WO2003071200A1 - Heat recovery unit and heat recovery system of building utilizing it - Google Patents

Heat recovery unit and heat recovery system of building utilizing it Download PDF

Info

Publication number
WO2003071200A1
WO2003071200A1 PCT/JP2003/001058 JP0301058W WO03071200A1 WO 2003071200 A1 WO2003071200 A1 WO 2003071200A1 JP 0301058 W JP0301058 W JP 0301058W WO 03071200 A1 WO03071200 A1 WO 03071200A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchanger
peltier element
heat recovery
medium
Prior art date
Application number
PCT/JP2003/001058
Other languages
French (fr)
Japanese (ja)
Inventor
Hideyo Yamamoto
Original Assignee
Famm Co. Ltd.
Arude Engineering Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002048023A external-priority patent/JP2003247763A/en
Priority claimed from JP2002232084A external-priority patent/JP2004069239A/en
Application filed by Famm Co. Ltd., Arude Engineering Co. Ltd. filed Critical Famm Co. Ltd.
Priority to CA002477332A priority Critical patent/CA2477332A1/en
Priority to EP03742659A priority patent/EP1486743A4/en
Priority to US10/505,432 priority patent/US20050139692A1/en
Priority to AU2003246346A priority patent/AU2003246346A1/en
Publication of WO2003071200A1 publication Critical patent/WO2003071200A1/en
Priority to HK06100795A priority patent/HK1080930A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0042Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater characterised by the application of thermo-electric units or the Peltier effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0252Removal of heat by liquids or two-phase fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to a heat recovery device for recovering heat of air conditioning by ventilation of a building or the like without waste, and heat recovery of a building using the heat recovery device.
  • a heat recovery device for recovering heat of air conditioning by ventilation of a building or the like without waste, and heat recovery of a building using the heat recovery device.
  • landscape technology Environmental problems are currently urgently required.
  • the issue of reducing CO 2 emissions has been renewed.
  • energy saving is also required for the cooling and heating of small buildings, especially ordinary houses.
  • An object of the present invention is to provide a system that can efficiently recover the heat of air conditioning during ventilation and can be used in ordinary houses.
  • the present invention provides a heat recovery apparatus for ventilation, comprising: a heat sink; a Peltier element connected to the heat sink; a medium connected to the Peltier element; Power supply to the Peltier element It is characterized in that heat including cold is transferred from the ventilation to the medium.
  • the building heat recovery system of the present invention includes a centralized ventilation fan that concentrates and collects exhaust air from each room of the building, the heat recovery apparatus that transmits heat of the exhaust air from the central ventilation fan to a medium, And a high-efficiency heat conductive sheet for releasing heat transferred by the medium to each room.
  • FIG. 1 is a diagram showing a configuration of a heat recovery apparatus according to an embodiment.
  • FIG. 2 is a diagram showing a detailed configuration of a heat exchanger used in the heat recovery apparatus.
  • Figure 3 shows the BERCH used for heat exchangers! : It is a figure explaining an element.
  • Fig. 4 is a diagram showing an example in which the heat recovery device is applied to a general house.
  • FIG. 5 is a diagram showing a configuration of a house in which the building heat recovery system of the embodiment is installed.
  • FIG. 6 is a diagram showing a configuration of a heat radiation panel used in the building heat recovery system of the embodiment.
  • FIG. 7 is a diagram showing a configuration of another embodiment of a building heat recovery system.
  • Fig. 8 is a diagram for explaining the connection between the heat dissipation panel and the high-efficiency heat conduction material.
  • BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings.
  • FIG. 1 is an overall view of a heat recovery device that transfers heat from ventilation to the medium. The case of heating each room of the building using the equipment shown in Fig. 1 will be described.
  • the heat recovery apparatus of the embodiment is an example in which water is used as a heat medium.
  • heat medium of heat recovery device Is a liquid such as oil, a gas such as air, a solid, or a mixture of these. Any fluid may be used. As will be described later, there is a case where a fluid is not used as a heat medium.
  • the air exhausted from each room for ventilation is collected through a central ventilation fan 110.
  • the central ventilation fan 1 1 0 is connected to the heat exchanger 1 2 0 through an intake / exhaust pipe, and the air collected in the central ventilation fan 1 1 0 is heated by the heat exchanger 1 2 0 in the heat exhausted from the exhaust air. After recovery, it is discharged out of the heat recovery unit.
  • the heat exchanger 1 2 0 is connected to the tank 1 3 0 through a suction / drain pipe, and the water pumped up from the tank 1 3 0 by the pump 1 4 0 is warmed by the heat exchanger 1 2 0 and again Water is being returned to tank 1 3 0.
  • the heat exchanger 1 2 0 cools the exhaust from the central ventilator 1 1 0 by means of a vortex element and heats the water in the tank 1 3 0 to make the heat of the air from each room efficient. Is moving. Since heat is efficiently transferred through the Peltier element, the temperature of the water from the heat exchanger can be made higher than the temperature of the exhaust.
  • Berchi :! By reversing the current to the element, the exhaust from the central fan 1 1 0 can be heated and the water can be cooled through the heat exchanger 1 2 0 to obtain cold water. At this time, the cold water can be made cooler than the exhaust from the room because the Peltier element is used.
  • Thermometer 1 5 4 is the temperature of water entering heat exchanger 1 2
  • Thermometer 1 5 2 is the temperature of water exiting from heat exchanger 1 2
  • Thermometer 1 5 6 is tank 1 3
  • Each water temperature in 0 is measured.
  • the power source 160 supplies power to the Peltier element and pump of the heat exchanger 120, and the power is measured by the wattmeter 16 2.
  • Fig. 2 shows the structure of the heat exchanger 1 2 0 in Fig. 1 in detail.
  • Fig. 2 (a) is a front view of the heat exchanger 1 2
  • Fig. 2 (b) is a plan view
  • Figure 2 (c) is a side view.
  • the heat exchanger 1 2 0 includes a heat sink 2 1 0, a Peltier element 2 2 0, an intake / drain pipe 2 5 0, and a container part 2 3 0.
  • the exhaust from the central ventilation fan 1 1 0 passes through the heat sink 2 1 0 and is discharged outside the heat exchanger. At that time, the heat of the exhaust is transmitted to the heat sink 2 1 0.
  • the water passing through the heat exchanger 1 2 0 is the tank 1 3 0 From one side of the suction / drainage pipe 2 5 0, it enters the container part 2 3 0, exits from the other side and returns to the tank 1 3 0
  • the Peltier element 2 20 has one surface bonded to the flat surface of the heat sink 2 10, and the other surface bonded to one surface of the container portion 2 30.
  • a current is passed through the Peltier element 220, one surface becomes a cooling surface and the other surface becomes a heating surface, and when the direction of the current is reversed, the cooling surface and the heating surface are reversed.
