WO2003068382A1 - Discharge device - Google Patents

Discharge device Download PDF

Info

Publication number
WO2003068382A1
WO2003068382A1 PCT/JP2003/001658 JP0301658W WO03068382A1 WO 2003068382 A1 WO2003068382 A1 WO 2003068382A1 JP 0301658 W JP0301658 W JP 0301658W WO 03068382 A1 WO03068382 A1 WO 03068382A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
gas
electrode
region
inner electrode
Prior art date
Application number
PCT/JP2003/001658
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Tamaru
Hideo Kimura
Original Assignee
Furrex Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furrex Co., Ltd. filed Critical Furrex Co., Ltd.
Priority to JP2003567560A priority Critical patent/JPWO2003068382A1/en
Priority to AU2003211327A priority patent/AU2003211327A1/en
Publication of WO2003068382A1 publication Critical patent/WO2003068382A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/083Details relating to the shape of the electrodes essentially linear cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas

Definitions

  • the present invention relates to a discharge device, and more particularly to a discharge device used for decomposing a gas to be treated by the action of electric discharge or synthesizing a chemical substance from the gas to be treated.
  • a pair of electrodes in the above-described discharge device has, for example, a minus one-dollar shape, and generates an arc discharge between the tip portions of both electrodes.
  • the arc since the arc has a substantially linear shape, the amount of the gas to be treated coming into contact with the arc per unit time is small, and as a result, a synthesis reaction or the like does not occur. However, even if they occurred, there was a problem that their progress was extremely slow.
  • the present applicant has firstly provided a discharge reactor having a cylindrical outer electrode having an inner peripheral surface as a discharge surface, and a cylindrical inner electrode having an outer peripheral surface as a discharge surface facing the discharge surface,
  • a discharge device having gas supply means for supplying a gas to be treated under pressure into a cylindrical annular passage between both discharge surfaces, and a power supply device for applying a discharge voltage between an outer electrode and an inner electrode has been proposed (see Japanese Patent Application Laid-Open 0 0 2-3 5 5 5 5 4 8).
  • the present applicant has decomposed the gas to be treated by using the above-described apparatus, and as a result, I felt the need to further improve the processing capacity of the equipment.
  • an object of the present invention is to provide a discharge device with further improved processing capacity for a gas to be processed. Disclosure of the invention
  • the present invention provides an outer electrode having a gas inlet at one end and a gas outlet at the other end, an inner electrode disposed inside the outer electrode, the inner electrode and the outer electrode.
  • a gas flowing means for flowing the gas to be treated in the space between the electrodes, and a power supply for applying a discharge voltage between the inner electrode and the outer electrode while the gas to be treated is flowing in the space.
  • a discharge device comprising: an annular discharge generating device defined by an intermediate portion of the outer peripheral surface of the inner electrode in the axial direction and an intermediate portion of the inner peripheral surface of the outer electrode in the axial direction.
  • an annular space defined by an outer peripheral surface of the inner electrode and an inner peripheral surface of the outer electrode on the downstream side of the discharge generation region, wherein a gap between the inner and outer electrodes of the annular space is Discharge generation area
  • a discharge spreading area that is larger than a gap between the inner and outer electrodes in the process, wherein the gas to be treated flows between the gas inlet and the gas outlet while the gas to be treated flows between the outer electrode and the inner electrode.
  • the discharge induced in the flow of the gas to be treated and generated in the discharge generating region spreads to the discharge spreading region.
  • the discharge in the discharge generation area is an arc discharge
  • the positive column in the arc discharge generated in a straight line extends in an arc or horizontal “U” shape in the discharge spread area according to the flow of the gas to be treated.
  • the gap of the discharge spreading area can be set such that the volume of the discharge spreading area is larger than the volume of the discharge generating area while keeping the shape of the inner peripheral surface of the outer electrode constant.
  • the outer electrode is an electrode that concentrically surrounds the inner electrode so that the discharge generated in the discharge generation region spreads and continues to the discharge spreading region. It is provided with a disc-shaped portion forming a generation region, and a truncated conical portion having a large diameter end connected to the gas outlet side end of the disc-shaped portion to form the discharge spreading region.
  • the axial length of the truncated conical portion is at least three times the axial / ⁇ length of the disc-shaped portion.
  • the gas to be treated flows so as to spread in a direction orthogonal to the axial direction from the discharge generation region to the gas outlet according to the expansion of the gap between the outer electrodes in the discharge spreading region. Induced by such a flow, the discharge in the discharge generation region easily spreads to the radio wave transmission region.
  • the inner electrode further includes a columnar portion connected to a small-diameter end of the truncated conical portion provided in the inner electrode.
  • the gap between the inner and outer electrodes in the discharge spreading area can be set to be constant in the cylindrical portion. Accordingly, the electric field formed by the predetermined discharge voltage also becomes constant in the column, and the discharge in the column easily spreads in the axial spring direction.
  • the axis of the outer peripheral surface of the inner electrode in the discharge generation region The distance between the middle part in the linear direction and the middle part in the axial direction of the inner peripheral surface of the outer electrode is 5 ram to 25 mm.
  • the axial length of the discharge generating region is 2 mm to 10 mm.
  • the discharge generation region having such a length in the axial direction gives the gas to be treated a conduit resistance for the gas to be treated to be efficiently opened in the discharge spread region.
  • the discharge effort region, together with the discharge spread region can fulfill the function of, for example, a throat for the gas to be treated.
  • FIG. 1 is a system diagram of a discharge apparatus in which a laughing gas decomposition experiment was performed using a discharge reactor according to an embodiment of the present invention.
  • FIG. 2 is a fragmentary front view of a discharge reactor according to an embodiment of the present invention.
  • FIG. 3 is a sectional view taken along line 3-3 in FIG.
  • FIG. 4 is a fragmentary front view of a main part of a discharge reactor according to another embodiment of the present invention.
  • a gas circulation device 3 as gas distribution means is attached to a cylindrical discharge reactor 2.
  • This device 3 has a first conduit 6 connecting between a gas inlet tube 4 at one end of the discharge reactor 2 and a gas outlet tube 5 at the other end.
  • a pressure regulator 9 and a gas adsorber 10 are provided.
  • the transparent box 8 is made of a synthetic resin, for example, polymethyl methacrylate.
  • a bypass 11 bypassing the gas adsorber 10 is connected to the first conduit 6 via first and second three-way valves 12 and 13.
  • an AC power supply device 16 as a power supply device is connected to both connection terminals 14 and 15 on the outer peripheral portion of the discharge reactor 2 via conductors 97 and 98.
  • the gas supply device 17 for the gas to be processed is provided between the gas inlet cylinder 4 and the first three-way valve 12 via the second conduit 18 via the first conduit 6.
  • the first on-off valve 19, the third three-way valve 20, and the flow meter 21 are sequentially connected to the second conduit 18 from the discharge reactor 2 side.
  • a check valve 21 for preventing gas flow to the valve 12 side is provided between the connection portion a with the second conduit 18 and the first three-way valve 12.
  • the inlet side of the third conduit 23 is connected to the first conduit 6 via the fourth three-way valve 22, and the outlet side is connected to the fourth three-way valve 22 of the first conduit 6.
  • a check valve 24 that blocks gas flow to the valve 22 side, a gas concentration measurement device 25, and the measurement device 25 side
  • a check valve 26 is provided to prevent gas flow into the pump.
  • a check valve 27 for preventing gas flow to the valve 22 between the connection b of the third conduit 23 with the outlet side of the third conduit 23 and the fourth three-way valve 22 is provided. Is done.
  • the fourth conduit 2 is connected between the transparent tube 8 and the connection part b of the first conduit 6 with the outlet side of the third conduit 23. 8 is connected to the inlet side, and the outlet side is connected to a gas concentration measuring device 25.
  • the outlet S of the third conduit 23 between the gas concentration measuring device 25 and the first conduit 6 is shared as the outlet S of the gas after the concentration measurement.
  • a second on-off valve 29 is provided between its connection part c with the first conduit 6 and the gas concentration measuring device 25.
  • a gas inlet 45 is provided at one end and a gas outlet is provided at the other end.
  • Electrically insulating first and second end plates 48, 49 having the same shape are applied to both annular end faces of the cylindrical outer electrode 47 having the ports 46, respectively, and the plurality of bolts 50 are used. It is attached to its outer electrode 47.
  • the outer electrode 47 has a large-diameter hole 51 on the first end plate 48 side, a small-diameter hole 52 on the second end plate 49 side, and a taper connecting both holes 51, 52. It has a hole 53, and the connecting portion between the tapered hole 53 and the large and small diameter holes 51, 52 has an arc shape.
  • the inner peripheral surfaces of the large and small diameter holes 51, 52 and the tapered hole 53 are mirror-finished.
  • the upper electrode 54 is held between the first and second end plates 48, 49 and is arranged concentrically with the outer electrode 47, and the inner and outer electrodes 47, 54 A space S is formed between them.
  • the inner electrode 54 has a disc-shaped portion 55 located at an intermediate portion in the axial direction, and first and second ends each having a large-diameter end connected to a gas inlet 45 side end and a gas outlet 46 side end.
  • the frusto-conical portions 56, 57, and the first shaft portion 58 which projects from the small-diameter end face of the first frusto-conical portion 56 and is smaller than that, and continues to the small-diameter end of the second frusto-conical portion 57.
  • it has a short cylindrical portion 59 having the same diameter as that, and a second shaft portion 60 projecting from the end face of the short cylindrical portion 59 and having a smaller diameter.
