JPH0596129A - Exhaust gas treatment and equipment therefor - Google Patents

Exhaust gas treatment and equipment therefor

Info

Publication number
JPH0596129A
JPH0596129A JP3260664A JP26066491A JPH0596129A JP H0596129 A JPH0596129 A JP H0596129A JP 3260664 A JP3260664 A JP 3260664A JP 26066491 A JP26066491 A JP 26066491A JP H0596129 A JPH0596129 A JP H0596129A
Authority
JP
Japan
Prior art keywords
exhaust gas
electrode
ammonia
plasma
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3260664A
Other languages
Japanese (ja)
Other versions
JP3156185B2 (en
Inventor
Takahiro Irie
隆博 入江
Kazuhiro Isogai
和博 礒貝
Ryuichiro Kojima
隆一郎 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP26066491A priority Critical patent/JP3156185B2/en
Publication of JPH0596129A publication Critical patent/JPH0596129A/en
Application granted granted Critical
Publication of JP3156185B2 publication Critical patent/JP3156185B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To provide a method and a device for treating exhaust gas capable of removing NOX and SOX in large volume of exhaust gas with high efficiency. CONSTITUTION:Exhaust gas is introduced into a plasma reaction vessel 7 through a exhaust pipe 6, while, on the other hand, ammonia is fed to and mixed with the exhaust gas from an ammonia supply device 8 through a supply pipe 9 connected to an inlet pipe 10 of the plasma reaction vessel 7. A power source 11 applies plasma generating power to the electrode of the plasma reaction vessel 7 and the exhaust gas is transferred from an outlet pipe 12 connected to the plasma reaction vessel 7 to a dust collector 13 for removing and recovering ammonium nitrate and ammonium sulfate formed in the plasma reaction vessel 7. After that, the cleaned exhaust gas is discharged from an exhaust pipe 14 to the atmosphere through a chimney 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス中に含まれる窒
素酸化物、硫黄酸化物を高密度グロー放電プラズマによ
り高除去率で処理する排ガス処理方法及び装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas treatment method and apparatus for treating nitrogen oxides and sulfur oxides contained in exhaust gas with a high density glow discharge plasma at a high removal rate.

【0002】[0002]

【従来の技術】従来のグロー放電プラズマを利用した排
ガス処理装置としては、特開平1−236924号公
報、特開平2−203920号公報、特開平2−227
117号公報、特開平2−241519号公報などでそ
れぞれ図3〜図6に示す装置が提案されている。これら
により、排ガス中の窒素酸化物、硫黄酸化物(以下NO
x、SOxと表す)を処理する場合を例に説明する。
2. Description of the Related Art As an exhaust gas treatment apparatus using conventional glow discharge plasma, Japanese Patent Laid-Open Nos. 1-236924, 2-203920, and 2-227 are known.
The devices shown in FIGS. 3 to 6 are proposed in Japanese Patent Laid-Open No. 117, Japanese Patent Application Laid-Open No. 2-241519, and the like. With these, nitrogen oxides and sulfur oxides (hereinafter NO
x, SOx) will be described as an example.

【0003】図3において、燃焼炉101から排出され
た排ガスは除塵器103で煤塵が取り除かれ、アンモニ
ア供給管105からアンモニアを数リットル/分〜数十
リットル/分の範囲で供給され、プラズマ反応器108
へ導入される。このプラズマ反応器108の構造は、例
えば図4に示すような排ガス導入管に穴を多数設けた構
造、図5に示すような排ガス流路に誘電体で覆った網目
状の電極を直角に配置した構造、図6に示すような誘電
体で表面を覆った鋸の刃状電極構造などにより放電の安
定性の向上とガス処理量の増大を計っている。プラズマ
中の反応は、複雑であるが、ほぼ以下のように理解され
ている。
In FIG. 3, the exhaust gas discharged from the combustion furnace 101 has its dust removed by a dust remover 103, and ammonia is supplied from an ammonia supply pipe 105 at a rate of several liters / minute to several tens of liters / minute to perform a plasma reaction. Bowl 108
Be introduced to. The structure of this plasma reactor 108 is, for example, a structure in which a large number of holes are provided in an exhaust gas introduction pipe as shown in FIG. 4, and a mesh-shaped electrode covered with a dielectric is arranged at a right angle in an exhaust gas passage as shown in FIG. The structure described above, the structure of a saw blade electrode whose surface is covered with a dielectric as shown in FIG. 6, and the like are used to improve the stability of discharge and the amount of gas treatment. The reaction in plasma is complicated, but it is understood as follows.

