aus der Gruppe, bestehend aus Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl und Decyl, besonders bevorzugt Butyl und Octyl, insbesondere Octyl;
R2 tertiärer, verzweigter Alkylrest mit 8 bis 13, insbesondere 9 bis 11 , Kohlenstoffatomen.
Beispiele geeigneter erfindungsgemäß zu verwendender Dialkylzinndicarboxylate (C) sind die Umsetzungsprodukte von Dialkylzinnoxiden, insbesondere Dioctylzinnoxid, mit Versatic ©-Säuren (vgl. Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York, 1998, »Versatic ©-Säuren«, Seiten 605 und 606). Die Herstellung der Dialkylzinndicarboxylate (C) weist keine methodischen Besonderheiten auf, sondern kann durch Umsetzung von Dialkylzinnoxiden mit den Carbonsäuren bei Temperaturen von 100 bis 180 °C und Entfernen des entstehenden Reaktionswassers, beispielsweise durch azeotrope Destillation, hergestellt werden. Die Umsetzungsprodukte von Dibutylzinnoxid mit Versatic ©-Säuren sind handelsübliche Verbindungen und werden unter der Marke Formrez © von der Firma Witco Vinyl Additives GmbH vertrieben.
Der Gehalt der erfindungsgemäßen ETL an den Dialkylzinndicarboxylaten
(C) kann breit variieren und richtet sich nach den Erfordernissen des Einzelfalls. Vorzugsweise liegt der Gehalt bei 1 bis 4, bevorzugt 1 ,5 bis 3,5, Gew.%, jeweils bezogen auf den Festkörper der jeweiligen ETL.
Darüber hinaus können die erfindungsgemäßen ETL noch mindestens einen üblichen und bekannten, löslichen oder dispergierbaren Zusatzstoff (D), ausgewählt aus der Gruppe, bestehend aus von den Dialkylzinndicarboxylaten (C) verschiedenen Katalysatoren; Antikrateradditiven; Polyvinylalkoholen; thermisch härtbaren
Reaktiwerdünnern; molekulardispers löslichen Farbstoffen;
Lichtschutzmitteln, wie UV-Absorbern und reversiblen Radikalfängern (HALS); Antioxidantien; niedrig- und hochsiedenden ("lange") organischen Lösemitteln; Entlüftungsmitteln; Netzmitteln; Emulgatoren; Slipadditiven; Polymerisationsinhibitoren; thermolabilen radikalischen Initiatoren; Haftvermittlern; Verlaufmitteln; filmbildenden Hilfsmitteln;
Flammschutzmitteln; Korrosionsinhibitoren; Rieselhilfen; Wachsen; Sikkativen; Bioziden und Mattierungsmitteln, in wirksamen Mengen enthalten.
Weitere Beispiele geeigneter löslicher oder dispergierbarer Zusatzstoffe
(D) werden in dem Lehrbuch »Lackadditive« von Johan Bieleman, Wiley- VCH, Weinheim, New York, 1998, in D. Stoye und W. Freitag (Editors), »Paints, Coatings and Solvents«, Second, Completely Revised Edition, Wiley-VCH, Weinheim, New York, 1998, »14.9. Solvent Groups«, Seiten 327 bis 373, beschrieben. Die erfindungsgemäßen ETL werden durch Vermischen und Homogenisieren der vorstehend beschriebenen Bestandteile mit Hilfe üblicher und bekannter Mischverfahren und Vorrichtungen wie Rührkessel, Rührwerksmühlen, Extruder, Kneter, Ultraturrax, In-Iine- Dissolver, statische Mischer, Mikromischer, Zahnkranzdispergatoren, Druckentspannungsdüsen und/oder Microfluidizer hergestellt. Vorzugsweise werden dabei zumindest die Bestandteile (C) sowie gegebenenfalls (B) und/oder (D) mit einer organische Lösung oder Schmelze des Bindemittels (A) vermischt. Die resultierende organische Mischung wird anschließend in einem wässrigen Medium, das Wasser und mindestens eines der vorstehend beschriebenen Neutralisationsmittel enthält, dispergiert.