  • the first shaft portion 58 is fitted into a through hole 61 coaxial with the outer electrode 47 formed on the first end plate 48, and the small-diameter end face of the first truncated cone portion 56 is the first end plate. 4 Contact 8 In the outer electrode 47, the first truncated conical portion 56 and the disc-shaped portion 55 are located in the large-diameter hole 51, and the second truncated conical portion 57 is a large-diameter hole 51, tapered.
  • the hole 53 and the small-diameter hole 52 are located within the small-diameter hole 52, and the short cylindrical portion 59 is located within the small-diameter hole 52.
  • the second shaft portion 60 has a through hole coaxial with the outer electrode 47 formed on the second end plate 49.
  • the disc-shaped portion 55, the first and second truncated conical portions 56, 57, and the short cylindrical portion 59 are mirror-finished.
  • the inner and outer electrodes 47, 54, the outer and inner surfaces in the axial direction of the outer surface are brought closer.
  • the outer peripheral surface of the disk-shaped portion 55 and the vicinity of the tapered hole 53 of the large diameter hole 51 are located When the peripheral surfaces are brought closer to each other, an annular arc discharge generation region A1 is formed between them 55 and 51.
  • the arc discharge generation area Ai is connected to the end on the gas outlet 46 side, and the interval between the inner and outer electrodes of the inner and outer electrodes 47 and 54 is formed to be wider than the arc discharge generation area Ai.
  • the formed cylindrical arc discharge spreading area A 2 is, in the embodiment, a second truncated conical portion 57 and a short cylindrical portion 59 of the inner electrode 54, and a part of the large diameter hole 51 of the outer electrode 47, It is formed in cooperation with the tapered hole 53 and the small diameter hole 52. That is, the arc discharge generation area A1 and the arc discharge propagation area A2 exist in the space S.
  • An AC voltage of approximately 100 kV or less is applied between the inner and outer electrodes 54 and 47 for a discharge distance Ds between the outer peripheral surface of the disk-shaped portion 55 and the outer peripheral surface of the large-diameter hole 51 and the peripheral surface.
  • Ds 5 mni was set in order to apply an AC voltage of 7 to 10 kV between the inner and outer electrodes 54 and 47 as described later.
  • Ds is preferably about 25 Omm or less.
  • arc discharge spillover area A 2 is the arcing area A t over the gas outlet tube 5 has a discharge distance described below.
  • the discharge distance between the outer peripheral surface of the second truncated conical portion 57 of the inner electrode 54 and the inner peripheral surface of the large-diameter hole 51 of the outer electrode 47 is the discharge distance of the arc discharge generation region A (D s) about 1 to 2 times.
  • the discharge distance between the outer peripheral surface of the second truncated conical portion 57 of the inner electrode 54 and the inner peripheral surface of the tapered hole 53 of the outer electrode 47 is about 2 to 3 times Ds. .
  • the discharge distance between the outer peripheral surface of the second truncated conical portion 57 of the inner electrode 54 and the inner peripheral surface of the small-diameter hole portion 52 of the outer electrode 47 is approximately 3 to 4 times Ds. .
  • the discharge distance between the outer peripheral surface of the short cylindrical portion 59 of the inner electrode 54 and the inner peripheral surface of the small-diameter hole portion 52 of the outer electrode 47 is constant, and is about four times as large as Ds.
  • the axial length of the second truncated conical portion 57 is at least three times the axial length of the disc-shaped portion 55. In the present embodiment, the axial length of the second truncated conical portion 57 is about nine times the axial length of the disc-shaped portion 55. Further, the length of the disc-shaped portion 55 in the axial direction is 2 mm to 1 O mm. In the present embodiment, the length of the disc-shaped portion 55 in the axial direction is about 4 mm.
  • a plurality of small holes 63, 64 are formed around the through holes 61, 62 at regular intervals (see Fig. 3). 4 communicates with the outside electrode 47.
  • a flange portion 66 at one end of the gas inlet tube 4 is attached to the first end plate 48 with a plurality of bolts 67. It communicates with each small hole 63 of one end plate 48.
  • a flange portion 69 at one end of the gas outlet tube 5 is attached to the second end plate 49 by a plurality of bolts 70. Communicates with each small hole 64 of the second end plate 49.
  • One of the connection terminals 14 has a rod shape, and is inserted into the first end plate 48 through an elongated hole 73 formed so as to pass from the outer peripheral portion thereof between the adjacent small holes 63.
  • the other connecting terminal 15 is screwed on the outer peripheral portion of the outer electrode 47 at a position bisected by the bus bar on the one shaft portion 58.
  • reference numeral 77 denotes a sealing ring.
  • the outer electrode 47 and the inner electrode 54 are made of stainless steel, for example, JISSUS304.
  • the inner electrode 54 can be made of an A1 alloy, for example, JIS5052.
  • the first and second end plates 48, 49 are made of synthetic resin, for example, cloth-filled bakelite, and gas inlets having flange portions 66, 69, and gas outlet tubes 4, 5 are made of A1 alloy.
  • the first and second end plates 48, 49 composed of JIS5052 can be composed of ceramics
  • the gas inlet and gas outlet cylinders 4, 5 can be composed of stainless steel. is there.
  • Gas adsorber 10 is used as adsorbent It has an activated carbon fiber filter (manufactured by Nippon Riki Inol Co., Ltd., trade name: Kynol ACN305-15) with a density of 180 g Zm 3
  • the bulk density of the activated carbon fiber filter in the gas adsorber 10 is suitably from 90 to 180 g / m 3 .
  • the discharge device 1 is applied to the treatment of laughter (nitrous oxide ⁇ 2 ⁇ ) which is a medical anesthetic gas as a gas to be treated
  • the gas supply device 17 has a function of supplying a mixed gas composed of laughter and air, and a function of supplying only laughter.
  • the first on-off valve 19 was opened, and the gas supply unit 17 and the discharge reactor 2 were connected by switching the third three-way valve 20. Further, the gas outlet tube 5 of the discharge reactor 2 is communicated with the transparent box 8 by switching the fourth three-way valve 22, and the inlet and outlet of the gas adsorber 10 are switched by switching the first and second three-way valves 12, 13. The side was opened and the bypass 11 was closed. The second on-off valve 29 is in a closed state.
  • a gas mixture consisting of laughter of 15 V o 1% and air of 85 V o 1% is supplied to the discharge reactor 2 from the gas supply unit 17 and the supply amount of the mixed gas is reduced to 30 L. When it reached, the supply of the mixed gas from the gas supply unit 17 was stopped, and the first on-off valve 19 was closed.
  • a fan 7 is operated by blowing rate 1.
  • Check valve 2 1 ⁇ Circulate in the path of discharge reactor 2 to allow the mixed gas to flow through the space S between the inner and outer electrodes 47 and 54.
  • a high discharge voltage of 7 to: LO kV, 30 mA, 33 kHz was applied to the inner and outer electrodes 47 and 54 by the AC power supply 16. Accordingly, in a state where the mixed gas is flowing in the space S between the inner and outer electrodes 47 and 54, in the disc-shaped portion 55 of the inner electrode 54 and the large-diameter hole portion 51 of the outer electrode 47 surrounding the same. Arc discharge occurs in the inner circumference, that is, in the arc discharge generation area, and the arc is generated by the flow of the mixed gas. Along the second frusto-conical portion 57 and the short cylindrical portion 59, and then the arc discharge spreading area A2 was filled with the arc.
  • the positive column generated in a straight line in the arc discharge generation region A i extended in an arc or a horizontal “U” shape in the arc discharge propagation region A 2 , and such a phenomenon continued.
  • such extension of the positive column is believed to occur are induced in the gas mixture flowing as opened in a narrow arc generation region through the A wide arcing spread area A 2.
  • the second on-off valve 29 was opened, and the concentration of laughter was measured every 10 minutes after the start of discharge.
  • Table 1 shows the results of measuring the concentration of laughter.
  • the positive column force generated in a straight line in the arc discharge generation region A extended in an arc shape or a horizontal “U” shape in the arc discharge spread region A 2 , and such a phenomenon continued.
  • extension of the positive column is believed to occur are induced in the gas mixture flowing as open at a narrow pass through the arcing region A wide electrical arc spreading region A 2.
  • Table 2 shows the concentration of NO X in the collected gas.
  • the laughter can be decomposed mainly by a single substance and harmless oxygen and nitrogen by improving its decomposition ability. This has the effect of facilitating the treatment of cracked gas.
  • Tables 4 and 5 show that in Fig. 1, the first and second three-way valves 12 and 13 were switched so that the bypass 11 of the first conduit 6 was in communication and the inlet and outlet sides of the gas adsorber 10 were closed. Except for this, the results of gas analysis when laughter discharge treatment was performed in the same manner as in Example I are shown, and correspond to Tables 2 and 3, respectively. [Table 4]
  • N ⁇ x does not match the value of NO + N02 due to the fact that compounds other than NO and NO 2 are generated in the decomposition of NOx. In this case, 78% of the decomposition reaction of ⁇ 2 ⁇ ⁇ ⁇ 2 + ⁇ 2 occurred, and 22% of the decomposition reaction of ⁇ 2 ⁇ ⁇ ⁇ ⁇ + ⁇ 2 occurred.
  • Example I has a higher rate of decomposition of laughter. From this, it can be said that in order to enhance the decomposition of laughter, it is better to remove ⁇ and ⁇ 2 generated by the decomposition reaction with the gas adsorber 10.
  • the discharge device 1 is not limited to decomposition of laughter, and can be applied to, for example, synthesis of NO 2 using air nitrogen, decomposition of NOx, decomposition of CO 2, and the like.
  • the discharge generation region and Discharge in the discharge spread area A 2 good arcing.
  • the discharge in the discharge generation region and the discharge spread region A 2 is changed from a single discharge to an arc Discharge in the transition region from a single discharge to an arc discharge just before the discharge occurs.
  • the outer electrode 47 in the above-described embodiment has a large-diameter hole 51 on the first end plate 48 side, a small-diameter hole 52 on the second end plate 49 side, It has a tapered hole 53 connecting between 51 and 52, but is not limited to this.
  • the through-hole of the outer electrode 47 ′ may be an equal-diameter hole having the same inner diameter as the inner diameter of the large-diameter hole 51 ′.
  • the gap between the outer peripheral surface of the inner electrode 54 and the inner peripheral surface of the outer electrode 47 in the discharge region A 2 shown in FIG. 4 should be as small as possible with respect to the gap shown in FIG.
  • the axial length of the second truncated conical portion 57 ′ shown in FIG. 4 is approximately 15 times the axial length of the circular portion 55.
  • the same components as those in FIG. 2 are denoted by the same reference numerals.
  • the present invention it is possible to efficiently carry out the decomposition of laughter, the synthesis of NO 2 using air nitrogen, the decomposition of NO x, the decomposition of CO 2, etc. It is possible to provide a simple discharge device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)