【0004】即ち、化学反応を促進するバッファガスと
してのアンモニアの存在と反応容器において第1と第2
の電極間に電圧を印加して発生させたグロー放電プラズ
マにより、次の反応が生じ、NOx、SOxが無害化処
理される。
That is, the presence of ammonia as a buffer gas for promoting the chemical reaction and the first and second reaction in the reaction vessel.
The following reactions occur due to the glow discharge plasma generated by applying a voltage between the electrodes, and NOx and SOx are detoxified.

【0005】 NH3→NH2+H ………………………………………………………(1) 2NO2→2NO+O2 …………………………………………………(2) 2NO+O2→N2+2O2………………………………………………(3) NH2+NO→N2+H2O………………………………………………(4) 2NH2+SO2→S+N2+2H2O …………………………………(5) 化学反応を促進させるバッファガスとしてのアンモニア
の存在と、これら電極の工夫により、1Nm3/min以上
の排ガス量でもNOxで80%以上、SOxで90%以
上の除去率を得ており、ボイラ、ディーゼルエンジン、
ガスタービンなど各種燃焼を伴う装置の排ガス公害対策
装置として活用されつつある。
NH 3 → NH 2 + H …………………………………………………… (1) 2NO 2 → 2NO + O 2 …………………………………… ………………… (2) 2NO + O 2 → N 2 + 2O 2 ………………………………………… (3) NH 2 + NO → N 2 + H 2 O ……… …………………………………………… (4) 2NH 2 + SO 2 → S + N 2 + 2H 2 O …………………………… (5) Buffer that promotes chemical reaction With the presence of ammonia as a gas and the devise of these electrodes, a removal rate of 80% or more for NOx and 90% or more for SOx has been obtained even with an exhaust gas amount of 1 Nm 3 / min or more.
It is being used as an exhaust gas pollution control device for various combustion-related devices such as gas turbines.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
装置では次のような実用化上問題となる点が有る。
However, the conventional device has the following problems in practical use.

【0007】(1) 80%以上のNOx除去率が得られる
排ガス処理量は、1装置当たり1.3Nm3/min程度で
あり、例えばコジェネレーション用で最も多い100KW
〜1000KWクラスの中小ディーゼルエンジンからの排
ガス量が10〜100Nm3/minであり、ガスタービン
になると排ガス量はさらに増えることから、これらを対
象に実用化するには処理量が少なすぎる。
(1) The amount of exhaust gas treated to obtain a NOx removal rate of 80% or more is about 1.3 Nm 3 / min per unit, for example, 100 KW, which is the most for cogeneration.
The amount of exhaust gas from a medium- or small-sized diesel engine of ~ 1000 KW class is 10 to 100 Nm 3 / min, and the amount of exhaust gas increases further in the case of a gas turbine. Therefore, the treatment amount is too small to put these into practical use.

【0008】(2) 従来例では、予備電離方式が採用され
ていないので放電のプラズマの電子密度が小さく原子を
励起する作用が少ないため、排ガス処理量が増えると空
間的に均一にプラズマが形成されず、窒素酸化物や硫黄
酸化物の除去率が低下する。
(2) In the conventional example, since the preionization method is not adopted, the electron density of discharge plasma is small and the action of exciting atoms is small, so that plasma is formed spatially and uniformly when the exhaust gas treatment amount increases. However, the removal rate of nitrogen oxides and sulfur oxides is reduced.

【0009】(3) 従来例では、高圧(高密度)の排ガス
を大量処理する場合にはグロー放電プラズマが非常に局
部的に発生するかあるいは全然発生しないので、大量処
理には向かない。
(3) In the conventional example, when a large amount of high-pressure (high-density) exhaust gas is processed, glow discharge plasma is generated very locally or does not occur at all, so that it is not suitable for large-scale processing.

【0010】(4) 大量の排ガスを処理する場合、例えば
最も大量処理に適すると思われる図5に示すような排ガ
ス流路に誘電体で覆った網目状の電極を直角に配置した
構造でも、排ガスが流れる網目状の電極の空間部分を広
くする必要があるが、一方網目状の電極の空間部分を広
くするとグロー放電プラズマの空間的均一性が損なわれ
る。
(4) In the case of treating a large amount of exhaust gas, for example, a structure in which a mesh-like electrode covered with a dielectric material is arranged at a right angle in the exhaust gas passage as shown in FIG. Although it is necessary to widen the space portion of the mesh-shaped electrode through which the exhaust gas flows, widening the space portion of the mesh-shaped electrode impairs the spatial uniformity of the glow discharge plasma.