Die Applikation der erfindungsgemäßen ETL erfolgt in üblicher und bekannter Weise, indem ein elektrisch leitfähiges Substrat in ein erfindungsgemäßes Elektrotauchlackbad getaucht wird, das Substrat als Kathode oder Anode, vorzugsweise als Kathode, geschaltet wird, durch Gleichstrom eine ETL-Schicht auf dem Substrat abgeschieden wird, das beschichtete Substrat aus dem Elektrotauchlackbad entfernt wird und die abgeschiedene ETL-Schicht in üblicher und bekannter Weise thermisch gehärtet (eingebrannt) wird. Die resultierende Elektrotauchlackierung kann anschließend mit einem Füller oder einer Steinschlagschutzgrundierung und einem Unidecklack oder alternativ mit einem Basislack und einem Klarlack nach dem Nass-in-nass-Verfahren überschichtet werden. Die Füllerschicht oder Schicht aus der Steinschlagschutzgrundierung sowie die Unidecklackschicht werden vorzugsweise jede für sich eingebrannt. Die Basislackschicht und die Klarlackschicht werden vorzugsweise gemeinsam eingebrannt. Es resultieren Mehrschichtlackierungen mit hervorragenden anwendungstechnischen Eigenschaften Vorzugsweise werden die Mehrschichtlackierungen nach Nass-in-nass- Verfahren hergestellt, bei denen die abgeschiedene ETL-Schicht nicht oder nur partiell thermisch gehärtet und gleich mit den weiteren Beschichtungsstoffen, insbesondere wässrigen Beschichtungsstoffen, überschichtet wird, wonach sie mit mindestens einer der Schichten aus den Beschichtungsstoffen (ETL-Schicht + Füllerschicht; ETL-Schicht + Füllerschicht + Unidecklackschicht; ETL-Schicht + Füllerschicht + Basislackschicht oder ETL-Schicht + Füllerschicht + Basislackschicht + Klarlackschicht) gemeinsam eingebrannt wird. Auch hierbei resultieren Mehrschichtlackierungen mit hervorragenden anwendungstechnischen Eigenschaften, wobei die Herstellverfahren besonders wirtschaftlich und energiesparend sind. Dabei zeigt es sich, dass sich die erfindungsgemäßen ETL-Schichten besonders gut störungsfrei nass-in- nass überschichten lassen.
In allen Fällen werden erfindungsgemäße Eletrotauchlackierungen erhalten, die einen hervorragenden Korrosionsschutz und Kantenschutz bieten.
Beispiele und Vergleichsversuche
Herstellbeispiel 1
Die Herstellung eines blockierten Polyisocyanats (B)
In einem Reaktor, ausgerüstet mit Rückflusskühler, Innenthermometer und Stickstoffeinleitungsrohr, wurden 810 Gewichtsteile Isomere und höherfunktionelle Oligomere auf Basis von 4,4'-
Diphenylmethandiisocyanat mit einem Isocyanatäquivalentgewicht von 135 g/equ (Basonat © A 270 der Firma BASF Aktiengesellschaft) und der Stickstoffatmosphäre vorgelegt. Es wurden 0,6 Gewichtsteile Dibutylzinndilaurat hinzugegeben. Zu der resultierenden Mischung wurden unter Rühren 988 Gewichtsteile Butyldiglycol mit einer solchen Geschwindigkeit zudosiert, dass die Temperatur der Reaktionsgemisch 60 °C nicht überstieg. Danach wurde die Temperatur des Reaktionsgemischs während zwei Stunden bei 100 °C gehalten. Hiernach sind keine freien Isocyanatgruppen mehr nachweisbar. Das Reaktionsgemisch wurde mit 87 Gewichtsteilen Phenoxypropanol und 87 Gewichtsteilen Butoxypropanol verdünnt und anschließend auf 70 °C abgekühlt. Der Festkörpergehalt der Lösung lag bei 90 Gew.-%.
Beispiel 1
Herstellung eines erfindungsgemäßen KTL
In einem Reaktor, ausgerüstet mit Rückflusskühler, Innenthermometer und Stickstoffeinleitungsrohr, wurden 541 Gewichtsteile eines handelsüblichen Epoxidharzes auf Basis von Bisphenol A mit einem Epoxidäquivalentgewicht von 188 g/equ, 42 Gewichtsteile Phenol, 123 Gewichtsteile Bisphenol A und 21 Gewichtsteile Butoxypropanol vorgelegt und unter Stickstoff auf 130 °C unter Rühren erhitzt. Es wurden unter Rühren 0,7 Gewichtsteile Triphenylphosphin zugegeben, worauf eine exotherme Reaktion einsetzte und die Temperatur des Reaktionsgemischs auf 155 °C anstieg. Man ließ die Temperatur des Reaktionsgemischs auf 130 °C absinken und bestimmte anschließend das Epoxidäquivalentgewicht. Es lag bei 525 g/equ und entsprach damit dem Sollwert von 520 bis 530 g/equ. Das Reaktionsgemisch wurde anschließend mit 73 Gewichtsteilen eines Polypropylenglykols (Pluriol ® P 600 der Firma BASF Aktiengesellschaft) versetzt und auf 95 °C abgekühlt. Bei dieser Temperatur wurden 52 Gewichtsteile Diethanolamin zugegeben, worauf eine exotherme Reaktion eintrat und die Temperatur des Reaktionsgemischs auf 115 °C anstieg. Nach 40 Minuten gab man bei dieser Temperatur noch 25,3 Gewichtsteile N,N-Dimethylaminopropylamin hinzu, worauf die Temperatur des Reaktionsgemischs auf 140 °C anstieg. Anschließend wurde das Reaktionsgemisch bei 130 °C gerührt, bis nach zwei Stunden die Viskosität konstant blieb.