  • FIG. 3 illustrates a configuration example of the Peltier element 220 used in the above-described heat exchanger.
  • FIG. 3 (a) shows the appearance of the Peltier element 2 20 used in the heat exchanger.
  • FIG. 3B shows an example of the internal configuration of the Peltier element.
  • FIG. 3 (c) is a diagram illustrating the operation of each of the BERCH:!: Elements of FIG. 3 (b).
  • the large-area Peltier element shown in Fig. 3 (a) consists of multiple small Peltier elements connected electrically in series and thermally in parallel.
  • Figure 3 (c) is a diagram of a single Peltier element, and explains the function of the Peltier element.
  • the energy for electrons to move from the upper electrode 3 1 6 to the N-type semiconductor and the energy for moving the inside of the N-type semiconductor 3 1 4 to the lower electrode 3 1 5 Since it is obtained from the upper electrode 3 1 6 side, as a result, energy is insufficient on the upper electrode 3 1 6 side and the temperature drops.
  • the lower electrode 3 1 5 side releases the energy taken by the electrons and the temperature rises.
  • the In P-type semiconductors 3 1 holes transfer energy in the same way as electrons. As a result, the total amount of heat absorbed by the heat absorbing surface 3 1 8 is combined with the amount of heat corresponding to the total supplied power and is released to the heat radiating surface 3 19.
  • FIG. 4 shows an example in which the heat recovery device of Fig. 1 is used in a general house.
  • the central ventilation fan 4 2 0 and the heat exchanger 4 3 0 are connected by a pipe, for example, installed behind the ceiling, and the air for ventilation from each room is ventilated from the ventilation pipe 4 1 0. It is sent to 20 and exhausted through the heat exchanger 4 3 0 to the outside through the exhaust pipe 4 60.
  • pumps and spare tanks 4 5 0 are installed outdoors, and intake and drain pipes 4 4 0 are passed through heat exchangers 4 3 0. Connect to pump 'spare tank 4 5 0 again. In this way, by using the foundation work part 4 70, a large heat capacity can be obtained and the amount of heat stored can be increased.
  • an electric current is passed through the Peltier element so that the water is heated during heating and the water is cooled during cooling.
  • the heated or cooled water circulates along the piping of the suction / drainage pipe 4 4 0 and returns to the pump ⁇ reserve tank 4 5 0 again.
  • Each room can also be heated (cooled) using the heat (cold heat) stored in water by this heat recovery device.
  • the water stored in each room may be sent through pipes 4 8 2 and 4 8 4 to assist the cooling and heating of each room with a heat exchanger. If a Peltier element is used for the heat exchanger as in Fig. 2, it is efficient. It can also be used for floor heating (floor cooling).
  • the outside air is concentrated in order to ventilate the building, it may be used to warm (cool) the air intake. If the heat exchanger used in this case uses a Peltier element as shown in FIG. 2, the thermal efficiency is good.
  • FIG. 5 is a diagram showing a configuration of a highly insulated ⁇ highly airtight panel house provided with the building heat recovery system according to the embodiment of the present invention.
  • this house is highly insulated by using heat insulating material to prevent the heat inside the house from escaping to the outside.
  • an external heat insulating material is provided under the floor for high heat insulation.
  • the exhaust from each room of the house is collected in the centralized exhaust heat recovery device via the ventilation pipes 5 1 2 etc. provided in each room.
  • Centralized exhaust ⁇ The heat recovery device is composed of a centralized ventilation fan 5 1 0 that collects exhaust from the ventilation pipe 5 1 2, and a heat exchanger 5 3 0 that recovers heat from the exhaust to the medium, and recovers heat from the exhaust to the medium At the same time, exhaust is exhausted outside the house through pipes 5 1 4.
  • Centralized exhaust ⁇ The heat recovery device collects not only the heat during heating but also the cooling energy during cooling.
  • the heat exchanger 5 3 0 is controlled by a control device 5 4 0 operated by an operation panel.
  • the controller 5 40 also monitors the temperature with an intake air temperature sensor 5 4 3, an exhaust gas temperature sensor 5 4 5, an inlet water temperature sensor 5 4 4, and an outlet water temperature sensor 5 4 7.
  • the heat exchanger 5 3 0 will be described in detail later.
  • Heat recovered by the heat recovery device (including cold heat) is transferred to a heat-dissipating panel (high-efficiency heat conduction sheet affixed) in each room via a medium such as water and a heat exchanger. Board) From 5 6 0, return to the house again.
  • the heat dissipating panel 5 60 can be provided on the inner wall, ceiling, floor, or the like.
  • the heat dissipation panel can be integrated with the inner wall.
  • the structure of heat dissipation / nel (high efficiency heat conduction sheet pasting pad) 5 60 will be described later.
  • the heat exchanger 5 3 0 used in the heat recovery device is the heat exchanger 5 3 0 using the Peltier element described above.
  • a heat sink installed in the exhaust and a Peltier element are connected, and heat (cold heat) is transferred from the exhaust gas to the medium to the Peltier element.
  • FIG. 6 is a diagram showing the configuration of the heat radiation panel 5 60 used in the heat recovery system of the embodiment.
  • Heat dissipation panel (High efficiency heat conduction sheet pasting board) 5 6 0 is a high efficiency heat conduction sheet (for example, Graphite sheet etc.) 5 6 6
  • Heat conduction between the heat exchanger 5 5 6 and the medium and the high efficiency heat conduction sheet 5 6 6 is performed by the same high efficiency heat conduction sheet 5 6 4. Since the medium in the heat exchanger 5 5 6 moves slowly, it is possible to sufficiently transfer heat to the high efficiency heat conductive sheet 5 6 4.
  • the heat dissipation panel is composed of a high-efficiency heat conduction sheet, it is possible to create a lightweight and efficient heat dissipation channel.
  • FIG. 7 is a diagram showing another embodiment of the heat recovery system for buildings of the present invention.
  • FIG. 8 is a diagram for explaining the connection relationship between the heat recovery system and the heat radiating panel (high efficiency heat conductive sheet pasting board) 5 60 in FIG. 4 and the medium.
  • the heat of ventilation from each room is transferred to a high-efficiency heat conduction material by heat exchangers 5 30.
  • high-efficiency heat-conducting material and Peltier elements are in direct contact to transfer the heat of ventilation.
  • This high-efficiency heat-conducting material (for example, Graphite) is built into the pipe 5 72 and transfers the heat of ventilation to each room.
  • the pipe is selected to transfer heat from a highly efficient heat transfer material or to prevent heat dissipation.
  • the high-efficiency heat conduction material sheet 5 6 4 to the high-efficiency heat conduction material sheet 5 6 4 from the high-efficiency heat conduction material built-in pipe 5 7 4 The heat is conducted by heat, and heat is dissipated from the heat dissipating panel 5 60. At this time, a material with good heat conductivity (for example, copper) is used for the contact place between the high efficiency heat conductive material sheet ⁇ 5 6 4 and the pipe 5 7 4.
  • a material with good heat conductivity for example, copper