Abstract

A discharge device comprises an outer electrode having a gas inlet at one end and a gas outlet at the other end, an inner electrode disposed inside the outer electrode, gas circulating means for circulating a gas to be processed through the space between the inner and outer electrodes, and a power supply for applying a discharge voltage between the inner and outer electrodes while circulating the gas through the space, characterized in that the space includes an annular discharging region defined by an intermediate portion in the axial direction of the outer periphery of the inner electrode and an intermediate portion in the axial direction of the inner periphery of the outer electrode and an annular discharge spreading region which is an annular space defined downstream form the discharging region by the outer periphery of the inner electrode and the inner periphery of the outer electrode and in which the gap between the inner and outer electrodes in the annular space is larger than the gap between the inner and outer electrodes in the discharging region, and the gap of the discharge spreading region is set so that discharge may occur in the discharging region when a predetermined discharge voltage is applied between the outer and inner electrodes while causing the gas to flow from the gas inlet to the gas outlet and the discharge may spread into the discharge spreading region and be sustained.

Description

糸田 »  Itoda »
技術分野 Technical field
本発明は、 放電装置、 特に放電の作用で被処理ガスを分解したり、 その被処理 ガスより化学物質を合成したりする場合等に用いられる放電装置に関する。 背景技術  The present invention relates to a discharge device, and more particularly to a discharge device used for decomposing a gas to be treated by the action of electric discharge or synthesizing a chemical substance from the gas to be treated. Background art
従来、 前記の放電装置における一対の電極は、 例えば-一ドル形状をなし、 そ れら両電極の先端部間にアーク放電を発生させるようになつていた。  Conventionally, a pair of electrodes in the above-described discharge device has, for example, a minus one-dollar shape, and generates an arc discharge between the tip portions of both electrodes.
しかしながら、従来の放電装置によると、アークが略線状をなすため、そのァー クに接触する被処理ガスの単位時間当たりの量が少なく、その結果、 合成反応等 が生じなかったり、 またそれらが生じたとしてもそれらの進行が極めて遅かった りという問題があった。  However, according to the conventional discharge device, since the arc has a substantially linear shape, the amount of the gas to be treated coming into contact with the arc per unit time is small, and as a result, a synthesis reaction or the like does not occur. However, even if they occurred, there was a problem that their progress was extremely slow.
そこで、 本出願人は、 先に、 内周面を放電面とした筒状外側電極と、 外周面を 当該放電面に対向する放電面とした筒状内側電極とを備えた放電反応器と、 両放 電面間の筒形環状通路内に被処理ガスを圧送供給するガス供給手段と、 外側電極 及び内側電極間に放電電圧を印加する電源装置とを有する放電装置を提案した (特開 2 0 0 2— 3 5 5 5 4 8号公報参照) 。  Accordingly, the present applicant has firstly provided a discharge reactor having a cylindrical outer electrode having an inner peripheral surface as a discharge surface, and a cylindrical inner electrode having an outer peripheral surface as a discharge surface facing the discharge surface, A discharge device having gas supply means for supplying a gas to be treated under pressure into a cylindrical annular passage between both discharge surfaces, and a power supply device for applying a discharge voltage between an outer electrode and an inner electrode has been proposed (see Japanese Patent Application Laid-Open 0 0 2-3 5 5 5 4 8).
このように、 両放電面間の筒状間隙に被処理ガスを圧送供給しながら筒状外側 電極と筒状内側電極との間に放電電圧を印加すると、 両放電面の略全体に放電が 発生する。 これにより、 被処理ガスの分解、 そのガスを用いた合成等が可能であ り、 しかもその分解等を効率良く進行させることが可能である。  As described above, when a discharge voltage is applied between the cylindrical outer electrode and the cylindrical inner electrode while supplying the gas to be processed into the cylindrical gap between the two discharge surfaces under pressure, a discharge is generated over substantially the entirety of the two discharge surfaces. I do. This makes it possible to decompose the gas to be treated, synthesize it using the gas, etc., and to efficiently proceed with the decomposition.
本出願人は、 前記の装置を用いて被処理ガスの分解を行なった結果、 被処理ガ スに対する処理能力のさらなる向上の必要性を痛感した。 The present applicant has decomposed the gas to be treated by using the above-described apparatus, and as a result, I felt the need to further improve the processing capacity of the equipment.
本発明は前記に鑑み、被処理ガスに対する処理能力を一層向上させた放電装置 を提供することを目的としている。 発明の開示  SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a discharge device with further improved processing capacity for a gas to be processed. Disclosure of the invention
上記の目的を達成するために、 本発明は、 一端にガス入口を、 他端にガス出口 をそれぞれ有する外側電極及び当該外側電極の内側に配置された内側電極と、 前 記内側電極と前記外側電極との間の空間に被処理ガスを流通させるガス流通手 段と、前記空間に前記被処理ガスを流通させた状態で前記内側電極と前記外側電 極との間に放電電圧を印加する電源装置とからなる放電装置であって、前記空間 は、 前記内側電極の外周面の軸線方向における中間部及び前記外側電極の内周面 の軸線方向における中間部によって画成されてなる環状の放電発生領域と、 前記 放電発生領域より下流側に前記内側電極の外周面と前記外側電極の内周面とに よって画成される環状空間であって当該環状空間の前記内外側電極間の間隙を 前記放電発生領域における前記内外側電極間の間隙より大きくしてなる放電波 及領域とを含み、 前記被処理ガスを前記ガス入口から前記ガス出口に向けて流通 させつつ前記外側電極と前記内側電極との間に前記所定の放電電圧を印加する と、 前記放電発生領域における放電が発生し、 当該放電が前記放電波及領域に波 及して持続するように、 前記放電波及領域の前記間隙を設定してなるのである。 このような構成により、 狭い放電発生領域を通過した被処理ガスは、 広い放電 波及領域において開放されるように流れる。 このような被処理ガスの流れに誘起 されて、 放電発生領域で発生した放電は放電波及領域に波及する。 例えば、 放電 発生領域の放電がアーク放電の場合には、 被処理ガスの流れに応じて、 一直線状 に生じたアーク放電における陽光柱が放電波及領域において円弧状或いは横 「U」 字状に延長してアーク放電を持続する。 また、 前記の構成により、 例えば 外側電極の内周面の形状を一定に保持しつつ、 放電波及領域の体積が放電発生領 域の体積よりも大きくなるように、 当該放電波及領域の間隙を設定できる。 この ように体積の大きレ、放電波及領域が形成されると、 被処理ガスが放電に曝される 量及び時間がより増大し、 よって、 被処理ガスに対して本発明の放電装置が有す る処理能力を一層向上させることができる。 To achieve the above object, the present invention provides an outer electrode having a gas inlet at one end and a gas outlet at the other end, an inner electrode disposed inside the outer electrode, the inner electrode and the outer electrode. A gas flowing means for flowing the gas to be treated in the space between the electrodes, and a power supply for applying a discharge voltage between the inner electrode and the outer electrode while the gas to be treated is flowing in the space. A discharge device comprising: an annular discharge generating device defined by an intermediate portion of the outer peripheral surface of the inner electrode in the axial direction and an intermediate portion of the inner peripheral surface of the outer electrode in the axial direction. And an annular space defined by an outer peripheral surface of the inner electrode and an inner peripheral surface of the outer electrode on the downstream side of the discharge generation region, wherein a gap between the inner and outer electrodes of the annular space is Discharge generation area A discharge spreading area that is larger than a gap between the inner and outer electrodes in the process, wherein the gas to be treated flows between the gas inlet and the gas outlet while the gas to be treated flows between the outer electrode and the inner electrode. When the predetermined discharge voltage is applied, the discharge in the discharge generation region is generated, and the gap in the discharge spread region is set so that the discharge spreads to the discharge spread region and continues. is there. With such a configuration, the gas to be processed having passed through the narrow discharge generation region flows so as to be opened in the wide discharge spread region. The discharge induced in the flow of the gas to be treated and generated in the discharge generating region spreads to the discharge spreading region. For example, if the discharge in the discharge generation area is an arc discharge, the positive column in the arc discharge generated in a straight line extends in an arc or horizontal “U” shape in the discharge spread area according to the flow of the gas to be treated. To sustain the arc discharge. Also, according to the above configuration, for example, The gap of the discharge spreading area can be set such that the volume of the discharge spreading area is larger than the volume of the discharge generating area while keeping the shape of the inner peripheral surface of the outer electrode constant. When the volume and the discharge spread area are formed as described above, the amount and time of exposure of the gas to be treated to the discharge are further increased. Processing capacity can be further improved.
好ましくは、 前記放電波及領域に前記放電発生領域で発生した放電が波及して 持続するように、 前記外側電極は前記内側電極を同心状に包囲する電極であって、 前記内側電極は、 前記放電発生領域を形成する円板状部と、 前記放電波及領域を 形成すべく当該円板状部の前記ガス出口側端に大径端を連ねた円錐台形部とを 備えるものとする。 そして好ましくは、 この円錐台形部の軸線方向の長さを前記 円板状部の軸/锒方向の長さの 3倍以上とする。 これによつて、 放電波及領域の内 外側電極間の間隙を、 放電発生領域からガス出口にかけて徐々に大きくなるよう に設定できる。 これに応じて、 所定の放電電圧により形成される電場は、 放電発 生領域からガス出口にかけて徐々に小さくなる。従って、放電発生領域の放電が、 例えば当該電場の急峻な変化等によって放電波及領域へ波及し難くなるといつ た事態が抑制される。 また、 放電波及領域の內外側電極間の間隙の広がりに応じ て、 被処理ガスも、 放電発生領域からガス出口にかけて軸線方向に直交する方向 に広がるように流れる。 このような流れに誘起されて、 放電発生領域の放電が放 電波及領域に波及し易くなる。  Preferably, the outer electrode is an electrode that concentrically surrounds the inner electrode so that the discharge generated in the discharge generation region spreads and continues to the discharge spreading region. It is provided with a disc-shaped portion forming a generation region, and a truncated conical portion having a large diameter end connected to the gas outlet side end of the disc-shaped portion to form the discharge spreading region. Preferably, the axial length of the truncated conical portion is at least three times the axial / 锒 length of the disc-shaped portion. Thus, the gap between the inner and outer electrodes in the discharge spreading region can be set so as to gradually increase from the discharge generating region to the gas outlet. Accordingly, the electric field formed by the predetermined discharge voltage gradually decreases from the discharge generation region to the gas outlet. Therefore, a situation that occurs when it becomes difficult for the discharge in the discharge generating region to spread to the discharge spreading region due to, for example, a steep change in the electric field or the like is suppressed. In addition, the gas to be treated flows so as to spread in a direction orthogonal to the axial direction from the discharge generation region to the gas outlet according to the expansion of the gap between the outer electrodes in the discharge spreading region. Induced by such a flow, the discharge in the discharge generation region easily spreads to the radio wave transmission region.