In das resultierende Reaktionsgemisch wurden rasch 408 Gewichtsteile der 70 °C warmen Lösung des blockierten Polyisocyanats (B) des Herstellbeispiels 1 und 28,3 Gewichtsteile Dioctylzinn-di-Versatic ®- Säureester eingerührt. Die resultierende Mischung wurde während 30 Minuten bei 115 °C intensiv gerührt. Anschließend wurden 29 Gewichtsteile Bismutethylhexanoat hinzugegeben, wonach die Mischung sofort in einem wässrigen Medium aus 969 Gewichtsteilen Wasser, 18,7 Gewichtsteilen Ameisensäure und 108 Gewichtsteilen einer 5-prozentigen wässrigen Lösung von Polyvinylalkohol eindispergiert wurde. Nach Zugabe von 543 Gewichtsteilen Wasser resultierte eine stabile Dispersion mit den folgenden Kennzahlen:
Festkörper: 42,5 Gew.-%
- pH-Wert: 5,6
mittlere Teilchengröße: 130 nm (bestehen mit Hilfe der Photonenkorrelationsspektroskopie)
Vergleichsversuch V 1
Die Herstellung eines nicht erfindungsgemäßen KTL
Beispiel 1 wurde wiederholt, nur dass an Stelle von Dioctylzinn-di-Versatic ©-Säureester Dibutylzinndilaurat zugesetzt wurde. Es wurde eine Dispersion mit den folgenden Kennzahlen erhalten: Festkörper: 43 Gew.-%
pH-Wert: 5,8 Gew.-%
mittlere Teilchengröße: 150 nm (bestimmt mit der Photonenkorrelationsspektroskopie).
Die Dispersion war nach zweimonatigen Lagerung bei 40 °C sedimentiert.
Beispiel 2 und Vergleichsversuch V 2
Die Herstellung von Elektrotauchlackierungen
Für die Herstellung der Elektrotauchlackierungen wurden jeweils 2.310 Gewichtsteile der KTL des Beispiels 1 (= Beispiel 2) und des Vergleichsversuchs V 1 (= Vergleichsversuch V 2) mit jeweils 2.690 Gewichtsteilen an deionisiertem Wasser verdünnt. Die resultierenden Elektrotauchlackbäder wurden während zwei Tagen bei Raumtemperatur unter Rühren gealtert. Die Abscheidung der Elektrotauchlackschichten erfolgte während zwei Minuten auf kathodisch geschalteten, zinkphosphatierten Stahlprüftafeln, die nicht mit Chrom(VI) nachgespült worden waren. Die beschichteten Stahlprüftafeln wurde den Elektrotauchlackierbädern entnommen. Die hierauf befindlichen Elektrotauchlackschichten wurden mit deionisiertem Wasser nachgespült.
Jeweils ein Teil der Stahlprüftafeln des Beispiels 2 und des
Vergleichsversuchs V 2 wurden nass-in-nass mit einem handelsüblichen Wasserfüller der Firma BASF Coatings AG beschichtet, wonach man die
Elektrotauchlackierungen und die Schichten aus dem Wasserfüller gemeinsam während 30 Minuten bei 180 °C Objekttemperatur einbrannte. Dabei waren bei den beschichteten Stahlprüftafeln des Beispiels 2 keine Störungen der Schichten eingetreten, wogegen es bei den beschichteten Stahlprüftafeln des Vergleichsversuchs V 2 zu Störungen der Schichten durch Einbrechen (strike-in) gekommen war.
Der jeweils andere Teil der Stahlprüftafeln des Beispiels 2 und des Vergleichsversuchs V 2 wurde anschließend während 20 Minuten 180 °C Objekttemperatur eingebrannt. Die resultierenden Elektrotauchlackierungen wiesen eine Schichtdicke von 20 μm auf. Die beschichteten Stahlprüftafeln wurden mit jeweils einem Ritz versehen und im Klimawechseltest (VDA-KWT) belastet. Beurteilt wurden die Unterwanderung des Ritzes, Abplatzung und Rostgrad nach Kugelschußprüfung und der Rostgrad an den Kanten. Die Ergebnisse finden sich in der Tabelle. Sie untermauern, dass die erfindungsgemäßen Elektrotauchlackierungen die nicht erfindungsgemäßen auch im Korrosionsschutz und Kantenschutz überlegen waren.
Tabelle: Ergebnisse des Klimawechseltests
Beispiel 2 Vergleichsversuch
V 1
Unterwanderung
(10 Zyklen) (mm) 1 ,4 2,2
Kantenrost
(6 Zyklen) Note a) 2 5
Abplatzung (mm2) 2 12 Rostgrad nach Kugelschuß Note a)
a) 0 = bester Wert; 5 = schlechtester Wert