Abstract

A system for recovering the cooling/heating heat efficiently at the time of ventilation and is applicable even to a general house. A centralized fan (110) is coupled through a suction/exhaust pipe with a heat exchanger (120) and the heat of warmed exhaust gas from each room is recovered by means of the heat exchanger (120) before being discharged to the outside from the centralized fan (110) via the heat exchanger (120). On the other hand, the heat exchanger (120) is coupled with a tank (130) through a plumbing pipe and water pumped up from the tank (130) by means of the pump (140) is warmed through the heat exchanger (120) before being returned to the tank (130). The heat exchanger (120) cools exhaust gas from the centralized fan (110) using a Peltier element and heats up the water in the tank (130) so that the heat of air from each room transfers to water efficiently, as a whole. Since heat is transferred efficiently through a Peltier element, temperature of water from the heat exchanger can be set higher than that of the exhaust gas.

Description

明 細 書 熱回収装置およびそれを利用した建物の熱回収システム 技術分野 本発明は、 建物等の換気による冷暖房の熱を無駄なく回収するための熱回収装 置およびそれを利用した建物の熱回収システムに関する。 景技術 環境問題については現在緊急に解決が求められている。 特に京都議定書を批准 した後においては、 c o 2 の排出削減の問題が改めてク口ーズァップされている。 c o2 を削減するためには、 全国的にあらゆる分野で省エネを推進する必要があ る。 このため、 小さい建物、 特に一般の住宅の冷暖房についても、 省エネが求め られている。 TECHNICAL FIELD The present invention relates to a heat recovery device for recovering heat of air conditioning by ventilation of a building or the like without waste, and heat recovery of a building using the heat recovery device. About the system. Landscape technology Environmental problems are currently urgently required. In particular, after ratifying the Kyoto Protocol, the issue of reducing CO 2 emissions has been renewed. In order to reduce co 2 , it is necessary to promote energy conservation in all fields nationwide. For this reason, energy saving is also required for the cooling and heating of small buildings, especially ordinary houses.
一方、 一般の住宅においては、 健康の問題から、 住宅における換気についての 関心が高まっている。 し力、しな力《ら、 換気をよくすると、 冷暖房をした住宅内の 空気を入れ換える際に、 その熱エネルギーを無駄に外に排出している。  On the other hand, in general housing, interest in ventilation in housing has increased due to health problems. When the ventilation is improved, the heat energy is wasted to the outside when the air in the air-conditioned house is replaced.
そこで、 換気の際に冷暖房の熱を効率よく回収するシステムが現在求められて いる。 発明の開示 本発明の目的は、 換気の際に、 冷暖房の熱を効率よく回収でき、 一般住宅にも 使用できるシステムを提供することである。  Therefore, there is a current demand for a system that efficiently recovers heat from the air conditioning during ventilation. DISCLOSURE OF THE INVENTION An object of the present invention is to provide a system that can efficiently recover the heat of air conditioning during ventilation and can be used in ordinary houses.
上記目的を達成するため、 本発明は、 換気からの熱回収装置であって、 ヒート シンクと、 該ヒートシンクと接続されているペルチェ素子と、 該ペルチェ素子と 接続されている媒体と、 前記ベルチヱ素子への電源とを備え、 前記ペルチヱ素子 を介して換気から冷熱を含む熱を媒体に移すことを特徴とする。 In order to achieve the above object, the present invention provides a heat recovery apparatus for ventilation, comprising: a heat sink; a Peltier element connected to the heat sink; a medium connected to the Peltier element; Power supply to the Peltier element It is characterized in that heat including cold is transferred from the ventilation to the medium.
また、 本発明の建物の熱回収システムは、 前記建物の各部屋からの換気の排気 を集中して集める集中換気扇と、 該集中換気扇の排気の熱を媒体に伝達する前記 熱回収装置と、 前記媒体によリ伝達された熱を各部屋に放出するための高効率熱 伝導シートとを備えることを特徴とする。  The building heat recovery system of the present invention includes a centralized ventilation fan that concentrates and collects exhaust air from each room of the building, the heat recovery apparatus that transmits heat of the exhaust air from the central ventilation fan to a medium, And a high-efficiency heat conductive sheet for releasing heat transferred by the medium to each room.
前記媒体として、 高効率熱伝導素材を用いており、 前記媒体を移動せずに熱を 伝導することもできる。 このように構成することで、 部屋の上下間や部屋間の温 度格差を解消することができる。 図面の簡単な説明 図 1は、 実施形態の熱回収装置の構成を示す図である。  As the medium, a high-efficiency heat conduction material is used, and heat can be conducted without moving the medium. With this configuration, temperature differences between the top and bottom of the room and between rooms can be eliminated. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a configuration of a heat recovery apparatus according to an embodiment.
図 2は、 熱回収装置に用いる熱交換器の詳細構成を示す図である。  FIG. 2 is a diagram showing a detailed configuration of a heat exchanger used in the heat recovery apparatus.
図 3は、 熱交換器に使用するベルチ:!:素子を説明する図である。  Figure 3 shows the BERCH used for heat exchangers! : It is a figure explaining an element.
図 4は、 熱回収装置を一般住宅に適用した例を示す図である。  Fig. 4 is a diagram showing an example in which the heat recovery device is applied to a general house.
図 5は、 実施形態の建物の熱回収システムを設置した住宅の構成を示す図であ る。  FIG. 5 is a diagram showing a configuration of a house in which the building heat recovery system of the embodiment is installed.
図 6は、 実施形態の建物の熱回収システムに使用されている放熱パネルの構成 を示す図である。  FIG. 6 is a diagram showing a configuration of a heat radiation panel used in the building heat recovery system of the embodiment.
図 7は、 建物の熱回収システムの他の実施形態の構成を示す図である。  FIG. 7 is a diagram showing a configuration of another embodiment of a building heat recovery system.
図 8は、 放熱パネルと高効率熱伝導素材との接続関係を説明するための図であ る。 発明を実施するための最良の形態 図面を参照して、 本発明の実施形態を説明する。  Fig. 8 is a diagram for explaining the connection between the heat dissipation panel and the high-efficiency heat conduction material. BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings.
図 1は、 換気からの熱を媒体に伝達する熱回収装置の全体図である。 図 1の装 置で、 建物の各部屋を暖房している場合で説明する。 また、 実施形態の熱回収装 置は、 熱の媒体として水を使用している例である。 熱回収装置の熱の媒体として は、 オイル等の液体■空気等の気体■固体やこれらの混合体で、 流動体であれば 何を使用してもよい。 また、 後で説明するが、 熱の媒体として流動体を用いない 場合もある。 Figure 1 is an overall view of a heat recovery device that transfers heat from ventilation to the medium. The case of heating each room of the building using the equipment shown in Fig. 1 will be described. In addition, the heat recovery apparatus of the embodiment is an example in which water is used as a heat medium. As heat medium of heat recovery device Is a liquid such as oil, a gas such as air, a solid, or a mixture of these. Any fluid may be used. As will be described later, there is a case where a fluid is not used as a heat medium.
図 1において、 換気のため各部屋から排出された空気は、 集中換気扇 1 1 0を 介して集められている。 集中換気扇 1 1 0は、 熱交換器 1 2 0と吸排気パイプで 接続しており、集中換気扇 1 1 0に集められた空気は、熱交換器 1 2 0において、 暖められた排気の熱を回収してから、 熱回収装置の外に排出している。 一方、 熱 交換器 1 2 0は、 タンク 1 3 0と吸排水パイプで接続しており、 タンク 1 3 0か らポンプ 1 4 0で汲み上げた水を熱交換器 1 2 0により温めて、 再びタンク 1 3 0に水を戻している。  In FIG. 1, the air exhausted from each room for ventilation is collected through a central ventilation fan 110. The central ventilation fan 1 1 0 is connected to the heat exchanger 1 2 0 through an intake / exhaust pipe, and the air collected in the central ventilation fan 1 1 0 is heated by the heat exchanger 1 2 0 in the heat exhausted from the exhaust air. After recovery, it is discharged out of the heat recovery unit. On the other hand, the heat exchanger 1 2 0 is connected to the tank 1 3 0 through a suction / drain pipe, and the water pumped up from the tank 1 3 0 by the pump 1 4 0 is warmed by the heat exchanger 1 2 0 and again Water is being returned to tank 1 3 0.
熱交換器 1 2 0は、 ベルチヱ素子により、 集中換気扇 1 1 0からの排気を冷却 すると共に、 タンク 1 3 0の水を加熱し、 全体的に、 各部屋からの空気の熱を水 に効率的に移動している。 ペルチェ素子を介して熱を効率的に移動させているた め、 熱交換器からの水の温度を排気の温度よリも高くすることが可能となった。 冷房時には、 ベルチ:!:素子への電流を逆にすることにより、 集中換気扇 1 1 0 からの排気を加熱し、 熱交換器 1 2 0を通して水を冷却して、 冷水を得ることが できる。 このときも、 この冷水は、 ペルチェ素子を使用していることから、 部屋 からの排気より冷たくすることができる。  The heat exchanger 1 2 0 cools the exhaust from the central ventilator 1 1 0 by means of a vortex element and heats the water in the tank 1 3 0 to make the heat of the air from each room efficient. Is moving. Since heat is efficiently transferred through the Peltier element, the temperature of the water from the heat exchanger can be made higher than the temperature of the exhaust. During cooling, Berchi :! : By reversing the current to the element, the exhaust from the central fan 1 1 0 can be heated and the water can be cooled through the heat exchanger 1 2 0 to obtain cold water. At this time, the cold water can be made cooler than the exhaust from the room because the Peltier element is used.
なお、 温度計 1 5 4は熱交換器 1 2 0に入る水の温度を、 温度計 1 5 2は熱交 換器 1 2 0から出る水の温度を、 温度計 1 5 6はタンク 1 3 0内の水温をそれぞ れ測定している。 電源 1 6 0は熱交換器 1 2 0のペルチェ素子やポンプに電力を 供給しており、 その電力は電力計 1 6 2が測定している。 図 2は、 図 1の熱交換器 1 2 0の構造を詳細に示したものであり、 図 2 ( a ) は、熱交換器 1 2 0の正面図、 図 2 ( b ) は平面図、 図 2 ( c ) は側面図である。 熱交換器 1 2 0は、 ヒートシンク 2 1 0、 ペルチェ素子 2 2 0、 吸排水パイプ 2 5 0 , 容器部 2 3 0で構成されている。 集中換気扇 1 1 0からの排気は、 ヒー トシンク 2 1 0内を通って熱交換器外へ排出する。 そのときに排気の熱をヒート シンク 2 1 0に伝えている。 熱交換器 1 2 0を通っている水は、 タンク 1 3 0か ら吸排水パイプ 2 5 0の一方を通して容器部 2 3 0へ入り、 他方より出て、 タン ク 1 3 0へ戻っている。 Thermometer 1 5 4 is the temperature of water entering heat exchanger 1 2 0, Thermometer 1 5 2 is the temperature of water exiting from heat exchanger 1 2 0, Thermometer 1 5 6 is tank 1 3 Each water temperature in 0 is measured. The power source 160 supplies power to the Peltier element and pump of the heat exchanger 120, and the power is measured by the wattmeter 16 2. Fig. 2 shows the structure of the heat exchanger 1 2 0 in Fig. 1 in detail. Fig. 2 (a) is a front view of the heat exchanger 1 2 0, Fig. 2 (b) is a plan view, Figure 2 (c) is a side view. The heat exchanger 1 2 0 includes a heat sink 2 1 0, a Peltier element 2 2 0, an intake / drain pipe 2 5 0, and a container part 2 3 0. The exhaust from the central ventilation fan 1 1 0 passes through the heat sink 2 1 0 and is discharged outside the heat exchanger. At that time, the heat of the exhaust is transmitted to the heat sink 2 1 0. The water passing through the heat exchanger 1 2 0 is the tank 1 3 0 From one side of the suction / drainage pipe 2 5 0, it enters the container part 2 3 0, exits from the other side and returns to the tank 1 3 0
ペルチェ素子 2 2 0は、 一方の面をヒートシンク 2 1 0の平らな面に接合して おり、 他方の面を容器部 2 3 0の片面に接合している。 このペルチヱ素子 2 2 0 に電流を流すと、 一方の面が冷却面、 他方の面が加熱面となり、 電流の方向を逆 にすると冷却面と加熱面は反転する。  The Peltier element 2 20 has one surface bonded to the flat surface of the heat sink 2 10, and the other surface bonded to one surface of the container portion 2 30. When a current is passed through the Peltier element 220, one surface becomes a cooling surface and the other surface becomes a heating surface, and when the direction of the current is reversed, the cooling surface and the heating surface are reversed.
そこで、 暖房の熱を熱交換器で回収して、 容器部 2 3 0の水を加熱する場合、 ペルチエ素子 2 2 0のヒー卜シンク 2 1 0側の面が冷却面、 容器部 2 3 0側の面 が加熱面となるように電流を流せば、 ペルチェ素子 2 2 0のヒートシンク 2 1 0 側は排気を冷却し、ペルチェ素子 2 2 0の容器部 2 3 0側は水を加熱する。逆に、 冷房の冷気を回収して水を冷却する場合、 ペルチェ素子 2 2 0に暖房時とは逆方 向に電流を流せば、ペルチェ素子 2 2 0のヒートシンク 2 1 0側は排気を加熱し、 ペルチヱ素子 2 2 0の容器部 2 3 0側は水を冷却する。 図 3は、 上述の熱交換器に使用しているペルチエ素子 2 2 0の構成例を説明す るものである。  Therefore, when the heat of the heating is recovered by a heat exchanger and the water in the container part 2 3 0 is heated, the surface of the Peltier element 2 2 0 on the heat sink 2 1 0 side is the cooling surface, and the container part 2 3 0 If an electric current is applied so that the surface on the side becomes a heating surface, the heat sink 2 1 0 side of the Peltier element 2 20 cools the exhaust, and the container part 2 3 0 side of the Peltier element 2 2 0 heats water. Conversely, when cooling air is recovered by cooling the cooling air, if the current flows through the Peltier element 2 2 0 in the direction opposite to that during heating, the heat sink 2 1 0 side of the Peltier element 2 2 0 heats the exhaust. The container part 2 3 0 side of the Peltier element 2 2 0 cools water. FIG. 3 illustrates a configuration example of the Peltier element 220 used in the above-described heat exchanger.
図 3 ( a ) は、 熱交換器に使用しているペルチェ素子 2 2 0の外観である。 図 3 ( b )は、ペルチェ素子の内部構成例を示す図である。図 3 ( c )は、図 3 ( b ) の個々のベルチ:!:素子の働きを示す図である。  Fig. 3 (a) shows the appearance of the Peltier element 2 20 used in the heat exchanger. FIG. 3B shows an example of the internal configuration of the Peltier element. FIG. 3 (c) is a diagram illustrating the operation of each of the BERCH:!: Elements of FIG. 3 (b).
図 3 ( b ) に示すように、 図 3 ( a ) に示した大面積のペルチェ素子は、 小さ いペルチヱ素子を複数、電気的には直列に、熱的には並列に接続したものである。 図 3 ( c ) は単体のペルチェ素子の図で、 ペルチェ素子の働きを説明する。 ペル チェ素子に直流電源 3 2 0をつなぐと、 電流は N形半導体 3 1 4の下側から上部 の電極 3 1 6を通って P形半導体 3 1 2の下側へ流れる。 エネルギーは電子と共 に電流とは逆の方向に移動している。 N形半導体 3 1 4では、 電子が上部の電極 3 1 6から N形半導体に移動するためのエネルギーと、 N形半導体 3 1 4の内部 を下部の電極 3 1 5まで移動するためのエネルギーを上部の電極 3 1 6側から得 るため、 その結果上部の電極 3 1 6側でエネルギーが不足し温度が下がる。 これ に対して下部の電極 3 1 5側では電子が奪ったエネルギーを放出して温度が上が る。 P形半導体 3 1 2では、 正孔が電子と同様の働きでエネルギーを移動させて いる。 その結果、 吸熱面 3 1 8で吸収する総熱量カ《総供給電力に相当する熱量と 合算され、 放熱面 3 1 9に放出される。 この加熱 (冷却) 効果は、 電流の大きさ 及び半導体の数に比例している。 このときに、 ペルチェ素子等に使用する電源と して太陽電池を用いることで、 一層、 環境に対してよいシステムとすることがで ぎる。 図 4は、 図 1の熱回収装置を一般の住宅に用いた例を示している。 As shown in Fig. 3 (b), the large-area Peltier element shown in Fig. 3 (a) consists of multiple small Peltier elements connected electrically in series and thermally in parallel. . Figure 3 (c) is a diagram of a single Peltier element, and explains the function of the Peltier element. When the DC power source 3 2 0 is connected to the Peltier element, current flows from the lower side of the N-type semiconductor 3 14 through the upper electrode 3 1 6 to the lower side of the P-type semiconductor 3 1 2. Energy moves in the opposite direction of current with electrons. In the N-type semiconductor 3 1 4, the energy for electrons to move from the upper electrode 3 1 6 to the N-type semiconductor and the energy for moving the inside of the N-type semiconductor 3 1 4 to the lower electrode 3 1 5 Since it is obtained from the upper electrode 3 1 6 side, as a result, energy is insufficient on the upper electrode 3 1 6 side and the temperature drops. On the other hand, the lower electrode 3 1 5 side releases the energy taken by the electrons and the temperature rises. The In P-type semiconductors 3 1 2, holes transfer energy in the same way as electrons. As a result, the total amount of heat absorbed by the heat absorbing surface 3 1 8 is combined with the amount of heat corresponding to the total supplied power and is released to the heat radiating surface 3 19. This heating (cooling) effect is proportional to the magnitude of the current and the number of semiconductors. At this time, the use of solar cells as the power source for Peltier elements can make the system even more environmentally friendly. Fig. 4 shows an example in which the heat recovery device of Fig. 1 is used in a general house.
図 4において、 集中換気扇 4 2 0と熱交換器 4 3 0をパイプで接続して、 例え ば天井裏に設置し、 各部屋からの換気のための空気を換気パイプ 4 1 0から集中 換気扇 4 2 0に送り、 熱交換器 4 3 0を通して、 排気パイプ 4 6 0より屋外に排 気する。 一方、 ポンプ,予備タンク 4 5 0を屋外に設置し、 吸排水パイプ 4 4 0 を熱交換器 4 3 0を通して、 例えば、 家屋の基礎工事部分 (床下の捨てコンクリ —卜部分等) 4 7 0に配管し、 再びポンプ'予備タンク 4 5 0に接続する。 この ように基礎工事部分 4 7 0を用いることで、 大きい熱容量を得ることができ、 蓄 熱する量を多くすることができる。  In Fig. 4, the central ventilation fan 4 2 0 and the heat exchanger 4 3 0 are connected by a pipe, for example, installed behind the ceiling, and the air for ventilation from each room is ventilated from the ventilation pipe 4 1 0. It is sent to 20 and exhausted through the heat exchanger 4 3 0 to the outside through the exhaust pipe 4 60. On the other hand, pumps and spare tanks 4 5 0 are installed outdoors, and intake and drain pipes 4 4 0 are passed through heat exchangers 4 3 0. Connect to pump 'spare tank 4 5 0 again. In this way, by using the foundation work part 4 70, a large heat capacity can be obtained and the amount of heat stored can be increased.
熱交換器 4 3 0では、 暖房時には水を加熱するように、 また冷房時には水を冷 却するようにペルチェ素子に電流を流す。 加熱または冷却された水は吸排水パイ プ 4 4 0の配管に沿って循環し、 再びポンプ■予備タンク 4 5 0に戻る。  In the heat exchanger 4 30, an electric current is passed through the Peltier element so that the water is heated during heating and the water is cooled during cooling. The heated or cooled water circulates along the piping of the suction / drainage pipe 4 4 0 and returns to the pump ■ reserve tank 4 5 0 again.
本熱回収装置で水に蓄熱した熱 (冷熱) を用いて、 各部屋を暖房 (冷房) する こともできる。 この場合、 図 4に示すように、 各部屋に蓄熱された水をパイプ 4 8 2, 4 8 4で送って、 熱交換器により各部屋の冷暖房を補助するようにしても よい。 熱交換器に図 2と同様にペルチェ素子を使用すると効率がよい。 また、 床 暖房 (床冷房) にも使用することができる。  Each room can also be heated (cooled) using the heat (cold heat) stored in water by this heat recovery device. In this case, as shown in FIG. 4, the water stored in each room may be sent through pipes 4 8 2 and 4 8 4 to assist the cooling and heating of each room with a heat exchanger. If a Peltier element is used for the heat exchanger as in Fig. 2, it is efficient. It can also be used for floor heating (floor cooling).
また、 建物内の換気のために、 集中して外気を吸気している場合は、 その吸気 を暖める (冷やす) ために使用しても良い。 この場合に使用する熱交換器は、 図 2に示したようなペルチェ素子を用いたものとすると熱効率がよい。  If the outside air is concentrated in order to ventilate the building, it may be used to warm (cool) the air intake. If the heat exchanger used in this case uses a Peltier element as shown in FIG. 2, the thermal efficiency is good.
このシステムにおいて、 各装置の設置場所は上記に限られず、例えば熱交換器 4 3 0を屋外に設置してもよい。 また、 吸排水パイプ 4 4 0の配管場所は上記に 限られず、例えば上記の他、各部屋の床、壁、天井の内部などに配管してもよい。 図 5は、 本発明の実施形態の建物の熱回収システムを設置した高断熱《高気密 のパネル住宅の構成を示す図である。 図 5において、 この住宅は、 断熱材を用い て高断熱となっており、 外部に対して住宅内の熱が逃げないようにしている。 こ の住宅では、 例えば外断熱材を床下まで設けて、 高断熱としている。 In this system, the installation location of each device is not limited to the above. For example, the heat exchanger 43 0 may be installed outdoors. Also, the piping location of the suction and drainage pipes 4 4 0 For example, in addition to the above, piping may be provided on the floor, wall, or ceiling of each room. FIG. 5 is a diagram showing a configuration of a highly insulated << highly airtight panel house provided with the building heat recovery system according to the embodiment of the present invention. In Fig. 5, this house is highly insulated by using heat insulating material to prevent the heat inside the house from escaping to the outside. In this house, for example, an external heat insulating material is provided under the floor for high heat insulation.
住宅の各部屋からの排気は、 各部屋に設けた換気配管 5 1 2等を介して集中排 気■熱回収装置に集まる。 集中排気■熱回収装置は、 換気配管 5 1 2からの排気 を集める集中換気扇 5 1 0 , 排気から熱を媒体に回収する熱交換器 5 3 0で構成 され、 排気からの熱を媒体に回収するとともに、 排気を配管 5 1 4により住宅の 外に排出する。 集中排気■熱回収装置は、 暖房時の熱のみではなく、 冷房時の冷 熱も回収する。 熱交換器 5 3 0は、 操作パネルにより操作される制御装置 5 4 0 によリ制御されている。 制御装置 5 4 0は、 吸気温度センサ 5 4 3, 排気温度セ ンサ 5 4 5 , 入口水温センサ 5 4 4 , 出口水温センサ 5 4 7により、 温度の監視 も行っている。 熱交換器 5 3 0については後で詳しく説明する。  The exhaust from each room of the house is collected in the centralized exhaust heat recovery device via the ventilation pipes 5 1 2 etc. provided in each room. Centralized exhaust ■ The heat recovery device is composed of a centralized ventilation fan 5 1 0 that collects exhaust from the ventilation pipe 5 1 2, and a heat exchanger 5 3 0 that recovers heat from the exhaust to the medium, and recovers heat from the exhaust to the medium At the same time, exhaust is exhausted outside the house through pipes 5 1 4. Centralized exhaust ■ The heat recovery device collects not only the heat during heating but also the cooling energy during cooling. The heat exchanger 5 3 0 is controlled by a control device 5 4 0 operated by an operation panel. The controller 5 40 also monitors the temperature with an intake air temperature sensor 5 4 3, an exhaust gas temperature sensor 5 4 5, an inlet water temperature sensor 5 4 4, and an outlet water temperature sensor 5 4 7. The heat exchanger 5 3 0 will be described in detail later.
集中排気 ·熱回収装置により回収された熱 (冷熱を含む) は、 例えば水等の媒 体, 熱交換器 5 3 0を介して、 各部屋に設けた放熱パネル (高効率熱伝導シート 貼り付けボード) 5 6 0から、再度住宅内に戻される。 この放熱パネル 5 6 0は、 図 5に示すように、 内壁、 天井、 床等に設けることもできる。 放熱パネルは、 内 壁と一体とすることもできる。放熱/ ネル(高効率熱伝導シート貼リ付けポード) 5 6 0の構成は後で説明する。  Centralized exhaust · Heat recovered by the heat recovery device (including cold heat) is transferred to a heat-dissipating panel (high-efficiency heat conduction sheet affixed) in each room via a medium such as water and a heat exchanger. Board) From 5 6 0, return to the house again. As shown in FIG. 5, the heat dissipating panel 5 60 can be provided on the inner wall, ceiling, floor, or the like. The heat dissipation panel can be integrated with the inner wall. The structure of heat dissipation / nel (high efficiency heat conduction sheet pasting pad) 5 60 will be described later.
集中排気■熱回収装置で用いられている熱交換器 5 3 0には、 上述のペルチェ 素子を用いている熱交換器 5 3 0を使用する。 この熱交換器 5 3 0では、 排気中 に設置しているヒートシンクと、 ペルチェ素子を接続し、 ペルチェ素子にょリ排 気から媒体に熱 (冷熱) を移動させるものである。  Centralized exhaust ■ The heat exchanger 5 3 0 used in the heat recovery device is the heat exchanger 5 3 0 using the Peltier element described above. In this heat exchanger 5 30, a heat sink installed in the exhaust and a Peltier element are connected, and heat (cold heat) is transferred from the exhaust gas to the medium to the Peltier element.
図 6は、 実施形態の熱回収システムに使用されている放熱パネル 5 6 0の構成 を示す図である。  FIG. 6 is a diagram showing the configuration of the heat radiation panel 5 60 used in the heat recovery system of the embodiment.
放熱パネル (高効率熱伝導シート貼り付けボード) 5 6 0は、 ポ一ド 5 6 2に 高効率熱伝導シ一卜 (例えば、 グラフアイト■シート等) 5 6 6を貼り、 水等の 媒体との間の熱交換器 5 5 6と高効率熱伝導シー卜 5 6 6との間の熱伝導は、 同 様の高効率熱伝導シート 5 6 4によリ行われる。 熱交換器 5 5 6内の媒体は、 ゆ つくリ移動するため、 高効率熱伝導シート 5 6 4に十分に熱を伝えることが可能 である。 Heat dissipation panel (High efficiency heat conduction sheet pasting board) 5 6 0 is a high efficiency heat conduction sheet (for example, Graphite sheet etc.) 5 6 6 Heat conduction between the heat exchanger 5 5 6 and the medium and the high efficiency heat conduction sheet 5 6 6 is performed by the same high efficiency heat conduction sheet 5 6 4. Since the medium in the heat exchanger 5 5 6 moves slowly, it is possible to sufficiently transfer heat to the high efficiency heat conductive sheet 5 6 4.
高効率の熱伝導シ一トによリ放熱パネルを構成しているので、 軽量かつ効率の よい放熱ノ、°ネルを作成することができる。  Since the heat dissipation panel is composed of a high-efficiency heat conduction sheet, it is possible to create a lightweight and efficient heat dissipation channel.
しかも、 この放熱パネル 5 6 0は、 板面の一部分に設置している高効率熱伝導 シートにより熱を伝導しているので、 釘打ち等で自由な場所に設置することがで さる。 図 7は、 本発明の建物の熱回収システムの他の実施形態を示す図である。 図 8 は、 図 4の熱回収システムと放熱パネル (高効率熱伝導シート貼り付けボード) 5 6 0と媒体との接続関係を説明するための図である。  In addition, since the heat radiation panel 5 60 conducts heat with a high-efficiency heat conduction sheet installed on a part of the plate surface, it can be installed in a free place by nailing or the like. FIG. 7 is a diagram showing another embodiment of the heat recovery system for buildings of the present invention. FIG. 8 is a diagram for explaining the connection relationship between the heat recovery system and the heat radiating panel (high efficiency heat conductive sheet pasting board) 5 60 in FIG. 4 and the medium.
このシステムでは、 図 7に示すように、 各部屋からの換気の熱を熱交換器 5 3 0により、 高効率熱伝導素材に伝達している。 熱交換器内では、 高効率熱伝導素 材とペルチヱ素子とが直接接触して換気の熱を伝えている。 この高効率熱伝導素 材 (例えばグラフアイト等) は、 パイプ 5 7 2に内蔵され、 各部屋に換気の熱を 伝えている。 このパイプに対して、 高効率の熱伝導素材からの熱を伝えたり、 熱 の放散を防いだりするための素材をその場所に応じて選択する。 各部屋では、 図 8に示すように、 高効率熱伝導素材内蔵パイプ 5 7 4から放熱パネル 5 6 0上の 高効率熱伝導素材シ一ト 5 6 6に高効率熱伝導素材シート 5 6 4によリ熱が伝導 され、 放熱パネル 5 6 0より熱が放熱される。 このとき、 高効率熱伝導素材シー 卜 5 6 4とパイプ 5 7 4との接触場所には、 熱伝導のよい素材 (例えば銅) を用 いている。  In this system, as shown in Fig. 7, the heat of ventilation from each room is transferred to a high-efficiency heat conduction material by heat exchangers 5 30. In the heat exchanger, high-efficiency heat-conducting material and Peltier elements are in direct contact to transfer the heat of ventilation. This high-efficiency heat-conducting material (for example, Graphite) is built into the pipe 5 72 and transfers the heat of ventilation to each room. Depending on the location, the pipe is selected to transfer heat from a highly efficient heat transfer material or to prevent heat dissipation. In each room, as shown in Fig. 8, the high-efficiency heat conduction material sheet 5 6 4 to the high-efficiency heat conduction material sheet 5 6 4 from the high-efficiency heat conduction material built-in pipe 5 7 4 The heat is conducted by heat, and heat is dissipated from the heat dissipating panel 5 60. At this time, a material with good heat conductivity (for example, copper) is used for the contact place between the high efficiency heat conductive material sheet 卜 5 6 4 and the pipe 5 7 4.
このように、 この熱回収システムでは、 高効率熱伝導素材を用いて熱を伝えて いるために、 媒体の移動のための動力がいらない。  In this way, in this heat recovery system, heat is transferred using a high-efficiency heat conduction material, so no power is required to move the medium.
また、 放熱パネルを部屋の天井や床等に使用すると、 排気から回収した熱ばか りではなく、 部屋の上下や部屋間等に温度格差があると、 その温度格差の熱も放 熱パネルの高効率熱伝導シ一卜から吸収して、 パイプ中の高効率熱伝導素材を介 して伝えることができるので、 家の中の温度格差の解消にも役立つ。 これは、 排 気からの熱を回収していないときも有効である。 In addition, when a heat dissipation panel is used on the ceiling, floor, etc. of a room, if there is a temperature difference between the top and bottom of the room or between rooms, not the heat recovered from the exhaust, the heat of the temperature difference also increases the heat of the heat dissipation panel. Absorbed from the efficient heat conduction system, through the high efficiency heat conduction material in the pipe It can also be used to eliminate temperature disparities in the house. This is also effective when heat from the exhaust is not being recovered.
これが可能であるのは、 放熱パネルの用いている高効率熱伝導シー卜やパイプ 中の高効率熱伝導素材の熱を伝える方向が双方向であり、 自由に熱を伝導するこ とができるからである。 産業上の利用可能性 本発明の熱回収装置を用いることにより、 低コス卜で効率よく運用することが でき、 メンテナンスが容易である。 また、 消費電力が少ないため、 省エネルギー 効果がある。 その上、 騒音が少ないという利点もある。  This is possible because the direction of heat transfer from the high-efficiency heat conduction sheet used in the heat dissipation panel and the high-efficiency heat conduction material in the pipe is bidirectional, and heat can be freely conducted. It is. Industrial Applicability By using the heat recovery apparatus of the present invention, it can be operated efficiently with low cost and easy maintenance. In addition, there is an energy saving effect due to low power consumption. In addition, it has the advantage of low noise.

Claims

請 求 の 範 囲 The scope of the claims
1 . 換気からの熱回収装置であって、 1. Heat recovery device from ventilation,
ヒートシンクと、  A heat sink,
該ヒートシンクと接続されているペルチェ素子と、  A Peltier element connected to the heat sink;
該ベルチ: L素子と接続されている媒体と、  The belt: a medium connected to the L element;
前記ペルチェ素子への電源と  A power supply to the Peltier element;
を備え、 前記ペルチェ素子を介して換気から冷熱を含む熱を媒体に移すことを 特徴とする熱回収装置。  A heat recovery apparatus, wherein heat including cold is transferred from the ventilation to the medium through the Peltier element.
2. 建物の熱回収システムであって、 2. Building heat recovery system,
前記建物の各部屋からの換気の排気を集中して集める集中換気扇と、 該集中換気扇の排気の熱を媒体に伝達するための、 換気からの熱回収装置であ つて、 ヒートシンクと、 該ヒートシンクと接続されているペルチェ素子と、 該ぺ ルチ X素子と接続されている媒体と、前記ペルチェ素子への電源とを有しており、 前記媒体によリ伝達された熱を各部屋に放出するための高効率熱伝導シートと を備えることを特徴とする建物の熱回収システム。  A centralized ventilation fan for concentrating and collecting ventilation exhaust from each room of the building; and a heat recovery device for ventilation for transferring heat of the exhaust of the centralized ventilation fan to a medium, comprising: a heat sink; and the heat sink A Peltier element connected; a medium connected to the Peltier element; and a power source to the Peltier element, for releasing heat transferred by the medium to each room. A high-efficiency heat conduction sheet.
3. 請求項 2に記載の建物の熱回収システムにおいて、 3. In the building heat recovery system according to claim 2,
前記媒体として、 高効率熱伝導素材を用いており、  A high-efficiency heat conduction material is used as the medium,
前記媒体を移動せずに熱を伝導することを特徴とする建物の熱回収システム。  A heat recovery system for a building which conducts heat without moving the medium.
PCT/JP2003/001058 2002-02-25 2003-02-03 Heat recovery unit and heat recovery system of building utilizing it WO2003071200A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002477332A CA2477332A1 (en) 2002-02-25 2003-02-03 Heat recovery unit and heat recovery system of building utilizing it
EP03742659A EP1486743A4 (en) 2002-02-25 2003-02-03 Heat recovery unit and heat recovery system of building utilizing it
US10/505,432 US20050139692A1 (en) 2002-02-25 2003-02-03 Heat recovery unit and heat recovery system of building utilizing it
AU2003246346A AU2003246346A1 (en) 2002-02-25 2003-02-03 Heat recovery unit and heat recovery system of building utilizing it
HK06100795A HK1080930A1 (en) 2002-02-25 2006-01-18 Heat recovery system of building

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002048023A JP2003247763A (en) 2002-02-25 2002-02-25 Heat recovery system during ventilation
JP2002-48023 2002-02-25
JP2002-232084 2002-08-08
JP2002232084A JP2004069239A (en) 2002-08-08 2002-08-08 Heat recovery system of building

Publications (1)

Publication Number Publication Date
WO2003071200A1 true WO2003071200A1 (en) 2003-08-28

Family

ID=27759696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001058 WO2003071200A1 (en) 2002-02-25 2003-02-03 Heat recovery unit and heat recovery system of building utilizing it

Country Status (7)

Country Link
US (1) US20050139692A1 (en)
EP (1) EP1486743A4 (en)
CN (1) CN1270147C (en)
AU (1) AU2003246346A1 (en)
CA (1) CA2477332A1 (en)
HK (1) HK1080930A1 (en)
WO (1) WO2003071200A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672076B2 (en) * 2001-02-09 2004-01-06 Bsst Llc Efficiency thermoelectrics utilizing convective heat flow
US6959555B2 (en) * 2001-02-09 2005-11-01 Bsst Llc High power density thermoelectric systems
CN100419347C (en) 2001-08-07 2008-09-17 Bsst公司 Thermoelectric personal environment appliance
US7380586B2 (en) 2004-05-10 2008-06-03 Bsst Llc Climate control system for hybrid vehicles using thermoelectric devices
FR2879728B1 (en) * 2004-12-22 2007-06-01 Acome Soc Coop Production AUTONOMOUS HEATING AND REFRESHING MODULE
US7743614B2 (en) 2005-04-08 2010-06-29 Bsst Llc Thermoelectric-based heating and cooling system
US8783397B2 (en) * 2005-07-19 2014-07-22 Bsst Llc Energy management system for a hybrid-electric vehicle
US7870745B2 (en) 2006-03-16 2011-01-18 Bsst Llc Thermoelectric device efficiency enhancement using dynamic feedback
US7779639B2 (en) 2006-08-02 2010-08-24 Bsst Llc HVAC system for hybrid vehicles using thermoelectric devices
US20100155018A1 (en) 2008-12-19 2010-06-24 Lakhi Nandlal Goenka Hvac system for a hybrid vehicle
US7788933B2 (en) * 2006-08-02 2010-09-07 Bsst Llc Heat exchanger tube having integrated thermoelectric devices
CN101968254B (en) * 2006-08-26 2012-09-26 林荣恒 Heating and cooling air conditioner heat recovery device and air conditioner heat recovery system
CN104990301B (en) 2007-05-25 2019-04-16 詹思姆公司 Distribution formula thermoelectricity heating and cooling system and method
EP2315987A2 (en) 2008-06-03 2011-05-04 Bsst Llc Thermoelectric heat pump
US9555686B2 (en) 2008-10-23 2017-01-31 Gentherm Incorporated Temperature control systems with thermoelectric devices
CN102264563A (en) 2008-10-23 2011-11-30 Bsst有限责任公司 Multi-mode hvac system with thermoelectric device
US9447994B2 (en) 2008-10-23 2016-09-20 Gentherm Incorporated Temperature control systems with thermoelectric devices
US8974942B2 (en) 2009-05-18 2015-03-10 Gentherm Incorporated Battery thermal management system including thermoelectric assemblies in thermal communication with a battery
WO2010135363A2 (en) 2009-05-18 2010-11-25 Bsst Llc Temperature control system with thermoelectric device
FR2952708B1 (en) 2009-11-13 2011-12-30 Acome Soc Cooperative De Production Sa A Capital Variable REVERSIBLE THERMOELECTRIC HEAT PUMP
US9170031B2 (en) * 2009-11-23 2015-10-27 Sunedison, Inc. Energy transfer module utilizing thermal power generated by solar panels
JP2012112563A (en) * 2010-11-24 2012-06-14 Toyota Industries Corp Air conditioner
CN102052742B (en) * 2010-12-15 2013-02-20 蔡宏武 Method for using building air exhaust waste heat
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
KR101654587B1 (en) 2011-06-06 2016-09-06 젠썸 인코포레이티드 Cartridge-based thermoelectric systems
DE112012002935T5 (en) 2011-07-11 2014-05-15 Gentherm Inc. Thermoelectric based thermal management of electrical devices
WO2014022428A2 (en) 2012-08-01 2014-02-06 Gentherm Incorporated High efficiency thermoelectric generation
US10603976B2 (en) 2014-12-19 2020-03-31 Gentherm Incorporated Thermal conditioning systems and methods for vehicle regions
WO2017065847A1 (en) 2015-10-14 2017-04-20 Gentherm Incorporated Systems and methods for controlling thermal conditioning of vehicle regions
DE102017107658A1 (en) 2017-01-04 2018-07-05 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung A sizing composition for the foundry industry containing particulate amorphous silica and acid
CN111174329B (en) * 2018-10-24 2021-11-23 青岛海尔空调器有限总公司 Movable air conditioner and temperature adjusting and controlling method thereof
CN113932337A (en) * 2021-11-25 2022-01-14 南通长盈机电设备有限公司 Air conditioner heat recovery energy-saving water heating equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152342A (en) * 1978-05-19 1979-11-30 Matsushita Electric Ind Co Ltd Ventilating device
JPS5770037U (en) * 1980-10-15 1982-04-27
JPH06226031A (en) * 1993-02-05 1994-08-16 Taikisha Ltd Cooling equipment
JPH08261672A (en) * 1995-03-20 1996-10-11 Fujitsu Ltd Heat conducting apparatus
JP2575861B2 (en) * 1989-02-21 1997-01-29 三菱重工業株式会社 Air conditioning ventilation fan

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2949014A (en) * 1958-06-02 1960-08-16 Whirlpool Co Thermoelectric air conditioning apparatus
US3137142A (en) * 1962-09-24 1964-06-16 Borg Warner Heat transfer system as it pertains to thermoelectrics
WO1981001963A1 (en) * 1980-01-03 1981-07-23 H Hoelter Method and device for cleaning air fed into a protection booth or vehicle cabin
US4551304A (en) * 1980-10-17 1985-11-05 Heinz Holter Method of cleaning air loaded with pollutants
US5226298A (en) * 1991-01-16 1993-07-13 Matsushita Electric Industrial Co., Ltd. Thermoelectric air conditioner with absorbent heat exchanger surfaces
US5225167A (en) * 1991-12-30 1993-07-06 Clestra Cleanroom Technology, Inc. Room air sterilizer
US5179998A (en) * 1992-01-24 1993-01-19 Champs Nicholas H Des Heat recovery ventilating dehumidifier
WO1994012833A1 (en) * 1992-11-27 1994-06-09 Pneumo Abex Corporation Thermoelectric device for heating and cooling air for human use
US5761908A (en) * 1994-06-10 1998-06-09 Air Quality Engineering Apparatus suited for ventilating rooms contaminated with infectious disease organisms
EP0813032A3 (en) * 1996-06-10 2001-05-23 Thermovonics Co., Ltd Air-conditioning ventilator
US6612365B1 (en) * 1999-09-17 2003-09-02 Matsushita Electric Industrial Co., Ltd. Heating-element accommodating-box cooling apparatus and method of controlling the same
SE516775C2 (en) * 2000-06-05 2002-02-26 Jan Kristensson Method and apparatus for providing clean air in a room
HK1037473A2 (en) * 2001-09-20 2002-03-15 Kui Wong Yeung An air-ventilator with high efficiency thermal exchanger and air filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152342A (en) * 1978-05-19 1979-11-30 Matsushita Electric Ind Co Ltd Ventilating device
JPS5770037U (en) * 1980-10-15 1982-04-27
JP2575861B2 (en) * 1989-02-21 1997-01-29 三菱重工業株式会社 Air conditioning ventilation fan
JPH06226031A (en) * 1993-02-05 1994-08-16 Taikisha Ltd Cooling equipment
JPH08261672A (en) * 1995-03-20 1996-10-11 Fujitsu Ltd Heat conducting apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1486743A4 *

Also Published As

Publication number Publication date
US20050139692A1 (en) 2005-06-30
CA2477332A1 (en) 2003-08-28
EP1486743A4 (en) 2005-07-13
AU2003246346A1 (en) 2003-09-09
CN1643312A (en) 2005-07-20
EP1486743A1 (en) 2004-12-15
CN1270147C (en) 2006-08-16
HK1080930A1 (en) 2006-05-04

Similar Documents

Publication Publication Date Title
WO2003071200A1 (en) Heat recovery unit and heat recovery system of building utilizing it
JP6542951B2 (en) High efficiency heat dissipation device and cogeneration system for photovoltaic panels
JP6234595B2 (en) Solar air conditioning system
WO2009140875A1 (en) Machine cabinet and temperature control system for machine cabinet
KR101568606B1 (en) Photovoltaic/thermal(PVT) module and Geo-PVT system with the PVT module
US20080053130A1 (en) Geothermal Cooling Device
WO2011069389A1 (en) Heat dissipater, heat dissipation method for communication device, and communication device
CN106931573A (en) Modular portable semiconductor air conditioner
GB2566602A (en) Cooling system
JPH04227432A (en) Device for heating or cooling building and operating method thereof
JP6301170B2 (en) Small air conditioner and personal air conditioning system using the same
JP2004301470A (en) Underground heat utilizing system
KR100576557B1 (en) Heat exchanging ventilator with thermoelectric element
CN111588110A (en) Portable refrigeration clothes
CN107023912A (en) The air conditioner and PV air-conditioner device energy supply method and device of photovoltaic semiconductors refrigeration
CN110715391A (en) Ventilator with active energy recovery function and ventilation method thereof
CN108613360A (en) Air conditioner afterheat energy thermoelectricity retracting device
CN204786965U (en) Utilize toilet sparge water refrigerated semiconductor refrigeration air conditioner device
CN109751793B (en) Photovoltaic semiconductor cooling and heating system for desert camping house and working method thereof
JP2003247763A (en) Heat recovery system during ventilation
JP2004069239A (en) Heat recovery system of building
HU228723B1 (en) Device for producing cold water for the purpose of cooling rooms
JP2001033050A (en) Solar device with air-conditioning function
CN204786967U (en) Utilize toilet sparge water refrigerated semiconductor air conditioner device
JP2001336780A (en) Thermobattery system of cold/hot air device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2477332

Country of ref document: CA

Ref document number: 10505432

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003742659

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038074621

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003742659

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 2003742659

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003742659

Country of ref document: EP