また好ましくは、 前記内側電極は、 当該内側電極の備える前記円錐台形部の小 径端に連なる円柱部を更に備えるものとする。 これによつて、 放電波及領域の内 外側電極間の間隙を、 円柱部において一定となるように設定できる。 これに応じ て、 所定の放電電圧により形成される電場も、 当該円柱部において一定となり、 当該円柱部における放電は軸 ί泉方向に波及し易くなる。  Also preferably, the inner electrode further includes a columnar portion connected to a small-diameter end of the truncated conical portion provided in the inner electrode. Thus, the gap between the inner and outer electrodes in the discharge spreading area can be set to be constant in the cylindrical portion. Accordingly, the electric field formed by the predetermined discharge voltage also becomes constant in the column, and the discharge in the column easily spreads in the axial spring direction.
更にまた好ましくは、 前記放電発生領域における、 前記内側電極の外周面の軸 線方向における中間部と、 前記外側電極の内周面の軸線方向における中間部との 間の距離を 5 ram乃至 2 5 mmとする。 これによつて、 内側電極と外側電極との 間に所定の放電電圧を印加すれば、 放電発生領域においてアーク放電、 グロ一放 電、 又は、 グロ一放電からアーク放電に至る直前のグロ一放電からアーク放電へ の遷移域の放電を発生させることができる。 Still more preferably, the axis of the outer peripheral surface of the inner electrode in the discharge generation region The distance between the middle part in the linear direction and the middle part in the axial direction of the inner peripheral surface of the outer electrode is 5 ram to 25 mm. As a result, when a predetermined discharge voltage is applied between the inner electrode and the outer electrode, an arc discharge, a glow discharge, or a glow discharge immediately before the glow discharge changes to an arc discharge in the discharge generation region. It is possible to generate a discharge in the transition region from to the arc discharge.
また好ましくは、前記放電発生領域の軸線方向の長さを 2 mm乃至 1 0 mmと. する。このような長さを軸線方向に有する放電発生領域は、被処理ガスに対して、 当該被処理ガスが放電波及領域において効率良く開放されるための管路抵抗を 与える。 即ち、 放電努生領域は、 放電波及領域とともに、 被処理ガスに対して例 えばノズノレとしての機能を果たすことができる。 図面の簡単な説明  Also preferably, the axial length of the discharge generating region is 2 mm to 10 mm. The discharge generation region having such a length in the axial direction gives the gas to be treated a conduit resistance for the gas to be treated to be efficiently opened in the discharge spread region. In other words, the discharge effort region, together with the discharge spread region, can fulfill the function of, for example, a throat for the gas to be treated. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の実施例に係る放電反応器を用いて笑気ガスの分解実験を行 なつた放電装置の系統図である。  FIG. 1 is a system diagram of a discharge apparatus in which a laughing gas decomposition experiment was performed using a discharge reactor according to an embodiment of the present invention.
第 2図は本発明の実施例に係る放電反応器の要部破断正面図である。  FIG. 2 is a fragmentary front view of a discharge reactor according to an embodiment of the present invention.
第 3図は図 2の 3— 3断面図である。  FIG. 3 is a sectional view taken along line 3-3 in FIG.
第 4図は本発明のもう一つの実施例に係る放電反応器の要部破断正面図であ る。 発明を実施するための好適な形態  FIG. 4 is a fragmentary front view of a main part of a discharge reactor according to another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
図 1に示す放電装置 1において、 筒形をなす放電反応器 2にガス流通手段とし てのガス循環装置 3が付設される。 この装置 3は、 放電反応器 2の一端部に存す るガス入口筒 4及びその他端部に存するガス出口筒 5間を接続する第 1導管 6 を有し、 その第 1導管 6に、 ガス出口筒 5側より順次、 内部中間位置にファン 7 を配置した透明ボックス 8、 第 1導管 6内等の反応経路内の圧力を調節するゴム 製圧力調節器 9及びガス吸着器 1 0が装置される。 透明ボックス 8は合成樹脂、. 例えばポリメタクリル酸メチルより構成されている。 第 1導管 6に、 ガス吸着器 1 0を迂回するバイパス 1 1が第 1及び第 2三方弁 1 2、 1 3を介して接続され る。 また、 放電反応器 2の外周部に存する両接続端子 1 4、 1 5に、 電源装置と しての交流電源装置 1 6が導線 9 7、 9 8を介して接続される。 In the discharge device 1 shown in FIG. 1, a gas circulation device 3 as gas distribution means is attached to a cylindrical discharge reactor 2. This device 3 has a first conduit 6 connecting between a gas inlet tube 4 at one end of the discharge reactor 2 and a gas outlet tube 5 at the other end. From the side of the outlet tube 5, a transparent box 8 with a fan 7 placed at an intermediate position inside, a rubber for adjusting the pressure in the reaction path such as in the first conduit 6 A pressure regulator 9 and a gas adsorber 10 are provided. The transparent box 8 is made of a synthetic resin, for example, polymethyl methacrylate. A bypass 11 bypassing the gas adsorber 10 is connected to the first conduit 6 via first and second three-way valves 12 and 13. Further, an AC power supply device 16 as a power supply device is connected to both connection terminals 14 and 15 on the outer peripheral portion of the discharge reactor 2 via conductors 97 and 98.
ガス循環装置 3に被処理ガスを供給すべく、 ガス入口筒 4及び第 1三方弁 1 2 間において第 1導管 6に、 被処理ガス用ガス供給器 1 7が第 2導管 1 8を介して 接続され、 その第 2導管 1 8に放電反応器 2側より順次、 第 1開閉弁 1 9、 第 3 三方弁 2 0及ぴフローメータ 2 1が装置される。 第 1導管 6において、 第 2導管 1 8との接続部 a及び第 1三方弁 1 2間に、 その弁 1 2側へのガス流を阻止する 逆止弁 2 1が装置される。 一方、 ガス出口筒 5側において、 第 1導管 6に第 4三 方弁 2 2を介して第 3導管 2 3の入口側が接続され、 その出口側は第 1導管 6の 第 4三方弁 2 2下流側に接続される。 第 3導管 2 3に、 第 4三方弁 2 2側より順 次、 その弁 2 2側へのガス流を阻止する逆止弁 2 4、 ガス濃度測定器 2 5及びそ の測定器 2 5側へのガス流を阻止する逆止弁 2 6が装置される。 また、 第 1導管 6において、 第 3導管 2 3の出口側との接続部 b及び第 4三方弁 2 2間に、 その 弁 2 2側へのガス流を阻止する逆止弁 2 7が装置される。  In order to supply the gas to be processed to the gas circulation device 3, the gas supply device 17 for the gas to be processed is provided between the gas inlet cylinder 4 and the first three-way valve 12 via the second conduit 18 via the first conduit 6. The first on-off valve 19, the third three-way valve 20, and the flow meter 21 are sequentially connected to the second conduit 18 from the discharge reactor 2 side. In the first conduit 6, a check valve 21 for preventing gas flow to the valve 12 side is provided between the connection portion a with the second conduit 18 and the first three-way valve 12. On the other hand, on the gas outlet cylinder 5 side, the inlet side of the third conduit 23 is connected to the first conduit 6 via the fourth three-way valve 22, and the outlet side is connected to the fourth three-way valve 22 of the first conduit 6. Connected downstream. In the third conduit 23, in order from the fourth three-way valve 22 side, a check valve 24 that blocks gas flow to the valve 22 side, a gas concentration measurement device 25, and the measurement device 25 side A check valve 26 is provided to prevent gas flow into the pump. In the first conduit 6, a check valve 27 for preventing gas flow to the valve 22 between the connection b of the third conduit 23 with the outlet side of the third conduit 23 and the fourth three-way valve 22 is provided. Is done.
反応過程にて放電反応器 2から排出されたガスの濃度を検出すべく、 第 1導管 6において、 第 3導管 2 3の出口側との接続部 b及び透明ボックス 8間に第 4導 管 2 8の入口側が接続され、 その出口側はガス濃度測定器 2 5に接続されている。 この場合、 濃度測定後のガスの出口側管部としてはガス濃度測定器 2 5及び第 1 導管 6間に存する第 3導管 2 3の出口側管部 2 3 a力 S共用される。 第 4導管 2 8 において、 それの第 1導管 6との接続部 c及びガス濃度測定器 2 5間に第 2開閉 弁 2 9が装置される。  In order to detect the concentration of gas discharged from the discharge reactor 2 in the reaction process, the fourth conduit 2 is connected between the transparent tube 8 and the connection part b of the first conduit 6 with the outlet side of the third conduit 23. 8 is connected to the inlet side, and the outlet side is connected to a gas concentration measuring device 25. In this case, the outlet S of the third conduit 23 between the gas concentration measuring device 25 and the first conduit 6 is shared as the outlet S of the gas after the concentration measurement. In the fourth conduit 28, a second on-off valve 29 is provided between its connection part c with the first conduit 6 and the gas concentration measuring device 25.
図 2、 3に示す放電反応器 2において、 一端にガス入口 4 5を、 他端にガス出 口 4 6をそれぞれ持つ円筒状外側電極 4 7の両環状端面に、 同一の形状を有する 電気絶縁性第 1、 第 2端板 4 8、 4 9がそれぞれ当てられて、 複数のボルト 5 0 によりその外側電極 4 7に取付けられている。 外側電極 4 7は第 1端板 4 8側に 存する大径孔部 5 1と、 第 2端板 4 9側に存する小径孔部 5 2と、 両孔部 5 1、 5 2間を繋ぐテーパ孔部 5 3とを有し、そのテーパ孔部 5 3と大、小径孔部 5 1、 5 2との連接部分は円弧状をなす。 大、 小径孔部 5 1、 5 2及びテーパ孔部 5 3 の内周面は鏡面仕上げカ卩ェを施されている。 In the discharge reactor 2 shown in Figs. 2 and 3, a gas inlet 45 is provided at one end and a gas outlet is provided at the other end. Electrically insulating first and second end plates 48, 49 having the same shape are applied to both annular end faces of the cylindrical outer electrode 47 having the ports 46, respectively, and the plurality of bolts 50 are used. It is attached to its outer electrode 47. The outer electrode 47 has a large-diameter hole 51 on the first end plate 48 side, a small-diameter hole 52 on the second end plate 49 side, and a taper connecting both holes 51, 52. It has a hole 53, and the connecting portion between the tapered hole 53 and the large and small diameter holes 51, 52 has an arc shape. The inner peripheral surfaces of the large and small diameter holes 51, 52 and the tapered hole 53 are mirror-finished.
外側電極 4 7内において、 第 1、 第 2端板 4 8、 4 9間に內側電極 5 4が保持 されて外側電極 4 7と同心状に配置され、 それら内、 外側電極 4 7、 5 4間には 空間 Sが形成される。 その内側電極 5 4は、 その軸線方向中間部に位置する円板 状部 5 5と、 それのガス入口 4 5側端及びガス出口 4 6側端にそれぞれ大径端を 連ねた第 1、 第 2円錐台形部 5 6、 5 7と、 第 1円錐台形部 5 6の小径端面から 突出すると共にそれよりも小径の第 1軸部 5 8と、 第 2円錐台形部 5 7の小径端 に連なると共にそれと同径の短円柱部 5 9と、 その短円柱部 5 9の端面から突出 すると共にそれよりも小径の第 2軸部 6 0とを有する。それら構成部 5 5、 5 6、 In the outer electrode 47, the upper electrode 54 is held between the first and second end plates 48, 49 and is arranged concentrically with the outer electrode 47, and the inner and outer electrodes 47, 54 A space S is formed between them. The inner electrode 54 has a disc-shaped portion 55 located at an intermediate portion in the axial direction, and first and second ends each having a large-diameter end connected to a gas inlet 45 side end and a gas outlet 46 side end. (2) The frusto-conical portions 56, 57, and the first shaft portion 58, which projects from the small-diameter end face of the first frusto-conical portion 56 and is smaller than that, and continues to the small-diameter end of the second frusto-conical portion 57. In addition, it has a short cylindrical portion 59 having the same diameter as that, and a second shaft portion 60 projecting from the end face of the short cylindrical portion 59 and having a smaller diameter. These components 55, 56,
5 7、 5 8、 5 9、 6 0は同軸上に在り、 且つそれらの軸線は外側電極 4 7のそ れに合致している。 第 1軸部 5 8は第 1端板 4 8に形成された外側電極 4 7と同 軸の貫通孔 6 1に嵌着し、 また第 1円錐台形部 5 6の小径端面が第 1端板 4 8に 当接する。 外側電極 4 7内において、 第 1円錐台形部 5 6及び円板状部 5 5は大 径孔部 5 1内に位置し、 また第 2円錐台形部 5 7は大径孔部 5 1、 テーパ孔部 5 3及び小径孔部 5 2内に渡って位置し、 更に短円柱部 5 9は小径孔部 5 2内に位 置する。 第 2軸部 6 0は第 2端板 4 9に形成された外側電極 4 7と同軸の貫通孔57, 58, 59, 60 are coaxial and their axes coincide with those of the outer electrode 47. The first shaft portion 58 is fitted into a through hole 61 coaxial with the outer electrode 47 formed on the first end plate 48, and the small-diameter end face of the first truncated cone portion 56 is the first end plate. 4 Contact 8 In the outer electrode 47, the first truncated conical portion 56 and the disc-shaped portion 55 are located in the large-diameter hole 51, and the second truncated conical portion 57 is a large-diameter hole 51, tapered. The hole 53 and the small-diameter hole 52 are located within the small-diameter hole 52, and the short cylindrical portion 59 is located within the small-diameter hole 52. The second shaft portion 60 has a through hole coaxial with the outer electrode 47 formed on the second end plate 49.
6 2に嵌着し、 また短円柱部 5 9の端面が第 2端板 4 9に当接する。 円板状部 5 5、 第 1、 第 2円錐台形部 5 6、 5 7及び短円柱部 5 9は鏡面仕上げ加工を施さ れている。 内、 外側電極 4 7、 5 4における外、 內周面の軸線方向中間部を接近させる、 実施例では円板状部 5 5外周面及び大径孔部 5 1のテーパ孔部 5 3近傍内周面 を接近させることによって、 それら 5 5、 5 1間に環状のアーク放電発生領域 A 1が形成される。またそのアーク放電発生領域 A iのガス出口 4 6側端部に連なり、 且つ内、 外側電極 4 7、 5 4における内、 外周両間の間隔をアーク放電発生領域 A iよりも拡張して形成された円筒状アーク放電波及領域 A 2が、実施例では内側 電極 5 4の第 2円錐台形部 5 7及び短円柱部 5 9と、 外側電極 4 7の大径孔部 5 1の一部、テーパ孔部 5 3及び小径孔部 5 2との協働で形成されている。つまり、 空間 Sにアーク放電発生領域 A 1とアーク放電波及領域 A 2が存する。 6, and the end surface of the short cylindrical portion 59 abuts on the second end plate 49. The disc-shaped portion 55, the first and second truncated conical portions 56, 57, and the short cylindrical portion 59 are mirror-finished. The inner and outer electrodes 47, 54, the outer and inner surfaces in the axial direction of the outer surface are brought closer. In the embodiment, the outer peripheral surface of the disk-shaped portion 55 and the vicinity of the tapered hole 53 of the large diameter hole 51 are located When the peripheral surfaces are brought closer to each other, an annular arc discharge generation region A1 is formed between them 55 and 51. The arc discharge generation area Ai is connected to the end on the gas outlet 46 side, and the interval between the inner and outer electrodes of the inner and outer electrodes 47 and 54 is formed to be wider than the arc discharge generation area Ai. The formed cylindrical arc discharge spreading area A 2 is, in the embodiment, a second truncated conical portion 57 and a short cylindrical portion 59 of the inner electrode 54, and a part of the large diameter hole 51 of the outer electrode 47, It is formed in cooperation with the tapered hole 53 and the small diameter hole 52. That is, the arc discharge generation area A1 and the arc discharge propagation area A2 exist in the space S.
円板状部 5 5外周面及び大径孔部 5 1內周面間の放電距離 D sは、 およそ 1 0 0 k V以下の交流電圧を内、 外側電極 5 4、 4 7間に印加する場合には、 5 mm≤ D s≤2 5 n™とする。 実施例では、 後述するように 7乃至 1 0 k Vの交流電圧を 内、 外側電極 5 4、 4 7間に印加するために、 D s = 5 mniに設定した。 また、 1 0 0 k V以上の交流電圧を内、 外側電極 5 4、 4 7間に印加する場合には、 D s はおよそ 2 5 O mm以下が好ましい。  An AC voltage of approximately 100 kV or less is applied between the inner and outer electrodes 54 and 47 for a discharge distance Ds between the outer peripheral surface of the disk-shaped portion 55 and the outer peripheral surface of the large-diameter hole 51 and the peripheral surface. In this case, 5 mm ≤ D s ≤ 25 n ™. In the example, Ds = 5 mni was set in order to apply an AC voltage of 7 to 10 kV between the inner and outer electrodes 54 and 47 as described later. When an AC voltage of 100 kV or more is applied between the inner and outer electrodes 54 and 47, Ds is preferably about 25 Omm or less.
本実施の形態においては、 アーク放電波及領域 A 2は、 アーク放電発生領域 A t からガス出口筒 5にかけて、 以下に述べる放電距離を有する。 内側電極 5 4の第 2円錐台形部 5 7の外周面と外側電極 4 7の大径孔部 5 1の内周面との間の放 電距離は、 アーク放電発生領域 A の放電距離 (D s ) に対しておよそ 1乃至 2 倍である。 内側電極 5 4の第 2円錐台形部 5 7の外周面と外側電極 4 7のテーパ 孔部 5 3の内周面との間の放電距離は、 D sに対しておよそ 2乃至 3倍である。 内側電極 5 4の第 2円錐台形部 5 7の外周面と外側電極 4 7の小径孔部 5 2の 内周面との間の放電距離は、 D sに対しておよそ 3乃至 4倍である。 内側電極 5 4の短円柱部 5 9の外周面と外側電極 4 7の小径孔部 5 2の内周面との間の放 電距離は一定で、 D sに対しておよそ 4倍である。 また、 第 2円錐台形部 5 7の軸線方向の長さは、 円板状部 5 5の軸線方向の長 さの 3倍以上とする。 本実施例では、 第 2円錐台形部 5 7の軸線方向の長さは、 円板状部 5 5の軸線方向の長さのおよそ 9倍である。 更に、 円板状部 5 5の軸線 方向の長さは 2 mm乃至 1 O mmとする。 本実施例では、 円板状部 5 5の軸線方 向の長さはおよそ 4 mmである。 In the present embodiment, arc discharge spillover area A 2 is the arcing area A t over the gas outlet tube 5 has a discharge distance described below. The discharge distance between the outer peripheral surface of the second truncated conical portion 57 of the inner electrode 54 and the inner peripheral surface of the large-diameter hole 51 of the outer electrode 47 is the discharge distance of the arc discharge generation region A (D s) about 1 to 2 times. The discharge distance between the outer peripheral surface of the second truncated conical portion 57 of the inner electrode 54 and the inner peripheral surface of the tapered hole 53 of the outer electrode 47 is about 2 to 3 times Ds. . The discharge distance between the outer peripheral surface of the second truncated conical portion 57 of the inner electrode 54 and the inner peripheral surface of the small-diameter hole portion 52 of the outer electrode 47 is approximately 3 to 4 times Ds. . The discharge distance between the outer peripheral surface of the short cylindrical portion 59 of the inner electrode 54 and the inner peripheral surface of the small-diameter hole portion 52 of the outer electrode 47 is constant, and is about four times as large as Ds. The axial length of the second truncated conical portion 57 is at least three times the axial length of the disc-shaped portion 55. In the present embodiment, the axial length of the second truncated conical portion 57 is about nine times the axial length of the disc-shaped portion 55. Further, the length of the disc-shaped portion 55 in the axial direction is 2 mm to 1 O mm. In the present embodiment, the length of the disc-shaped portion 55 in the axial direction is about 4 mm.
第 1、 2端板 4 8、 4 9において、 貫通孔 6 1、 6 2周りに複数の小孔 6 3、 6 4が等間隔で形成され (図 3参照) 、 各小孔 6 3、 6 4は外側電極 4 7内に連 通する。  In the first and second end plates 48, 49, a plurality of small holes 63, 64 are formed around the through holes 61, 62 at regular intervals (see Fig. 3). 4 communicates with the outside electrode 47.
第 1端板 4 8の外面側において、 その第 1端板 4 8に、 ガス入口筒 4の一端に 存するフランジ部 6 6が複数のボルト 6 7により取付けられ、 そのガス入口筒 4 内は第 1端板 4 8の各小孔 6 3に連通する。 また第 2端板 4 9の外面側において、 その第 2端板 4 9に、 ガス出口筒 5の一端に存するフランジ部 6 9が複数のボル ト 7 0により取付けられ、 そのガス出口筒 5内は第 2端板 4 9の各小孔 6 4に連 通する。 一方の接続端子 1 4はロッド状をなし、 第 1端板 4 8に、 それの外周部 から相隣る両小孔 6 3間を通るように形成された細長い孔 7 3に挿通されて第 1軸部 5 8にねじ止めされており、 他方の接続端子 1 5は外側電極 4 7の外周部 において、 その母線の 2等分位置にねじ止めされている。 図中、 7 7はシールリ ングである。  On the outer surface side of the first end plate 48, a flange portion 66 at one end of the gas inlet tube 4 is attached to the first end plate 48 with a plurality of bolts 67. It communicates with each small hole 63 of one end plate 48. Also, on the outer surface side of the second end plate 49, a flange portion 69 at one end of the gas outlet tube 5 is attached to the second end plate 49 by a plurality of bolts 70. Communicates with each small hole 64 of the second end plate 49. One of the connection terminals 14 has a rod shape, and is inserted into the first end plate 48 through an elongated hole 73 formed so as to pass from the outer peripheral portion thereof between the adjacent small holes 63. The other connecting terminal 15 is screwed on the outer peripheral portion of the outer electrode 47 at a position bisected by the bus bar on the one shaft portion 58. In the figure, reference numeral 77 denotes a sealing ring.
外側電極 4 7及び内側電極 5 4はステンレス鋼、 例えば J I S S U S 3 0 4 より構成されているが、 内側電極 5 4を A 1合金、 例えば J I S 5 0 5 2より 構成することも可能である。 第 1、 第 2端板 4 8、 4 9は合成樹脂、 例えば布入 りベークライ トより構成され、 またフランジ部 6 6、 6 9を有するガス入、 ガス 出口筒 4、 5は A 1合金、例えば J I S 5 0 5 2より構成されている力 第 1、 第 2端板 4 8、 4 9をセラミックスより構成し、 またガス入、 ガス出口筒 4、 5 をステンレス鋼より構成することも可能である。 ガス吸着器 1 0は、 吸着材とし て力サ密度 1 80 g Zm 3の活性炭素繊維フィルタ (日本力イノール社製、 商品 名カイノール ACN 305— 1 5) を有する。 このガス吸着器 10における活性 炭素繊維フィルタのカサ密度は 90〜180 g/m3が適当である。 The outer electrode 47 and the inner electrode 54 are made of stainless steel, for example, JISSUS304. However, the inner electrode 54 can be made of an A1 alloy, for example, JIS5052. The first and second end plates 48, 49 are made of synthetic resin, for example, cloth-filled bakelite, and gas inlets having flange portions 66, 69, and gas outlet tubes 4, 5 are made of A1 alloy. For example, the first and second end plates 48, 49 composed of JIS5052 can be composed of ceramics, and the gas inlet and gas outlet cylinders 4, 5 can be composed of stainless steel. is there. Gas adsorber 10 is used as adsorbent It has an activated carbon fiber filter (manufactured by Nippon Riki Inol Co., Ltd., trade name: Kynol ACN305-15) with a density of 180 g Zm 3 The bulk density of the activated carbon fiber filter in the gas adsorber 10 is suitably from 90 to 180 g / m 3 .
次に、 前記放電装置 1を、 被処理ガスとしての医療用麻酔ガスである笑気 (亜 酸化窒素 Ν2θ) の処理に適用した例について説明する。 この場合、 ガス供給器 17は、 笑気及び空気よりなる混合ガスを供給する機能と、 笑気のみを供給する 機能とを有する。  Next, an example in which the discharge device 1 is applied to the treatment of laughter (nitrous oxide 亜 2θ) which is a medical anesthetic gas as a gas to be treated will be described. In this case, the gas supply device 17 has a function of supplying a mixed gas composed of laughter and air, and a function of supplying only laughter.
A. 笑気の放電処理及びガスの採取  A. Discharge treatment of laughter and gas sampling
(a) 第 1開閉弁 19を開き、 また第 3三方弁 20の切換えによりガス供給器 17と放電反応器 2とを連通させた。 更に第 4三方弁 22の切換えにより放電反 応器 2のガス出口筒 5を透明ボックス 8に連通させ、また第 1、第 2三方弁 12、 1 3の切換えによりガス吸着器 10の入、 出口側を開放すると共にバイパス 1 1 を遮断状態にした。 第 2開閉弁 29は閉状態にある。  (a) The first on-off valve 19 was opened, and the gas supply unit 17 and the discharge reactor 2 were connected by switching the third three-way valve 20. Further, the gas outlet tube 5 of the discharge reactor 2 is communicated with the transparent box 8 by switching the fourth three-way valve 22, and the inlet and outlet of the gas adsorber 10 are switched by switching the first and second three-way valves 12, 13. The side was opened and the bypass 11 was closed. The second on-off valve 29 is in a closed state.
(b) ガス供給器 1 7から 15 V o 1 %の笑気と 85 V o 1 %の空気とよりな る混合ガスを放電反応器 2に供給し、 その混合ガスの供給量が 30 Lに達したと きガス供給器 1 7からの混合ガスの供給を止め、 また第 1開閉弁 19を閉じた。  (b) A gas mixture consisting of laughter of 15 V o 1% and air of 85 V o 1% is supplied to the discharge reactor 2 from the gas supply unit 17 and the supply amount of the mixed gas is reduced to 30 L. When it reached, the supply of the mixed gas from the gas supply unit 17 was stopped, and the first on-off valve 19 was closed.
(c) ファン 7を送風量 1. lm3Zm i nにて作動させ、 混合ガスを放電反 応器 2→第 4三方弁 22→逆止弁 27→透明ボックス 8→圧力調節器 9→第 2 三方弁 1 3→ガス吸着器 10→第 1三方弁 12→逆止弁 2 1—放電反応器 2の 経路で循環させて、内、外側電極 47、 54間の空間 Sに混合ガスを流通させた。 (c) a fan 7 is operated by blowing rate 1. lm 3 Zm in, discharging a mixed gas reactive応器2 → fourth three-way valve 22 → the check valve 27 → the transparent box 8 → pressure adjuster 9 → second Three-way valve 1 3 → Gas adsorber 10 → First three-way valve 12 → Check valve 2 1−Circulate in the path of discharge reactor 2 to allow the mixed gas to flow through the space S between the inner and outer electrodes 47 and 54. Was.
( d ) 交流電源装置 16により内、 外側電極 47、 54に 7〜: L O kV、 30 mA、 33 kHzの高放電電圧を印加した。 これにより、 内、 外側電極 47、 5 4間の空間 Sに混合ガスが流通している状態において、 内側電極 54の円板状部 55及びそれを囲繞する外側電極 47の大径孔部 51における内周部分間、 つま りアーク放電発生領域 にアーク放電が発生し、 そのアークが混合ガスの流れ に沿って第 2円錐台形部 5 7及び短円柱部 5 9周りに波及し、 その後アーク放電 波及領域 A 2がアークで満たされた。 具体的には、 アーク放電発生領域 A iにおい て一直線状に生じた陽光柱が、 アーク放電波及領域 A 2において円弧状或いは横 「U」 字状に延長し、 このような現象が持続した。 ところで、 前記陽光柱のこの ような延長は、狭いアーク放電発生領域 A を通過し広いアーク放電波及領域 A 2 において開放されるように流れる混合ガスに誘起されて生じると考えられる。 こ こで、 第 2開閉弁 2 9を開いて、 放電開始後 1 0分間経過毎に笑気の濃度測定を 行った。 (d) A high discharge voltage of 7 to: LO kV, 30 mA, 33 kHz was applied to the inner and outer electrodes 47 and 54 by the AC power supply 16. Accordingly, in a state where the mixed gas is flowing in the space S between the inner and outer electrodes 47 and 54, in the disc-shaped portion 55 of the inner electrode 54 and the large-diameter hole portion 51 of the outer electrode 47 surrounding the same. Arc discharge occurs in the inner circumference, that is, in the arc discharge generation area, and the arc is generated by the flow of the mixed gas. Along the second frusto-conical portion 57 and the short cylindrical portion 59, and then the arc discharge spreading area A2 was filled with the arc. Specifically, the positive column generated in a straight line in the arc discharge generation region A i extended in an arc or a horizontal “U” shape in the arc discharge propagation region A 2 , and such a phenomenon continued. However, such extension of the positive column is believed to occur are induced in the gas mixture flowing as opened in a narrow arc generation region through the A wide arcing spread area A 2. Here, the second on-off valve 29 was opened, and the concentration of laughter was measured every 10 minutes after the start of discharge.
表 1は笑気の濃度測定結果を示す。  Table 1 shows the results of measuring the concentration of laughter.
【表 1】  【table 1】
Figure imgf000012_0001
表 1から明らかなように、 放電開始後 6 0分間という短時間で笑気の全量が分 解されたことが判る。 なお、 ガス吸着器 1 0においては笑気の分解で生じた N O 及び N O 2の吸着が行われる。
Figure imgf000012_0001
As is clear from Table 1, it can be seen that the entire amount of laughter was decomposed in a short time of 60 minutes after the start of discharge. In the gas adsorber 10, NO and NO 2 generated by the decomposition of laughter are adsorbed.
B . 笑気に対する分解能  B. Resolution for laughter
[例一 I ] B- 1. 笑気の放電処理 [Example I] B- 1. Discharge treatment of laughter
(a) 第 1開閉弁 1 9を開き、 また第 3三方弁 20の切換えによりガス供給器 1 7と放電反応器 2とを連通させた。 更に第 4三方弁 2 2の切換えにより放電反 応器 2のガス出口筒 5をガス濃度測定器 2 5に連通させ、 また第 1、 第 2三方弁 1 2、 1 3の切換えによりガス吸着器 1 0の入、 出口側を開放すると共にバイパ ス 1 1を遮断状態にした。 第 2開閉弁 2 9は閉状態にある。  (a) The first on-off valve 19 was opened, and the gas supply device 17 and the discharge reactor 2 were connected by switching the third three-way valve 20. Further, by switching the fourth three-way valve 22, the gas outlet tube 5 of the discharge reactor 2 is communicated with the gas concentration measuring device 25, and by switching the first and second three-way valves 12, 13, the gas adsorber is switched. The entrance and exit sides of 10 were opened, and the bypass 11 was closed. The second on-off valve 29 is in a closed state.
(b) ガス供給器 1 7から放電反応器 2に 1 00 V o 1 %の笑気を供給し、 そ の笑気濃度がガス濃度測定器 2 5にて最高測定値に達し、 その後供給を続けても 測定値が増加しなくなつたときガス供給器 1 7からの笑気の供給を止め、 また第 1開閉弁 1 9を閉じた。 更に第 4三方弁 22の切換えにより放電反応器 2のガス 出口筒 5を、 その弁 22及ぴ逆止弁 27を介し透明ボックス 8に連通させた。 こ の場合、 放電反応器 2及びガス循環装置 3といった反応経路内のガスは、 8 1 V o 1 %の笑気、 3. 7 V o 1 %の酸素、 1 3. 9 V o 1。/。の窒素及び残部検出不 能ガスよりなる混合ガスであった。 これら酸素、 窒素及び検出不能ガスは反応経 路内における残留ガスである。  (b) 100 V o 1% of laughter was supplied from the gas supplier 17 to the discharge reactor 2, and the laughter concentration reached the highest measured value with the gas concentration meter 25, and then the supply was continued. When the measured value did not increase even after continuing, the supply of laughter from the gas supply device 17 was stopped, and the first on-off valve 19 was closed. Further, by switching the fourth three-way valve 22, the gas outlet tube 5 of the discharge reactor 2 was connected to the transparent box 8 via the valve 22 and the check valve 27. In this case, the gas in the reaction path such as the discharge reactor 2 and the gas circulation device 3 is 81 V o 1% laughter, 3.7 V o 1% oxygen, and 13.9 V o 1. /. It was a mixed gas consisting of nitrogen and the remaining undetectable gas. These oxygen, nitrogen and undetectable gases are residual gases in the reaction path.
(c) ファン 7を送風量 1. lms/in i ηにて作動させ、 混合ガスを放電反 応器 2→第 4三方弁 2 2→逆止弁 2 7→透明ボックス 8→圧力調節器 9—第 2 三方弁 1 3→ガス吸着器 1 0→第1三方弁1 2→逆止弁 2 1→放電反応器 2の 経路で循環させて、内、外側電極 4 7, 54間の空間 Sに混合ガスを流通させた。  (c) Operate the fan 7 at the air flow rate of 1.lms / in i η, and discharge the mixed gas from the discharge reactor 2 → 4th three-way valve 2 2 → check valve 2 7 → transparent box 8 → pressure regulator 9 —Circulate in the path of the second three-way valve 1 3 → gas adsorber 10 → first three-way valve 12 → check valve 2 1 → discharge reactor 2 and the space S between the inner and outer electrodes 47, 54 Was passed through the mixed gas.
( d ) 交流電源装置 1 6により内、 外側電極 4 7、 54に 7~ 1 0 kV、 30 mA、 3 3 kH zの高放電電圧を印加した。 これにより、 前記同様に内、 外側電 極 47、 54間の空間 Sに混合ガスが流通している状態において、 内側電極 54 の円板状部 5 5及びそれを囲繞する外側電極 4 7の大径孔部 5 1における内周 部分間、 つまりアーク放電発生領域 Aiにアーク放電が発生し、 そのアークが混 合ガスの流れに沿って第 2円錐台形部 5 7及び短円柱部 5 9周りに波及し、 その 後アーク放電波及領域 A2がアークで満たされた。 具体的には、 アーク放電発生 領域 A において一直線状に生じた陽光柱力 アーク放電波及領域 A2において円 弧状或いは横 「U」 字状に延長し、 このような現象が持続した。 ところで、 前記 陽光柱のこのような延長は、 狭いアーク放電発生領域 A を通過し広いアーク放 電波及領域 A 2において開放されるように流れる混合ガスに誘起されて生じると 考えられる。 (d) A high discharge voltage of 7 to 10 kV, 30 mA, 33 kHz was applied to the inner and outer electrodes 47 and 54 by the AC power supply device 16. Thus, in a state where the mixed gas is flowing in the space S between the inner and outer electrodes 47 and 54 as described above, the size of the disk-shaped portion 55 of the inner electrode 54 and the outer electrode 47 surrounding it is increased. An arc discharge is generated between the inner peripheral portion of the diameter hole portion 51, that is, in the arc discharge generation region Ai, and the arc is formed along the flow of the mixed gas around the second truncated conical portion 57 and the short cylindrical portion 59. Spill over, that After arc discharge spread area A2 was filled with arc. Specifically, the positive column force generated in a straight line in the arc discharge generation region A extended in an arc shape or a horizontal “U” shape in the arc discharge spread region A 2 , and such a phenomenon continued. However, such extension of the positive column is believed to occur are induced in the gas mixture flowing as open at a narrow pass through the arcing region A wide electrical arc spreading region A 2.
( e ) 前記放電処理を放電開始後 10分間行い、 次いでフアン 7の作動を停止 させると共に交流電源装置 16による内、 外側電極 47、 54への高放電電圧の 印加を停止し、 その後、 第 1導管 6における第 1三方弁 12及び逆止弁 21間の 位置 Xで、 反応経路內のガスを導管を介してテドラーバックに捕集した。 この捕 集中に、 反応経路内が負圧になるが、 反応経路の内圧は圧力調節器 9により正圧 に調節される。  (e) The discharge treatment is performed for 10 minutes after the start of the discharge, then the operation of the fan 7 is stopped, and the application of the high discharge voltage to the outer electrodes 47 and 54 by the AC power supply 16 is stopped. At a position X in the conduit 6 between the first three-way valve 12 and the check valve 21, the gas in the reaction path I was collected in the Tedlar bag via the conduit. This concentration causes a negative pressure in the reaction path, but the internal pressure in the reaction path is adjusted to a positive pressure by the pressure regulator 9.
B— 2. ガス分析  B— 2. Gas analysis
(a) 捕集ガスについて、 J I S B 7953化学発光法に則り N O x濃度及 び N O濃度をそれぞれ測定し、 次いで N O X濃度一 N O濃度の減算を行って N O 2濃度を求めた。  (a) With respect to the collected gas, the NOx concentration and the NO concentration were measured in accordance with the JIS B 7953 chemiluminescence method, and then the NOx concentration minus the NO concentration was subtracted to obtain the NO2 concentration.
表 2は、 捕集ガスの NO X濃度等を示す。  Table 2 shows the concentration of NO X in the collected gas.
【表 2】  [Table 2]
Figure imgf000014_0001
(TD) 捕集ガスについて、 CAPNO PMAC U L T I MA呼吸器ガス分析 装置 (デーデックス ·オメガ社製) を用いて笑気濃度を測定し、 またガスクロマ トグラフ (GC— TCD) 法に則り酸素濃度及び窒素濃度をそれぞれ測定したと ころ、 表 3の結果を得た。
Figure imgf000014_0001
(TD) The concentration of laughter was measured using a CAPNO PMAC ULTI MA respiratory gas analyzer (manufactured by Dedex Omega) for the collected gas. When the oxygen concentration and the nitrogen concentration were measured in accordance with the Tograph (GC-TCD) method, the results in Table 3 were obtained.
【表 3】 [Table 3]
Figure imgf000015_0001
表 2、 3より、 前記放電処理によって笑気が 1 2 V o 1 % (120, 000 ppm) 分 解されて、 5,200 ppmの NO + NQ2が生じたことから、 N2〇→NO + N〇2の 分解反応が (5, 200Z120, 000) X 100 = 4. 3%発生し、 また酸素濃度及び窒 素濃度が増加していることから、 Ν20→Ν2 + θ2の分解反応が 100%— 4. 3%== 95. 7%発生した、 と考えることができる。 なお、 Νθ2濃度が高い場合 には、 その Ν〇 2濃度に起因して透明ボックス 8内が略赤褐色に変色するが、 こ の測定においては前記現象は見られなかった。
Figure imgf000015_0001
According to Tables 2 and 3, laughter was decomposed by the discharge treatment to 12 V o 1% (120,000 ppm), and NO + NQ2 of 5,200 ppm was generated.N2〇 → NO + N〇2 decomposition reaction of (5, 200Z120, 000) X 100 = 4. 3% occurs, the oxygen concentration and the fact that the nitrogen concentration is increasing, New 2 0 → decomposition reaction of New 2 + .theta.2 100% — 4.3% == 95.7% occurred. When the Νθ2 concentration is high, the inside of the transparent box 8 changes color to almost reddish brown due to the Ν2 concentration, but the above phenomenon was not observed in this measurement.
前記のように放電反応器 2において、 アーク放電波及領域 A 2を形成すると、 その分解能力を向上させて笑気を、 主として、 単体であり、 且つ無害な酸素及び 窒素にまで分解することができ、 これは分解ガスの処理を容易にする効果をもた らす。  When the arc discharge spreading area A2 is formed in the discharge reactor 2 as described above, the laughter can be decomposed mainly by a single substance and harmless oxygen and nitrogen by improving its decomposition ability. This has the effect of facilitating the treatment of cracked gas.
[例一 D]  [Example 1D]
表 4、 5は、 図 1において、 第 1、 第 2三方弁 12、 13の切換えにより第 1 導管 6のバイパス 1 1を連通状態にすると共にガス吸着器 10の入、 出口側を閉 じた、 ということ以外は例一 Iと同様の方法で笑気の放電処理を行ったときのガ ス分析結果を示し、 表 2、 3にそれぞれ対応する。 【表 4】 Tables 4 and 5 show that in Fig. 1, the first and second three-way valves 12 and 13 were switched so that the bypass 11 of the first conduit 6 was in communication and the inlet and outlet sides of the gas adsorber 10 were closed. Except for this, the results of gas analysis when laughter discharge treatment was performed in the same manner as in Example I are shown, and correspond to Tables 2 and 3, respectively. [Table 4]
濃度 (p p m)  Concentration (p p m)
NO x 20000  NO x 20000
NO 4700  NO 4700
NO2 1 5000  NO2 1 5000
【表 5】  [Table 5]
Figure imgf000016_0001
表 4において、 N〇xの値と NO + N02の値とがー致しないのは、 NOxの 分解で NO及び NO 2以外の化合物が生じていることを考慮したことによる。 この場合には、 Ν2θ→Ν2 + θ2の分解反応が 78%発生し、 また Ν2θ→Ν Ο + ΝΟ 2の分解反応が 22 %発生した。
Figure imgf000016_0001
In Table 4, the value of N〇x does not match the value of NO + N02 due to the fact that compounds other than NO and NO 2 are generated in the decomposition of NOx. In this case, 78% of the decomposition reaction of Ν2θ → Ν 2 + θ2 occurred, and 22% of the decomposition reaction of Ν2θ → Ν Ο + ΝΟ2 occurred.
例一 I と例一 Πとを比べると、 例一 Iの方が笑気の分解率が高い。 このことか ら、 笑気の分解を高めるためには、 分解反応で生じた ΝΟ、 Νθ2をガス吸着器 10により除去した方が良い、 と言える。  Comparing Example I with Example I, Example I has a higher rate of decomposition of laughter. From this, it can be said that in order to enhance the decomposition of laughter, it is better to remove ΝΟ and Νθ2 generated by the decomposition reaction with the gas adsorber 10.
以上、 本発明の好適な実施形態に基づいて説明してきたが、 上記した発明の実 施の形態は、 本発明の理解を容易にするためのものであり、 本発明を限定するも のではない。  Although the preferred embodiments of the present invention have been described above, the embodiments of the present invention described above are intended to facilitate understanding of the present invention, and do not limit the present invention. .
上記した実施の形態における放電装置 1は、 笑気の分解に限らず、 例えば空中 窒素を用いた NO 2の合成、 NOxの分解、 CO 2の分解等に適用可能である。 例 えば、 N02を効率良く合成するためには、 前述と同様に、 放電発生領域 及び 放電波及領域 A 2における放電はアーク放電がよい。 一方、 例えば、 N O x中の N 02の生成を抑制しつつ M Oを効率良く分解するためには、放電発生領域 及 び放電波及領域 A 2にお/ける放電は、 グ口一放電からアーク放電に至る直前のグ 口一放電からアーク放電への遷移域の放電がよレ、。 The discharge device 1 according to the above-described embodiment is not limited to decomposition of laughter, and can be applied to, for example, synthesis of NO 2 using air nitrogen, decomposition of NOx, decomposition of CO 2, and the like. For example, in order to efficiently synthesize N0 2, similar to the above, the discharge generation region and Discharge in the discharge spread area A 2 good arcing. On the other hand, for example, in order to decompose MO efficiently while suppressing the generation of NO 2 in NO x, the discharge in the discharge generation region and the discharge spread region A 2 is changed from a single discharge to an arc Discharge in the transition region from a single discharge to an arc discharge just before the discharge occurs.
また、 上記した実施の形態における外側電極 4 7は、 第 1端板 4 8側に存する 大径孔部 5 1と、 第 2端板 4 9側に存する小径孔部 5 2と、 両孔部 5 1、 5 2間 を繋ぐテーパ孔部 5 3とを有しているが、 これに限定されるものではなレ、。 例え ば、 図 4に示されるように、 外側電極 4 7 'の貫通孔は大径孔部 5 1 'の内径と同 一の内径を有する等径孔でもよい。 この場合、 図 4に示される放電領域 A 2にお ける内側電極 5 4の外周面と外側電極 4 7の内周面との間隙が、 図 2に示される 間隙に対してできるだけ変化しないように、図 4に示される第 2円錐台形部 5 7 ' の軸線方向の長さは、 円扳状部 5 5の軸線方向の長さのおよそ 1 5倍としてある。 ここで、 図 4においては、 図 2における構成と同一の構成については同一の符号 を付してある。 産業上の利用可能性 The outer electrode 47 in the above-described embodiment has a large-diameter hole 51 on the first end plate 48 side, a small-diameter hole 52 on the second end plate 49 side, It has a tapered hole 53 connecting between 51 and 52, but is not limited to this. For example, as shown in FIG. 4, the through-hole of the outer electrode 47 ′ may be an equal-diameter hole having the same inner diameter as the inner diameter of the large-diameter hole 51 ′. In this case, the gap between the outer peripheral surface of the inner electrode 54 and the inner peripheral surface of the outer electrode 47 in the discharge region A 2 shown in FIG. 4 should be as small as possible with respect to the gap shown in FIG. The axial length of the second truncated conical portion 57 ′ shown in FIG. 4 is approximately 15 times the axial length of the circular portion 55. Here, in FIG. 4, the same components as those in FIG. 2 are denoted by the same reference numerals. Industrial applicability
本発明によれば、 前記のような構成をすることによって、 笑気の分解、 空中窒 素を用いた N O 2の合成、 N O xの分解、 C O 2の分解等を効率良く実施すること が可能な放電装置を提供することができる。  According to the present invention, it is possible to efficiently carry out the decomposition of laughter, the synthesis of NO 2 using air nitrogen, the decomposition of NO x, the decomposition of CO 2, etc. It is possible to provide a simple discharge device.

Claims

請求の範囲 The scope of the claims
1 . 一端にガス入口を、 他端にガス出口をそれぞれ有する外側電極及び当該外側 電極の内側に配置された内側電極と、 1. an outer electrode having a gas inlet at one end and a gas outlet at the other end, and an inner electrode disposed inside the outer electrode,
前記内側電極と前記外側電極との間の空間に被処理ガスを流通させるガス流 通手段と、  Gas flow means for flowing the gas to be treated in a space between the inner electrode and the outer electrode,
前記空間に前記被処理ガスを流通させた状態で前記内側電極と前記外側電極 との間に放電電圧を印加する電源装置と、  A power supply device for applying a discharge voltage between the inner electrode and the outer electrode while the gas to be processed flows in the space;
からなる放電装置であって、  A discharge device comprising:
前記空間は、  The space is
前記内側電極の外周面の軸線方向における中間部及び前記外側電極の内周面 の軸線方向における中間部によつて画成されてなる環状の放電発生領域と、 前記放電発生領域より下流側に前記内側電極の外周面と前記外側電極の内周 面とによつて画成される環状空間であって、 当該環状空間の前記内外側電極間の 間隙を前記放電発生領域における前記内外側電極間の間隙より大きくしてなる 放電波及領域とを含み、  An annular discharge generation region defined by an axially intermediate portion of the outer peripheral surface of the inner electrode and an axially intermediate portion of the inner peripheral surface of the outer electrode; An annular space defined by an outer peripheral surface of an inner electrode and an inner peripheral surface of the outer electrode, wherein a gap between the inner and outer electrodes in the annular space is formed between the inner and outer electrodes in the discharge generation region. Including a discharge spreading area that is larger than the gap,
前記被処理ガスを前記ガス入口から前記ガス出口に向けて流通させつつ前記 外側電極と前記内側電極との間に前記所定の放電電圧を印加すると、 前記放電発 生領域における放電が発生し、 当該放電が前記放電波及領域に波及して持続する ように、 前記放電波及領域の前記間隙を設定してなることを特徴とする放電装置。  When the predetermined discharge voltage is applied between the outer electrode and the inner electrode while allowing the gas to be processed to flow from the gas inlet to the gas outlet, a discharge is generated in the discharge generation region. The discharge device according to claim 1, wherein the gap is set in the discharge spreading region so that the discharge spreads to the discharge spreading region and continues.
2 . 前記外側電極は前記内側電極を同心状に包囲する電極であって、 前記内側電 極は、前記放電発生領域を形成する円板状部と、前記放電波及領域を形成すべく、 当該円板状部の前記ガス出口側端に大径端を連ねた円錐台形部とを備えたこと を特徴とする請求項 1記載の放電装置。 2. The outer electrode is an electrode that concentrically surrounds the inner electrode, and the inner electrode is formed in a circular shape so as to form the disc-shaped portion forming the discharge generation region and the discharge spreading region. 2. The discharge device according to claim 1, further comprising a frusto-conical portion having a large-diameter end connected to the gas outlet side end of the plate portion.
3 . 前記内側電極は、 当該內側電極の備える前記円錐台形部の軸線方向の長さが 前記円板状部の軸線方向の長さの 3倍以上としてなることを特徴とする請求項 2記載の放電装置。 3. The inner electrode according to claim 2, wherein an axial length of the truncated conical portion of the negative electrode is at least three times an axial length of the disc-shaped portion. Discharge device.
4 . 前記内側電極は、 当該内側電極の備える前記円錐台形部の小径端に連なる円 柱部を更に備えたことを特徴とする請求項 2又は 3記載の放電装置。 4. The discharge device according to claim 2, wherein the inner electrode further includes a cylindrical portion connected to a small-diameter end of the frustoconical portion provided in the inner electrode.
5 . 前記放電発生領域における、 前記内側電極の外周面の軸線方向における中間 部と、 前記外側電極の内周面の軸線方向における中間部との間の距離は 5 mm乃 至 2 5 mmであることを特徴とする請求項 1乃至 4の何れか 1項に記載の放電 5. The distance between the axially intermediate portion of the outer peripheral surface of the inner electrode and the axially intermediate portion of the inner peripheral surface of the outer electrode in the discharge generation region is 5 mm to 25 mm. The discharge according to any one of claims 1 to 4, characterized in that:
6 . 前記放電発生領域の軸線方向の長さは 2 mm乃至 1 0 mmであることを特徴 とする請求項 1乃至 5の何れか 1項に記載の放電装置。 6. The discharge device according to any one of claims 1 to 5, wherein an axial length of the discharge generation region is 2 mm to 10 mm.
PCT/JP2003/001658 2002-02-15 2003-02-17 Discharge device WO2003068382A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003567560A JPWO2003068382A1 (en) 2002-02-15 2003-02-17 Discharge device
AU2003211327A AU2003211327A1 (en) 2002-02-15 2003-02-17 Discharge device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002038274 2002-02-15
JP2002-38274 2002-02-15

Publications (1)

Publication Number Publication Date
WO2003068382A1 true WO2003068382A1 (en) 2003-08-21

Family

ID=27678160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001658 WO2003068382A1 (en) 2002-02-15 2003-02-17 Discharge device

Country Status (3)

Country Link
JP (1) JPWO2003068382A1 (en)
AU (1) AU2003211327A1 (en)
WO (1) WO2003068382A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747224A (en) * 1993-08-10 1995-02-21 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for treating fluorocarbon gas
JPH08290901A (en) * 1995-04-20 1996-11-05 Meidensha Corp Ozonizer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747224A (en) * 1993-08-10 1995-02-21 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for treating fluorocarbon gas
JPH08290901A (en) * 1995-04-20 1996-11-05 Meidensha Corp Ozonizer

Also Published As

Publication number Publication date
JPWO2003068382A1 (en) 2005-06-09
AU2003211327A1 (en) 2003-09-04

Similar Documents

Publication Publication Date Title
US6296827B1 (en) Method and apparatus for plasma-chemical production of nitrogen monoxide
US6395238B1 (en) Method and apparatus utilizing ethanol in non-thermal plasma treatment of effluent gas
CN109200970A (en) Low-temperature plasma dual field assists device and the application of gas phase reaction synthesis compound
US20100021340A1 (en) Method and device for the disinfection of objects
WO2003010088A8 (en) Production of hydrogen and carbon from natural gas or methane using barrier discharge non-thermal plasma
WO2002062412A1 (en) Method and device for forming an no-containing gas flow for affecting a biological object
US20060193759A1 (en) Nonthermal plasma processor utilizing additive-gas injection and/or gas extraction
DE4231581A1 (en) Process for the plasma-chemical decomposition and / or destruction of pollutants, in particular for the exhaust gas purification of internal combustion engines or other machines operated with fossil fuel, and associated device
KR101982406B1 (en) Water Treatment System Using Multi parallel Capillary Tube DBD Plasma Generator
US20050133927A1 (en) Field-enhanced electrodes for additive-injecton non-thermal plasma (NTP) processor
SG194658A1 (en) Plasma generating method and generating device
JP2000102616A (en) Medical nitrogen monoxide inhalation device
JP4010580B2 (en) Device for removing volatile organic compounds in air using discharge plasma
CN108325351A (en) A kind of double medium low temperature plasma gas purifiers of electromagnetic induction coupling
WO2003068382A1 (en) Discharge device
WO2014136063A2 (en) Systems and methods for generating and collecting reactive species
JP2005313108A (en) Dielectric
JPH0226804A (en) Process and apparatus for generating atomic oxygen
EP0402142A1 (en) Process for removing NOx from exhaust gas using electric discharge
RU2323355C1 (en) Method of and device for neutralization of harmful admixtures in exhaust gases of internal combustion engine (versions)
KR102261461B1 (en) Plasma Torch for Treating Harmful Gas
JP2010194503A (en) Apparatus for treating exhaust gas by electron beam irradiation
JP2008307436A (en) Apparatus for treating contaminated particle
JPH0596129A (en) Exhaust gas treatment and equipment therefor
JPH01148329A (en) Electric discharge treatment device for exhaust gas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003567560

Country of ref document: JP

122 Ep: pct application non-entry in european phase