Claims

Patentansprüche
1. Von unlöslichen Festkörpern freie Elektrotauchlacke (ETL), enthaltend
(A) mindestens ein selbstvernetzendes und/oder fremdvernetzendes Bindemittel mit (potenziell) kationischen oder anionischen Gruppen und reaktiven funktionellen Gruppen, die
(i) mit sich selbst oder mit im selbstvernetzenden Bindemittel vorhandenen komplementären reaktiven funktionellen Gruppen oder
(ii) im Falle des fremdvernetzenden Bindemittels mit in
Vernetzungsmitteln (B) vorhandenen komplementären reaktiven funktionellen Gruppen
thermische Vernetzungsreaktionen eingehen können,
(B) gegebenenfalls mindestens ein Vernetzungsmittel, enthaltend die komplementären reaktiven funktionellen Gruppen, und
(C) mindestens ein Dialkylzinndicarboxylat der allgemeinen
Formel I:
(R1)2Sn[0-(O)CR2]2 (I),
worin die Variablen die folgende Bedeutung haben, R1 Alkylrest mit 4 bis 10 Kohlenstoffatomen und
R2 tertiärer, verzweigter Alkylrest mit 8 bis 13 Kohlenstoffatomen.
2. ETL nach Anspruch 1 , dadurch gekennzeichnet, dass R1 ein geradkettiger Alkylrest ist.
3. ETL nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein R1 n-Octylrest ist.
4. ETL nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass R2 ein tertiärer, verzweigter Alkylrest mit 9 bis 11 Kohlenstoffatomen ist.
5. ETL nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die ETL die Dialkylzinndicarboxylate (C) in einer Menge von 1 bis 4 Gew.%, bezogen auf den Festkörper der jeweiligen ETL, enthalten.
6. ETL nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Bindemittel (A) (potenziell) kationische Gruppen enthält.
7. ETL nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die reaktiven funktionellen Gruppen Hydroxylgruppen sind.
8. ETL nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die komplementären reaktiven funktionellen Gruppen blockierte Isocyanatgruppen sind.
9. ETL nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Vernetzungsmittel (B) blockierte Polyisocyanate sind.
10. Verfahren zur Herstellung der ETL gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man
(1) zumindest den Bestandteil (C) sowie gegebenenfalls (B) mit einer organischen Lösung oder der Schmelze des Bindemittels (A) vermischt, wodurch die organische Mischung (1) resultiert, und
(2) die organische Mischung (1) in einem wässrigen Medium, enthaltend Wasser und mindestens ein Neutralisationsmittel, dispergiert.
11. Verwendung der ETL gemäß einem der Ansprüche 1 bis 9 oder der nach dem Verfahren gemäß Anspruch 10 hergestellten ETL zur Herstellung von Mehrschichtlackierungen nach dem Nass-in-nass- Verfahren.
PCT/EP2003/001891 2002-03-02 2003-02-25 Von unlöslichen festkörpern freie elektrotauchlacke (etl) WO2003074618A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003208756A AU2003208756A1 (en) 2002-03-02 2003-02-25 Electrodepositable paints free from insoluble solids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002109396 DE10209396A1 (de) 2002-03-02 2002-03-02 Von unlöslichen Festkörpern freie Elekrotauchlacke (ETL)
DE10209396.2 2002-03-02