【0011】(5) したがって、仮に上記中小ディーゼル
エンジンやガスタービンの排ガス処理を行なう場合は、
多数の小容量の装置を並列に接続する必要があり、装置
の建設費が高くなるから装置規模が大きくなる大都市向
けコジェネレーション用に適していない。
(5) Therefore, if the exhaust gas treatment of the small and medium-sized diesel engine or gas turbine is to be performed,
It is necessary to connect a large number of small-capacity devices in parallel, which increases the construction cost of the device and is not suitable for cogeneration in a large city where the device scale becomes large.

【0012】本発明の目的は、上記課題を解決し、大容
量の排ガス中のNOx及びSOxを高い効率で除去する
排ガス処理方法及び装置を提供することにある。
An object of the present invention is to solve the above problems and to provide an exhaust gas treatment method and apparatus for removing NOx and SOx in a large amount of exhaust gas with high efficiency.

【0013】[0013]

【課題を解決するための手段】上記目的は、窒素酸化物
及び、又は硫黄酸化物を含む排ガスにそれぞれの当量以
下のアンモニアを混合し、コロナ又はスパーク放電によ
り予備電離を行い高密度パルスグロー放電により前記窒
素酸化物、硫黄酸化物をアンモニウム塩として固定し、
該アンモニウム塩を排ガスから除去することにより達成
される。
Means for Solving the Problems The above-mentioned object is to mix high-density pulse glow discharge by mixing corona or spark discharge for preionization by mixing exhaust gas containing nitrogen oxides and / or sulfur oxides with ammonia in respective equivalent amounts or less. By fixing the nitrogen oxides, sulfur oxides as ammonium salts,
This is achieved by removing the ammonium salt from the exhaust gas.

【0014】上記目的は、窒素酸化物及び、又は硫黄酸
化物を含む排ガスが流れるダクトに接続しアンモニアを
注入するアンモニア注入手段と、前記排ガスダクトに接
続してアンモニアが注入された排ガスを導入し放電によ
りプラズマを形成する電極が備えられた反応手段と、該
反応手段に接続し該反応手段で生成した固形物を前記排
ガスから分離する集塵手段とを有することにより達成さ
れる。
The above-mentioned object is to introduce an ammonia injecting means connected to a duct through which exhaust gas containing nitrogen oxides and / or sulfur oxides flows and injecting ammonia, and an exhaust gas into which ammonia is injected connected to the exhaust gas duct. This is achieved by having a reaction means provided with an electrode that forms plasma by electric discharge, and a dust collection means that is connected to the reaction means and separates solid matter produced by the reaction means from the exhaust gas.

【0015】[0015]

【作用】上記構成において、窒素酸化物、硫黄酸化物を
含む排ガスにそれぞれの当量以下のアンモニアを混合
し、大気圧から数気圧で反応手段に導入する。
In the above construction, the exhaust gas containing nitrogen oxides and sulfur oxides is mixed with ammonia in an equivalent amount or less and introduced into the reaction means at atmospheric pressure to several atmospheric pressure.

【0016】反応手段の陽極となる平板電極と、陰極と
なるメッシュ電極で構成する予備電離部及び陰極となる
メッシュ電極と陽極となるチャン型の半円形断面状の主
電極とで構成する主放電場に高電圧短パルスを印加する
事により、最初予備電離部にコロナまたはスパーク放電
が起こり放電場に電子が供給される。ひき続いて生成し
た電子を核として主放電場に高密度パルスグロー放電が
発生し、高圧アークに匹敵する電子密度のプラズマが形
成される。しかもこのグロー放電は、数10nsの短時
間での放電で、注入エネルギは軽い電子の加速にほとん
ど使われ、生成した高エネルギ電子が排ガス成分の励起
を有効に行う。プラズマ中での反応は複雑であるが、以
下の反応により窒素酸化物、硫黄酸化物が硝安、硫安と
してそれぞれ固定される。窒素酸化物、硫黄酸化物が固
定されたアンモニウム塩は集塵手段により排ガスから分
離・除去する。
Main discharge composed of a plate electrode serving as an anode of the reaction means, a preionization part composed of a mesh electrode serving as a cathode, and a mesh electrode serving as a cathode, and a main electrode having a Chan-shaped semicircular cross section serving as an anode. By applying a high voltage short pulse to the field, a corona or spark discharge first occurs in the preionization part and electrons are supplied to the discharge field. Subsequently, a high-density pulse glow discharge is generated in the main discharge field with the generated electrons as nuclei, and a plasma having an electron density comparable to that of a high-pressure arc is formed. Moreover, this glow discharge is a discharge in a short time of several tens of ns, and the injected energy is mostly used for accelerating the light electrons, and the generated high energy electrons effectively excite the exhaust gas component. Although the reaction in plasma is complicated, nitrogen oxides and sulfur oxides are fixed as ammonium nitrate and ammonium sulfate by the following reactions, respectively. Ammonium salts to which nitrogen oxides and sulfur oxides are fixed are separated and removed from the exhaust gas by a dust collecting means.

【0017】1)酸化活性種の生成 N2、O2、H2O、+e~→OH,H,HO2…………………………(6) 2)窒素酸化物及び硫黄酸化物の酸化 NOx+(OH,H,HO2)→HNO3 ……………………………(7) SOx+(OH,H,HO2)→H2SO4……………………………(8) 3)硝安および硫安の生成 HNO3+NH3→NH4NO3……………………………………………(9) H2SO4+2NH3→(NH42SO4………………………………(10) アンモニアの量を化学反応を促進する程度に微少量添加
した場合は、上記従来技術で説明した(1)〜(5)の
反応が起こることも考えられる。
1) Generation of oxidative active species N 2 , O 2 , H 2 O, + e ~ → OH, H, HO 2 (6) 2) Nitrogen oxide and sulfur oxidation Oxidation of substances NOx + (OH, H, HO 2 ) → HNO 3 …………………………… (7) SOx + (OH, H, HO 2 ) → H 2 SO 4 ……………………… ………… (8) 3) Formation of ammonium nitrate and ammonium sulfate HNO 3 + NH 3 → NH 4 NO 3 …………………………………………… (9) H 2 SO 4 + 2NH 3 → (NH 4 ) 2 SO 4 ………………………… (10) When a small amount of ammonia is added to accelerate the chemical reaction, the above-mentioned prior art (1)- It is also possible that the reaction of (5) occurs.

【0018】反応手段において予備電離を行うことによ
りプラズマ中の高エネルギ・高密度電子による排ガスの
効率的な励起が可能で、排ガスの滞留時間が短いこと及
び排ガス流を放電方向とクロスフローさせることによ
り、高除去率で大容量の排ガス処理が可能になる。
Pre-ionization in the reaction means enables efficient excitation of exhaust gas by high energy and high density electrons in plasma, short residence time of exhaust gas and cross flow of exhaust gas flow with discharge direction. This makes it possible to treat a large amount of exhaust gas with a high removal rate.

【0019】また、グロー放電は真空以外の条件での発
生が困難であるが、予備電離がトリガとなり加圧下での
グロー放電が可能となるから加圧により容積流量を小さ
くし排ガス処理装置をコンパクトに出来る。
Glow discharge is difficult to generate under conditions other than vacuum, but since pre-ionization triggers glow discharge under pressure, the volume flow rate can be reduced by pressurization and the exhaust gas treatment device can be made compact. You can

【0020】[0020]

【実施例】本発明の一実施例を図により説明する。An embodiment of the present invention will be described with reference to the drawings.

【0021】図1は本発明の排ガス処理装置の構成を説
明するフローチャートである。
FIG. 1 is a flow chart for explaining the structure of the exhaust gas treating apparatus of the present invention.

【0022】排ガスによる公害対策を講じるための対象
物であるガスタービン1またはディーゼルエンジン2か
ら排出される排ガスは、排気管3または排気管4により
熱回収を行う排熱ボイラ5に移送され、上記排熱ボイラ
5からでた排ガスが排気管6を通ってプラズマ反応容器
7に導入される。一方アンモニアは、アンモニア供給装
置8からプラズマ反応容器7の入口管10に連結された
供給管9から排ガス中に供給混合される。11は上記プ
ラズマ反応容器7の電極にプラズマ発生電力を印加する
電源であり、NOx、SOxが除去された排ガスは上記
プラズマ反応容器7に連結された出口管12よりプラズ
マ反応容器7中で生成した硝安・硫安を除去回収する集
塵装置13に移送される。この集塵装置13には例えば
電気集塵機、バグフィルタ等を用いることが出来る。そ
の後清浄な排ガスが排気管14から煙突15を経て大気
に放出される。
Exhaust gas discharged from the gas turbine 1 or the diesel engine 2, which is an object for taking measures against pollution by exhaust gas, is transferred to the exhaust heat boiler 5 for recovering heat by the exhaust pipe 3 or the exhaust pipe 4, and Exhaust gas emitted from the exhaust heat boiler 5 is introduced into the plasma reaction container 7 through the exhaust pipe 6. On the other hand, ammonia is supplied and mixed into the exhaust gas from the ammonia supply device 8 through the supply pipe 9 connected to the inlet pipe 10 of the plasma reaction vessel 7. Reference numeral 11 is a power source for applying plasma generation power to the electrodes of the plasma reaction vessel 7, and the exhaust gas from which NOx and SOx are removed is generated in the plasma reaction vessel 7 from an outlet pipe 12 connected to the plasma reaction vessel 7. It is transferred to the dust collector 13 that removes and collects ammonium nitrate and ammonium sulfate. For the dust collector 13, for example, an electric dust collector, a bag filter or the like can be used. After that, clean exhaust gas is discharged from the exhaust pipe 14 to the atmosphere through the chimney 15.

【0023】図2は本発明の実施例のプラズマ反応容器
7の構成を示す斜視図である。
FIG. 2 is a perspective view showing the structure of the plasma reaction container 7 according to the embodiment of the present invention.

【0024】まず本発明の特徴であるプラズマ反応容器
7の電極について説明する。予備電離電極部にメッシュ
電極を用いた場合の例を示す。電極は、平板電極(陽
極)17とチャン型の半円形断面の主電極(陽極)18
が平行に設置され、一方の平板電極17は誘電体18で
被覆されその一面にはコロナ予備電離用のメッシュ電極
あるいは針金状電極(陰極)19が設置されている。ま
た、スパーク放電予備電離の場合は、陰極電極と陽極電
極の両側に並列に並べたスパーク放電用予備電離電極を
設ける。排ガスに接触するチャン型の半円形断面の電極
18とコロナ予備電離用のメッシュ電極(陰極)19に
は、例えばアルミナのような耐酸化性のセラミックが数
ミクロンの厚さで被覆し保護している。電極間へ電源1
1から数十ns、数十KVの高電圧パルスを印加する
と、平板電極17とメッシュ電極19よりなる予備電離
電極部でコロナ放電が起こり放電場に電子が供給され、
引続きこの電子を核としてメッシュ電極(陰極)19と
主電極(陽極)18の間でグロー放電が発生し最大10
21/m3というほとんど高圧アークに匹敵する電子密度
のプラズマが形成される。誘電体18は通常石英ガラス
を用いるがセラミックス等の任意の誘電体を使用でき
る。排ガスを所定の速度で放電場に導入するため必要に
応じてラインフローファン16を反応容器入口10に設
ける。
First, the electrode of the plasma reactor 7 which is a feature of the present invention will be described. An example in which a mesh electrode is used for the preionization electrode section is shown. The electrodes are a plate electrode (anode) 17 and a Chan-shaped main electrode (anode) 18 having a semicircular cross section.
Are arranged in parallel, one plate electrode 17 is covered with a dielectric 18, and a mesh electrode or a wire electrode (cathode) 19 for corona preionization is provided on one surface thereof. In the case of spark discharge preionization, spark discharge preionization electrodes are provided in parallel on both sides of the cathode electrode and the anode electrode. The electrode 18 having a semi-circular cross section and the mesh electrode (cathode) 19 for pre-ionization of corona that come into contact with exhaust gas are protected by coating an oxidation resistant ceramic such as alumina with a thickness of several microns. There is. Power supply between electrodes 1
When a high voltage pulse of 1 to several tens of ns and several tens of KV is applied, corona discharge occurs in the preionization electrode portion including the plate electrode 17 and the mesh electrode 19, and electrons are supplied to the discharge field.
Subsequently, a glow discharge is generated between the mesh electrode (cathode) 19 and the main electrode (anode) 18 by using these electrons as nuclei, and a maximum of 10
A plasma is formed with an electron density of 21 / m 3 which is almost comparable to a high pressure arc. Quartz glass is usually used as the dielectric 18, but any dielectric such as ceramics can be used. A line flow fan 16 is provided at the reaction vessel inlet 10 as necessary in order to introduce the exhaust gas into the discharge field at a predetermined speed.

【0025】この様な反応容器を用いたNOx,SOx
除去例を以下に示す。
NOx and SOx using such a reaction vessel
An example of removal is shown below.

【0026】未処理排ガス条件 流量 60Nm3/min NOx濃度 1000ppm SOx濃度 600ppm 放電条件 パルスエネルギ 19J/パルス(19KJ/Nm3) 繰り返し数 1000Hz 処理後排ガス条件 NOx濃度 100ppm SOx濃度 30ppm 除去効率 NOx 90% SOx 95% また、本発明の他の実施例では、プラズマ中の高エネル
ギ・高密度電子による排ガスの効率的な励起とアンモニ
ア添加による化学反応促進効果により、放電管直径寸法
30cm、長さ100cm程度の非常にコンパクトな処
理装置により約120Nm3/minの大量の排ガスを高除
去率(90%以上)で処理可能になった。この処理量
は、コジェネレーションで主として使用される出力10
00KW以下の中小エンジンの排ガス量に相当する。
Untreated exhaust gas condition Flow rate 60 Nm 3 / min NOx concentration 1000 ppm SOx concentration 600 ppm Discharge condition Pulse energy 19 J / pulse (19 KJ / Nm 3 ) Number of repetitions 1000 Hz Exhaust gas condition after treatment NOx concentration 100 ppm SOx concentration 30 ppm Removal efficiency NOx 90% SOx 95% In another embodiment of the present invention, the discharge tube has a diameter of 30 cm and a length of about 100 cm due to the efficient excitation of the exhaust gas by the high-energy and high-density electrons in the plasma and the effect of promoting the chemical reaction by adding ammonia. A very compact treatment equipment made it possible to treat a large amount of exhaust gas of about 120 Nm 3 / min with a high removal rate (90% or more). This throughput is the output 10 that is mainly used in cogeneration.
This corresponds to the exhaust gas amount of small and medium-sized engines of 00 KW or less.

【0027】以上述べたように本発明では、プラズマ中
の高エネルギ・高密度電子による排ガスの効率的な励起
が可能で、プラズマ内に排ガスが滞留する時間は短くて
すみ、排ガスを電極および放電方向と垂直に導入でき
る。このため、在来法にくらべ流動抵抗を小さくでき、
大量の排ガスを電極間に流せ、さらにアンモニア添加に
よる化学反応促進効果も重畳され高除去率での大量の排
ガス処理が可能になる。
As described above, according to the present invention, the exhaust gas can be efficiently excited by the high energy and high density electrons in the plasma, the residence time of the exhaust gas in the plasma can be short, and the exhaust gas can be discharged to the electrode and the discharge. Can be introduced perpendicular to the direction. Therefore, the flow resistance can be reduced compared to the conventional method,
A large amount of exhaust gas can be made to flow between the electrodes, and the effect of promoting the chemical reaction due to the addition of ammonia is also superposed, so that a large amount of exhaust gas can be treated with a high removal rate.

【0028】[0028]

【発明の効果】本発明によれば、反応手段において予備
電離を行うことによりプラズマ中の高エネルギ・高密度
電子による排ガスの効率的な励起が可能で、排ガスの滞
留時間が短いこと及び排ガス流を放電方向とクロスフロ
ーさせることにより、高除去率で大容量の排ガス処理が
可能になる。
According to the present invention, exhaust gas can be efficiently excited by high-energy and high-density electrons in plasma by performing pre-ionization in the reaction means, the residence time of exhaust gas is short, and the exhaust gas flow is high. By cross-flowing with the discharge direction, a large amount of exhaust gas can be treated with a high removal rate.

【0029】また、予備電離により加圧下でのグロー放
電が可能となるから加圧により容積流量を小さくし排ガ
ス処理装置をコンパクトに出来る。
Further, since glow discharge can be performed under pressure by pre-ionization, the volumetric flow rate can be reduced by pressurization and the exhaust gas treatment device can be made compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の排ガス処理装置の構成を説明するフロ
ーチャートである。
FIG. 1 is a flowchart illustrating a configuration of an exhaust gas treatment apparatus of the present invention.

【図2】本発明の実施例のプラズマ反応容器の構成を示
す斜視図である。
FIG. 2 is a perspective view showing a configuration of a plasma reaction container according to an embodiment of the present invention.

【図3】従来技術の排ガス処理装置の全体構成を示すブ
ロック図である。
FIG. 3 is a block diagram showing the overall configuration of a conventional exhaust gas treatment apparatus.

【図4】従来技術の反応器電極部の構造を示す斜視図で
ある。
FIG. 4 is a perspective view showing a structure of a conventional reactor electrode unit.

【図5】従来技術の電極の構造を示す斜視図である。FIG. 5 is a perspective view showing a structure of a conventional electrode.

【図6】従来技術の電極の構造を示す縦断面図である。FIG. 6 is a vertical sectional view showing a structure of a conventional electrode.

【符号の説明】[Explanation of symbols]

1 ガスタービン 2 ディーゼルエンジン 3 排気管 4 排気管 5 排熱ボイラ 6 排気管 7 プラズマ反応容器 8 アンモニア供給装置 9 アンモニア供給管 10 反応容器入口 11 高圧電源 12 反応容器出口管 13 集塵装置 14 排気管 15 煙突 16 ラインフローファン 17 平板電極(陽極) 18 主電極(陽極) 19 コロナ予備電離用のメッシュ電極(陰極) 20 誘電体 101 燃焼炉 102 排気管 103 除塵器 104 排気管 105 アンモニア供給管 106 アンモニア供給装置 107 排ガス入口管 108 外部電極 109 電源 110a排ガス出口管 110b排ガス出口管 111 電気絶縁管 112 内部電極 113 プラズマ反応器 114 穴 115 第1の電極 116 第2の電極 117 第2の電極(鋸歯状) 118 第1の電極(平板) 119 誘電体 1 Gas Turbine 2 Diesel Engine 3 Exhaust Pipe 4 Exhaust Pipe 5 Exhaust Heat Boiler 6 Exhaust Pipe 7 Plasma Reaction Vessel 8 Ammonia Supply Device 9 Ammonia Supply Pipe 10 Reaction Vessel Inlet 11 High Pressure Power Supply 12 Reaction Vessel Outlet Pipe 13 Dust Collector 14 Exhaust Pipe 15 Chimney 16 Line flow fan 17 Flat plate electrode (anode) 18 Main electrode (anode) 19 Corona preionization mesh electrode (cathode) 20 Dielectric 101 Combustion furnace 102 Exhaust pipe 103 Dust remover 104 Exhaust pipe 105 Ammonia supply pipe 106 Ammonia Supply device 107 Exhaust gas inlet pipe 108 External electrode 109 Power source 110a Exhaust gas outlet pipe 110b Exhaust gas outlet pipe 111 Electrical insulating pipe 112 Internal electrode 113 Plasma reactor 114 Hole 115 First electrode 116 Second electrode 117 Second electrode (sawtooth shape ) 118 1st Electrode (flat) 119 dielectric

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物及び、又は硫黄酸化物を含む
排ガスにそれぞれの当量以下のアンモニアを混合し、コ
ロナ又はスパーク放電により予備電離を行い高密度パル
スグロー放電により前記窒素酸化物、硫黄酸化物をアン
モニウム塩として固定し、該アンモニウム塩を前記排ガ
スから除去することを特徴とする排ガス処理方法。
1. Nitrogen oxides and / or sulfur oxides are mixed by mixing exhaust gas containing nitrogen oxides and / or sulfur oxides with an equivalent amount or less of ammonia, and preionizing by corona or spark discharge and high density pulse glow discharge. A method for treating exhaust gas, which comprises fixing an object as an ammonium salt and removing the ammonium salt from the exhaust gas.
【請求項2】 窒素酸化物及び、又は硫黄酸化物を含む
排ガスが流れるダクトに接続しアンモニアを注入するア
ンモニア注入手段と、前記排ガスダクトに接続してアン
モニアが注入された排ガスを導入し放電によりプラズマ
を形成する電極が備えられた反応手段と、該反応手段の
電極に電圧を印加する電源と、前記反応手段に接続し該
反応手段で生成した固形物を前記排ガスから分離する集
塵手段とを有することを特徴とする排ガス処理装置。
2. An ammonia injecting means connected to a duct through which an exhaust gas containing nitrogen oxides and / or sulfur oxides flows to inject ammonia, and an exhaust gas into which ammonia is injected connected to the exhaust gas duct are introduced to discharge the exhaust gas. A reaction means provided with an electrode for forming plasma, a power source for applying a voltage to the electrode of the reaction means, and a dust collection means connected to the reaction means for separating solid matter generated by the reaction means from the exhaust gas. An exhaust gas treatment device comprising:
JP26066491A 1991-10-08 1991-10-08 Exhaust gas treatment method and apparatus Expired - Lifetime JP3156185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26066491A JP3156185B2 (en) 1991-10-08 1991-10-08 Exhaust gas treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26066491A JP3156185B2 (en) 1991-10-08 1991-10-08 Exhaust gas treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH0596129A true JPH0596129A (en) 1993-04-20
JP3156185B2 JP3156185B2 (en) 2001-04-16

Family

ID=17351055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26066491A Expired - Lifetime JP3156185B2 (en) 1991-10-08 1991-10-08 Exhaust gas treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3156185B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531973A (en) * 1994-02-18 1996-07-02 The Babcock & Wilcox Company Production of plasma generated NOx reducing precursors from a molecular nitrogen and hydrocarbon mixture
KR101108287B1 (en) * 2009-06-19 2012-01-31 한국기계연구원 The System for Treating of Harmful gas
EP2434112A1 (en) * 2009-05-19 2012-03-28 Utsunomiya University Device and method for combusting particulate substances
KR101152335B1 (en) * 2010-02-23 2012-06-11 한국기계연구원 Apparatus having nozzle for additive using for treating harmful gas
KR101471719B1 (en) * 2012-07-24 2014-12-12 주식회사 포스코아이씨티 Apparatus and Method for Denitrifying and Desulfurizing Exhaust Gas
KR20210081477A (en) * 2019-12-23 2021-07-02 한국기계연구원 Apparatus for treating harmful gas and method of treating harmful gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531973A (en) * 1994-02-18 1996-07-02 The Babcock & Wilcox Company Production of plasma generated NOx reducing precursors from a molecular nitrogen and hydrocarbon mixture
EP2434112A1 (en) * 2009-05-19 2012-03-28 Utsunomiya University Device and method for combusting particulate substances
EP2434112A4 (en) * 2009-05-19 2014-10-22 Univ Utsunomiya Device and method for combusting particulate substances
US8966881B2 (en) 2009-05-19 2015-03-03 Utsunomiya University Device and method for combusting particulate substances
KR101108287B1 (en) * 2009-06-19 2012-01-31 한국기계연구원 The System for Treating of Harmful gas
KR101152335B1 (en) * 2010-02-23 2012-06-11 한국기계연구원 Apparatus having nozzle for additive using for treating harmful gas
KR101471719B1 (en) * 2012-07-24 2014-12-12 주식회사 포스코아이씨티 Apparatus and Method for Denitrifying and Desulfurizing Exhaust Gas
KR20210081477A (en) * 2019-12-23 2021-07-02 한국기계연구원 Apparatus for treating harmful gas and method of treating harmful gas

Also Published As

Publication number Publication date
JP3156185B2 (en) 2001-04-16

Similar Documents

Publication Publication Date Title
Van Veldhuizen et al. Energy efficiency of NO removal by pulsed corona discharges
AU581554B2 (en) Method of removing so2, nox and particles from gas mixtures using streamer corona
EP0366876B1 (en) Exhaust gas treating apparatus
Urashima et al. Reduction of NO/sub x/from combustion flue gases by superimposed barrier discharge plasma reactors
WO2001092694A1 (en) Apparatus for removing soot and nox in exhaust gas from diesel engines
Vinh et al. Fundamental study of NO x removal from diesel exhaust gas by dielectric barrier discharge reactor
JPH06106025A (en) Plasma reaction vessel in nitrogen oxide decomposition device
JP3101744B2 (en) Exhaust gas treatment method and exhaust gas treatment device
JP2005537419A (en) Exhaust gas treatment system including a gas ionization system using ionized air injection
JP3086433B2 (en) Nitrogen oxide reduction method in corona discharge pollution factor destruction equipment
JPH0596129A (en) Exhaust gas treatment and equipment therefor
JPH06178914A (en) Waste gas treatment device
RU2361095C1 (en) Device for cleaning of spent gases of internal combustion engine from nitrogen oxides
JP2002213228A (en) Exhaust emission control device for internal combustion engine
JPH05332128A (en) Exhaust emission control device
JPH05115746A (en) Exhaust gas treatment apparatus
JPH08155264A (en) Desulfurization and denitration of flue gas and apparatus therefor
JP2691674B2 (en) Exhaust gas treatment equipment
Yan et al. Evaluation of NOx removal by corona induced non-thermal plasmas
SU977843A1 (en) Method and apparatus for neutralizing waste gases
JPH08243340A (en) Exhaust gas treating device and method thereof
JPH11169660A (en) Method and device for waste gas treatment
SU977842A1 (en) Method and apparatus for neutralizing i.c. engine waste gases
JPH07155539A (en) Apparatus for treating waste gas
Zimek et al. Flue gases treatment by simultaneous use of electron beam and streams of microwave energy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11