JPWO2003068382A1 - Discharge device - Google Patents

Discharge device Download PDF

Info

Publication number
JPWO2003068382A1
JPWO2003068382A1 JP2003567560A JP2003567560A JPWO2003068382A1 JP WO2003068382 A1 JPWO2003068382 A1 JP WO2003068382A1 JP 2003567560 A JP2003567560 A JP 2003567560A JP 2003567560 A JP2003567560 A JP 2003567560A JP WO2003068382 A1 JPWO2003068382 A1 JP WO2003068382A1
Authority
JP
Japan
Prior art keywords
discharge
gas
electrode
region
inner electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003567560A
Other languages
Japanese (ja)
Inventor
滋 田丸
滋 田丸
秀男 木村
秀男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furrex Co Ltd
Original Assignee
Furrex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furrex Co Ltd filed Critical Furrex Co Ltd
Publication of JPWO2003068382A1 publication Critical patent/JPWO2003068382A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/083Details relating to the shape of the electrodes essentially linear cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)

Abstract

一端にガス入口を、他端にガス出口をそれぞれ有する外側電極及び外側電極の内側に配置された内側電極と、内側電極と外側電極との間の空間に被処理ガスを流通させるガス流通手段と、空間に被処理ガスを流通させた状態で内側電極と外側電極との間に放電電圧を印加する電源装置とからなる放電装置であって、空間は、内側電極の外周面の軸線方向における中間部及び前記外側電極の内周面の軸線方向における中間部によって画成されてなる環状の放電発生領域と、放電発生領域より下流側に内側電極の外周面と外側電極の内周面とによって画成される環状空間であって環状空間の内外側電極間の間隙を放電発生領域における内外側電極間の間隙より大きくしてなる放電波及領域とを含み、被処理ガスをガス入口からガス出口に向けて流通させつつ外側電極と内側電極との間に所定の放電電圧を印加すると、放電発生領域における放電が発生し、放電が放電波及領域に波及して持続するように、放電波及領域の間隙を設定してなることを特徴とする放電装置。An outer electrode having a gas inlet at one end and a gas outlet at the other end, an inner electrode disposed inside the outer electrode, and a gas flow means for flowing a gas to be processed into a space between the inner electrode and the outer electrode; A discharge device comprising a power supply device that applies a discharge voltage between the inner electrode and the outer electrode in a state in which the gas to be treated is circulated in the space, the space being an intermediate in the axial direction of the outer peripheral surface of the inner electrode And an annular discharge generating region defined by an intermediate portion in the axial direction of the inner peripheral surface of the outer electrode and the outer electrode, and an outer peripheral surface of the inner electrode and an inner peripheral surface of the outer electrode downstream of the discharge generating region. A discharge spreading region in which the gap between the inner and outer electrodes of the annular space is made larger than the gap between the inner and outer electrodes in the discharge generating region, and the gas to be treated is transferred from the gas inlet to the gas outlet. Flow towards If a predetermined discharge voltage is applied between the outer electrode and the inner electrode while the discharge is applied, a discharge is generated in the discharge generation region, and the gap of the discharge spread region is set so that the discharge spreads and continues in the discharge spread region. A discharge device characterized by comprising:

Description

技術分野
本発明は、放電装置、特に放電の作用で被処理ガスを分解したり、その被処理ガスより化学物質を合成したりする場合等に用いられる放電装置に関する。
背景技術
従来、前記の放電装置における一対の電極は、例えばニードル形状をなし、それら両電極の先端部間にアーク放電を発生させるようになっていた。
しかしながら、従来の放電装置によると、アークが略線状をなすため、そのアークに接触する被処理ガスの単位時間当たりの量が少なく、その結果、合成反応等が生じなかったり、またそれらが生じたとしてもそれらの進行が極めて遅かったりという問題があった。
そこで、本出願人は、先に、内周面を放電面とした筒状外側電極と、外周面を当該放電面に対向する放電面とした筒状内側電極とを備えた放電反応器と、両放電面間の筒形環状通路内に被処理ガスを圧送供給するガス供給手段と、外側電極及び内側電極間に放電電圧を印加する電源装置とを有する放電装置を提案した(特開2002−355548号公報参照)。
このように、両放電面間の筒状間隙に被処理ガスを圧送供給しながら筒状外側電極と筒状内側電極との間に放電電圧を印加すると、両放電面の略全体に放電が発生する。これにより、被処理ガスの分解、そのガスを用いた合成等が可能であり、しかもその分解等を効率良く進行させることが可能である。
本出願人は、前記の装置を用いて被処理ガスの分解を行なった結果、被処理ガスに対する処理能力のさらなる向上の必要性を痛感した。
本発明は前記に鑑み、被処理ガスに対する処理能力を一層向上させた放電装置を提供することを目的としている。
発明の開示
上記の目的を達成するために、本発明は、一端にガス入口を、他端にガス出口をそれぞれ有する外側電極及び当該外側電極の内側に配置された内側電極と、前記内側電極と前記外側電極との間の空間に被処理ガスを流通させるガス流通手段と、前記空間に前記被処理ガスを流通させた状態で前記内側電極と前記外側電極との間に放電電圧を印加する電源装置とからなる放電装置であって、前記空間は、前記内側電極の外周面の軸線方向における中間部及び前記外側電極の内周面の軸線方向における中間部によって画成されてなる環状の放電発生領域と、前記放電発生領域より下流側に前記内側電極の外周面と前記外側電極の内周面とによって画成される環状空間であって当該環状空間の前記内外側電極間の間隙を前記放電発生領域における前記内外側電極間の間隙より大きくしてなる放電波及領域とを含み、前記被処理ガスを前記ガス入口から前記ガス出口に向けて流通させつつ前記外側電極と前記内側電極との間に前記所定の放電電圧を印加すると、前記放電発生領域における放電が発生し、当該放電が前記放電波及領域に波及して持続するように、前記放電波及領域の前記間隙を設定してなるのである。
このような構成により、狭い放電発生領域を通過した被処理ガスは、広い放電波及領域において開放されるように流れる。このような被処理ガスの流れに誘起されて、放電発生領域で発生した放電は放電波及領域に波及する。例えば、放電発生領域の放電がアーク放電の場合には、被処理ガスの流れに応じて、一直線状に生じたアーク放電における陽光柱が放電波及領域において円弧状或いは横「U」字状に延長してアーク放電を持続する。また、前記の構成により、例えば外側電極の内周面の形状を一定に保持しつつ、放電波及領域の体積が放電発生領域の体積よりも大きくなるように、当該放電波及領域の間隙を設定できる。このように体積の大きい放電波及領域が形成されると、被処理ガスが放電に曝される量及び時間がより増大し、よって、被処理ガスに対して本発明の放電装置が有する処理能力を一層向上させることができる。
好ましくは、前記放電波及領域に前記放電発生領域で発生した放電が波及して持続するように、前記外側電極は前記内側電極を同心状に包囲する電極であって、前記内側電極は、前記放電発生領域を形成する円板状部と、前記放電波及領域を形成すべく当該円板状部の前記ガス出口側端に大径端を連ねた円錐台形部とを備えるものとする。そして好ましくは、この円錐台形部の軸線方向の長さを前記円板状部の軸線方向の長さの3倍以上とする。これによって、放電波及領域の内外側電極間の間隙を、放電発生領域からガス出口にかけて徐々に大きくなるように設定できる。これに応じて、所定の放電電圧により形成される電場は、放電発生領域からガス出口にかけて徐々に小さくなる。従って、放電発生領域の放電が、例えば当該電場の急峻な変化等によって放電波及領域へ波及し難くなるといった事態が抑制される。また、放電波及領域の内外側電極間の間隙の広がりに応じて、被処理ガスも、放電発生領域からガス出口にかけて軸線方向に直交する方向に広がるように流れる。このような流れに誘起されて、放電発生領域の放電が放電波及領域に波及し易くなる。
また好ましくは、前記内側電極は、当該内側電極の備える前記円錐台形部の小径端に連なる円柱部を更に備えるものとする。これによって、放電波及領域の内外側電極間の間隙を、円柱部において一定となるように設定できる。これに応じて、所定の放電電圧により形成される電場も、当該円柱部において一定となり、当該円柱部における放電は軸線方向に波及し易くなる。
更にまた好ましくは、前記放電発生領域における、前記内側電極の外周面の軸線方向における中間部と、前記外側電極の内周面の軸線方向における中間部との間の距離を5mm乃至25mmとする。これによって、内側電極と外側電極との間に所定の放電電圧を印加すれば、放電発生領域においてアーク放電、グロー放電、又は、グロー放電からアーク放電に至る直前のグロー放電からアーク放電への遷移域の放電を発生させることができる。
また好ましくは、前記放電発生領域の軸線方向の長さを2mm乃至10mmとする。このような長さを軸線方向に有する放電発生領域は、被処理ガスに対して、当該被処理ガスが放電波及領域において効率良く開放されるための管路抵抗を与える。即ち、放電発生領域は、放電波及領域とともに、被処理ガスに対して例えばノズルとしての機能を果たすことができる。
発明を実施するための好適な形態
図1に示す放電装置1において、筒形をなす放電反応器2にガス流通手段としてのガス循環装置3が付設される。この装置3は、放電反応器2の一端部に存するガス入口筒4及びその他端部に存するガス出口筒5間を接続する第1導管6を有し、その第1導管6に、ガス出口筒5側より順次、内部中間位置にファン7を配置した透明ボックス8、第1導管6内等の反応経路内の圧力を調節するゴム製圧力調節器9及びガス吸着器10が装置される。透明ボックス8は合成樹脂、例えばポリメタクリル酸メチルより構成されている。第1導管6に、ガス吸着器10を迂回するバイパス11が第1及び第2三方弁12、13を介して接続される。また、放電反応器2の外周部に存する両接続端子14、15に、電源装置としての交流電源装置16が導線97、98を介して接続される。
ガス循環装置3に被処理ガスを供給すべく、ガス入口筒4及び第1三方弁12間において第1導管6に、被処理ガス用ガス供給器17が第2導管18を介して接続され、その第2導管18に放電反応器2側より順次、第1開閉弁19、第3三方弁20及びフローメータ21が装置される。第1導管6において、第2導管18との接続部a及び第1三方弁12間に、その弁12側へのガス流を阻止する逆止弁21が装置される。一方、ガス出口筒5側において、第1導管6に第4三方弁22を介して第3導管23の入口側が接続され、その出口側は第1導管6の第4三方弁22下流側に接続される。第3導管23に、第4三方弁22側より順次、その弁22側へのガス流を阻止する逆止弁24、ガス濃度測定器25及びその測定器25側へのガス流を阻止する逆止弁26が装置される。また、第1導管6において、第3導管23の出口側との接続部b及び第4三方弁22間に、その弁22側へのガス流を阻止する逆止弁27が装置される。
反応過程にて放電反応器2から排出されたガスの濃度を検出すべく、第1導管6において、第3導管23の出口側との接続部b及び透明ボックス8間に第4導管28の入口側が接続され、その出口側はガス濃度測定器25に接続されている。この場合、濃度測定後のガスの出口側管部としてはガス濃度測定器25及び第1導管6間に存する第3導管23の出口側管部23aが共用される。第4導管28において、それの第1導管6との接続部c及びガス濃度測定器25間に第2開閉弁29が装置される。
図2、3に示す放電反応器2において、一端にガス入口45を、他端にガス出口46をそれぞれ持つ円筒状外側電極47の両環状端面に、同一の形状を有する電気絶縁性第1、第2端板48、49がそれぞれ当てられて、複数のボルト50によりその外側電極47に取付けられている。外側電極47は第1端板48側に存する大径孔部51と、第2端板49側に存する小径孔部52と、両孔部51、52間を繋ぐテーパ孔部53とを有し、そのテーパ孔部53と大、小径孔部51、52との連接部分は円弧状をなす。大、小径孔部51、52及びテーパ孔部53の内周面は鏡面仕上げ加工を施されている。
外側電極47内において、第1、第2端板48、49間に内側電極54が保持されて外側電極47と同心状に配置され、それら内、外側電極47、54間には空間Sが形成される。その内側電極54は、その軸線方向中間部に位置する円板状部55と、それのガス入口45側端及びガス出口46側端にそれぞれ大径端を連ねた第1、第2円錐台形部56、57と、第1円錐台形部56の小径端面から突出すると共にそれよりも小径の第1軸部58と、第2円錐台形部57の小径端に連なると共にそれと同径の短円柱部59と、その短円柱部59の端面から突出すると共にそれよりも小径の第2軸部60とを有する。それら構成部55、56、57、58、59、60は同軸上に在り、且つそれらの軸線は外側電極47のそれに合致している。第1軸部58は第1端板48に形成された外側電極47と同軸の貫通孔61に嵌着し、また第1円錐台形部56の小径端面が第1端板48に当接する。外側電極47内において、第1円錐台形部56及び円板状部55は大径孔部51内に位置し、また第2円錐台形部57は大径孔部51、テーパ孔部53及び小径孔部52内に渡って位置し、更に短円柱部59は小径孔部52内に位置する。第2軸部60は第2端板49に形成された外側電極47と同軸の貫通孔62に嵌着し、また短円柱部59の端面が第2端板49に当接する。円板状部55、第1、第2円錐台形部56、57及び短円柱部59は鏡面仕上げ加工を施されている。
内、外側電極47、54における外、内周面の軸線方向中間部を接近させる、実施例では円板状部55外周面及び大径孔部51のテーパ孔部53近傍内周面を接近させることによって、それら55、51間に環状のアーク放電発生領域Aが形成される。またそのアーク放電発生領域Aのガス出口46側端部に連なり、且つ内、外側電極47、54における内、外周両間の間隔をアーク放電発生領域Aよりも拡張して形成された円筒状アーク放電波及領域Aが、実施例では内側電極54の第2円錐台形部57及び短円柱部59と、外側電極47の大径孔部51の一部、テーパ孔部53及び小径孔部52との協働で形成されている。つまり、空間Sにアーク放電発生領域Aとアーク放電波及領域Aが存する。
円板状部55外周面及び大径孔部51内周面間の放電距離Dsは、およそ100kV以下の交流電圧を内、外側電極54、47間に印加する場合には、5mm≦Ds≦25mmとする。実施例では、後述するように7乃至10kVの交流電圧を内、外側電極54、47間に印加するために、Ds=5mmに設定した。また、100kV以上の交流電圧を内、外側電極54、47間に印加する場合には、Dsはおよそ250mm以下が好ましい。
本実施の形態においては、アーク放電波及領域Aは、アーク放電発生領域Aからガス出口筒5にかけて、以下に述べる放電距離を有する。内側電極54の第2円錐台形部57の外周面と外側電極47の大径孔部51の内周面との間の放電距離は、アーク放電発生領域Aの放電距離(Ds)に対しておよそ1乃至2倍である。内側電極54の第2円錐台形部57の外周面と外側電極47のテーパ孔部53の内周面との間の放電距離は、Dsに対しておよそ2乃至3倍である。内側電極54の第2円錐台形部57の外周面と外側電極47の小径孔部52の内周面との間の放電距離は、Dsに対しておよそ3乃至4倍である。内側電極54の短円柱部59の外周面と外側電極47の小径孔部52の内周面との間の放電距離は一定で、Dsに対しておよそ4倍である。
また、第2円錐台形部57の軸線方向の長さは、円板状部55の軸線方向の長さの3倍以上とする。本実施例では、第2円錐台形部57の軸線方向の長さは、円板状部55の軸線方向の長さのおよそ9倍である。更に、円板状部55の軸線方向の長さは2mm乃至10mmとする。本実施例では、円板状部55の軸線方向の長さはおよそ4mmである。
第1、2端板48、49において、貫通孔61、62周りに複数の小孔63、64が等間隔で形成され(図3参照)、各小孔63、64は外側電極47内に連通する。
第1端板48の外面側において、その第1端板48に、ガス入口筒4の一端に存するフランジ部66が複数のボルト67により取付けられ、そのガス入口筒4内は第1端板48の各小孔63に連通する。また第2端板49の外面側において、その第2端板49に、ガス出口筒5の一端に存するフランジ部69が複数のボルト70により取付けられ、そのガス出口筒5内は第2端板49の各小孔64に連通する。一方の接続端子14はロッド状をなし、第1端板48に、それの外周部から相隣る両小孔63間を通るように形成された細長い孔73に挿通されて第1軸部58にねじ止めされており、他方の接続端子15は外側電極47の外周部において、その母線の2等分位置にねじ止めされている。図中、77はシールリングである。
外側電極47及び内側電極54はステンレス鋼、例えばJIS SUS304より構成されているが、内側電極54をAl合金、例えばJIS 5052より構成することも可能である。第1、第2端板48、49は合成樹脂、例えば布入りベークライトより構成され、またフランジ部66、69を有するガス入、ガス出口筒4、5はAl合金、例えばJIS 5052より構成されているが、第1、第2端板48、49をセラミックスより構成し、またガス入、ガス出口筒4、5をステンレス鋼より構成することも可能である。ガス吸着器10は、吸着材としてカサ密度180g/mの活性炭素繊維フィルタ(日本カイノール社製、商品名カイノールACN305−15)を有する。このガス吸着器10における活性炭素繊維フィルタのカサ密度は90〜180g/mが適当である。
次に、前記放電装置1を、被処理ガスとしての医療用麻酔ガスである笑気(亜酸化窒素NO)の処理に適用した例について説明する。この場合、ガス供給器17は、笑気及び空気よりなる混合ガスを供給する機能と、笑気のみを供給する機能とを有する。
A.笑気の放電処理及びガスの採取
(a)第1開閉弁19を開き、また第3三方弁20の切換えによりガス供給器17と放電反応器2とを連通させた。更に第4三方弁22の切換えにより放電反応器2のガス出口筒5を透明ボックス8に連通させ、また第1、第2三方弁12、13の切換えによりガス吸着器10の入、出口側を開放すると共にバイパス11を遮断状態にした。第2開閉弁29は閉状態にある。
(b)ガス供給器17から15vol%の笑気と85vol%の空気とよりなる混合ガスを放電反応器2に供給し、その混合ガスの供給量が30Lに達したときガス供給器17からの混合ガスの供給を止め、また第1開閉弁19を閉じた。
(c)ファン7を送風量1.1m/minにて作動させ、混合ガスを放電反応器2→第4三方弁22→逆止弁27→透明ボックス8→圧力調節器9→第2三方弁13→ガス吸着器10→第1三方弁12→逆止弁21→放電反応器2の経路で循環させて、内、外側電極47、54間の空間Sに混合ガスを流通させた。
(d)交流電源装置16により内、外側電極47、54に7〜10kV、30mA、33kHzの高放電電圧を印加した。これにより、内、外側電極47、54間の空間Sに混合ガスが流通している状態において、内側電極54の円板状部55及びそれを囲繞する外側電極47の大径孔部51における内周部分間、つまりアーク放電発生領域Aにアーク放電が発生し、そのアークが混合ガスの流れに沿って第2円錐台形部57及び短円柱部59周りに波及し、その後アーク放電波及領域Aがアークで満たされた。具体的には、アーク放電発生領域Aにおいて一直線状に生じた陽光柱が、アーク放電波及領域Aにおいて円弧状或いは横「U」字状に延長し、このような現象が持続した。ところで、前記陽光柱のこのような延長は、狭いアーク放電発生領域Aを通過し広いアーク放電波及領域Aにおいて開放されるように流れる混合ガスに誘起されて生じると考えられる。ここで、第2開閉弁29を開いて、放電開始後10分間経過毎に笑気の濃度測定を行った。
表1は笑気の濃度測定結果を示す。
【表1】

Figure 2003068382
表1から明らかなように、放電開始後60分間という短時間で笑気の全量が分解されたことが判る。なお、ガス吸着器10においては笑気の分解で生じたNO及びNOの吸着が行われる。
B.笑気に対する分解能
[例−I]
B−1.笑気の放電処理
(a)第1開閉弁19を開き、また第3三方弁20の切換えによりガス供給器17と放電反応器2とを連通させた。更に第4三方弁22の切換えにより放電反応器2のガス出口筒5をガス濃度測定器25に連通させ、また第1、第2三方弁12、13の切換えによりガス吸着器10の入、出口側を開放すると共にバイパス11を遮断状態にした。第2開閉弁29は閉状態にある。
(b)ガス供給器17から放電反応器2に100vol%の笑気を供給し、その笑気濃度がガス濃度測定器25にて最高測定値に達し、その後供給を続けても測定値が増加しなくなったときガス供給器17からの笑気の供給を止め、また第1開閉弁19を閉じた。更に第4三方弁22の切換えにより放電反応器2のガス出口筒5を、その弁22及び逆止弁27を介し透明ボックス8に連通させた。この場合、放電反応器2及びガス循環装置3といった反応経路内のガスは、81vol%の笑気、3.7vol%の酸素、13.9vol%の窒素及び残部検出不能ガスよりなる混合ガスであった。これら酸素、窒素及び検出不能ガスは反応経路内における残留ガスである。
(c)ファン7を送風量1.1m/minにて作動させ、混合ガスを放電反応器2→第4三方弁22→逆止弁27→透明ボックス8→圧力調節器9→第2三方弁13→ガス吸着器10→第1三方弁12→逆止弁21→放電反応器2の経路で循環させて、内、外側電極47、54間の空間Sに混合ガスを流通させた。
(d)交流電源装置16により内、外側電極47、54に7〜10kV、30mA、33kHzの高放電電圧を印加した。これにより、前記同様に内、外側電極47、54間の空間Sに混合ガスが流通している状態において、内側電極54の円板状部55及びそれを囲繞する外側電極47の大径孔部51における内周部分間、つまりアーク放電発生領域Aにアーク放電が発生し、そのアークが混合ガスの流れに沿って第2円錐台形部57及び短円柱部59周りに波及し、その後アーク放電波及領域Aがアークで満たされた。具体的には、アーク放電発生領域Aにおいて一直線状に生じた陽光柱が、アーク放電波及領域Aにおいて円弧状或いは横「U」字状に延長し、このような現象が持続した。ところで、前記陽光柱のこのような延長は、狭いアーク放電発生領域Aを通過し広いアーク放電波及領域Aにおいて開放されるように流れる混合ガスに誘起されて生じると考えられる。
(e)前記放電処理を放電開始後10分間行い、次いでファン7の作動を停止させると共に交流電源装置16による内、外側電極47、54への高放電電圧の印加を停止し、その後、第1導管6における第1三方弁12及び逆止弁21間の位置Xで、反応経路内のガスを導管を介してテドラーバックに捕集した。この捕集中に、反応経路内が負圧になるが、反応経路の内圧は圧力調節器9により正圧に調節される。
B−2.ガス分析
(a)捕集ガスについて、JIS B7953化学発光法に則りNOx濃度及びNO濃度をそれぞれ測定し、次いでNOx濃度−NO濃度の減算を行ってNO濃度を求めた。
表2は、捕集ガスのNOx濃度等を示す。
【表2】
Figure 2003068382
(b)捕集ガスについて、CAPNOPMAC ULTIMA呼吸器ガス分析装置(デーデックス・オメガ社製)を用いて笑気濃度を測定し、またガスクロマトグラフ(GC−TCD)法に則り酸素濃度及び窒素濃度をそれぞれ測定したところ、表3の結果を得た。
【表3】
Figure 2003068382
表2、3より、前記放電処理によって笑気が12vol%(120,000ppm)分解されて、5,200ppmのNO+NOが生じたことから、NO→NO+NOの分解反応が(5,200/120,000)×100=4.3%発生し、また酸素濃度及び窒素濃度が増加していることから、NO→N+Oの分解反応が100%−4.3%=95.7%発生した、と考えることができる。なお、NO濃度が高い場合には、そのNO濃度に起因して透明ボックス8内が略赤褐色に変色するが、この測定においては前記現象は見られなかった。
前記のように放電反応器2において、アーク放電波及領域Aを形成すると、その分解能力を向上させて笑気を、主として、単体であり、且つ無害な酸素及び窒素にまで分解することができ、これは分解ガスの処理を容易にする効果をもたらす。
[例−II]
表4、5は、図1において、第1、第2三方弁12、13の切換えにより第1導管6のバイパス11を連通状態にすると共にガス吸着器10の入、出口側を閉じた、ということ以外は例−Iと同様の方法で笑気の放電処理を行ったときのガス分析結果を示し、表2、3にそれぞれ対応する。
【表4】
Figure 2003068382
【表5】
Figure 2003068382
表4において、NOxの値とNO+NOの値とが一致しないのは、NOxの分解でNO及びNO以外の化合物が生じていることを考慮したことによる。
この場合には、NO→N+Oの分解反応が78%発生し、またNO→NO+NOの分解反応が22%発生した。
例―Iと例−IIとを比べると、例―Iの方が笑気の分解率が高い。このことから、笑気の分解を高めるためには、分解反応で生じたNO、NOをガス吸着器10により除去した方が良い、と言える。
以上、本発明の好適な実施形態に基づいて説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。
上記した実施の形態における放電装置1は、笑気の分解に限らず、例えば空中窒素を用いたNOの合成、NOxの分解、COの分解等に適用可能である。例えば、NOを効率良く合成するためには、前述と同様に、放電発生領域A及び放電波及領域Aにおける放電はアーク放電がよい。一方、例えば、NOx中のNOの生成を抑制しつつNOを効率良く分解するためには、放電発生領域A及び放電波及領域Aにおける放電は、グロー放電からアーク放電に至る直前のグロー放電からアーク放電への遷移域の放電がよい。
また、上記した実施の形態における外側電極47は、第1端板48側に存する大径孔部51と、第2端板49側に存する小径孔部52と、両孔部51、52間を繋ぐテーパ孔部53とを有しているが、これに限定されるものではない。例えば、図4に示されるように、外側電極47’の貫通孔は大径孔部51’の内径と同一の内径を有する等径孔でもよい。この場合、図4に示される放電領域Aにおける内側電極54の外周面と外側電極47の内周面との間隙が、図2に示される間隙に対してできるだけ変化しないように、図4に示される第2円錐台形部57’の軸線方向の長さは、円板状部55の軸線方向の長さのおよそ15倍としてある。ここで、図4においては、図2における構成と同一の構成については同一の符号を付してある。
産業上の利用可能性
本発明によれば、前記のような構成をすることによって、笑気の分解、空中窒素を用いたNOの合成、NOxの分解、COの分解等を効率良く実施することが可能な放電装置を提供することができる。
【図面の簡単な説明】
第1図は本発明の実施例に係る放電反応器を用いて笑気ガスの分解実験を行なった放電装置の系統図である。
第2図は本発明の実施例に係る放電反応器の要部破断正面図である。
第3図は図2の3−3断面図である。
第4図は本発明のもう一つの実施例に係る放電反応器の要部破断正面図である。Technical field
The present invention relates to a discharge device, and more particularly to a discharge device used when a gas to be processed is decomposed by the action of discharge or a chemical substance is synthesized from the gas to be processed.
Background art
Conventionally, the pair of electrodes in the above-described discharge device has a needle shape, for example, and generates an arc discharge between the tip portions of both electrodes.
However, according to the conventional discharge device, since the arc is substantially linear, the amount of the gas to be treated that contacts the arc is small per unit time, and as a result, the synthesis reaction or the like does not occur or occurs. Even so, there was a problem that their progress was extremely slow.
Therefore, the present applicant, first, a discharge reactor comprising a cylindrical outer electrode whose inner peripheral surface is a discharge surface, and a cylindrical inner electrode whose outer peripheral surface is a discharge surface facing the discharge surface; There has been proposed a discharge device having a gas supply means for supplying a gas to be processed into a cylindrical annular passage between both discharge surfaces, and a power supply device for applying a discharge voltage between the outer electrode and the inner electrode (Japanese Patent Laid-Open No. 2002-2002). 355548).
In this way, when a discharge voltage is applied between the cylindrical outer electrode and the cylindrical inner electrode while supplying the gas to be processed to the cylindrical gap between the two discharge surfaces, a discharge is generated on substantially the entire discharge surface. To do. As a result, the gas to be treated can be decomposed, synthesized using the gas, and the like, and the decomposition can proceed efficiently.
As a result of performing the decomposition of the gas to be processed using the above-described apparatus, the present applicant became keenly aware of the necessity for further improvement of the processing capability for the gas to be processed.
In view of the above, an object of the present invention is to provide a discharge device that further improves the processing capability for a gas to be processed.
Disclosure of the invention
In order to achieve the above object, the present invention provides an outer electrode having a gas inlet at one end and a gas outlet at the other end, an inner electrode disposed inside the outer electrode, the inner electrode, and the outer electrode. A gas distribution means for circulating a gas to be processed in a space between the power source and a power supply device for applying a discharge voltage between the inner electrode and the outer electrode in a state where the gas to be processed is circulated in the space An annular discharge generation region defined by an intermediate portion in the axial direction of the outer peripheral surface of the inner electrode and an intermediate portion in the axial direction of the inner peripheral surface of the outer electrode; An annular space defined by an outer peripheral surface of the inner electrode and an inner peripheral surface of the outer electrode on the downstream side of the discharge generating region, and a gap between the inner and outer electrodes of the annular space is defined in the discharge generating region. Previous A discharge spreading region that is larger than the gap between the inner and outer electrodes, and the predetermined gas is passed between the outer electrode and the inner electrode while flowing the gas to be processed from the gas inlet toward the gas outlet. When a discharge voltage is applied, a discharge is generated in the discharge generation region, and the gap in the discharge spill region is set so that the discharge spills over and continues in the discharge spill region.
With such a configuration, the gas to be processed that has passed through the narrow discharge generating region flows so as to be released in a wide discharge spreading region. The discharge generated in the discharge generation region by being induced by the flow of the gas to be processed spreads to the discharge spillover region. For example, when the discharge in the discharge generation region is an arc discharge, the positive column in the arc discharge generated in a straight line extends in an arc shape or a horizontal “U” shape in the discharge spread region according to the flow of the gas to be processed. The arc discharge is continued. In addition, with the above-described configuration, for example, the gap of the discharge spreading region can be set so that the volume of the discharge spreading region is larger than the volume of the discharge generating region while keeping the shape of the inner peripheral surface of the outer electrode constant. . When a discharge spreading region having a large volume is formed in this way, the amount and time for which the gas to be processed is exposed to the discharge are further increased. Therefore, the processing capability of the discharge device of the present invention for the gas to be processed is increased. This can be further improved.
Preferably, the outer electrode is an electrode that concentrically surrounds the inner electrode so that the discharge generated in the discharge generation region spreads to the discharge spreading region, and the inner electrode includes the discharge A disk-shaped part that forms the generation region and a frustoconical part that has a large-diameter end connected to the gas outlet side end of the disk-shaped part to form the discharge spreading region are provided. Preferably, the length of the truncated cone portion in the axial direction is at least three times the length of the disk-shaped portion in the axial direction. Thus, the gap between the inner and outer electrodes in the discharge spreading region can be set to gradually increase from the discharge generation region to the gas outlet. Accordingly, the electric field formed by the predetermined discharge voltage gradually decreases from the discharge generation region to the gas outlet. Accordingly, it is possible to suppress a situation in which the discharge in the discharge generation region becomes difficult to spread to the discharge spreading region due to, for example, a sharp change in the electric field. Further, the gas to be processed also flows so as to spread in a direction orthogonal to the axial direction from the discharge generation region to the gas outlet in accordance with the spread of the gap between the inner and outer electrodes in the discharge spreading region. Induced by such a flow, the discharge in the discharge generation region easily spreads to the discharge spreading region.
Further preferably, the inner electrode further includes a columnar portion connected to a small diameter end of the frustoconical portion included in the inner electrode. Thereby, the gap between the inner and outer electrodes in the discharge spreading region can be set to be constant in the cylindrical portion. Accordingly, the electric field formed by the predetermined discharge voltage is also constant in the cylindrical portion, and the discharge in the cylindrical portion is easily propagated in the axial direction.
More preferably, the distance between the intermediate portion in the axial direction of the outer peripheral surface of the inner electrode and the intermediate portion in the axial direction of the inner peripheral surface of the outer electrode in the discharge generation region is 5 mm to 25 mm. As a result, if a predetermined discharge voltage is applied between the inner electrode and the outer electrode, transition from arc discharge, glow discharge, or glow discharge immediately before glow discharge to arc discharge occurs in the discharge generation region. A discharge of the region can be generated.
Preferably, the length of the discharge generation region in the axial direction is 2 mm to 10 mm. The discharge generation region having such a length in the axial direction gives the tube gas resistance for efficiently releasing the gas to be processed in the discharge spreading region. In other words, the discharge generation region can function as a nozzle for the gas to be processed together with the discharge spreading region.
Preferred embodiments for carrying out the invention
In a discharge device 1 shown in FIG. 1, a gas circulation device 3 as a gas circulation means is attached to a discharge reactor 2 having a cylindrical shape. This apparatus 3 has a first conduit 6 that connects between a gas inlet tube 4 at one end of the discharge reactor 2 and a gas outlet tube 5 at the other end. In order from the 5th side, a transparent box 8 in which a fan 7 is arranged at an internal intermediate position, a rubber pressure regulator 9 for adjusting the pressure in the reaction path such as in the first conduit 6 and a gas adsorber 10 are installed. The transparent box 8 is made of a synthetic resin such as polymethyl methacrylate. A bypass 11 that bypasses the gas adsorber 10 is connected to the first conduit 6 via first and second three-way valves 12 and 13. In addition, an AC power supply device 16 as a power supply device is connected to both connection terminals 14 and 15 existing on the outer peripheral portion of the discharge reactor 2 through lead wires 97 and 98.
In order to supply the gas to be processed to the gas circulation device 3, a gas supply unit 17 for the gas to be processed is connected to the first conduit 6 between the gas inlet cylinder 4 and the first three-way valve 12 via the second conduit 18. A first opening / closing valve 19, a third three-way valve 20, and a flow meter 21 are sequentially installed in the second conduit 18 from the discharge reactor 2 side. In the 1st conduit | pipe 6, the non-return valve 21 which blocks | prevents the gas flow to the valve 12 side is provided between the connection part a with the 2nd conduit | pipe 18, and the 1st three-way valve 12. FIG. On the other hand, on the gas outlet cylinder 5 side, the inlet side of the third conduit 23 is connected to the first conduit 6 via the fourth three-way valve 22, and the outlet side is connected to the downstream side of the fourth three-way valve 22 of the first conduit 6. Is done. In the third conduit 23, the check valve 24 for blocking the gas flow to the valve 22 side, the gas concentration measuring device 25 and the reverse for blocking the gas flow to the measuring device 25 side sequentially from the fourth three-way valve 22 side. A stop valve 26 is provided. Further, in the first conduit 6, a check valve 27 is provided between the connection portion b of the third conduit 23 with the outlet side and the fourth three-way valve 22 to prevent gas flow to the valve 22 side.
In order to detect the concentration of the gas discharged from the discharge reactor 2 in the course of the reaction, the inlet of the fourth conduit 28 in the first conduit 6 is connected between the connection b of the outlet of the third conduit 23 and the transparent box 8. The outlet side is connected to the gas concentration measuring device 25. In this case, the outlet side pipe portion 23 a of the third conduit 23 existing between the gas concentration measuring device 25 and the first conduit 6 is shared as the outlet side pipe portion of the gas after concentration measurement. In the fourth conduit 28, a second on-off valve 29 is provided between the connection portion c of the fourth conduit 28 and the gas concentration measuring device 25.
In the discharge reactor 2 shown in FIGS. 2 and 3, the first and second electrically insulating first and second cylindrical end electrodes 47 each having a gas inlet 45 at one end and a gas outlet 46 at the other end have the same shape. Second end plates 48 and 49 are respectively applied and attached to the outer electrode 47 by a plurality of bolts 50. The outer electrode 47 has a large-diameter hole portion 51 existing on the first end plate 48 side, a small-diameter hole portion 52 existing on the second end plate 49 side, and a tapered hole portion 53 connecting both the hole portions 51 and 52. The connecting portion between the tapered hole portion 53 and the large and small diameter hole portions 51 and 52 has an arc shape. The inner peripheral surfaces of the large and small diameter hole portions 51 and 52 and the tapered hole portion 53 are mirror finished.
In the outer electrode 47, the inner electrode 54 is held between the first and second end plates 48 and 49 and is arranged concentrically with the outer electrode 47, and a space S is formed between the outer electrodes 47 and 54. Is done. The inner electrode 54 includes a disk-shaped portion 55 located in the middle in the axial direction, and first and second frustoconical portions each having a large diameter end connected to a gas inlet 45 side end and a gas outlet 46 side end thereof. 56, 57, a first cylindrical portion 58 projecting from the small-diameter end surface of the first truncated cone portion 56 and having a smaller diameter than that, and a short cylindrical portion 59 connected to the small-diameter end of the second truncated cone portion 57 and having the same diameter And a second shaft portion 60 that protrudes from the end surface of the short cylindrical portion 59 and has a smaller diameter than that. These components 55, 56, 57, 58, 59, 60 are coaxial and their axes coincide with those of the outer electrode 47. The first shaft portion 58 is fitted into a through hole 61 coaxial with the outer electrode 47 formed on the first end plate 48, and the small-diameter end surface of the first frustoconical portion 56 contacts the first end plate 48. In the outer electrode 47, the first truncated cone part 56 and the disk-like part 55 are located in the large diameter hole part 51, and the second truncated cone part 57 is the large diameter hole part 51, the tapered hole part 53, and the small diameter hole. The short cylindrical part 59 is located in the small diameter hole part 52 and is located over the part 52. The second shaft portion 60 is fitted into a through-hole 62 coaxial with the outer electrode 47 formed on the second end plate 49, and the end surface of the short cylindrical portion 59 is in contact with the second end plate 49. The disk-shaped part 55, the first and second frustoconical parts 56 and 57, and the short cylindrical part 59 are mirror finished.
In the embodiment, the outer peripheral surfaces of the inner and outer electrodes 47 and 54 are made closer to the axially intermediate portion of the inner peripheral surface. Thus, an annular arc discharge generation region A between the 55 and 51 is obtained. 1 Is formed. Also, arc discharge generation area A 1 The distance between the inner and outer electrodes of the inner and outer electrodes 47 and 54 is defined as the arc discharge generation region A. 1 Cylindrical arc discharge spreading area A formed by expanding 2 In the embodiment, however, the second frustoconical portion 57 and the short cylindrical portion 59 of the inner electrode 54 and a part of the large-diameter hole portion 51, the tapered hole portion 53 and the small-diameter hole portion 52 of the outer electrode 47 are formed in cooperation. Has been. That is, the arc discharge occurrence area A in the space S 1 And arc discharge spread area A 2 Exist.
The discharge distance Ds between the outer peripheral surface of the disk-shaped portion 55 and the inner peripheral surface of the large-diameter hole portion 51 is 5 mm ≦ Ds ≦ 25 mm when an AC voltage of about 100 kV or less is applied between the inner electrodes 54 and 47. And In the example, in order to apply an AC voltage of 7 to 10 kV between the inner and outer electrodes 54 and 47 as described later, Ds = 5 mm was set. In addition, when an AC voltage of 100 kV or higher is applied between the inner and outer electrodes 54 and 47, Ds is preferably about 250 mm or less.
In the present embodiment, arc discharge spreading area A 2 Is the arc discharge occurrence area A 1 To the gas outlet tube 5 has a discharge distance described below. The discharge distance between the outer peripheral surface of the second frustoconical portion 57 of the inner electrode 54 and the inner peripheral surface of the large-diameter hole portion 51 of the outer electrode 47 is determined by the arc discharge generation region A. 1 The discharge distance (Ds) is approximately 1 to 2 times. The discharge distance between the outer peripheral surface of the second frustoconical portion 57 of the inner electrode 54 and the inner peripheral surface of the tapered hole portion 53 of the outer electrode 47 is approximately 2 to 3 times the Ds. The discharge distance between the outer peripheral surface of the second frustoconical portion 57 of the inner electrode 54 and the inner peripheral surface of the small diameter hole portion 52 of the outer electrode 47 is approximately 3 to 4 times Ds. The discharge distance between the outer peripheral surface of the short cylindrical portion 59 of the inner electrode 54 and the inner peripheral surface of the small-diameter hole portion 52 of the outer electrode 47 is constant and is approximately four times as large as Ds.
Further, the length of the second frustoconical portion 57 in the axial direction is at least three times the length of the disc-shaped portion 55 in the axial direction. In the present embodiment, the length of the second frustoconical portion 57 in the axial direction is approximately nine times the length of the disc-shaped portion 55 in the axial direction. Further, the length of the disc-shaped portion 55 in the axial direction is 2 mm to 10 mm. In the present embodiment, the length of the disk-shaped portion 55 in the axial direction is approximately 4 mm.
In the first and second end plates 48, 49, a plurality of small holes 63, 64 are formed at equal intervals around the through holes 61, 62 (see FIG. 3), and the small holes 63, 64 communicate with the outer electrode 47. To do.
On the outer surface side of the first end plate 48, a flange portion 66 existing at one end of the gas inlet tube 4 is attached to the first end plate 48 by a plurality of bolts 67, and the inside of the gas inlet tube 4 is inside the first end plate 48. The small holes 63 communicate with each other. Further, on the outer surface side of the second end plate 49, a flange portion 69 existing at one end of the gas outlet tube 5 is attached to the second end plate 49 by a plurality of bolts 70, and the inside of the gas outlet tube 5 is the second end plate. It communicates with 49 small holes 64. One connection terminal 14 has a rod shape, and is inserted into the first end plate 48 through an elongated hole 73 formed so as to pass between the small holes 63 adjacent to each other from the outer peripheral portion of the first end plate 48. The other connection terminal 15 is screwed at the outer peripheral portion of the outer electrode 47 at the bisected position of the bus bar. In the figure, reference numeral 77 denotes a seal ring.
The outer electrode 47 and the inner electrode 54 are made of stainless steel, for example, JIS SUS304. However, the inner electrode 54 can be made of an Al alloy, for example, JIS 5052. The first and second end plates 48 and 49 are made of a synthetic resin, for example, a bakelite with cloth, and the gas inlet and the gas outlet cylinders 4 and 5 having flange portions 66 and 69 are made of an Al alloy, for example, JIS 5052. However, the first and second end plates 48 and 49 can be made of ceramics, and the gas inlet and gas outlet tubes 4 and 5 can be made of stainless steel. The gas adsorber 10 has a bulk density of 180 g / m as an adsorbent. 3 Activated carbon fiber filter (trade name Kynol ACN305-15, manufactured by Nippon Kynol Co., Ltd.). The bulk density of the activated carbon fiber filter in the gas adsorber 10 is 90 to 180 g / m. 3 Is appropriate.
Next, the discharge device 1 is connected to laughing gas (nitrous oxide N) which is a medical anesthetic gas as a gas to be processed 2 An example applied to the process O) will be described. In this case, the gas supplier 17 has a function of supplying a mixed gas composed of laughter and air and a function of supplying only laughter.
A. Discharge treatment of laughter and gas sampling
(A) The first on-off valve 19 was opened, and the gas supply unit 17 and the discharge reactor 2 were connected by switching the third three-way valve 20. Further, the gas outlet tube 5 of the discharge reactor 2 is communicated with the transparent box 8 by switching the fourth three-way valve 22, and the inlet and outlet sides of the gas adsorber 10 are switched by switching the first and second three-way valves 12, 13. While opening, the bypass 11 was cut off. The second on-off valve 29 is in a closed state.
(B) A gas mixture consisting of 15 vol% laughing gas and 85 vol% air is supplied from the gas supply unit 17 to the discharge reactor 2, and when the supply amount of the mixed gas reaches 30 L, the gas supply unit 17 The supply of the mixed gas was stopped, and the first on-off valve 19 was closed.
(C) The fan 7 has an air flow of 1.1 m. 3 The gas mixture is discharged at the discharge reactor 2 → the fourth three-way valve 22 → the check valve 27 → the transparent box 8 → the pressure regulator 9 → the second three-way valve 13 → the gas adsorber 10 → the first three-way valve. The mixed gas was circulated in the space S between the inner and outer electrodes 47 and 54 by circulating through the path of 12 → check valve 21 → discharge reactor 2.
(D) A high discharge voltage of 7 to 10 kV, 30 mA, 33 kHz was applied to the inner and outer electrodes 47 and 54 by the AC power supply device 16. As a result, in a state where the mixed gas is flowing in the space S between the inner and outer electrodes 47 and 54, the inner portion of the disk-shaped portion 55 of the inner electrode 54 and the large-diameter hole portion 51 of the outer electrode 47 surrounding it. Around the circumference, that is, arc discharge generation area A 1 An arc discharge is generated in the arc, and the arc spreads around the second frustoconical portion 57 and the short cylindrical portion 59 along the flow of the mixed gas, and then the arc discharge spreading area A 2 Filled with arc. Specifically, arc discharge generation area A 1 The positive column generated in a straight line in FIG. 2 In this case, the phenomenon was extended to an arc shape or a horizontal “U” shape, and such a phenomenon persisted. By the way, such an extension of the positive column has a narrow arc discharge generation area A. 1 Wide arc discharge spreading area A passing through 2 It is thought that it is induced by a mixed gas flowing so as to be released in Here, the second on-off valve 29 was opened, and the concentration of laughter was measured every 10 minutes after the start of discharge.
Table 1 shows the concentration measurement results of laughter.
[Table 1]
Figure 2003068382
As is apparent from Table 1, it can be seen that the entire amount of laughter was decomposed in a short period of 60 minutes after the start of discharge. In the gas adsorber 10, NO and NO generated by the decomposition of laughing gas 2 Is adsorbed.
B. Resolution for laughter
[Example-I]
B-1. Laughing discharge treatment
(A) The first on-off valve 19 was opened, and the gas supply unit 17 and the discharge reactor 2 were connected by switching the third three-way valve 20. Further, the gas outlet cylinder 5 of the discharge reactor 2 is communicated with the gas concentration measuring device 25 by switching the fourth three-way valve 22, and the gas adsorber 10 is turned on and off by switching the first and second three-way valves 12, 13. The side was opened and the bypass 11 was shut off. The second on-off valve 29 is in a closed state.
(B) 100 vol% of laughing gas is supplied from the gas supply device 17 to the discharge reactor 2, and the laughing gas concentration reaches the maximum measured value in the gas concentration measuring device 25, and the measured value increases even if the supply is continued thereafter. When it stopped, the supply of laughing gas from the gas supply device 17 was stopped, and the first on-off valve 19 was closed. Further, by switching the fourth three-way valve 22, the gas outlet cylinder 5 of the discharge reactor 2 was communicated with the transparent box 8 via the valve 22 and the check valve 27. In this case, the gas in the reaction path such as the discharge reactor 2 and the gas circulation device 3 is a mixed gas composed of 81 vol% laughing gas, 3.7 vol% oxygen, 13.9 vol% nitrogen, and the remainder undetectable gas. It was. These oxygen, nitrogen and undetectable gases are residual gases in the reaction path.
(C) The fan 7 has an air flow of 1.1 m. 3 The gas mixture is discharged at the discharge reactor 2 → the fourth three-way valve 22 → the check valve 27 → the transparent box 8 → the pressure regulator 9 → the second three-way valve 13 → the gas adsorber 10 → the first three-way valve. The mixed gas was circulated in the space S between the inner and outer electrodes 47 and 54 by circulating through the path of 12 → check valve 21 → discharge reactor 2.
(D) A high discharge voltage of 7 to 10 kV, 30 mA, 33 kHz was applied to the inner and outer electrodes 47 and 54 by the AC power supply device 16. Accordingly, in the same manner as described above, in the state where the mixed gas is flowing in the space S between the inner and outer electrodes 47 and 54, the disk-shaped portion 55 of the inner electrode 54 and the large-diameter hole portion of the outer electrode 47 surrounding it. 51, the inner circumference portion, that is, the arc discharge generation area A 1 Arc discharge is generated in the gas, and the arc spreads around the second frustoconical portion 57 and the short cylindrical portion 59 along the flow of the mixed gas, and then the arc discharge ripple area A 2 Filled with arc. Specifically, arc discharge generation area A 1 The positive column generated in a straight line in FIG. 2 In this case, the phenomenon was extended to an arc shape or a horizontal “U” shape, and such a phenomenon persisted. By the way, such an extension of the positive column has a narrow arc discharge generation area A. 1 Wide arc discharge spreading area A passing through 2 It is thought that it is induced by a mixed gas flowing so as to be released in
(E) The discharge treatment is performed for 10 minutes after the start of discharge, and then the operation of the fan 7 is stopped and the application of the high discharge voltage to the outer electrodes 47 and 54 by the AC power supply device 16 is stopped. At the position X between the first three-way valve 12 and the check valve 21 in the conduit 6, the gas in the reaction path was collected in the Tedlar bag via the conduit. This trapping concentration results in a negative pressure in the reaction path, but the internal pressure in the reaction path is adjusted to a positive pressure by the pressure regulator 9.
B-2. Gas analysis
(A) For the collected gas, the NOx concentration and the NO concentration are measured according to the JIS B7953 chemiluminescence method, and then the NOx concentration minus the NO concentration is subtracted. 2 The concentration was determined.
Table 2 shows the NOx concentration and the like of the collected gas.
[Table 2]
Figure 2003068382
(B) For the collected gas, measure the laughing gas concentration using a CAPNOPMAC ULTIMA respiratory gas analyzer (manufactured by Dedex Omega), and determine the oxygen concentration and nitrogen concentration according to the gas chromatograph (GC-TCD) method. When measured, the results shown in Table 3 were obtained.
[Table 3]
Figure 2003068382
From Tables 2 and 3, laughing gas was decomposed by 12 vol% (120,000 ppm) by the discharge treatment, and 5,200 ppm of NO + NO 2 N 2 O → NO + NO 2 Since the decomposition reaction of (5,200 / 120,000) × 100 = 4.3% occurs and the oxygen concentration and nitrogen concentration increase, N 2 O → N 2 + O 2 It can be considered that the decomposition reaction of 100% -4.3% = 95.7% occurred. NO 2 If the concentration is high, the NO 2 Due to the density, the inside of the transparent box 8 changes to substantially reddish brown, but this phenomenon was not observed in this measurement.
In the discharge reactor 2 as described above, the arc discharge spreading area A 2 Can improve the decomposition ability and can decompose laughing gas into mainly simple and harmless oxygen and nitrogen, which has the effect of facilitating the treatment of the cracked gas.
[Example-II]
Tables 4 and 5 show that in FIG. 1, the bypass 11 of the first conduit 6 is brought into a communication state by switching the first and second three-way valves 12 and 13, and the inlet and outlet sides of the gas adsorber 10 are closed. Except for this, the results of gas analysis when laughing gas was discharged in the same manner as in Example-I are shown and correspond to Tables 2 and 3, respectively.
[Table 4]
Figure 2003068382
[Table 5]
Figure 2003068382
In Table 4, the value of NOx and NO + NO 2 The values of NO and NO are not consistent with the decomposition of NOx. 2 This is due to the fact that other compounds are generated.
In this case, N 2 O → N 2 + O 2 Decomposition reaction of 78% occurs, and N 2 O → NO + NO 2 The decomposition reaction of 22% occurred.
Comparing Example-I and Example-II, Example-I has a higher decomposition rate of laughter. From this, in order to enhance the decomposition of laughter, NO, NO generated by the decomposition reaction 2 It can be said that the gas should be removed by the gas adsorber 10.
As mentioned above, although demonstrated based on preferred embodiment of this invention, embodiment mentioned above is for making an understanding of this invention easy, and does not limit this invention.
The discharge device 1 in the above-described embodiment is not limited to the decomposition of laughter, for example, NO using air nitrogen 2 Synthesis, NOx decomposition, CO 2 It can be applied to the decomposition of For example, NO 2 In order to efficiently synthesize the discharge generation area A as described above. 1 And discharge spreading area A 2 The arc discharge is preferably arc discharge. On the other hand, for example, NO in NOx 2 In order to efficiently decompose NO while suppressing the generation of NO, the discharge generation region A 1 And discharge spreading area A 2 The discharge in is preferably a discharge in the transition region from the glow discharge to the arc discharge immediately before the glow discharge to the arc discharge.
Further, the outer electrode 47 in the above-described embodiment includes a large-diameter hole portion 51 existing on the first end plate 48 side, a small-diameter hole portion 52 existing on the second end plate 49 side, and a space between both the hole portions 51 and 52. However, the present invention is not limited to this. For example, as shown in FIG. 4, the through hole of the outer electrode 47 ′ may be an equal diameter hole having the same inner diameter as the inner diameter of the large diameter hole portion 51 ′. In this case, the discharge region A shown in FIG. 2 4 so that the gap between the outer circumferential surface of the inner electrode 54 and the inner circumferential surface of the outer electrode 47 does not change as much as possible with respect to the gap shown in FIG. Is about 15 times as long as the length of the disk-shaped portion 55 in the axial direction. Here, in FIG. 4, the same code | symbol is attached | subjected about the structure same as the structure in FIG.
Industrial applicability
According to the present invention, by configuring as described above, laughing gas is decomposed and NO using air nitrogen is reduced. 2 Synthesis, NOx decomposition, CO 2 It is possible to provide a discharge device that can efficiently perform decomposition and the like.
[Brief description of the drawings]
FIG. 1 is a system diagram of a discharge apparatus in which a laughing gas decomposition experiment was performed using a discharge reactor according to an embodiment of the present invention.
FIG. 2 is a cutaway front view of the main part of the discharge reactor according to the embodiment of the present invention.
FIG. 3 is a sectional view taken along line 3-3 of FIG.
FIG. 4 is a cutaway front view of the main part of a discharge reactor according to another embodiment of the present invention.

Claims (6)

一端にガス入口を、他端にガス出口をそれぞれ有する外側電極及び当該外側電極の内側に配置された内側電極と、
前記内側電極と前記外側電極との間の空間に被処理ガスを流通させるガス流通手段と、
前記空間に前記被処理ガスを流通させた状態で前記内側電極と前記外側電極との間に放電電圧を印加する電源装置と、
からなる放電装置であって、
前記空間は、
前記内側電極の外周面の軸線方向における中間部及び前記外側電極の内周面の軸線方向における中間部によって画成されてなる環状の放電発生領域と、
前記放電発生領域より下流側に前記内側電極の外周面と前記外側電極の内周面とによって画成される環状空間であって、当該環状空間の前記内外側電極間の間隙を前記放電発生領域における前記内外側電極間の間隙より大きくしてなる放電波及領域とを含み、
前記被処理ガスを前記ガス入口から前記ガス出口に向けて流通させつつ前記外側電極と前記内側電極との間に前記所定の放電電圧を印加すると、前記放電発生領域における放電が発生し、当該放電が前記放電波及領域に波及して持続するように、前記放電波及領域の前記間隙を設定してなることを特徴とする放電装置。
An outer electrode having a gas inlet at one end and a gas outlet at the other end, and an inner electrode disposed inside the outer electrode;
A gas flow means for flowing a gas to be processed in a space between the inner electrode and the outer electrode;
A power supply device for applying a discharge voltage between the inner electrode and the outer electrode in a state where the gas to be treated is circulated in the space;
A discharge device comprising:
The space is
An annular discharge generation region defined by an intermediate portion in the axial direction of the outer peripheral surface of the inner electrode and an intermediate portion in the axial direction of the inner peripheral surface of the outer electrode;
An annular space defined by the outer peripheral surface of the inner electrode and the inner peripheral surface of the outer electrode on the downstream side of the discharge generating region, wherein a gap between the inner and outer electrodes of the annular space is defined as the discharge generating region. A discharge spreading region that is larger than the gap between the inner and outer electrodes in
When the predetermined discharge voltage is applied between the outer electrode and the inner electrode while flowing the gas to be processed from the gas inlet toward the gas outlet, a discharge occurs in the discharge generation region, and the discharge The discharge device is characterized in that the gap in the discharge spillover region is set such that the spillover continues to spread over the discharge spillover region.
前記外側電極は前記内側電極を同心状に包囲する電極であって、前記内側電極は、前記放電発生領域を形成する円板状部と、前記放電波及領域を形成すべく、当該円板状部の前記ガス出口側端に大径端を連ねた円錐台形部とを備えたことを特徴とする請求項1記載の放電装置。The outer electrode is an electrode that concentrically surrounds the inner electrode, and the inner electrode includes a disk-shaped portion that forms the discharge generation region and the disk-shaped portion to form the discharge spreading region. The discharge device according to claim 1, further comprising: a frustoconical portion having a large-diameter end connected to the gas outlet side end. 前記内側電極は、当該内側電極の備える前記円錐台形部の軸線方向の長さが前記円板状部の軸線方向の長さの3倍以上としてなることを特徴とする請求項2記載の放電装置。3. The discharge device according to claim 2, wherein the inner electrode has an axial length of the frustoconical portion of the inner electrode that is not less than three times the axial length of the disk-shaped portion. . 前記内側電極は、当該内側電極の備える前記円錐台形部の小径端に連なる円柱部を更に備えたことを特徴とする請求項2又は3記載の放電装置。4. The discharge device according to claim 2, wherein the inner electrode further includes a cylindrical portion connected to a small diameter end of the frustoconical portion included in the inner electrode. 前記放電発生領域における、前記内側電極の外周面の軸線方向における中間部と、前記外側電極の内周面の軸線方向における中間部との間の距離は5mm乃至25mmであることを特徴とする請求項1乃至4の何れか1項に記載の放電装置。The distance between the intermediate portion in the axial direction of the outer peripheral surface of the inner electrode and the intermediate portion in the axial direction of the inner peripheral surface of the outer electrode in the discharge generation region is 5 mm to 25 mm. Item 5. The discharge device according to any one of Items 1 to 4. 前記放電発生領域の軸線方向の長さは2mm乃至10mmであることを特徴とする請求項1乃至5の何れか1項に記載の放電装置。6. The discharge device according to claim 1, wherein a length of the discharge generation region in an axial direction is 2 mm to 10 mm.
JP2003567560A 2002-02-15 2003-02-17 Discharge device Pending JPWO2003068382A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002038274 2002-02-15
JP2002038274 2002-02-15
PCT/JP2003/001658 WO2003068382A1 (en) 2002-02-15 2003-02-17 Discharge device

Publications (1)

Publication Number Publication Date
JPWO2003068382A1 true JPWO2003068382A1 (en) 2005-06-09

Family

ID=27678160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003567560A Pending JPWO2003068382A1 (en) 2002-02-15 2003-02-17 Discharge device

Country Status (3)

Country Link
JP (1) JPWO2003068382A1 (en)
AU (1) AU2003211327A1 (en)
WO (1) WO2003068382A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3381320B2 (en) * 1993-08-10 2003-02-24 石川島播磨重工業株式会社 Freon gas treatment equipment
JPH08290901A (en) * 1995-04-20 1996-11-05 Meidensha Corp Ozonizer

Also Published As

Publication number Publication date
AU2003211327A1 (en) 2003-09-04
WO2003068382A1 (en) 2003-08-21

Similar Documents

Publication Publication Date Title
US6296827B1 (en) Method and apparatus for plasma-chemical production of nitrogen monoxide
DE4231581A1 (en) Process for the plasma-chemical decomposition and / or destruction of pollutants, in particular for the exhaust gas purification of internal combustion engines or other machines operated with fossil fuel, and associated device
CN106186172A (en) A kind of method activating hydrogen persulfate salt treatment waste water
Sun et al. Formation of NO x from N 2 and O 2 in catalyst-pellet filled dielectric barrier discharges at atmospheric pressure
SG194658A1 (en) Plasma generating method and generating device
JP2006247507A (en) Exhaust gas treatment apparatus and method
JP2000102616A (en) Medical nitrogen monoxide inhalation device
US9513257B2 (en) Discharge ionization current detector and method for aging treatment of the same
Wandell et al. The effects of pulse frequency on chemical species formation in a nanosecond pulsed plasma gas-liquid film reactor
JPWO2003068382A1 (en) Discharge device
JP4010580B2 (en) Device for removing volatile organic compounds in air using discharge plasma
CN108325351A (en) A kind of double medium low temperature plasma gas purifiers of electromagnetic induction coupling
WO2014136063A2 (en) Systems and methods for generating and collecting reactive species
JP3971492B2 (en) Desorption / regeneration method using non-thermal plasma
Kumar et al. Dissociation of nitrogen in flowing DC glow plasmas
KR100371910B1 (en) Ozone generator
EP0402142A1 (en) Process for removing NOx from exhaust gas using electric discharge
JP2010194503A (en) Apparatus for treating exhaust gas by electron beam irradiation
Weinreb et al. Effect of Oxygen in the Surface‐Catalyzed Excitation of Nitrogen
CN109854342A (en) All-in-one car exhaust gas cleaner based on dielectric barrier discharge
JP2004181280A (en) Discharge reaction apparatus
Kircher et al. Parameter of mdt ageing and reanimation
Veeraiah et al. Characterization of plasma based on the electrode size of atmospheric pressure plasma jet (APPJ)
WO2008140349A1 (en) Method for neutralising harmful impurities in waste gases of an internal combustion engine and a device for carrying out said method (variants)
JPWO2003053550A1 (en) Discharge method for gas decomposition and discharge device for gas decomposition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131