Publications (1)

Publication Number Publication Date
WO2003074618A1 true WO2003074618A1 (de) 2003-09-12

Family

ID=27762641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/001891 WO2003074618A1 (de) 2002-03-02 2003-02-25 Von unlöslichen festkörpern freie elektrotauchlacke (etl)

Country Status (3)

Country Link
AU (1) AU2003208756A1 (de)
DE (1) DE10209396A1 (de)
WO (1) WO2003074618A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015070929A1 (de) * 2013-11-18 2015-05-21 Basf Coatings Gmbh Zweistufiges verfahren zur tauchlack-beschichtung elektrisch leitfähiger substrate unter verwendung einer bi(iii)-haltigen zusammensetzung
CN109679117A (zh) * 2018-10-11 2019-04-26 东莞市山力高分子材料科研有限公司 水性酚醛环氧树脂乳液的制备方法及包含其的涂料组合物
WO2022189111A1 (en) * 2021-03-10 2022-09-15 Basf Coatings Gmbh Aqueous dispersions containing cationic polyvinyl alcohol modified polymer particles and aqueous electrocoating materials containing said dispersions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236347A1 (de) * 2002-08-08 2004-02-19 Basf Coatings Ag Wäßrige Elektrotauchlacke, ihre Verwendung in Verfahren zur Beschichtung elektrisch leitfähiger Substrate sowie die Verwendung von Bismutverbindungen in diesen wäßrigen Elektrotauchlacken

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661885A (en) * 1967-05-01 1972-05-09 Nuodex Ltd Polyurethane catalyst
US4256841A (en) * 1978-06-10 1981-03-17 Basf Aktiengesellschaft Manufacture of light-stable polyurethane integral foams
US4981924A (en) * 1989-09-11 1991-01-01 Air Products And Chemicals, Inc. Cationic electrodepositable compositions of blocked polyisocyanates and amine-epoxy resins containing diorganotin bis-mercaptides and bis-carboxylates as catalysts
US5051521A (en) * 1988-04-21 1991-09-24 Rhone-Poulenc Chimie Novel tin (IV) compounds
EP0509437A1 (de) * 1991-04-16 1992-10-21 Kansai Paint Co., Ltd. Elektrotauchlackierungszusammensetzung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832840B2 (ja) * 1987-09-09 1996-03-29 三共有機合成株式会社 カチオン電着塗料用硬化触媒
US5630922A (en) * 1995-12-26 1997-05-20 Ppg Industries, Inc. Electrodepositable coating composition containing diorganotin dicarboxylates
DE19930060A1 (de) * 1999-06-30 2001-01-11 Basf Coatings Ag Elektrotauchlackbad mit wasserlöslichem Polyvinylalkohol(co)polymeren
DE10001222A1 (de) * 2000-01-14 2001-08-09 Basf Coatings Ag Beschichtung, enthaltend kolloidal verteiltes metallisches Bismut
DE10052438C2 (de) * 2000-10-23 2002-11-28 Basf Coatings Ag Verfahren zur Erzeugung einer Mehrschichtlackierung und deren Verwendung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661885A (en) * 1967-05-01 1972-05-09 Nuodex Ltd Polyurethane catalyst
US4256841A (en) * 1978-06-10 1981-03-17 Basf Aktiengesellschaft Manufacture of light-stable polyurethane integral foams
US5051521A (en) * 1988-04-21 1991-09-24 Rhone-Poulenc Chimie Novel tin (IV) compounds
US4981924A (en) * 1989-09-11 1991-01-01 Air Products And Chemicals, Inc. Cationic electrodepositable compositions of blocked polyisocyanates and amine-epoxy resins containing diorganotin bis-mercaptides and bis-carboxylates as catalysts
EP0509437A1 (de) * 1991-04-16 1992-10-21 Kansai Paint Co., Ltd. Elektrotauchlackierungszusammensetzung

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015070929A1 (de) * 2013-11-18 2015-05-21 Basf Coatings Gmbh Zweistufiges verfahren zur tauchlack-beschichtung elektrisch leitfähiger substrate unter verwendung einer bi(iii)-haltigen zusammensetzung
CN105765006A (zh) * 2013-11-18 2016-07-13 巴斯夫涂料有限公司 使用含Bi(III)组合物浸涂导电基底的两段法
US10435805B2 (en) 2013-11-18 2019-10-08 Basf Coatings Gmbh Two-stage method for dip-coating electrically conductive substrates using a Bi (III)-containing composition
CN109679117A (zh) * 2018-10-11 2019-04-26 东莞市山力高分子材料科研有限公司 水性酚醛环氧树脂乳液的制备方法及包含其的涂料组合物
WO2022189111A1 (en) * 2021-03-10 2022-09-15 Basf Coatings Gmbh Aqueous dispersions containing cationic polyvinyl alcohol modified polymer particles and aqueous electrocoating materials containing said dispersions

Also Published As

Publication number Publication date
DE10209396A1 (de) 2003-09-18
AU2003208756A1 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
EP1527145B1 (de) Bismutverbindungen enthaltende elektrotauchlacke (etl)
EP2190936B1 (de) Einsatz von bismutsubnitrat in elektrotauchlacken
EP1246874B1 (de) Beschichtung, enthaltend kolloidal verteiltes metallisches bismut
EP1192226B1 (de) Elektrotauchlackbad mit wasserlöslichen polyvinylalkohol(co)polymeren
EP2262865B1 (de) Elektrotauchlacke enthaltend polymethylenharnstoff
US7504444B2 (en) Aqueous electrocoat materials, their use in processes for coating electrically conductive substrates, and the use of bismuth compounds in these aqueous electrocoat materials
EP3197961B1 (de) Wässrige bindemitteldispersionen für kathodische elektrotauchlacke
DE3103642A1 (de) Hitzehaertbare bindemittelmischung
EP3083850B1 (de) Pigment und füllstoff enthaltende formulierungen
DE69935679T2 (de) Herstellungsverfahren für allophanate und zusammensetzungen, die solche verbindungen enthalten
EP0135909A2 (de) Kathodisch abscheidbares wässriges Elektrotauchlack-Überzugsmittel
DE69918180T2 (de) Kathodische elektrotauchlackzusammensetzung
DE10052438A1 (de) Verfahren zur Erzeugung einer Mehrschichtlackierung
DE3145714C2 (de)
WO2003074618A1 (de) Von unlöslichen festkörpern freie elektrotauchlacke (etl)
EP1307519B1 (de) Elektrotauchlacke, herstellbar durch schmelzeemulgierung
WO2003074617A1 (de) Von unlöslichen festkörpern freie elektrotauchlacke
DE19825457A1 (de) Feste Harnstoffverbindungen enthaltende wäßrige Elektrotauchlacke
DE10018583A1 (de) Verwendung von wasserlöslichen Celluloseethern als Antikratermittel in Elektrotauchlacken

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP