WO2003067182A1 - Shearing interference measuring method and shearing interferometer, production method of projection optical system, projection optical system, and projection exposure system - Google Patents

Shearing interference measuring method and shearing interferometer, production method of projection optical system, projection optical system, and projection exposure system Download PDF

Info

Publication number
WO2003067182A1
WO2003067182A1 PCT/JP2003/000897 JP0300897W WO03067182A1 WO 2003067182 A1 WO2003067182 A1 WO 2003067182A1 JP 0300897 W JP0300897 W JP 0300897W WO 03067182 A1 WO03067182 A1 WO 03067182A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
shearing interferometer
light beam
light beams
Prior art date
Application number
PCT/JP2003/000897
Other languages
French (fr)
Japanese (ja)
Inventor
Zhigiang Liu
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU2003244344A priority Critical patent/AU2003244344A1/en
Publication of WO2003067182A1 publication Critical patent/WO2003067182A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02097Self-interferometers
    • G01B9/02098Shearing interferometers

Definitions

  • the present invention relates to a shearing interference measuring method and a shearing interferometer, a method of manufacturing a projection optical system, a projection optical system, and a method of manufacturing a projection optical system. , And a projection exposure apparatus.
  • FIG. 14 is a diagram showing a conventional shearing interferometer.
  • Fig. 14 (a) shows a shearing interferometer that measures the transmitted wavefront of the test object (here, the projection optical system PL), and
  • Fig. 14 (b) shows the wavefront of the return light from the test object (here, the PL).
  • a shearing interferometer for measuring the reflected wavefront of the test surface 4 shows a shearing interferometer for measuring the reflected wavefront of the test surface 4).
  • a measurement light beam L (a spherical wave diverging from one point of a reticle surface R, which is an object surface) is made incident on an optical system PL to be inspected, and the optical system PL is subjected to measurement.
  • the measurement light beam L emitted from the light analysis system PL is split into two light beams L 1 and L 2 whose wavefronts are shifted from each other by the diffractive optical element 2, and the interference fringes due to the light beams L 1 and L 2 are captured by the CCD camera 3. Observed by such as. From this interference fringe, the shape of the transmitted wavefront of the test optical system PL is determined.
  • the measurement light beam L (a light beam that is incident substantially perpendicularly to the test surface 4) is incident on the test surface 4, and the measurement light beam L is incident on the test surface 4.
  • the reflected measurement light beam L is split by a half mirror HM2 etc. into two light beams L l and L 2 (not shown) whose wavefronts are shifted from each other, and the interference fringes caused by these light beams LI and L 2 are observed by a CCD camera 3 etc. Is what you do. From this interference fringe, the shape of the reflected wavefront of the test surface 4 is determined.
  • the two light beams branched from the same light source interfere without shifting the wavefront, so the wavefront (hereinafter referred to as the “noise wavefront”) that indicates the disturbance and aberration on the light source side superimposed on the wavefronts of the two light beams, respectively
  • the interference fringes generated by the overlap between the two light beams and the phase difference distribution between the wavefronts of the two light beams are not affected by the noise wavefront.
  • two light beams (light beams L 1 and L 2 in Fig. 14) branched from the same light source interfere with each other by shifting their wavefronts. And affect the interference fringes. Disclosure of ⁇
  • An object of the present invention is to provide a shearing interferometer and a shearing interferometer capable of performing measurement without being affected by disturbance or aberration on the light source side.
  • Another object of the present invention is to provide a method of manufacturing a high-performance projection optical system by applying the shearing interference measurement method.
  • Another object of the present invention is to provide a high-performance projection optical system.
  • Another object of the present invention is to provide a high-performance projection exposure apparatus.
  • the measurement light beam emitted from the light source is divided to generate two light beams having wavefronts shifted from each other, and the two light beams are applied to the test object with the wavefronts shifted. Light is projected, and interference fringes occurring at positions where the wavefronts of the two light beams passing through the test object overlap are detected.
  • the interference fringes formed by the two light beams at that position are affected by the transmitted wavefront (signal wavefront) corresponding to the aberration of the test object, but are not affected by disturbance or aberration on the light source side. Therefore, according to this shearing interference measurement method, measurement can be performed without being affected by disturbance or aberration on the light source side.
  • a phase shift interferometry for detecting the interference fringes a plurality of times while shifting the phase of the two light beams is applied.
  • measurement accuracy can be improved.
  • the shearing interferometer of the present invention is arranged in the optical path of the measurement light beam emitted from the light source, and divides the measurement light beam to generate two light beams having different wavefronts.
  • the arrangement position of the detector is a position conjugate with the division plane of the division optical system.
  • the optical path of the two light beams that passes through the test object and enters the detector is divided into two light beams, and the wavefronts of the two light beams are placed on the detector. Are arranged.
  • the splitting optical system for splitting the measurement light beam and the splitting optical system for splitting the two light beams have a conjugate relationship.
  • a mask for cutting light other than the two light beams whose wavefronts overlap on the detector is arranged in the optical path of the two light beams. In this way, measurement accuracy can be improved.
  • the split optical system comprises a diffractive optical element.
  • the shearing interferometer of the present invention is arranged in the optical path of the measurement light beam emitted from the light source, and divides the measurement light beam to generate two light beams whose wavefronts are deviated from each other, and combines the two light beams.
  • the splitting optical system includes: a beam splitter that splits the measurement light beam into two light beams of a transmitted light beam and a reflected light beam; and the two light beams split by the beam splitter.
  • a polarization beam splitter is used in the beam splitter, and a polarization beam splitter is used between the split optical system and the detector.
  • a polarizing plate is arranged in the optical path of the two light beams. In this way, measurement accuracy can be improved.
  • the position of the detector is a position conjugate with the surface of the test object.
  • a mask for cutting light other than the two light beams whose wavefronts overlap on the detector is arranged in the optical path of the two light beams. In this way, measurement accuracy can be improved.
  • a method of manufacturing a projection optical system according to the present invention includes a procedure for inspecting a part or all of the projection optical system by the shearing interference measurement method of the present invention. Since the shearing interference measurement method of the present invention can perform high-accuracy measurement, the inspection is performed with high accuracy. Therefore, according to the method for manufacturing a projection optical system of the present invention, a high-performance projection optical system can be manufactured.
  • a projection optical system according to the present invention is manufactured by the method for manufacturing a projection optical system according to the present invention. Such a projection optical system has high performance.
  • a projection exposure apparatus of the present invention includes the projection optical system of the present invention. Such a projection exposure apparatus has high performance.
  • FIG. 1A is a configuration diagram of the shearing interferometer of the first embodiment
  • FIG. 1B is a diagram illustrating an alignment method of the shearing interferometer of the first embodiment.
  • FIG. 2 is a diagram showing a modified example of the shearing interferometer of the first embodiment.
  • FIG. 3A is a configuration diagram of the shearing interferometer of the second embodiment
  • FIG. 3B is a diagram illustrating an alignment method of the shearing interferometer of the second embodiment.
  • FIG. 4 is a diagram illustrating the shearing interferometer of the second embodiment in which the imaging surface of the CCD camera 3 and the diffractive optical element G21 are in a conjugate relationship.
  • FIG. 5 is a diagram showing a modified example of the shearing interferometer of the second embodiment.
  • FIG. 6A is a configuration diagram of the shearing interferometer of the third embodiment.
  • FIG. 6 (b) is a diagram showing the optical paths 1 ⁇ 1, R2 of the light beams L1, 2 of this shearing interferometer.
  • FIG. 7 is a diagram illustrating an application example of the shearing interferometer of the third embodiment.
  • FIG. 8 is a diagram showing a modified example of the shearing interferometer of the third embodiment.
  • FIG. 9A is a configuration diagram of the shearing interferometer of the fourth embodiment.
  • FIG. 9B is a diagram showing the optical paths 11 and R2 of the light beams L1 and L2 of the shearing interferometer.
  • FIG. 10 is a diagram illustrating a modified example of the shearing interferometer of the fourth embodiment.
  • FIG. 1.1 is a configuration diagram of the shearing interferometer of the fifth embodiment.
  • FIG. 12 is a configuration diagram of the shearing interferometer of the sixth embodiment.
  • FIG. 13 is a schematic configuration diagram of the projection exposure apparatus of the seventh embodiment.
  • FIG. 14 is a diagram showing a conventional shearing interferometer. Sun ⁇ ⁇
  • a shearing interferometer of the present invention of a type for measuring a transmitted wavefront of a test object and a shearing interferometer thereof will be described.
  • FIG. 1A is a configuration diagram of the shearing interferometer of the present embodiment.
  • test object is the projection optical system P L (for example, EUVL) of the projection exposure apparatus, but the present invention can be applied to other test objects.
  • P L for example, EUVL
  • a measurement light beam (hereinafter, referred to as a spherical wave diverging from one point of the reticle surface R) enters the projection optical system PL from the reticle surface R side.
  • a detector such as a CCD camera 3 is arranged on the wafer surface W side of the projection optical system PL.
  • the measurement light beam L is generated by collecting a light beam emitted from a light source (not shown) on the reticle surface R.
  • a split optical element for example, a diffractive optical element G11
  • a diffractive optical element G11 is included in the measurement light beam L on the reticle surface R side. ) Is inserted.
  • the insertion position of the diffractive optical element Gl1 is determined by the focusing position of the measurement light beam L (L The light source side is closer to the tickle surface R).
  • the diffractive optical element Gl1 divides the measurement light beam L to generate two light beams L1 and L2 whose wavefronts are shifted from each other.
  • the 0th-order diffracted light and the 1st-order diffracted light generated in the diffractive optical element G11 are used as the light flux L1 and the light flux L2, respectively.
  • the wavefront of the light beam L1 and the wavefront of the light beam L2 are shifted in the horizontal direction (object height direction), and the light-collecting positions of both light beams are shifted from each other on the reticle surface R. was shown.
  • the most efficient cut can be made when it is placed near the focal point (here, near the reticle surface R).
  • this mask M11 has openings at the light-condensing point of the light beam L1 and the light-condensing point of the light beam L2, respectively, and the other parts are light-shielded. It is a mask that became a department.
  • the light beam L1 and the light beam L2 that have passed through the mask M11 and then have passed through the projection optical system PL are condensed on the wafer surface W (at positions shifted from each other).
  • the imaging surface of the CCD camera 3 of the present embodiment is arranged at a position conjugate with (the diffraction surface of) the diffraction optical element G11 with respect to the projection optical system PL.
  • the shearing interference measurement of the present embodiment based on the output of the CCD camera 3, the shear direction and the shear amount from the measurement light beam L to the light beams Ll and L.2, it corresponds to the aberration of the projection optical system PL. Calculate the transmitted wavefront.
  • the shear amount and shear direction can be obtained from the design data of the shearing interferometer and the data measured by the shearing interferometer.
  • the same noise wavefront is superimposed on the wavefront of the light beam L1 and the wavefront of the light beam L2 obtained by dividing the measurement light beam L.
  • the noise wavefront superimposed on the wavefront of the light flux 1 The noise wavefront superimposed on the wavefront of the light beam L2 just overlaps, and the phase difference between the noise wavefronts is almost zero.
  • the light beam L1 and the light beam L2 enter the projection optical system PL with their wavefronts shifted from each other, the transmission corresponding to the aberration information of the projection optical system PL superimposed on the light beam L1
  • the wavefront (signal wavefront) and the signal wavefront superimposed on the light beam L2 are shifted from each other at the position, and a phase difference distribution is generated.
  • the interference fringes formed by the light beam L1 and the light beam L2 on the imaging surface of the CCD camera 3 arranged at that position are affected by the transmitted wavefront (signal wavefront) corresponding to the aberration of the projection optical system PL. On the other hand, it is not affected by the noise wavefront.
  • FIG. 1B is a diagram illustrating an alignment method of the shearing interferometer of the present embodiment.
  • the conjugate relationship is set based on whether or not the light flux L1 and the light flux L2 are substantially overlapped on the imaging surface of the CCD camera 3.
  • a target T that partially blocks the measurement light L is placed in the measurement light L incident on the diffractive optical element Gl1, and one of the light L1 and the light L2 is shielded.
  • One of the openings of the mask M11 is shielded from light.
  • the target T is disposed at a position as close as possible to the diffractive optical element G11.
  • the opening of the mask M11 is arranged only at one of the light-condensing points of the light beam L1 and the light beam L2, and the other light-condensing portion
  • the mask M11 may be shifted in the reticle plane R so that the light shielding portion of the mask M11 is arranged at a point.
  • one of the light flux L 1 and the light flux L 2 is provided on the imaging surface of the CCD camera 3. Only in the evening, an image of the gate T is formed.
  • the output of the CCD camera 3 is referred to while the other of the light beam L.l and the light beam L2 is shielded, and the position of the formation of the target T on the imaging surface is determined.
  • the positions of the diffractive optical element Gl1 and the CCD camera 3 are adjusted so as to be the same as the stored formation positions.
  • FIG. 2 is a diagram showing a modified example of the shearing interferometer of the first embodiment.
  • the position at which the diffractive optical element Gl1 is disposed is on the light source side with respect to the reticle surface R (see FIG. 1).
  • a diffractive optical element according to the present modification is indicated by reference numeral G 11 'in FIG.
  • the mask M 11 ′ for cutting off the extra light generated in the diffractive optical element G 11 may be arranged near the wafer surface W as shown in FIG. In this case as well, the CCD camera 3 is arranged at a position conjugate with (the diffraction surface of) the diffractive optical element G 11 ′ with respect to the projection optical system PL.
  • an evening shearing interferometer of the present invention for measuring a transmitted wavefront of a test object and a shearing interference method thereof will be described.
  • only the differences from the first embodiment will be described, and the description of the other parts will be omitted.
  • FIG. 3A is a configuration diagram of the shearing interferometer of the present embodiment.
  • the diffractive optical element as a split optical element is not only on the reticle surface R side of the projection optical system PL but also on the wafer surface W side. It is also located at the point.
  • a diffractive optical element as a nine-segment optical element is additionally arranged on the reticle surface R side of the projection optical system PL.
  • diffractive optical elements G 21 and G 22 are arranged on the reticle surface R side and the wafer surface W side, respectively.
  • the diffractive optical element G21 like the diffractive optical element G11 of the first embodiment, generates two light beams L1 and L2 whose wavefronts are shifted from each other.
  • the 0th-order diffracted light and the 1st-order diffracted light generated in the diffractive optical element G21 are used as the light flux Ll and the light flux L2, respectively.
  • the diffractive optical element G22 integrates the two light beams L1 and L2 emitted from the projection optical system PL with a displacement equivalent to that of the diffractive optical element G21 to form one light beam (reverse To do).
  • Such a diffractive optical element G22 is designed in advance according to the diffraction pattern of the diffractive optical element G11, the magnification of the projection optical system PL, the wavelength used, and the like.
  • the interference fringes formed by the light beam L1 and the light beam L2 at that position are affected by the transmitted wavefront (signal wavefront) corresponding to the aberration of the projection optical system PL, but are not affected by the noise wavefront.
  • the diffractive optical element G 22 (the diffractive surface thereof) is arranged at a position conjugate with the diffractive optical element G 21 (the diffractive surface thereof) with respect to the projection optical system PL. Since the focal point of the light beam L1 and the focal point of the light beam L2 coincide on the wafer surface W, the wavefront of the light beam L1 and the wavefront of the light beam L2 can travel in the same direction. The interference fringes can be made almost one color.
  • the closer to one color ie, the larger the fringe interval of the interference fringes
  • the imaging surface of the CCD camera 3 can be arranged, for example, at a position conjugate with the pupil of the projection optical system PL, and the evaluation of the projection optical system PL based on the observed interference fringes can be facilitated.
  • the extra light generated by the diffractive optical element G 21 is cut by the mask M 21 arranged on the reticle surface R, and the diffractive optical element G 2
  • the extra light generated in 2 is cut by the mask M22 arranged on the wafer surface W surface.
  • the light beam L1 and the light beam L2 emitted from the diffractive optical element G22 are condensed at the same point, so that the mask M22 may have only one opening.
  • FIG. 3B is a diagram for explaining an alignment method of the shearing interferometer of the present embodiment.
  • This alignment method is the same as the alignment method of the shearing interferometer of the first embodiment, except that the position adjustment target is the diffractive optical element G21 and the diffractive optical element G22.
  • a sunset T which partially blocks the measurement light beam L is arranged, and at the same time, the light beams L 1 and L 2 One of the openings of the mask M21 is shielded so as to shield one of the openings.
  • the target T is disposed at a position as close as possible to the diffractive optical element G21.
  • the opening of the mask M21 is arranged only at one of the light-condensing points of the light beam L1 and the light beam L2, and the other light-condensing point To
  • the mask M21 may be shifted in the reticle plane R plane so that the light shielding portion of the mask M21 is arranged.
  • the position where the image of the target T is formed on the imaging surface is stored from the output of the CCD camera 3 at this time.
  • the output of the CCD camera 3 is referred to, and the formation position of the sunset T on the imaging surface is determined.
  • the positions of the diffractive optical element G21 and the diffractive optical element G22 are adjusted so that is the same as the stored formation position.
  • FIG. 4 shows that the diffractive optical element G21 and the diffractive optical element G22 are non-conjugated in the shearing interferometer of the present embodiment, and instead, the imaging surface of the CCD camera 3 and the diffractive optical element G21
  • FIG. 4 is a diagram showing a case where a diffraction surface (a diffraction surface) is set to a conjugate relationship.
  • the diffractive optical element G21 and the diffractive optical element G22 are not set to a conjugate relationship, if the imaging surface of the CCD camera 3 and the (diffractive surface of) the diffractive optical element G21 are set to a conjugate relation, The noise wavefront superimposed on the wavefront of the light beam L1 and the noise wavefront superimposed on the wavefront of the light beam L2 overlap on the imaging surface of the CCD camera 3.
  • the alignment may be performed by setting the position adjustment target to the diffractive optical element G21 or the CCD camera 3 in the above-described alignment method (see FIG. 3B).
  • FIG. 5 is a diagram showing a modified example of the shearing interferometer of the second embodiment.
  • shearing interferometer of the second embodiment can be modified.
  • the direction of deviation between the wavefront of the light beam 1 and the wavefront of the light beam L2 is referred to as the “lateral direction” (object height direction).
  • the term “wavefront direction” (direction along the wavefront) is used. Therefore, a diffractive optical element G 21, and a diffractive optical element G 22 ′ are provided between the diffractive optical element G 21 and the reticle surface R and between the diffractive optical element G 22 and the wafer surface W, respectively. Inserted.
  • the diffractive optical element G 21 ′ is designed in advance so that the focal points of the light beam L 1 and the light beam L 2 emitted from the diffractive optical element G 21 coincide.
  • the diffractive optical element G22 ' is designed in advance so that the converging points of the light beam L1 and the light beam L2 emitted from the diffractive optical element G22 coincide.
  • the interference fringes are detected while shifting at least one of the diffractive optical elements in the same direction as the wavefront dividing direction (that is, if the phase shift interferometry is applied, )
  • the measurement accuracy can be further improved.
  • a refraction member as an optical element of a shearing interferometer (because a refraction member that transmits a special wavelength).
  • a diffractive optical element was used as the split optical element.
  • a lens may be used for a part or all of the split optical element for a test object that can use a refraction member.
  • the direction of division of the light fluxes L 1 and L 2 is “horizontal direction” or “wavefront direction”, but may be the optical axis direction (vertical direction).
  • FIG. 6 A third embodiment of the present invention will be described based on FIGS. 6, 7, and 8.
  • FIG. 6 A third embodiment of the present invention will be described based on FIGS. 6, 7, and 8.
  • FIG. 6A is a configuration diagram of the shearing interferometer of the present embodiment.
  • FIG. 6B is a diagram showing the optical paths R 1 and R 2 of the light beams L 1 and L 2 of the shearing interferometer.
  • the shearing interferometer has a light source 5 such as a laser that emits a measurement light beam L to be incident on the surface 4 to be measured, and the measurement light beam L is divided before being incident on the surface 4 to be measured.
  • the split optical system 34 generates two shifted light beams L 1 and L 2 and projects them on the test surface 4 with the wavefront shifted, and returns to the split optical system 34 after being reflected by the test surface 4.
  • a CCD camera 3 for detecting interference fringes caused by the light beams L 1 and L 2 is provided.
  • Reference numeral 6 denotes a beam spreader that converts the measurement light beam L emitted from the light source 5 into a parallel light beam.
  • Reference numeral HM33 denotes a half mirror for guiding the light beams L 1 and L 2 reciprocating in the split optical system 3 in the direction of the CCD force camera 3.
  • Reference numeral 7 denotes an imaging optical system that forms an image of a light beam (light beam 1, L 2) incident on the CCD camera 3.
  • test surface 4 and the imaging surface of the CCD camera 3 are in a conjugate relationship via the split optical system 34, the half mirror HM33, and the imaging optical system 7.
  • test surface 4 and the imaging surface of the CCD camera 3 have a conjugate relationship via an optical system disposed therebetween.
  • the split optical system 34 is composed of two beam splitters P 34-1 and P 34-2, and mirrors M 34-1 and 34-2.
  • the measurement light beam L is split into a transmitted light beam and a reflected light beam (hereinafter, the transmitted light beam is referred to as a light beam L1 and the reflected light beam is referred to as a light beam L2) at a beam splitter P34-2.
  • the light beam L1 is reflected by the mirror M34-1 and is incident on the beam splitter P34-1, and the light beam L2 is reflected by the mirror M34-2 and is incident on the beam splitter P34-11.
  • the beam splitter P34-1 transmits the light flux L1 and emits the light to the surface 4 to be measured, and also reflects the light flux L2 and emits the light to the surface 4 to be measured.
  • the position of the mirror M 34-2 beam splitter P 34-1 is measured in a state where the light beams L 1 and L 2 are shifted from each other (in a state where the optical axis is shifted). Adjusted to be incident on surface 4.
  • the light beams L 1 and L 2 emitted from the splitting optical system 34 to the surface 4 to be detected and reflected on the surface 4 to be tested are transmitted through the splitting optical system 34 in the opposite direction, and then are transferred to the half mirror H M33 by the CCD. It is deflected in the direction of camera 3 and forms interference fringes on the imaging surface of CCD camera 3.
  • the shearing interference measurement based on the output of the CCD camera 3 and the shear direction and the shear amount from the measurement light beam L to the light beams Ll and L2, it corresponds to the unevenness of the surface 4 to be measured. Calculate the reflected wavefront.
  • the shear amount and shear direction can be obtained from the design data of the shearing interferometer and the data actually measured by the shearing interferometer.
  • the same noise wavefront is superimposed on the wavefront of the light beam L1 and the wavefront of the light beam L2 obtained by dividing the measurement light beam L.
  • the light beam L1 passing through the optical path R1 and the light beam L2 passing through the optical path R2 shown in FIG. 6 (b) reciprocate in a specific optical path in the split optical system. Therefore, the light beam L1 and the light beam L2 absorb the mutual wavefront shift (shift of the optical axis), and overlap each other after reciprocation (the optical path R1 is a half mirror HM33).
  • the luminous flux L 1 passing through the optical path R 1 and the luminous flux L 2 passing through the optical path R 2 are shifted from each other when they are incident on the surface 4 to be measured. Therefore, the reflected wavefront (signal wavefront) corresponding to the unevenness of the surface 4 to be measured, which is superimposed on the wavefront of the light beam L1, and the signal wavefront superimposed on the wavefront of the light beam L2, are the wavefront of the light beam L1.
  • the wavefront of the light beam L2 overlaps with the wavefront of the light beam L2, they deviate from each other.
  • the light is superimposed on the wavefront of the light beam L1
  • the reflected wavefront (signal wavefront) corresponding to the unevenness of the test surface 4 and the signal wavefront superimposed on the wavefront of the light beam L2 do not overlap, and generate interference fringes.
  • the interference fringes formed by the light flux L1 and the light flux L2 on the imaging surface of the CCD camera 3 are affected by the reflected wavefront (signal wavefront) corresponding to the unevenness of the surface 4 to be measured, while the noise wavefront is Not affected by
  • the beam splitter P 34 is used to increase the light amount of the light beam L 1 passing through the optical path R 1 and the light beam L 2 passing through the optical path R 2 to enhance the detection accuracy of interference fringes.
  • -Polarizing beam splitter is used as 1 or beam splitter P 34-2, and polarizing plate 35 is provided in front of CCD camera 3 (for example, between imaging optical system 7 and half mirror HM 33). Inserted.
  • the beam splitter P34_1 For example, if a polarizing beam splitter is used as the beam splitter P34_1, the P-polarized light of the light beam L1 transmitted through the beam splitter P34-2 is reflected on the surface 4 to be measured. Later, the light returns to the direction of the optical path R 1, and the S-polarized light of the light beam L 2 reflected by the beam splitter P 3 4 12 returns to the direction of the optical path R 2 after the reflection on the surface 4 to be measured.
  • a polarizing beam splitter is used as the beam splitter P34_1
  • the P-polarized light of the light beam L1 transmitted through the beam splitter P34-2 is reflected on the surface 4 to be measured. Later, the light returns to the direction of the optical path R 1, and the S-polarized light of the light beam L 2 reflected by the beam splitter P 3 4 12 returns to the direction of the optical path R 2 after the reflection on the surface 4 to be measured.
  • a polarization beam splitter is used for both the beam splitter P34-1 and the beam splitter P34-2.
  • the P-polarized light component of the measurement light beam L is surely set to the light beam L1 passing through the optical path R1, and the S-polarized light component of the measurement light beam L is surely changed to Since the light beam L2 can pass through the optical path R2, the loss of light amount can be suppressed.
  • phase shift interferometry is applied to the above-described shearing interference measurement, the measurement accuracy is further improved.
  • one or both of the mirror M34-1 and the mirror M34-2 may be slightly moved.
  • the moving direction is the direction in which the difference between the optical path lengths R 1 and R 2 of the light beams L 1 and L 2 changes (for example, the direction indicated by the arrow in FIG. 6A).
  • the output data of the CCD camera 3 (luminance distribution data of interference fringes) is sampled a plurality of times during this phase shift.
  • the calculation method is, for example, as follows.
  • the luminance distribution I of the interference fringes occurring on the imaging surface is
  • I 0 is the DC component of the luminance distribution of the interference fringes
  • A is the amplitude of the luminous flux LI
  • L 2 B i is the amplitude of various noises
  • i is the number of each interference fringe due to various noises.
  • N i is the phase distribution of the interference fringes due to each noise
  • 5 is the phase modulation by the phase shift of each interference fringe
  • T is the shape of the reflected wavefront (signal wavefront) corresponding to the unevenness of the surface 4 to be measured.
  • T (s) is a change in wavefront shape (unit: phase) due to shearing of the measurement light beam L into the light beam L1 or the light beam L2.
  • ⁇ f (i) is the sum of each i of f.
  • each luminance distribution data II, ... I8 are sampled while gradually shifting the phase by ⁇ / 2 as a phase shift
  • each luminance distribution data II, ... Is represented as
  • FIG. 7 is a diagram illustrating an application example of the shearing interferometer of the present embodiment. .
  • the object to be measured is a flat surface 4 to be measured, but a curved surface 4 ′ is measured by using a wavefront conversion element 38 as shown in A in FIG. You can also.
  • the folded reflecting surface 39 as shown in B in FIG. 7 not only the reflected wavefront of the test surface 4 but also the transmitted wavefront of the test object (such as the projection optical system PL) 4 ′′ can be measured. .
  • FIG. 8 is a diagram illustrating a modified example of the shearing interferometer of the present embodiment.
  • the split optical system 34 uses a half-mirror HM 33 instead of one of the beam splitters P 34-2.
  • the measurement accuracy is lower than in the case of using the polarizing beam splitter, but the number of parts of the shearing interferometer can be reduced because the half mirror HM33 can be used as well.
  • the present embodiment describes a shearing interferometer of the present invention of a type that measures the wavefront of the return light from the test object (the reflected wavefront of the test surface 4).
  • FIG. 9A is a configuration diagram of the shearing interferometer of the present embodiment.
  • FIG. 9 (b) is a diagram showing the optical paths 111 and R2 of the light beams L1 and L2 of this shearing interferometer.
  • the splitting optics 44 of this shearing interferometer consists of a single beam splitter P44 and a single mirror M44.
  • the reflection surface of the mirror M44 is arranged parallel to the reflection / transmission surface of the beam splitter P44.
  • the measurement light beam L is divided into a transmitted light beam and a reflected light beam (hereinafter, the transmitted light beam is referred to as a light beam L1 and the reflected light beam is referred to as L2) at a beam splitter P44.
  • the light beam L2 is projected onto the surface 4 to be measured as it is.
  • the light beam L1 is reflected by the mirror M44, then re-enters the beam splitter P44, passes through the beam splitter P44, and is projected on the surface 4 to be measured.
  • the positions of the mirror M44 and the beam splitter P44 are adjusted so that the light beams L1 and L2 enter the surface 4 to be measured with their wavefronts shifted from each other (with the optical axis shifted). Have been.
  • the light beams LI and L2 emitted from the splitting optical system 44 to the surface 4 to be measured and reflected on the surface 4 to be tested are transmitted to the half mirror 1 It is deflected in the direction of camera 3 and forms an interference fringe on the imaging surface of CCD camera 3.
  • the light beam L1 passing through the optical path R1 and the light beam L2 passing through the optical path R2 shown in FIG. 9 (b) reciprocate in a specific optical path in the splitting optical system 34. . Therefore, between the light beam L1 and the light beam L2, the mutual wavefront shift (shift of the optical axis) is absorbed, and the wavefront of the light beam L1 and the wavefront of the light beam L2 reciprocate.
  • the optical path of the HM33 is the optical path of the beam splitter P44 ⁇ the surface of the beam to be inspected 4 beam splitters, and the optical path of the half mirror HM33 is the optical path R2.
  • the interference fringes formed by the light flux L1 and the light flux L2 on the image plane of the CCD camera 3 correspond to the unevenness of the surface 4 to be measured. While being affected by the reflected wavefront (signal wavefront), it is not affected by the noise wavefront due to disturbances and aberrations on the light source side (beam expander 6, light source 5).
  • the beam splitter P44 is used as the beam splitter P44 in order to increase the light amount of the light flux L1 passing through the light path R1 and the light flux L2 passing through the light path R2 to increase the detection accuracy of interference fringes.
  • a polarizing beam splitter is used, and a polarizing plate 35 is inserted in front of the CCD camera 3 (for example, between the imaging optical system 7 and the half mirror HM 33).
  • phase shift interferometry for example, the method described in the third embodiment
  • the measurement accuracy is further improved.
  • one or both of the mirror M44 and the beam splitter P44 may be slightly moved.
  • the moving direction is a direction in which the difference between the optical path lengths 1 ⁇ 1 and R2 of the light fluxes L1 and L2 changes.
  • the shearing interferometer shown in FIG. 9 may be modified as shown in FIG. 10 and then the phase shift may be performed by another method.
  • the phase shift method described below can be similarly applied to the third, fifth, and sixth embodiments.
  • a quarter-wave plate 45 is inserted on the incident side of the polarizing plate 35, and the polarizing plate 35 is rotatable around the optical axis.
  • the main axis of the quarter-wave plate 45 is set to be 45 ° with respect to the P or S polarization direction of the light beams L 1 and L 2.
  • the light beam L 1 (linearly polarized light of P) and the light beam L 2 (of S (Linearly polarized light) is converted into circularly polarized light whose directions are opposite to each other.
  • the phase shift can be performed by rotating the polarizing plate 35.
  • a single split optical element 4 4 ′ having the mirror M 44 and the beam splitter P 44 fixed is used instead of the split optical system 44. You can also. .
  • shearing interferometer shown in FIG. 9 or FIG. 10 can also measure the curved test surface 4 ′ by using the wavefront conversion element 38 as shown in A in FIG.
  • the reflection surface 39 is used as shown in FIG. 7B, not only the reflection wavefront of the test surface 4 but also the transmission wavefront of the test object (such as the projection optical system PL) 4 "is measured. You can do that too.
  • the shearing interferometer according to the third embodiment and the shearing interferometer according to the fourth embodiment are of the type in which the shear direction is the horizontal direction. In the present embodiment, the case where the shear direction is the radial direction will be described.
  • FIG. 11 is a configuration diagram of the shearing interferometer of the present embodiment.
  • the splitting optical system 54 of this shearing interferometer is composed of a beam splitter P34-1 and a beam splitter (here, a half mirror) HM33, a mirror M34-1, and a mirror M34-2. , And beam expanders R 54-1 and R 54-2 having different magnifications from each other.
  • the measurement light beam L is divided into a transmitted light beam and a reflected light beam (hereinafter, the transmitted light beam is referred to as a light beam Ll and the reflected light beam is referred to as a light beam L2) by a half mirror HM33.
  • the light beam LI is reflected by the mirror M 34-1, and then enters the beam splitter P 34-1 via the beam expander R 54-1.
  • the light beam L 2 is reflected by the half mirror HM 33, then enters the mirror M 34-2 via the beam expander R 54-2, is reflected by the mirror M 34-2, and is reflected by the beam splitter 224. It is incident on P 3 4—1.
  • the beam splitter P 34-1 transmits the light beam L 1 and emits the light to the surface 4 to be measured, and also reflects the light beam L 2 and emits the light to the surface 4 to be measured.
  • the light beam L1 and the light beam L2 incident on the surface 4 to be inspected have the same optical axis, but the beam expanders R54-1 and R54-2. Since the magnifications are different, the luminous flux diameter is shifted.
  • the light beam L 1 reciprocating in the beam expander R 54-1 and the light beam L 2 reciprocating in the beam expander R 54-2 absorb the mutual wavefront deviation (beam diameter deviation) due to the reciprocation. After the round trip. The wavefronts of each other overlap.
  • the interference fringes formed by the light flux L1 and the light flux L2 on the image plane of the CCD camera 3 are reflected by the unevenness of the surface 4 to be measured. While being affected by the wavefront (signal wavefront), it is not affected by the noise wavefront due to disturbances and aberrations on the light source side (beam expander 6, light source 5).
  • the shearing interferometer according to the third embodiment and the shearing interferometer according to the fourth embodiment have a structure in which the shear is used to shift the optical axis, but a shearing interferometer in which the optical axis is inclined will be described. .
  • FIG. 12 is a configuration diagram of the shearing interferometer of the present embodiment.
  • the splitting optical system 64 of this shearing interferometer has a beam splitter (here, a half mirror) HM64 and a beam splitter similar to the splitting optical system 34 shown in FIG. Evening (here, half mirror) HM33, Mira M34-l, and Mirror M34-2 are arranged.
  • the postures of the mirror M34-2 and the half-mirror HM64 are adjusted so that the light beam L1 and the light beam L2 are incident on the surface 4 to be inspected with their optical axes inclined by 0. I have.
  • the polarizing beam splitter is used to separate the light beam L1 and the light beam L2). I used the evening ..). Accordingly, the polarizing plate 35 shown in FIG. 8 is unnecessary.
  • the light beam L1 and the light beam L2 that have entered the surface 4 to be inspected return to another optical path in the split optical system 64 while keeping the optical axis inclined, and enter the imaging optical system 7 and the CCD camera 3 in that order. .
  • the inclination of the optical axis of the light beam 1 and the light beam L 2 at the time of entering the test surface 4 not being absorbed back and forth division optical system 64 c is on the imaging surface
  • the noise wavefront superimposed on the wavefront of the light beam L1 and the noise wavefront superimposed on the wavefront of the light beam L2 just overlap, and the reflection corresponding to the unevenness of the surface 4 to be measured, which is superimposed on the light beam L1
  • the wavefront (signal wavefront) and the signal wavefront superimposed on the light beam L2 deviate from each other.
  • the interference fringes formed by the light flux L1 and the light flux L2 on the imaging surface are affected by the reflected wavefront (signal wavefront) corresponding to the unevenness of the test surface 4 but not by the noise wavefront. .
  • a mask M61 be disposed on the focal plane of the imaging optical system 7.
  • the direction in which the two openings are arranged is set so as to correspond to the above-described inclination direction of the optical axis. In this way, the light beams L 1 and L 2 individually transmit one of the two openings and the other, and form interference fringes on the imaging surface of the CCD camera 3.
  • interference fringes caused by the light beams L1 and L2 are detected with high accuracy without being affected by other light.
  • the division optical element diffractive optical element
  • the mask the mask having two openings
  • FIG. 13 is a schematic configuration diagram of the projection exposure apparatus of the present embodiment.
  • the whole or a part of the projection optical system PL mounted on the projection exposure apparatus is inspected at the time of its manufacture by the interference measurement according to any of the above embodiments.
  • At least one surface of the projection optical system PL and / or any part of the projection exposure apparatus are adjusted according to the measurement result.
  • the projection optical system PL and / or the projection exposure apparatus have high performance even if the adjustment method is the same as the conventional one.
  • the projection exposure apparatus includes a projection optical system PL, a wafer stage 108 for mounting a wafer w, a reticle stage 105 for mounting a reticle r, and a light source section 101 for supplying light to the reticle r. And so on.
  • a reticle r and a wafer w are arranged on the object plane and the image plane of the projection optical system PL, respectively.
  • the projection exposure apparatus has a stage control for controlling the position of the stage 108. Control 107 is provided.
  • the projection optical system PL has an alignment optical system applied to a scan type projection exposure apparatus.
  • the illumination optical system 102 has an alignment optical system 103 for adjusting the relative position between the reticle r and the wafer w.
  • reticle stage 105 can move reticle r in parallel with respect to surface 108 a of wafer stage 108.
  • the projection exposure apparatus is provided with a reticle exchange system 104 for exchanging and transporting the reticle r set on the reticle stage 105.
  • the reticle exchange system 104 has a stage driver (not shown) for relatively moving the reticle stage 105 with respect to the surface 10.8a of the wafer stage 108.
  • the projection exposure apparatus is also provided with a main control unit 109 which performs control relating to a series of processes “from alignment to exposure”.
  • a shearing interferometer and a shearing interferometer capable of performing measurement without being affected by disturbance or aberration on the light source side are realized.
  • a high-performance projection optical system manufacturing method, a high-performance projection optical system, and a high-performance projection exposure apparatus are realized by applying the shearing interference measurement method.
  • the present invention contributes to improvement of semiconductor manufacturing technology.

Abstract

A shearing interference measuring method capable of measuring without being affected by disturbance and aberration on a light source side. The shearing interference measuring method comprises the steps of dividing a measuring light flux output from a light source to produce two light fluxes having their wave fronts deviated from each other, projecting those two light fluxes with their wave fronts deviated onto an inspection subject, and detecting interference fringe occurring at a position at which the wave fronts of the two light fluxes passed through the inspection subject overlap each other.

Description

明細書  Specification
シァリング干渉測定方法及びシァリング干渉計、 投影光学系の製造方法、 投影光学系、 及び投影露光装置 技術分- 本発明は、 シァリング干渉測定方法及びシァリング干渉計、 投影光学系の製造 方法、 投影光学系、 及び投影露光装置に関する。  TECHNICAL FIELD The present invention relates to a shearing interference measuring method and a shearing interferometer, a method of manufacturing a projection optical system, a projection optical system, and a method of manufacturing a projection optical system. , And a projection exposure apparatus.
投影レンズなどの高精度な光学系の検査に、 シァリング干渉計を適用すること が提案された。 It has been proposed to apply a shearing interferometer to the inspection of high-precision optical systems such as projection lenses.
図 14は、 従来のシァリング干渉計を示す図である。 図 14 (a) は、 被検物 (ここでは、 投影光学系 PL) の透過波面を測定するシァリング干渉計を示し、 図 14 (b) は、 被検物からの戻り光の波面 (ここでは、 被検面 4の反射波面) を測定するシァリング干渉計を示す。  FIG. 14 is a diagram showing a conventional shearing interferometer. Fig. 14 (a) shows a shearing interferometer that measures the transmitted wavefront of the test object (here, the projection optical system PL), and Fig. 14 (b) shows the wavefront of the return light from the test object (here, the PL). And a shearing interferometer for measuring the reflected wavefront of the test surface 4).
図 14 (a)に示すシァリング干渉計は、被検光学系 PLに対し測定光束 L (物 体面であるレチクル面 Rの 1点から発散する球面波である。 ) を入射させると共 に、 被検光学系 PLから射出したその測定光束 Lを、 回折光学素子 2によって互 いに波面のずれた 2つの光束 L 1 , L 2に分割し、 それら光束 L l, L2による 干渉縞を CCDカメラ 3などにより観測するものである。 この干渉縞から、 被検 光学系 P Lの透過波面の形状が求められる。  In the shearing interferometer shown in FIG. 14 (a), a measurement light beam L (a spherical wave diverging from one point of a reticle surface R, which is an object surface) is made incident on an optical system PL to be inspected, and the optical system PL is subjected to measurement. The measurement light beam L emitted from the light analysis system PL is split into two light beams L 1 and L 2 whose wavefronts are shifted from each other by the diffractive optical element 2, and the interference fringes due to the light beams L 1 and L 2 are captured by the CCD camera 3. Observed by such as. From this interference fringe, the shape of the transmitted wavefront of the test optical system PL is determined.
一方、 図 14 (b)に示すシァリング干渉計は、被検面 4に対し測定光束 L (被 検面 4に略垂直に入射する光束である。 ) を入射させると共に、 被検面 4におい て反射した測定光束 Lをハーフミラ一 HM2などにより、 不図示の互いに波面の ずれた 2つの光朿 L l, L 2に分割し、 それら光束 L I, L 2による干渉縞を C CDカメラ 3などにより観測するものである。 この干渉縞から、 被検面 4の反射 波面の形状が求められる。  On the other hand, in the shearing interferometer shown in FIG. 14B, the measurement light beam L (a light beam that is incident substantially perpendicularly to the test surface 4) is incident on the test surface 4, and the measurement light beam L is incident on the test surface 4. The reflected measurement light beam L is split by a half mirror HM2 etc. into two light beams L l and L 2 (not shown) whose wavefronts are shifted from each other, and the interference fringes caused by these light beams LI and L 2 are observed by a CCD camera 3 etc. Is what you do. From this interference fringe, the shape of the reflected wavefront of the test surface 4 is determined.
しかしながら、 これら従来のシァリング干渉計は、 フィゾー型などの他の干渉 計と比較すると、 その測定精度が、 干渉計の光源側の外乱や収差に大きく影響さ れるという原理的な問題がある。 However, when compared with other interferometers such as the Fizeau type, the measurement accuracy of these conventional shearing interferometers greatly affects disturbances and aberrations on the light source side of the interferometer. There is a fundamental problem that
なぜなら、 他の干渉測定では、 同一光源から分岐した 2光束は波面をずらさず に干渉するので、 2光束の波面にそれぞれ重畳された光源側の外乱や収差を示す 波面 (以下、 「ノイズ波面」 という。 ) 同士が丁度重なり、 それら 2光束の波面 の位相差分布に応じて生じる干渉縞は、 ノイズ波面の影響を受けない。 それに対 し、 シァリング干渉計では、 同一光源から分岐した 2光束 (図 1 4では、 光束 L 1, L 2 ) は波面をずらして干渉するので、 2光束のノイズ波面同士がずれて位 相差分布を生じさせ、 干渉縞に影響を与える。 昍の開示  Because, in other interferometric measurements, the two light beams branched from the same light source interfere without shifting the wavefront, so the wavefront (hereinafter referred to as the “noise wavefront”) that indicates the disturbance and aberration on the light source side superimposed on the wavefronts of the two light beams, respectively The interference fringes generated by the overlap between the two light beams and the phase difference distribution between the wavefronts of the two light beams are not affected by the noise wavefront. On the other hand, in a shearing interferometer, two light beams (light beams L 1 and L 2 in Fig. 14) branched from the same light source interfere with each other by shifting their wavefronts. And affect the interference fringes. Disclosure of 昍
本発明の目的は、 光源側の外乱や収差の影響を受けずに測定することの可能な シァリング干渉測定方法及びシァリング干渉計を提供することにある。  An object of the present invention is to provide a shearing interferometer and a shearing interferometer capable of performing measurement without being affected by disturbance or aberration on the light source side.
また、 本発明の目的は、 そのシァリング干渉測定方法を適用することにより高 性能な投影光学系の製造方法を提供することにある。  Another object of the present invention is to provide a method of manufacturing a high-performance projection optical system by applying the shearing interference measurement method.
また、 本発明の目的は、 高性能な投影光学系を提供することにある。  Another object of the present invention is to provide a high-performance projection optical system.
また、 本発明の目的は、 高性能な投影露光装置を提供することにある。  Another object of the present invention is to provide a high-performance projection exposure apparatus.
このため、 本発明のシァリング干渉測定方法では、 光源から射出した測定光束 を分割して互いに波面のずれた 2光束を生成すると共に、 それら 2光束をその波 面のずれた状態で被検物に投光し、 前記被検物を経由した前記 2光束の波面が重 なり合う位置に生起する干渉縞を検出する。  For this reason, in the shearing interference measurement method of the present invention, the measurement light beam emitted from the light source is divided to generate two light beams having wavefronts shifted from each other, and the two light beams are applied to the test object with the wavefronts shifted. Light is projected, and interference fringes occurring at positions where the wavefronts of the two light beams passing through the test object overlap are detected.
その位置に 2光束が成す干渉縞は、 被検物の収差に相当する透過波面 (信号波 面)の影響を受ける一方で、光源側の外乱や収差の影響を受けない。したがって、 このシァリング干渉測定方法によれば、 光源側の外乱や収差の影響を受けない測 定が可能である。  The interference fringes formed by the two light beams at that position are affected by the transmitted wavefront (signal wavefront) corresponding to the aberration of the test object, but are not affected by disturbance or aberration on the light source side. Therefore, according to this shearing interference measurement method, measurement can be performed without being affected by disturbance or aberration on the light source side.
好ましくは、 このシアリング千涉測定方法において、 前記 2光束の位相をシフ 卜させつつ前記干渉縞を複数回検出する位相シフ ト干渉法を適用する。 そのよう にすれば、 測定精度を高めることができる。  Preferably, in this shearing measurement method, a phase shift interferometry for detecting the interference fringes a plurality of times while shifting the phase of the two light beams is applied. By doing so, measurement accuracy can be improved.
また、 本発明のシァリング干渉計は、 光源から射出した測定光束の光路中に配 置され、 かつその測定光束を分割して互いに波面のずれた 2光束を生成すると共 に、 それら 2光束をその波面のずれた状態で被検物に投光する分割光学系と、 前 記被検物を透過した前記 2光束の波面が重なり合う位置に配置された検出器とを 備える。 このシァリング干渉測計によれば、 光源側の外乱や収差の影響を受けな い測定を行うことが可能である。 Further, the shearing interferometer of the present invention is arranged in the optical path of the measurement light beam emitted from the light source, and divides the measurement light beam to generate two light beams having different wavefronts. A split optical system for projecting the two light beams onto the object with their wavefronts shifted, and a detector disposed at a position where the wavefronts of the two light beams transmitted through the object overlap each other. . According to this shearing interferometer, it is possible to perform measurement without being affected by disturbance or aberration on the light source side.
好ましくは、 このシァリング干渉計において、 前記検出器の配置位置は、 前記 分割光学系の分割面と共役な位置である。 このようにすれば、 光源側の外乱ゃ収 差の影響を受けない測定を確実に行うことが可能となる。  Preferably, in this shearing interferometer, the arrangement position of the detector is a position conjugate with the division plane of the division optical system. With this configuration, it is possible to reliably perform the measurement that is not affected by the disturbance variance on the light source side.
また、 好ましくは、 このシァリング干渉計において、 前記被検物を透過し前記 検出器に入射する前記 2光束の光路には、 前記 2光束を再分割してそれら 2光束 の波面を前記検出器上に重ね合わせる分割光学系が配置される。  Also preferably, in this shearing interferometer, the optical path of the two light beams that passes through the test object and enters the detector is divided into two light beams, and the wavefronts of the two light beams are placed on the detector. Are arranged.
また、 好ましくは、 このシァリング干渉計において、 前記測定光束を分割する 分割光学系と、 前記 2光束を再分割する分割光学系とは、 共役関係にある。 また、 好ましくは、 このシァリング干渉計において、 前記 2光束の光路に、 前 記検出器上で波面が重なり合う前記 2光束以外の光をカツ 卜するマスクが配置さ れる。 このようにすれば、 測定精度を高めることができる。  Preferably, in the shearing interferometer, the splitting optical system for splitting the measurement light beam and the splitting optical system for splitting the two light beams have a conjugate relationship. Preferably, in this shearing interferometer, a mask for cutting light other than the two light beams whose wavefronts overlap on the detector is arranged in the optical path of the two light beams. In this way, measurement accuracy can be improved.
また、 好ましくは、 このシァリング干渉計において、 前記分割光学系は、 回折 光学素子からなる。  Also, preferably, in this shearing interferometer, the split optical system comprises a diffractive optical element.
また、 本発明のシァリング干渉計は、 光源から射出した測定光束の光路中に配 置され、 かつその測定光束を分割して互いに波面のずれた 2光束を生成すると共 に、 それら 2光束をその波面のずれた状態で被検物に投光する分割光学系と、 前 記被検物から前記分割光学系に戻った前記 2光束の波面が重なり合う位置に配置 された検出器とを備えたことを特徴とする。 このシアリング千渉測計によれば、 光源側の外乱や収差の影響を受けない測定を行うことが可能である。  Further, the shearing interferometer of the present invention is arranged in the optical path of the measurement light beam emitted from the light source, and divides the measurement light beam to generate two light beams whose wavefronts are deviated from each other, and combines the two light beams. A split optical system for projecting light to the test object with a wavefront shifted, and a detector arranged at a position where the wavefronts of the two light beams returning from the test object to the split optical system overlap each other. It is characterized by. According to this shearing interferometer, it is possible to perform measurement without being affected by disturbance or aberration on the light source side.
好ましくは、 このシァリング干渉計において、 前記分割光学系は、 前記測定光 束を透過光束と反射光束との 2光束に分割するビームスプリツ夕と、 前記ビーム スプリッ夕にて分割された前記 2光束を、 互いに波面のずれた状態で被検物に投 光する偏向光学系とを備える。  Preferably, in the shearing interferometer, the splitting optical system includes: a beam splitter that splits the measurement light beam into two light beams of a transmitted light beam and a reflected light beam; and the two light beams split by the beam splitter. A deflecting optical system for projecting light on the test object with the wavefronts shifted from each other.
また、 好ましくは、 このシァリング干渉計において、 前記ビ一ムスプリヅ夕に は、 偏光ビームスプリツ夕が使用され、 前記分割光学系と前記検出器との間の前 記 2光束の光路には、 偏光板が配置される。 このようにすれば、 測定精度を高め ることができる。 Preferably, in the shearing interferometer, a polarization beam splitter is used in the beam splitter, and a polarization beam splitter is used between the split optical system and the detector. A polarizing plate is arranged in the optical path of the two light beams. In this way, measurement accuracy can be improved.
また、好ましくは、このシァリング干渉計において、前記検出器の配置位置は、 前記被検物の被検面と共役な位置である。 このようにすれば、 光源側の外乱ゃ収 差の影響を受けない測定を確実に行うことが可能となる。  Preferably, in the shearing interferometer, the position of the detector is a position conjugate with the surface of the test object. With this configuration, it is possible to reliably perform the measurement that is not affected by the disturbance variance on the light source side.
また、 好ましくは、 このシァリング干渉計において、 前記 2光束の光路に、 記 検出器上で波面が重なり合う前記 2光束以外の光をカツ 卜するマスクが配置され る。 このようにすれば、 測定精度を高めることができる。  Preferably, in this shearing interferometer, a mask for cutting light other than the two light beams whose wavefronts overlap on the detector is arranged in the optical path of the two light beams. In this way, measurement accuracy can be improved.
また、 本発明の投影光学系の製造方法は、 本 ¾明のシァリング干渉測定方法に より投影光学系の一部又は全部を検査する手順を含むことを特徴とする。 本発明 のシァリング干渉測定方法は高精度な測定が可能なので、 その検査は高精度に行 われる。 したがって、 本発明の投影光学系の製造方法によれば、 高性能な投影光 学系を製造することができる。  Further, a method of manufacturing a projection optical system according to the present invention includes a procedure for inspecting a part or all of the projection optical system by the shearing interference measurement method of the present invention. Since the shearing interference measurement method of the present invention can perform high-accuracy measurement, the inspection is performed with high accuracy. Therefore, according to the method for manufacturing a projection optical system of the present invention, a high-performance projection optical system can be manufactured.
また、 本発明の投影光学系は、 本発明の投影光学系の製造方法により製造され たことを特徴とする。 このような投影光学系は、 高性能である。  Further, a projection optical system according to the present invention is manufactured by the method for manufacturing a projection optical system according to the present invention. Such a projection optical system has high performance.
また、本発明の投影露光装置は、本発明の投影光学系を含むことを特徴とする。 このような投影露光装置は、 高性能である。  Further, a projection exposure apparatus of the present invention includes the projection optical system of the present invention. Such a projection exposure apparatus has high performance.
|¾面の簡単な説日^! | ¾A simple story of the face ^!
図 1 ( a ) は、 第 1実施形態のシァリング干渉計の構成図、 図 1 ( b ) は、 第 1実施形態のシァリング干渉計のァライメン卜方法を説明する図である。  FIG. 1A is a configuration diagram of the shearing interferometer of the first embodiment, and FIG. 1B is a diagram illustrating an alignment method of the shearing interferometer of the first embodiment.
図 2は、 第 1実施形態のシァリング干渉計の変形例を示す図である。  FIG. 2 is a diagram showing a modified example of the shearing interferometer of the first embodiment.
図 3 ( a ) は、 第 2実施形態のシァリング干渉計の構成図、 図 3 ( b ) は、 第 2実施形態のシァリング干渉計のァライメント方法を説明する図である。  FIG. 3A is a configuration diagram of the shearing interferometer of the second embodiment, and FIG. 3B is a diagram illustrating an alignment method of the shearing interferometer of the second embodiment.
図 4は、 第 2実施形態のシァリング干渉計において C C Dカメラ 3の撮像面と 回折光学素子 G 2 1とが共役関係にあるものを示す図である。  FIG. 4 is a diagram illustrating the shearing interferometer of the second embodiment in which the imaging surface of the CCD camera 3 and the diffractive optical element G21 are in a conjugate relationship.
図 5は、 第 2実施形態のシァリング干渉計の変形例を示す図である。  FIG. 5 is a diagram showing a modified example of the shearing interferometer of the second embodiment.
図 6 ( a ) は、 第 3実施形態のシァリング干渉計の構成図である。 図 6 ( b ) は、 このシァリング干渉計の光束 L 1 , 2の光路1^ 1 , R 2を示す図である。 図 7は、 第 3実施形態のシァリング干渉計の応用例を示す図である。 FIG. 6A is a configuration diagram of the shearing interferometer of the third embodiment. FIG. 6 (b) is a diagram showing the optical paths 1 ^ 1, R2 of the light beams L1, 2 of this shearing interferometer. FIG. 7 is a diagram illustrating an application example of the shearing interferometer of the third embodiment.
図 8は、 第 3実施形態のシァリング干渉計の変形例を示す図である。  FIG. 8 is a diagram showing a modified example of the shearing interferometer of the third embodiment.
図 9 ( a ) は、 第 4実施形態のシァリング干渉計の構成図である。 図 9 ( b ) はこのシァリング干渉計の光束 L 1 , 2の光路1 1, R 2を示す図である。 図 1 0は、 第 4実施形態のシァリング干渉計の変形例を示す図である。  FIG. 9A is a configuration diagram of the shearing interferometer of the fourth embodiment. FIG. 9B is a diagram showing the optical paths 11 and R2 of the light beams L1 and L2 of the shearing interferometer. FIG. 10 is a diagram illustrating a modified example of the shearing interferometer of the fourth embodiment.
図 1. 1は、 第 5実施形態のシァリング干渉計の構成図である。  FIG. 1.1 is a configuration diagram of the shearing interferometer of the fifth embodiment.
図 1 2は、 第 6実施形態のシァリング干渉計の構成図である。  FIG. 12 is a configuration diagram of the shearing interferometer of the sixth embodiment.
図 1 3は、 第 7実施形態の投影露光装置の概略構成図である。  FIG. 13 is a schematic configuration diagram of the projection exposure apparatus of the seventh embodiment.
図 1 4は、 従来のシァリング干渉計を示す図である。 日 》荬施する めの慕^の形熊  FIG. 14 is a diagram showing a conventional shearing interferometer. Sun》 荬
以下、 図面に基づいて本発明の実施形態について説明する。 .  Hereinafter, embodiments of the present invention will be described with reference to the drawings. .
[第 1実施形態]  [First Embodiment]
図 1に基づいて本発明の第 1実施形態について説明する。  A first embodiment of the present invention will be described with reference to FIG.
本実施形態では、 被検物の透過波面を測定するタイプの本発明のシァリング干 渉計、 及びそのシァリング干渉方法を説明する。  In the present embodiment, a shearing interferometer of the present invention of a type for measuring a transmitted wavefront of a test object and a shearing interferometer thereof will be described.
図 1 ( a ) は、 本実施形態のシァリング干渉計の構成図である。  FIG. 1A is a configuration diagram of the shearing interferometer of the present embodiment.
なお、 ここでは、 被検物が投影露光装置の投影光学系 P L (例えば、 E U V L ) であるとの前提で説明するが、 本発明は他の被検物にも適用できる。  Here, the description will be made on the assumption that the test object is the projection optical system P L (for example, EUVL) of the projection exposure apparatus, but the present invention can be applied to other test objects.
シァリング干渉計において、 投影光学系 P Lには、 レチクル面 R側から測定光 束 (以下、 そのレチクル面 Rの一点から発散する球面波とする。 ) が入射され る。 また、 投影光学系 P Lのウェハ面 W側に、 C C Dカメラ 3などの検出器が配 In the shearing interferometer, a measurement light beam (hereinafter, referred to as a spherical wave diverging from one point of the reticle surface R) enters the projection optical system PL from the reticle surface R side. In addition, a detector such as a CCD camera 3 is arranged on the wafer surface W side of the projection optical system PL.
¾ れる o O
なお、 測定光束 Lは、 不図示の光源から出射された光束をレチクル面 R上に集 光させることなどによって生成されたものである。  The measurement light beam L is generated by collecting a light beam emitted from a light source (not shown) on the reticle surface R.
ここで、 本実施形態のシァリング干渉計においては、 レチクル面 R側の測定光 束 L中に分割光学素子 (例えば、 回折光学素子 G l 1である。 以下、 回折光学素 子 G 1 1とする。 ) が挿入される。  Here, in the shearing interferometer of the present embodiment, a split optical element (for example, a diffractive optical element G11) is included in the measurement light beam L on the reticle surface R side. ) Is inserted.
なお、 ここでは、 回折光学素子 G l 1の挿入位置を、測定光束 Lの集束位置(レ チクル面 R ) よりも光源側とする。 Here, the insertion position of the diffractive optical element Gl1 is determined by the focusing position of the measurement light beam L (L The light source side is closer to the tickle surface R).
この回折光学素子 G l 1は、 測定光束 Lを分割して互いに波面のずれた 2つの 光束 L 1 , 光束 L 2を生成する。 例えば、 回折光学素子 G 1 1において生起する 0次回折光及び 1次回折光が、それぞれ光束 L 1及び光束 L 2として使用される。 なお、 図 1 ( a ) では、 光束 L 1の波面と光束 L 2の波面とが横方向 (物体高 方向) にずれており、 両光束の集光位置がレチクル面 R上の互いにずれた位置と なった様子を示した。  The diffractive optical element Gl1 divides the measurement light beam L to generate two light beams L1 and L2 whose wavefronts are shifted from each other. For example, the 0th-order diffracted light and the 1st-order diffracted light generated in the diffractive optical element G11 are used as the light flux L1 and the light flux L2, respectively. In FIG. 1 (a), the wavefront of the light beam L1 and the wavefront of the light beam L2 are shifted in the horizontal direction (object height direction), and the light-collecting positions of both light beams are shifted from each other on the reticle surface R. Was shown.
ここで、 回折光学素子 G 1 1においては、 光束 L 1, L 2以外の余分な光も発 生している。  Here, in the diffractive optical element G11, extra light other than the light fluxes L1 and L2 is also generated.
そこで、 本実施形態では、 回折光学素子 G l 1の射出側にその余分な光をカツ トするマスク M l 1が配置されることが好ましい。  Therefore, in the present embodiment, it is preferable to dispose a mask Ml1 for cutting the extra light on the exit side of the diffractive optical element G11.
因みに、 最も効率良くカッ トできるのは、 集光点の近傍 (ここでは、 レチクル 面 Rの近傍) に配置された場合である。  By the way, the most efficient cut can be made when it is placed near the focal point (here, near the reticle surface R).
図 1 ( a ) の下部に示すように、 このマスク M 1 1は、 光束 L 1の集光点と光 束 L 2の集光点とにそれぞれ開口部を有し、 それ以外の部分が遮光部となったマ スクである。  As shown in the lower part of FIG. 1 (a), this mask M11 has openings at the light-condensing point of the light beam L1 and the light-condensing point of the light beam L2, respectively, and the other parts are light-shielded. It is a mask that became a department.
マスク M 1 1を透過し、 その後投影光学系 P Lを透過した光束 L 1と光束 L 2 とは、 何れもウェハ面 W上 (の互いにずれた位置) に集光する。  The light beam L1 and the light beam L2 that have passed through the mask M11 and then have passed through the projection optical system PL are condensed on the wafer surface W (at positions shifted from each other).
また、 図 1 ( a ) に示すように、 本実施形態の C C Dカメラ 3の撮像面は、 投 影光学系 P Lに関し回折光学素子 G 1 1 (の回折面)と共役な位置に配置される。 本実施形態のシァリング干渉測定では、 この C C Dカメラ 3の出力と、 測定光 束 Lから光束 L l, L. 2へのシァ方向及びシァ量とに基づいて、 投影光学系 P L の収差に相当する透過波面を算出する。  Further, as shown in FIG. 1A, the imaging surface of the CCD camera 3 of the present embodiment is arranged at a position conjugate with (the diffraction surface of) the diffraction optical element G11 with respect to the projection optical system PL. In the shearing interference measurement of the present embodiment, based on the output of the CCD camera 3, the shear direction and the shear amount from the measurement light beam L to the light beams Ll and L.2, it corresponds to the aberration of the projection optical system PL. Calculate the transmitted wavefront.
なお、 シァ量及びシァ方向は、 シァリング干渉計の設計デ一夕や、 シァリング 干渉計から実測されたデ一夕から求まる。  The shear amount and shear direction can be obtained from the design data of the shearing interferometer and the data measured by the shearing interferometer.
さて、 以上の構成のシァリング干渉計においても、 測定光束 Lの波面には、 光 源側の外乱や収差によるノイズ波面が重畳されている。  Now, in the above-described shearing interferometer, a noise wavefront due to disturbance or aberration on the light source side is superimposed on the wavefront of the measurement light beam L.
よって、 この測定光束 Lを分割してなる光束 L 1の波面と光束 L 2の波面とに も、 それぞれ同じノイズ波面が重畳される。 しかし、 このシァリング干渉計において、 投影光学系 P Lに関して回折光学素 子 G 1 1と共役な位置 (ここでは C C Dカメラ 3の撮像面) では、 光束 1の波 面に重畳されているノイズ波面と、 光束 L 2の波面に重畳されているノイズ波面 とが丁度重なり合い、 ノイズ波面同士の位相差はほぼ 0となる。 Therefore, the same noise wavefront is superimposed on the wavefront of the light beam L1 and the wavefront of the light beam L2 obtained by dividing the measurement light beam L. However, in this shearing interferometer, at the position conjugate to the diffractive optical element G11 with respect to the projection optical system PL (here, the imaging surface of the CCD camera 3), the noise wavefront superimposed on the wavefront of the light flux 1 The noise wavefront superimposed on the wavefront of the light beam L2 just overlaps, and the phase difference between the noise wavefronts is almost zero.
その一方で、 光束 L 1と光束 L 2とは互いに波面のずれた状態で投影光学系 P Lに入射するので、 光束 L 1に重畳されている、 投影光学系 P Lの収差情報に相 当する透過波面 (信号波面) と、 光束 L 2に重畳されているその信号波面とは、 その位置では互いにずれて、 位相差分布が生じる。  On the other hand, since the light beam L1 and the light beam L2 enter the projection optical system PL with their wavefronts shifted from each other, the transmission corresponding to the aberration information of the projection optical system PL superimposed on the light beam L1 The wavefront (signal wavefront) and the signal wavefront superimposed on the light beam L2 are shifted from each other at the position, and a phase difference distribution is generated.
その結果、 その位置に配置された C C Dカメラ 3の撮像面上に光束 L 1と光束 L 2とが成す干渉縞は、 投影光学系 P Lの収差に相当する透過波面 (信号波面) の影響を受ける一方で、 ノイズ波面の影響を受けない。  As a result, the interference fringes formed by the light beam L1 and the light beam L2 on the imaging surface of the CCD camera 3 arranged at that position are affected by the transmitted wavefront (signal wavefront) corresponding to the aberration of the projection optical system PL. On the other hand, it is not affected by the noise wavefront.
よって、 その C C Dカメラ 3の出力に基づけば、 光源側の外乱や収差の影響を 受けない測定が可能となる。  Therefore, based on the output of the CCD camera 3, measurement that is not affected by disturbance or aberration on the light source side can be performed.
次に、 本実施形態において、 回折光学素子 G 1 1と C C Dカメラ 3との間の共 役関係を確保するためのァラィメント方法について説明する。  Next, in the present embodiment, an alignment method for ensuring a cooperative relationship between the diffractive optical element G11 and the CCD camera 3 will be described.
図 1 ( b ) は、 本実施形態のシァリング干渉計のァライメント方法を説明する 図である。  FIG. 1B is a diagram illustrating an alignment method of the shearing interferometer of the present embodiment.
このァライメントでは、 共役関係が設定されているか否かを、 光束 L 1と光束 L 2とが C C Dカメラ 3の撮像面上でほぼ重なっているか否かにより検知する。 ァライメント時には、 先ず、 回折光学素子 G l 1に入射する測定光束 L中に、 その測定光朿 Lを部分的に遮るターゲッ ト Tを配置すると共に、 光束 L l, 光束 L 2の一方を遮光するべくマスク M 1 1の開口部の一方を遮光する。  In this alignment, it is detected whether or not the conjugate relationship is set based on whether or not the light flux L1 and the light flux L2 are substantially overlapped on the imaging surface of the CCD camera 3. At the time of alignment, first, a target T that partially blocks the measurement light L is placed in the measurement light L incident on the diffractive optical element Gl1, and one of the light L1 and the light L2 is shielded. One of the openings of the mask M11 is shielded from light.
なお、 このターゲッ ト Tの配置箇所は、 回折光学素子 G 1 1になるべく近接し た箇所であることが好ましい。  It is preferable that the target T is disposed at a position as close as possible to the diffractive optical element G11.
また、 光束 L 1と光束 L 2の一方を遮光するために、 光束 L 1と光束 L 2との 一方の集光点にのみマスク M 1 1の開口部が配置され、 かつ、 他方の集光点には マスク M 1 1の遮光部が配置されるよう、 マスク M 1 1をレチクル面 R面内でず らしてもよい。  In order to shield one of the light beam L1 and the light beam L2, the opening of the mask M11 is arranged only at one of the light-condensing points of the light beam L1 and the light beam L2, and the other light-condensing portion The mask M11 may be shifted in the reticle plane R so that the light shielding portion of the mask M11 is arranged at a point.
この状態では、 C C Dカメラ 3の撮像面には、 光束 L 1 , 光朿 L 2のうち一方 のみによる夕一ゲヅ ト Tの像が形成されている。 In this state, one of the light flux L 1 and the light flux L 2 is provided on the imaging surface of the CCD camera 3. Only in the evening, an image of the gate T is formed.
このときの C C Dカメラ 3の出力から、 撮像面における夕一ゲヅ ト Tの像の形 成 111直を言 3憶する。  From the output of the CCD camera 3 at this time, the formation of the image of the evening gate T on the imaging surface is directly remembered.
さらに、 ターゲッ ト Tを同じ位置に配置したまま、 光束 L .l, 光束 L 2のうち 他方を遮光した状態で C C Dカメラ 3の出力を参照し、 撮像面における夕一ゲッ ト Tの形成位置が前記記憶した形成位置と同じになるよう、 回折光学素子 G l 1 や C C Dカメラ 3の位置を調整する。  Further, with the target T arranged at the same position, the output of the CCD camera 3 is referred to while the other of the light beam L.l and the light beam L2 is shielded, and the position of the formation of the target T on the imaging surface is determined. The positions of the diffractive optical element Gl1 and the CCD camera 3 are adjusted so as to be the same as the stored formation positions.
このようにすれば、 簡単にァライメントをすることができる。  In this way, the alignment can be made easily.
(第 1実施形態の変形例)  (Modification of the first embodiment)
図 2は、 第 1実施形態のシァリング干渉計の変形例を示す図である。  FIG. 2 is a diagram showing a modified example of the shearing interferometer of the first embodiment.
上記説明では、 回折光学素子 G l 1の配置される位置を、 レチクル面 Rよりも 光源側としたが (図 1参照) 、 この変形例では、 図 2に'示すように、 回折光学素 子の位置をレチクル面 よりも投影光学系 P L側とする。 図 2中符号 G 1 1 ' で 示すのが、 本変形例の回折光学素子である。  In the above description, the position at which the diffractive optical element Gl1 is disposed is on the light source side with respect to the reticle surface R (see FIG. 1). However, in this modified example, as shown in FIG. Is positioned closer to the projection optical system PL than the reticle surface. A diffractive optical element according to the present modification is indicated by reference numeral G 11 'in FIG.
この回折光学素子 G l l, において発生した余分な光をカッ トするためのマス ク M 1 1 'については、図 2に示すようにウェハ面 Wの近傍に配置ざれればよい。 なお、 この場合も、 C C Dカメラ 3は、 投影光学系 P Lに関し回折光学素子 G 1 1 ' (の回折面) と共役な位置に配置される。  The mask M 11 ′ for cutting off the extra light generated in the diffractive optical element G 11 may be arranged near the wafer surface W as shown in FIG. In this case as well, the CCD camera 3 is arranged at a position conjugate with (the diffraction surface of) the diffractive optical element G 11 ′ with respect to the projection optical system PL.
[第 2実施形態]  [Second embodiment]
図 3に基づいて本発明の第 2実施形態について説明する。  A second embodiment of the present invention will be described based on FIG.
本実施形態においても、 第 1実施形態と同様、 被検物の透過波面を測定する夕 イブの本発明のシァリング干渉計、 及びそのシァリング干渉方法を説明する。 なお、 ここでは、 第 1実施形態との相違点についてのみ説明し、 その他の部分 については説明を省略する。  In the present embodiment as well, as in the first embodiment, an evening shearing interferometer of the present invention for measuring a transmitted wavefront of a test object and a shearing interference method thereof will be described. Here, only the differences from the first embodiment will be described, and the description of the other parts will be omitted.
図 3 ( a ) は、 本実施形態のシァリング干渉計の構成図である。  FIG. 3A is a configuration diagram of the shearing interferometer of the present embodiment.
図 1に示す第 1実施形態のシァリング干渉計との構成の相違点は、 分割光学素 子としての回折光学素子が、 投影光学系 P Lのレチクル面 R側だけでなく、 ゥェ ハ面 W側にも配置される点にある。  The difference in configuration from the shearing interferometer of the first embodiment shown in FIG. 1 is that the diffractive optical element as a split optical element is not only on the reticle surface R side of the projection optical system PL but also on the wafer surface W side. It is also located at the point.
また、 これは、図 1 4 ( a )に示した従来のシァリング干渉計の構成において、 7 This is also the case with the configuration of the conventional shearing interferometer shown in FIG. 14 (a). 7
9 分割光学素子としての回折光学素子を投影光学系 P Lのレチクル面 R側に追加配 置した構成でもある。 In this configuration, a diffractive optical element as a nine-segment optical element is additionally arranged on the reticle surface R side of the projection optical system PL.
すなわち、 本実施形態のシァリング干渉計には、 レチクル面 R側、 ウェハ面 W 側にそれぞれ回折光学素子 G 2 1、 G 2 2が配置される。  That is, in the shearing interferometer of the present embodiment, diffractive optical elements G 21 and G 22 are arranged on the reticle surface R side and the wafer surface W side, respectively.
回折光学素子 G 2 1は、 第 1実施形態の回折光学素子 G 1 1と同様、 互いに波 面のずれた 2つの光束 L 1, 光束 L 2を生成する。  The diffractive optical element G21, like the diffractive optical element G11 of the first embodiment, generates two light beams L1 and L2 whose wavefronts are shifted from each other.
例えば、 回折光学素子 G 2 1において生起する 0次回折光及び 1次回折光が、 それぞれ光束 L l, 光束 L 2として使用される。  For example, the 0th-order diffracted light and the 1st-order diffracted light generated in the diffractive optical element G21 are used as the light flux Ll and the light flux L2, respectively.
一方、 回折光学素子 G 2 2は、 投影光学系 P Lから射出する 2つの光束 L 1, 光束 L 2を、回折光学素子 G 2 1と等価なずれ量で統合し、 1つの光束にする(逆 シァする) ものである。  On the other hand, the diffractive optical element G22 integrates the two light beams L1 and L2 emitted from the projection optical system PL with a displacement equivalent to that of the diffractive optical element G21 to form one light beam (reverse To do).
このような回折光学素子 G 2 2は、 回折光学素子 G 1 1の回折パターン、 投影 光学系 P Lの倍率、 使用波長などに応じて予め設計される。  Such a diffractive optical element G22 is designed in advance according to the diffraction pattern of the diffractive optical element G11, the magnification of the projection optical system PL, the wavelength used, and the like.
このシァリング干渉計においては、 回折光学素子 G 2 1、 投影光学系 P L、 及 び回折光学素子 G 2 2の相互作用により、 光束 L 1の波面に重畳されているノィ ズ波面と、 光束 L 2の波面に重畳されているノイズ波面とが丁度重なり合い、 ノ ィズ波面同士の位相差はほぼ 0となる。  In this shearing interferometer, due to the interaction of the diffractive optical element G 21, the projection optical system PL, and the diffractive optical element G 22, the noise wave front superimposed on the wave front of the light flux L 1 and the light flux L 2 The noise wavefront superimposed on the wavefronts just overlaps, and the phase difference between the noise wavefronts is almost zero.
よって、 その位置に光束 L 1と光束 L 2とが成す干渉縞は、 .投影光学系 P Lの 収差に相当する透過波面 (信号波面) の影響を受ける一方で、 ノイズ波面の影響 を受けない。  Therefore, the interference fringes formed by the light beam L1 and the light beam L2 at that position are affected by the transmitted wavefront (signal wavefront) corresponding to the aberration of the projection optical system PL, but are not affected by the noise wavefront.
さらに、 本実施形態のシァリング干渉計においては、 回折光学素子 G 2 2 (の 回折面) を、 投影光学系 P Lに関し回折光学素子 G 2 1 (の回折面) と共役な位 置に配置すれば、 光束 L 1の集光点と光束 L 2の集光点とがウェハ面 W上で一致 し、 それら光束 L 1の波面と光束 L 2の波面とを同方向に進行させることができ るので、 干渉縞を略ワンカラーにすることができる。  Furthermore, in the shearing interferometer of the present embodiment, the diffractive optical element G 22 (the diffractive surface thereof) is arranged at a position conjugate with the diffractive optical element G 21 (the diffractive surface thereof) with respect to the projection optical system PL. Since the focal point of the light beam L1 and the focal point of the light beam L2 coincide on the wafer surface W, the wavefront of the light beam L1 and the wavefront of the light beam L2 can travel in the same direction. The interference fringes can be made almost one color.
なお、 一般にワンカラーに近くなる (すなわち干渉縞の縞間隔が大きくなる) ほど、 C C Dカメラ 3による縞の検出精度は高くなるので、測定精度が向上する。 また、 このとき、 回折光学素子 G 2 2から射出した後の光束 L 1の波面と光束 L 2の波面とは常に重なりながら進行するので、 C C Dカメラ 3の光軸方向の位 置に自由度が与えられる。 In general, the closer to one color (ie, the larger the fringe interval of the interference fringes), the higher the fringe detection accuracy of the CCD camera 3 and the higher the measurement accuracy. At this time, since the wavefront of the light beam L1 and the wavefront of the light beam L2 after exiting from the diffractive optical element G22 always travel while overlapping, the position in the optical axis direction of the CCD camera 3 is changed. The degree of freedom is given to the position.
よって、 C C Dカメラ 3の撮像面を例えば投影光学系 P Lの瞳と共役な位置に 配置しておき、 観測された干渉縞に基づく投影光学系 P Lの評価を容易にするこ ともできる。  Therefore, the imaging surface of the CCD camera 3 can be arranged, for example, at a position conjugate with the pupil of the projection optical system PL, and the evaluation of the projection optical system PL based on the observed interference fringes can be facilitated.
なお、 本実施形態においても、 余分な光をカッ トするために、 マスクを使用す ることが好ましい。  In the present embodiment, it is preferable to use a mask in order to cut off excess light.
本実施形態では、 回折光学素子が 2つ使用されるので、 マスクも 2つ使用され ることが好ましい。  In this embodiment, since two diffractive optical elements are used, it is preferable that two masks are also used.
すなわち、 図 3 ( a ) に示すように、 回折光学素子 G 2 1で発生する余分な光 については、 レチクル面 R面に配置されたマスク M 2 1がカッ トし、 回折光学素 子 G 2 2で発生する余分な光については、 ウェハ面 W面に配置されたマスク M 2 2がカツ トする。  That is, as shown in FIG. 3A, the extra light generated by the diffractive optical element G 21 is cut by the mask M 21 arranged on the reticle surface R, and the diffractive optical element G 2 The extra light generated in 2 is cut by the mask M22 arranged on the wafer surface W surface.
なお、 上記した回折光学素子 G 2 2から射出する光束 L 1及び光束 L 2は同一- の点に集光するので、 マスク M 2 2の開口部は、 1つでよい。  Note that the light beam L1 and the light beam L2 emitted from the diffractive optical element G22 are condensed at the same point, so that the mask M22 may have only one opening.
次に、 本実施形態において、 上記した (回折光学素子 G 2 1と回折光学素子 G 2 2との) 共役関係を確保するためのァライメント方法を説明する。  Next, in this embodiment, an alignment method for ensuring the above-described conjugate relationship between the diffractive optical element G21 and the diffractive optical element G22 will be described.
図 3 ( b ) は、 本実施形態のシァリング干渉計のァライメント方法を説明する 図である。  FIG. 3B is a diagram for explaining an alignment method of the shearing interferometer of the present embodiment.
このァライメント方法も、 位置調整の対象が回折光学素子 G 2 1や回折光学素 子 G 2 2となるだけで、 第 1実施形態のシアリング干渉計のァラィメント方法と 同じである。  This alignment method is the same as the alignment method of the shearing interferometer of the first embodiment, except that the position adjustment target is the diffractive optical element G21 and the diffractive optical element G22.
すなわち、 本実施形態のァライメントでも、 先ず、 回折光学素子 G 2 1に入射 する測定光束 L中にその測定光束 Lを部分的に遮る夕ーゲット Tを配置すると共 に、 光束 L l, 光束 L 2の一方を遮光するべくマスク M 2 1の開口部の一方を遮 光する。  That is, also in the alignment of the present embodiment, first, in the measurement light beam L incident on the diffractive optical element G 21, a sunset T which partially blocks the measurement light beam L is arranged, and at the same time, the light beams L 1 and L 2 One of the openings of the mask M21 is shielded so as to shield one of the openings.
なお、 このターゲッ ト Tの配置箇所は、 回折光学素子 G 2 1になるべく近接し た箇所であることが好ましい。  It is preferable that the target T is disposed at a position as close as possible to the diffractive optical element G21.
また、 光束 L 1と光束 L 2の一方を遮光するために、 光束 L 1と光束 L 2との 一方の集光点にのみマスク M 2 1の開口部が配置され、 かつ他方の集光点にはマ スク M21の遮光部が配置されるよう、 マスク M21をレチクル面 R面内でずら してもよい。 Further, in order to shield one of the light beam L1 and the light beam L2, the opening of the mask M21 is arranged only at one of the light-condensing points of the light beam L1 and the light beam L2, and the other light-condensing point To The mask M21 may be shifted in the reticle plane R plane so that the light shielding portion of the mask M21 is arranged.
この状態では、 CCDカメラ 3の撮像面には、 光束 L l, 光束 L 2のうち一方 のみによる夕一ゲヅ ト Tの像が形成されている。  In this state, an image of the evening gate T by only one of the light flux Ll and the light flux L2 is formed on the imaging surface of the CCD camera 3.
よって、 このときの CCDカメラ 3の出力から、 撮像面におけるターゲッ ト T の像の形成位置を記憶する。  Therefore, the position where the image of the target T is formed on the imaging surface is stored from the output of the CCD camera 3 at this time.
さらに、 ターゲッ ト Tを同じ位置に配置したまま、 光束 L 1, 光束 L 2のうち 他方を遮光した状態で、 CCDカメラ 3の出力を参照し、 撮像面における夕ーゲ ット Tの形成位置が前記記憶した形成位置と同じになるよう、 回折光学素子 G 2 1や回折光学素子 G 22の位置を調整する。  Furthermore, while the target T is arranged at the same position and the other of the light beam L1 and the light beam L2 is shielded, the output of the CCD camera 3 is referred to, and the formation position of the sunset T on the imaging surface is determined. The positions of the diffractive optical element G21 and the diffractive optical element G22 are adjusted so that is the same as the stored formation position.
なお、 図 4は、 本実施形態のシァリング干渉計において、 回折光学素子 G21 と回折光学素子 G 22とは非共役であり、 その代わりに、 CCDカメラ 3の撮像 面と回折光学素子 G 21 (の回折面) とを共役関係に設定した場合を示す図であ る。  FIG. 4 shows that the diffractive optical element G21 and the diffractive optical element G22 are non-conjugated in the shearing interferometer of the present embodiment, and instead, the imaging surface of the CCD camera 3 and the diffractive optical element G21 FIG. 4 is a diagram showing a case where a diffraction surface (a diffraction surface) is set to a conjugate relationship.
回折光学素子 G 21と回折光学素子 G 22とが共役関係に設定されなくとも、 このように CCDカメラ 3の撮像面と回折光学素子 G21 (の回折面) とが共役 関係に設定されれば、 光束 L 1の波面に重畳されるノイズ波面と、 光束 L 2の波 面に重畳されるノィズ波面とが C C Dカメラ 3の撮像面上で重なる。  Even if the diffractive optical element G21 and the diffractive optical element G22 are not set to a conjugate relationship, if the imaging surface of the CCD camera 3 and the (diffractive surface of) the diffractive optical element G21 are set to a conjugate relation, The noise wavefront superimposed on the wavefront of the light beam L1 and the noise wavefront superimposed on the wavefront of the light beam L2 overlap on the imaging surface of the CCD camera 3.
よって、 第 1実施形態と同様の効果が得られる。  Therefore, the same effect as in the first embodiment can be obtained.
また、 このときのァライメントは、 上記ァライメント方法 (図 3 (b) 参照) において位置調整の対象を回折光学素子 G 21や CCDカメラ 3とすればよい。 (第 2実施形態の変形例)  In this case, the alignment may be performed by setting the position adjustment target to the diffractive optical element G21 or the CCD camera 3 in the above-described alignment method (see FIG. 3B). (Modification of Second Embodiment)
図 5は、 第 2実施形態のシァリング干渉計の変形例を示す図である。  FIG. 5 is a diagram showing a modified example of the shearing interferometer of the second embodiment.
なお、 ここでは、 第 2実施形態のシァリング干渉計との相違点についてのみ説 明し、 その他の部分については説明を省略する。 また、 以下に説明する変形例と 同様に、 第 1実施形態のシアリング干渉計を変形することも可能である。  Here, only the differences from the shearing interferometer of the second embodiment will be described, and the description of the other parts will be omitted. Further, similarly to the modified examples described below, the shearing interferometer of the first embodiment can be modified.
上記第 2実施形態では、 光束 1の波面と光束 L 2の波面とのずれ方向が 「横 方向」 (物体高方向) とされているが、 本変形例では、 図 5内に太い矢印で示す ように、 「波面方向」 (波面に沿う方向) とする。 そのため、 回折光学素子 G 2 1とレチクル面 Rとの間、 回折光学素子 G 2 2と ウェハ面 Wとの間のそれぞれに、 回折光学素子 G 2 1, 、 及び回折光学素子 G 2 2 ' が挿入される。 In the above-described second embodiment, the direction of deviation between the wavefront of the light beam 1 and the wavefront of the light beam L2 is referred to as the “lateral direction” (object height direction). As described above, the term “wavefront direction” (direction along the wavefront) is used. Therefore, a diffractive optical element G 21, and a diffractive optical element G 22 ′ are provided between the diffractive optical element G 21 and the reticle surface R and between the diffractive optical element G 22 and the wafer surface W, respectively. Inserted.
回折光学素子 G 2 1 ' は、 回折光学素子 G 2 1から射出した光束 L 1及び光束 L 2の集光点を一致させるよう予め設計されている。  The diffractive optical element G 21 ′ is designed in advance so that the focal points of the light beam L 1 and the light beam L 2 emitted from the diffractive optical element G 21 coincide.
回折光学素子 G 2 2 ' は、 回折光学素子 G 2 2から射出した光束 L 1及び光束 L 2の集光点を一致させるよう予め設計されている。  The diffractive optical element G22 'is designed in advance so that the converging points of the light beam L1 and the light beam L2 emitted from the diffractive optical element G22 coincide.
なお、 集光点が一致するので、 本実施形態のシァリング干渉計でレチクル面 R に配置されるマスク 3 1の開口部は、 図 5にも示すように 1つでよい。  Since the light-gathering points coincide with each other, only one opening of the mask 31 is arranged on the reticle surface R in the sealing interferometer of the present embodiment, as shown in FIG.
[第 1実施形態及び第 2実施形態の補足]  [Supplement to the first embodiment and the second embodiment]
なお、 上記各実施形態においては、 波面の分割方向と同方向に、 回折光学素子 の少なくとも 1つをシフ 卜させつつ前記干渉縞の検出を行えば (すなわち、 位相 シフト干渉法が適用されれば) 、 測定精度をさらに高めることができる。  In each of the above embodiments, if the interference fringes are detected while shifting at least one of the diffractive optical elements in the same direction as the wavefront dividing direction (that is, if the phase shift interferometry is applied, ) The measurement accuracy can be further improved.
また、 例えば E U V Lのように特殊な波長 (短波長) を使用する被検物の検査 では、 シァリング干渉計の光学素子として屈折部材を使用することは難しいので (なぜなら特殊な波長を透過させる屈折部材の入手は困難だから。 ) 、 上記各実 施形態では分割光学素子として回折光学素子を使用した。 しかし、 屈折部材を使 用できるような被検物については、 分割光学素子の一部又は全部にレンズを使用 してもよい。  Also, in the inspection of a test object using a special wavelength (short wavelength) such as EUVL, it is difficult to use a refraction member as an optical element of a shearing interferometer (because a refraction member that transmits a special wavelength). However, in each of the above embodiments, a diffractive optical element was used as the split optical element. However, a lens may be used for a part or all of the split optical element for a test object that can use a refraction member.
また、 上記各実施形態では、 光束 L 1, L 2の分割の方向を「横方向」又は「波 面方向」 としたが、 光軸方向 (縦方向) とすることもできる。  Further, in each of the above embodiments, the direction of division of the light fluxes L 1 and L 2 is “horizontal direction” or “wavefront direction”, but may be the optical axis direction (vertical direction).
[第 3実施形態]  [Third embodiment]
図 6、 図 7、 図 8に基づいて本発明の第 3実施形態について説明する。  A third embodiment of the present invention will be described based on FIGS. 6, 7, and 8. FIG.
本実施形態は、 被検物からの戻り光の波面 (被検面 4の反射波面) を測定する タイプの本発明のシァリング干渉計、 及びそのシァリング干渉方法を説明する。 図 6 ( a )は、 本実施形態のシァリング干渉計の構成図である。 図 6 ( b ) は、 このシァリング干渉計の光束 L 1 , L 2の光路 R l, R 2を示す図である。  In the present embodiment, a shearing interferometer of the present invention of a type for measuring the wavefront of reflected light from the test object (reflected wavefront of the test surface 4) and a shearing interference method thereof will be described. FIG. 6A is a configuration diagram of the shearing interferometer of the present embodiment. FIG. 6B is a diagram showing the optical paths R 1 and R 2 of the light beams L 1 and L 2 of the shearing interferometer.
このシァリング干渉計には、 被検面 4に入射させるべき測定光束 Lを出射する レーザなどの光源 5、 その測定光束 Lを被検面 4に入射する前に分割して波面の ずれた 2光束 L 1 , L 2を生成すると共にそれらを波面のずれた状態で被検面 4 に投光する分割光学系 34、 被検面 4にて反射した後に分割光学系 34に戻った 光束 L 1 , L 2による干渉縞を検出する CCDカメラ 3などが備えられる。 なお、 符号 6は、 光源 5を射出した測定光束 Lを平行光束に変換するビームェ キスパンダである。 The shearing interferometer has a light source 5 such as a laser that emits a measurement light beam L to be incident on the surface 4 to be measured, and the measurement light beam L is divided before being incident on the surface 4 to be measured. The split optical system 34 generates two shifted light beams L 1 and L 2 and projects them on the test surface 4 with the wavefront shifted, and returns to the split optical system 34 after being reflected by the test surface 4. A CCD camera 3 for detecting interference fringes caused by the light beams L 1 and L 2 is provided. Reference numeral 6 denotes a beam spreader that converts the measurement light beam L emitted from the light source 5 into a parallel light beam.
また、 符号 HM33は、 分割光学系 3 を往復した光束 L 1, L 2を C CD力 メラ 3の方向へ導くハーフミラーである。  Reference numeral HM33 denotes a half mirror for guiding the light beams L 1 and L 2 reciprocating in the split optical system 3 in the direction of the CCD force camera 3.
また、 符号 7は、 CCDカメラ 3に入射する光束 (光束 1 , L 2) を結像す る結像光学系である。  Reference numeral 7 denotes an imaging optical system that forms an image of a light beam (light beam 1, L 2) incident on the CCD camera 3.
ここで、 被検面 4と CCDカメラ 3の撮像面とは、 分割光学系 34、 ハーフミ ラー HM33、 結像光学系 7を介して共役関係にある。  Here, the test surface 4 and the imaging surface of the CCD camera 3 are in a conjugate relationship via the split optical system 34, the half mirror HM33, and the imaging optical system 7.
なお、 後述する他の実施形態においても、 被検面 4と C CDカメラ 3の撮像面 とは、 その間に配置された光学系を介して共役関係にある。  Note that, in other embodiments described later, the test surface 4 and the imaging surface of the CCD camera 3 have a conjugate relationship via an optical system disposed therebetween.
先ず、 分割光学系 34は、 2つのビームスプリツ夕 P 34— 1、 P 34— 2、 及びミラー M 34— 1, 34— 2からなる。  First, the split optical system 34 is composed of two beam splitters P 34-1 and P 34-2, and mirrors M 34-1 and 34-2.
測定光束 Lは、ビームスプリッ夕 P 34— 2にて透過光束と反射光束と(以下、 透過光束を光束 L 1, 反射光束を光束 L 2とする。 ) に分割される。  The measurement light beam L is split into a transmitted light beam and a reflected light beam (hereinafter, the transmitted light beam is referred to as a light beam L1 and the reflected light beam is referred to as a light beam L2) at a beam splitter P34-2.
光朿 L 1は、 ミラ一 M34— 1により反射してビームスプリッ夕 P 34— 1に 入射し、 光束 L 2は、 ミラ一 M34— 2により反射してビームスプリツ夕 P 34 一 1に入射する。  The light beam L1 is reflected by the mirror M34-1 and is incident on the beam splitter P34-1, and the light beam L2 is reflected by the mirror M34-2 and is incident on the beam splitter P34-11.
ビームスプリッ夕 P 34— 1は、 光束 L 1を透過して被検面 4に投光すると共 に、 光束 L 2を反射して被検面 4に投光する。  The beam splitter P34-1 transmits the light flux L1 and emits the light to the surface 4 to be measured, and also reflects the light flux L2 and emits the light to the surface 4 to be measured.
また、 ミラー M 34— 2ゃビ一ムスプリッ夕 P 34— 1の位置は、 これら光束 L 1と光束 L 2とが互いに波面のずれた状態で (光軸をシフ卜させた状態で) 被 検面 4に入射するよう調整されている。  Further, the position of the mirror M 34-2 beam splitter P 34-1 is measured in a state where the light beams L 1 and L 2 are shifted from each other (in a state where the optical axis is shifted). Adjusted to be incident on surface 4.
さらに、 分割光学系 34から被検面 4へ投光され、 かつ被検面 4において反射 した光束 L l, L 2は、 分割光学系 34を逆方向に進行した後、 ハーフミラー H M33において CCDカメラ 3の方向に偏向し、 C CDカメラ 3の撮像面上に干 渉縞を形成する。 本実施形態のシァリング干渉測定では、 この C CDカメラ 3の出力と、 測定光 束 Lから光束 L l, L 2へのシァ方向及びシァ量とに基づいて、 被検面 4の凹凸 に相当する反射波面を算出する。 Further, the light beams L 1 and L 2 emitted from the splitting optical system 34 to the surface 4 to be detected and reflected on the surface 4 to be tested are transmitted through the splitting optical system 34 in the opposite direction, and then are transferred to the half mirror H M33 by the CCD. It is deflected in the direction of camera 3 and forms interference fringes on the imaging surface of CCD camera 3. In the shearing interference measurement according to the present embodiment, based on the output of the CCD camera 3 and the shear direction and the shear amount from the measurement light beam L to the light beams Ll and L2, it corresponds to the unevenness of the surface 4 to be measured. Calculate the reflected wavefront.
なお、 シァ量及びシァ方向は、 シァリング干渉計の設計データや、 シァリング 干渉計から実測されたデータから求まる。  The shear amount and shear direction can be obtained from the design data of the shearing interferometer and the data actually measured by the shearing interferometer.
ここで、 以上の構成のシァリング干渉計においても、 測定光束 Lの波面には、 光源側 (ビームエキスパンダ 6、 光源 5) の外乱や収差によるノイズ波面が重畳 されている。  Here, also in the shearing interferometer having the above configuration, a noise wavefront due to disturbance or aberration on the light source side (beam expander 6, light source 5) is superimposed on the wavefront of the measurement light beam L.
よって、 この測定光束 Lを分割してなる光束 L 1の波面と光束 L 2の波面とに も、 それぞれ同じノイズ波面が重畳される。  Therefore, the same noise wavefront is superimposed on the wavefront of the light beam L1 and the wavefront of the light beam L2 obtained by dividing the measurement light beam L.
しかし、 図 6 (b) に示した光路 R 1を迪る光束 L 1と、 光路 R2を迪る光束 L2とは、 分割光学系 34内の特定の光路を往復する。 よって、 その光束 L 1と その光束 L 2とは、 互いの波面のずれ (光軸のシフ ト) が吸収され、 往復後には 互いの波面を重ね合う (なお、 光路 R 1は、 ハーフミラー HM 33→ビームスプ リツ夕 P 34— 2→ミラ一 M 34- 1→ビームスプリヅ夕 P 34— 1 被検面 4 ビ一ムスプリ ヅ夕 P 34— l→ミラ一M34— ビームスプリツ夕 P 34— 2→ハーフミラ一 HM 33の光路であり、 光路 R2は、 ハーフミラ一 HM33→ ビームスプリ ッ夕 P34— 2→ミラー M34— 2→ビ一ムスプリ ヅ夕 P 34— 1 被検面 4 ビーム.スプリ ツ夕 P 34— 1→ミラ一 M 34— 2 ビ一ムスプリ ヅ 夕 P 34— 2 ハーフミラ一 HM33の光路である。 ) 。  However, the light beam L1 passing through the optical path R1 and the light beam L2 passing through the optical path R2 shown in FIG. 6 (b) reciprocate in a specific optical path in the split optical system. Therefore, the light beam L1 and the light beam L2 absorb the mutual wavefront shift (shift of the optical axis), and overlap each other after reciprocation (the optical path R1 is a half mirror HM33). → Beam split P 34—2 → Mirr M 34-1 → Beam split ヅ P 34—1 Test surface 4 Beam split ヅ Ear P 34— l → Mirr M34 The light path R2 is the half mirror HM33 → beam splitter P34—2 → mirror M34—2 → beam splitter P34—1 The surface to be measured 4 beams. Splitter P34—1 → Mirror M 34—2 Beamspring 夕 Evening P 34—2 This is the optical path of Half Mirror HM33.
よって、 C CDカメラ 3の撮像面上では、 光束 L 1の波面に重畳されているノ ィズ波面と、 光束 L 2の波面に重畳されているノイズ波面とは、 重なり合い、 干 渉縞を生起させることはない。  Therefore, on the imaging surface of the CCD camera 3, the noise wavefront superimposed on the wavefront of the light beam L1 and the noise wavefront superimposed on the wavefront of the light beam L2 overlap, causing interference fringes. I won't let you.
その一方で、 光路 R 1を迪る光束 L 1と、 光路 R 2を迪る光束 L 2とは、 被検 面 4に入射する時点では互いの波面をずらしている。 よって、 光束 L 1の波面に 重畳される、 被検面 4の凹凸に相当する反射波面 (信号波面) と、 光束 L 2の波 面に重畳されるその信号波面とは、 光束 L 1の波面と光束 L 2の波面とが重なつ たときには、 互いにずれる。  On the other hand, the luminous flux L 1 passing through the optical path R 1 and the luminous flux L 2 passing through the optical path R 2 are shifted from each other when they are incident on the surface 4 to be measured. Therefore, the reflected wavefront (signal wavefront) corresponding to the unevenness of the surface 4 to be measured, which is superimposed on the wavefront of the light beam L1, and the signal wavefront superimposed on the wavefront of the light beam L2, are the wavefront of the light beam L1. When the wavefront of the light beam L2 overlaps with the wavefront of the light beam L2, they deviate from each other.
よって、 C CDカメラ 3の撮像面上では、 光束 L 1の波面に重畳されている、 被検面 4の凹凸に相当する反射波面 (信号波面) と、 光束 L 2の波面に重畳され ているその信号波面とは、 重なり合わず、 干渉縞を生起させる。 Therefore, on the imaging surface of the CCD camera 3, the light is superimposed on the wavefront of the light beam L1, The reflected wavefront (signal wavefront) corresponding to the unevenness of the test surface 4 and the signal wavefront superimposed on the wavefront of the light beam L2 do not overlap, and generate interference fringes.
その結果、 C C Dカメラ 3の撮像面上に前記光束 L 1と光束 L 2とが成す干渉 縞は、 被検面 4の凹凸に相当する反射波面 (信号波面) の影響を受ける一方で、 ノイズ波面の影響を受けない。  As a result, the interference fringes formed by the light flux L1 and the light flux L2 on the imaging surface of the CCD camera 3 are affected by the reflected wavefront (signal wavefront) corresponding to the unevenness of the surface 4 to be measured, while the noise wavefront is Not affected by
よって、 C C Dカメラ 3の出力に基づけば、 光源側の外乱や収差の影響を受け ない測定が可能である。  Therefore, based on the output of the CCD camera 3, it is possible to perform measurement without being affected by disturbance or aberration on the light source side.
なお、 本実施形態では、 光路 R 1を経由する光束 L 1, 光路 R 2を経由する光 束 L 2の光量を増加させて干渉縞の検出精度を高めるために、 ビ一ムスプリッ夕 P 3 4 - 1又はビームスプリッ夕 P 3 4— 2として偏光ビームスプリヅ夕が使用 され、 かつ、 C C Dカメラ 3の前段 (例えば、 結像光学系 7とハーフミラー H M 3 3との間) に偏光板 3 5が挿入される。  In this embodiment, the beam splitter P 34 is used to increase the light amount of the light beam L 1 passing through the optical path R 1 and the light beam L 2 passing through the optical path R 2 to enhance the detection accuracy of interference fringes. -Polarizing beam splitter is used as 1 or beam splitter P 34-2, and polarizing plate 35 is provided in front of CCD camera 3 (for example, between imaging optical system 7 and half mirror HM 33). Inserted.
例えば、 ビームスプリッ夕 P 3 4 _ 1として偏光ビームスプリッ夕が使用され ると、 ビ一ムスプリヅ夕 P 3 4— 2を透過した光束 L 1のうち P偏光の光は、 被 検面 4における反射後に光路 R 1の方向に確実に戻り、 ビームスプリッ夕 P 3 4 一 2を反射した光束 L 2の S偏光の光は、 被検面 4における反射後に光路 R 2の 方向に確実に戻る。  For example, if a polarizing beam splitter is used as the beam splitter P34_1, the P-polarized light of the light beam L1 transmitted through the beam splitter P34-2 is reflected on the surface 4 to be measured. Later, the light returns to the direction of the optical path R 1, and the S-polarized light of the light beam L 2 reflected by the beam splitter P 3 4 12 returns to the direction of the optical path R 2 after the reflection on the surface 4 to be measured.
また、 さらに検出精度を高めるために、 ビ一ムスプリッ夕 P 3 4— 1とビーム スプリツ夕 P 3 4— 2との双方に、 偏光ビームスプリッ夕が使用されることが好 ましい。  In order to further improve the detection accuracy, it is preferable that a polarization beam splitter is used for both the beam splitter P34-1 and the beam splitter P34-2.
このようにすれば、 測定光束 Lのうち P偏光の成分を、 確実に、 光路 R 1を経 由するような光束 L 1とし、 また、 測定光束 Lのうち S偏光の成分を、 確実に、 光路 R 2を経由するような光束 L 2とすることができるので、 光量の損失が抑え られる。  By doing so, the P-polarized light component of the measurement light beam L is surely set to the light beam L1 passing through the optical path R1, and the S-polarized light component of the measurement light beam L is surely changed to Since the light beam L2 can pass through the optical path R2, the loss of light amount can be suppressed.
また、 2つの偏光ビームスプリッ夕を併用すれば、 各偏光ビームスプリツ夕の 消光比の悪化分は、 互いに補われる。  If two polarizing beam splitters are used together, the deterioration of the extinction ratio of each polarizing beam splitter is compensated for by each other.
さらに、 以上のシァリング干渉測定に、 公知の位相シフ ト干渉法が適用されれ ば、 測定精度がさらに高まる。  Further, if a known phase shift interferometry is applied to the above-described shearing interference measurement, the measurement accuracy is further improved.
図 6 ( a ) に示すこのシァリング干渉計において位相シフ トを行うには、 例え ば、 ミラー M 3 4— 1、 ミラー M3 4— 2の一方又は双方を微小移動させればよ い。 ' To perform phase shift in this shearing interferometer shown in Fig. 6 (a), for example, For example, one or both of the mirror M34-1 and the mirror M34-2 may be slightly moved. '
移動方向は、 光束 L 1, 光束 L 2の光路長 R 1, R 2の差が変化する方向 (例 えば、 図 6 (a) 中矢印で示す方向) である。  The moving direction is the direction in which the difference between the optical path lengths R 1 and R 2 of the light beams L 1 and L 2 changes (for example, the direction indicated by the arrow in FIG. 6A).
位相シフト干渉法では、この位相シフ ト中に、 C CDカメラ 3の出力データ(干 渉縞の輝度分布データ) を複数回サンプリングする。 計算方法は、 例えば、 次の とおりである。  In the phase shift interferometry, the output data of the CCD camera 3 (luminance distribution data of interference fringes) is sampled a plurality of times during this phase shift. The calculation method is, for example, as follows.
撮像面上に生起する干渉縞の輝度分布 Iは、  The luminance distribution I of the interference fringes occurring on the imaging surface is
I二 I 0 +Acos [T— T ( s ) + 261 +∑ B icos (N i + d)  I2 I 0 + Acos [T— T (s) + 261 + ∑ B icos (N i + d)
で表される。 It is represented by
但し、 I 0は干渉縞の輝度分布の直流成分であり、 Aは光束 L I , L 2の振幅 であり、 B iは諸ノイズの振幅であり、 iは諸ノイズによる各干渉縞の番号であ り、 N iは各ノイズによる干渉縞の位相分布であり、 5は各干渉縞の位相シフ ト による位相変調であり、 Tは被検面 4の凹凸に相当する反射波面 (信号波面) の 形状 (単位:位相) であり、 T ( s ) は測定光束 Lから光束 L 1又は光束 L 2に シァされたことによる波面の形状変化 (単位:位相) である。 また、 ∑ f ( i ) は、 f の各 iについての和である。  Where I 0 is the DC component of the luminance distribution of the interference fringes, A is the amplitude of the luminous flux LI, L 2, B i is the amplitude of various noises, and i is the number of each interference fringe due to various noises. N i is the phase distribution of the interference fringes due to each noise, 5 is the phase modulation by the phase shift of each interference fringe, and T is the shape of the reflected wavefront (signal wavefront) corresponding to the unevenness of the surface 4 to be measured. (Unit: phase), and T (s) is a change in wavefront shape (unit: phase) due to shearing of the measurement light beam L into the light beam L1 or the light beam L2. ∑ f (i) is the sum of each i of f.
例えば、 位相シフ トとして位相を ΤΓ/ 2ずつ徐々にずらしつつ 8つの輝度分布 データ I I , · · · I 8をサンプリングしたとき、 各輝度分布デ一夕 I I , · · · I 8は、 次のように表される。  For example, when eight luminance distribution data II, ... I8 are sampled while gradually shifting the phase by ΤΓ / 2 as a phase shift, each luminance distribution data II, ... Is represented as
1 1 = 1 0 + Acos [T - T ( s ] +∑ B i cos (N i )  1 1 = 10 + Acos [T-T (s) + ∑ B i cos (N i)
1 2 = 1 0 + Acos [T -T ( s + 7Γ/2] +∑ B icos (N i +7Γ/4) 1 2 = 1 0 + Acos [T -T (s + 7Γ / 2) + ∑ B icos (N i + 7Γ / 4)
1 3 = 1 0 + Acos [T— T ( s + 7Γ] +∑ B icos (N i +7Γ/2 ) 1 3 = 1 0 + Acos [T— T (s + 7Γ) + ∑ B icos (N i + 7Γ / 2)
1 4 = 1 0 + Acos [T - T ( s + 3 ττ/2 ] +∑ B icos (N i + 3  1 4 = 10 + Acos [T-T (s + 3 ττ / 2) + ∑ B icos (N i + 3
1 5 = 1 0 + Acos [T一 T ( s + 27Γ] +∑ B icos (N i +7Γ)  1 5 = 1 0 + Acos [T-T (s + 27Γ) + ∑ B icos (N i + 7Γ)
1 6 = 1 0 + Acos [T— T ( s + 7Γ/2] +∑ B icos (N i + 5 TT/4) 1 6 = 1 0 + Acos [T— T (s + 7Γ / 2) + ∑ B icos (N i + 5 TT / 4)
1 7 = 1 0 + Acos [T - T ( s + 7Γ] +∑ B icos (N i + 3 TT/2 )1 7 = 1 0 + Acos [T-T (s + 7Γ) + ∑ B icos (N i + 3 TT / 2)
1 8 = 1 0 + Acos [T— T ( s + 37Γ/2 ] + Σ Β icos (Ν Ϊ + 77Γ/4) よって例えば、 11 + 15 = 210 + 2 A cos [ T— T ( s ) ] 1 8 = 1 0 + Acos [T— T (s + 37Γ / 2) + Σ icos (Ν Ϊ + 77Γ / 4) 11 + 15 = 210 + 2 A cos [T— T (s)]
12 + 16 = 210 + 2 A cos [T - T ( s ) +ττ/2]  12 + 16 = 210 + 2 A cos [T-T (s) + ττ / 2]
13 + 17 = 210 + 2 A cos [T— T ( s ) +ττ]  13 + 17 = 210 + 2 A cos [T— T (s) + ττ]
14 + 1 8 = 2 1 0 + 2 ACQS [T— T ( s ) + 3 ττ/2 ]  14 + 18 = 2 1 0 + 2 ACQS [T— T (s) + 3 ττ / 2]
のように輝度分布データ I 1, · · · I 8を加減演算すれば、 諸ノイズの影響 をキャンセルして、上記した光束 L 1,L 2による干渉縞の位相分布(T— T(s)) を正確に求めることができる。  By adding / subtracting the luminance distribution data I 1, ··· I 8 as shown below, the effects of various noises can be canceled and the phase distribution of interference fringes due to the light fluxes L 1 and L 2 (T—T (s) ) Can be determined accurately.
そして、 T (s) の値をシァリング干渉計から求めれば、 被検面 4の凹凸に相 当する反射波面 (信号波面) の形状 Tのみを取得することができる。  Then, if the value of T (s) is obtained from the shearing interferometer, only the shape T of the reflected wavefront (signal wavefront) corresponding to the unevenness of the test surface 4 can be obtained.
(第 3実施形態の応用例及び変形例)  (Application Example and Modification Example of Third Embodiment)
図 7は、 本実施形態のシァリング干渉計の応用例を示す図である。 .  FIG. 7 is a diagram illustrating an application example of the shearing interferometer of the present embodiment. .
図 6に示すシァリング干渉計では測定対象が平面の被検面 4となっているが、 図 7中 Aに示すように波面変換素子 38を用いれば、 曲面の被検面 4' を測定す ることもできる。 また、 図 7中 Bに示すように折り返し反射面 39を用いれば、 被検面 4の反射波面だけでなく、 被検物 (投影光学系 PLなど) 4"の透過波面 を測定することもできる。  In the shearing interferometer shown in FIG. 6, the object to be measured is a flat surface 4 to be measured, but a curved surface 4 ′ is measured by using a wavefront conversion element 38 as shown in A in FIG. You can also. In addition, by using the folded reflecting surface 39 as shown in B in FIG. 7, not only the reflected wavefront of the test surface 4 but also the transmitted wavefront of the test object (such as the projection optical system PL) 4 ″ can be measured. .
図 8は、 本実施形態のシァリング干渉計の変形例を示す図である。  FIG. 8 is a diagram illustrating a modified example of the shearing interferometer of the present embodiment.
図 6に示したシァリング干渉計において、ビームスプリッ夕 P 34— 2として、 ハーフミラーを使用する場合には、 図 8に示すように変形できる。  In the case of using a half mirror as the beam splitter P 34-2 in the shearing interferometer shown in FIG. 6, it can be deformed as shown in FIG.
図 8に示す構成では、 分割光学系 34, は一方のビームスプリツ夕 P 34— 2 の代わりにハーフミラ一 HM 33を使用している。  In the configuration shown in FIG. 8, the split optical system 34 uses a half-mirror HM 33 instead of one of the beam splitters P 34-2.
この場合、偏光ビームスプリッ夕を使用した場合よりも測定精度は低下するが、 ハーフミラ一 HM33を兼用できるので、 シァリング干渉計の部品点数が抑えら れる。  In this case, the measurement accuracy is lower than in the case of using the polarizing beam splitter, but the number of parts of the shearing interferometer can be reduced because the half mirror HM33 can be used as well.
[第 4実施形態]  [Fourth embodiment]
図 9、 図 10に基づいて本発明の第 4実施形態について説明する。  A fourth embodiment of the present invention will be described with reference to FIGS.
本実施形態は、 被検物からの戻り光の波面 (被検面 4の反射波面) を測定する タイプの本発明のシァリング干渉計を説明する。  The present embodiment describes a shearing interferometer of the present invention of a type that measures the wavefront of the return light from the test object (the reflected wavefront of the test surface 4).
なお、 ここでは、 第 3実施形態のシァリング干渉計との相違点についてのみ説 明し、 その他の部分については説明を省略する。 Here, only the differences from the shearing interferometer of the third embodiment will be described. The description of the other parts will be omitted.
図 9 (a) は、 本実施形態のシァリング干渉計の構成図である。 図 9 (b) は このシァリング干渉計の光束 L 1 , 2の光路111, R 2を示す図である。 このシァリング干渉計の分割光学系 44は、 単一のビ一ムスプリッ夕 P 44、 及び単一のミラー M 44からなる。 ミラ一 M44の反射面は、 このビ一ムスプリ ッ夕 P 44の反射/透過面に平行に配置される。  FIG. 9A is a configuration diagram of the shearing interferometer of the present embodiment. FIG. 9 (b) is a diagram showing the optical paths 111 and R2 of the light beams L1 and L2 of this shearing interferometer. The splitting optics 44 of this shearing interferometer consists of a single beam splitter P44 and a single mirror M44. The reflection surface of the mirror M44 is arranged parallel to the reflection / transmission surface of the beam splitter P44.
測定光束 Lは、 ビームスプリツ夕 P 44にて透過光束と反射光束と (以下、 透 過光束を光束 L 1, 反射光朿を L 2とする。 ) に分割される。  The measurement light beam L is divided into a transmitted light beam and a reflected light beam (hereinafter, the transmitted light beam is referred to as a light beam L1 and the reflected light beam is referred to as L2) at a beam splitter P44.
光束 L2は、 そのまま被検面 4に投光される。 光束 L 1は、 ミラー M44によ り反射した後に再びビームスプリツ夕 P 44に入射し、 そのビームスプリツ夕 P 44を透過して被検面 4に投光される。  The light beam L2 is projected onto the surface 4 to be measured as it is. The light beam L1 is reflected by the mirror M44, then re-enters the beam splitter P44, passes through the beam splitter P44, and is projected on the surface 4 to be measured.
また、 ミラー M44及びビームスプリツ夕 P 44の位置は、 これら光束 L 1と L 2とが互いに波面のずれた状態で (光軸をシフ トさせた状態で) 被検面 4に入 射するよう調整されている。  The positions of the mirror M44 and the beam splitter P44 are adjusted so that the light beams L1 and L2 enter the surface 4 to be measured with their wavefronts shifted from each other (with the optical axis shifted). Have been.
また、 分割光学系 44から被検面 4へ投光され、 かつ被検面 4において反射し た光束 L I, L 2は、 分割光学系 44を逆方向に進行した後、 ハーフミラ一 HM 33において CCDカメラ 3の方向に偏向し、 C CDカメラ 3の撮像面上に干渉 縞を形成する。  Further, the light beams LI and L2 emitted from the splitting optical system 44 to the surface 4 to be measured and reflected on the surface 4 to be tested are transmitted to the half mirror 1 It is deflected in the direction of camera 3 and forms an interference fringe on the imaging surface of CCD camera 3.
このシァリング干渉計においても、 図 9 (b) に示した光路 R 1を迪る光束 L 1と、光路 R 2を迪る光束 L 2とは、分割光学系 34内の特定の光路を往復する。 したがって、 その光朿 L 1とその光束 L 2との間では、 互いの波面のずれ (光 軸のシフ ト) が吸収され、 その光束 L 1の波面とその光束 L 2の波面とは、 往復 の後に重なる (なお、 光路 R 1は、 ビームスプリツ夕 P 44→ミラー M44→ビ —ムスプリ ッ夕 P 44→被検面 4 ビームスプリ ヅ夕 P 44 ミラー M 44→ビ —ムスプリッ夕 P 44→ハーフミラ一 HM 33の光路であり、 光路 R 2は、 ビー ムスプリッ夕 P 44→被検面 4 ビームスプリ ヅ夕 P 44→ハーフミラ一 HM3 3の光路である。 ) 。  Also in this shearing interferometer, the light beam L1 passing through the optical path R1 and the light beam L2 passing through the optical path R2 shown in FIG. 9 (b) reciprocate in a specific optical path in the splitting optical system 34. . Therefore, between the light beam L1 and the light beam L2, the mutual wavefront shift (shift of the optical axis) is absorbed, and the wavefront of the light beam L1 and the wavefront of the light beam L2 reciprocate. (Note that the optical path R 1 is the beam splitter P44 → mirror M44 → beam splitter P44 → test surface 4 beam splitter ヅ even P44 mirror M44 → beam splitter P44 → half mirror one The optical path of the HM33 is the optical path of the beam splitter P44 → the surface of the beam to be inspected 4 beam splitters, and the optical path of the half mirror HM33 is the optical path R2.
その結果、 第 3実施形態において述べたのと同じ理由で、 CCDカメラ 3の撮 像面上に上記光束 L 1と光束 L 2とが成す干渉縞は、 被検面 4の凹凸に相当する 反射波面 (信号波面) の影響を受ける一方で、 光源側 (ビームエキスパンダ 6、 光源 5 ) の外乱や収差によるノィズ波面の影響を受けない。 As a result, for the same reason as described in the third embodiment, the interference fringes formed by the light flux L1 and the light flux L2 on the image plane of the CCD camera 3 correspond to the unevenness of the surface 4 to be measured. While being affected by the reflected wavefront (signal wavefront), it is not affected by the noise wavefront due to disturbances and aberrations on the light source side (beam expander 6, light source 5).
よって、 CCDカメラ 3の出力に基づけば、 光源側の外乱や収差の影響を受け ない測定が可能となる。  Therefore, based on the output of the CCD camera 3, measurement can be performed without being affected by disturbance or aberration on the light source side.
なお、 本実施形態でも、 光路 R 1を経由する光束 L 1 , 光路 R 2を経由する光 束 L 2の光量を増加させて干渉縞の検出精度を高めるために、 ビ一ムスプリヅ夕 P 44として偏光ビームスプリヅ夕が使用され、.かつ、 C CDカメラ 3の前段(例 えば、結像光学系 7とハーフミラー HM 33との間)に偏光板 35が挿入される。 このようにすれば、 測定光束 Lのうち P偏光の成分を、 確実に、 光路 R 1を経 由するような光束 L 1とし、 また、 測定光束 Lのうち S偏光の成分を、 確実に、 光路 R 2を経由するような光束 L 2とすることができるので、 光量の損失が抑え られる。  In the present embodiment, the beam splitter P44 is used as the beam splitter P44 in order to increase the light amount of the light flux L1 passing through the light path R1 and the light flux L2 passing through the light path R2 to increase the detection accuracy of interference fringes. A polarizing beam splitter is used, and a polarizing plate 35 is inserted in front of the CCD camera 3 (for example, between the imaging optical system 7 and the half mirror HM 33). By doing so, the P-polarized light component of the measurement light beam L is surely set to the light beam L1 passing through the optical path R1, and the S-polarized light component of the measurement light beam L is surely changed to Since the light beam L2 can pass through the optical path R2, the loss of light amount can be suppressed.
さらに、 本実施形態のシァリング干渉測定に、 公知の位相シフ ト干渉法 (例え ば、 第 3実施形態において説明した方法など。 ) が適用されれば、 測定精度がさ らに高まる。  Furthermore, if a known phase shift interferometry (for example, the method described in the third embodiment) is applied to the shearing interference measurement of the present embodiment, the measurement accuracy is further improved.
図 9 (a) に示すこのシァリング干渉計において位相シフトを行うには、 例え ば、 ミラー M44、 ビ一ムスプリッ夕 P 44の一方又は双方を微小移動させれば よい。  In order to perform a phase shift in the shearing interferometer shown in FIG. 9A, for example, one or both of the mirror M44 and the beam splitter P44 may be slightly moved.
移動方向は、 光束 L 1, 2の光路長1^ 1, R 2の差が変化する方向である。 (第 4実施形態の変形例及び応用例)  The moving direction is a direction in which the difference between the optical path lengths 1 ^ 1 and R2 of the light fluxes L1 and L2 changes. (Modifications and application examples of the fourth embodiment)
また、 ビームスプリツ夕 P 44が偏光ビームスプリツ夕であるときには、 図 9 に示したシァリング干渉計を、 図 10のように変形した上で、 別の方法で位相シ フ卜を行ってもよい (なお、 以下に説明する位相シフト方法は、 第 3実施形態、 第 5実施形態、 第 6実施形態にも同様にして適用できる。 ) 。  When the beam splitter P44 is a polarization beam splitter, the shearing interferometer shown in FIG. 9 may be modified as shown in FIG. 10 and then the phase shift may be performed by another method. The phase shift method described below can be similarly applied to the third, fifth, and sixth embodiments.)
図 10に示すシァリング干渉計は、 偏光板 35の入射側に 1/4波長板 45が 挿入され、 かつ、 偏光板 35が光軸の回りに回動可能になったものである。 また、 その 1/4波長板 45の主軸は、 光束 L l, L 2の P又は Sの偏光方向 と 45° となるよう設定される。  In the shearing interferometer shown in FIG. 10, a quarter-wave plate 45 is inserted on the incident side of the polarizing plate 35, and the polarizing plate 35 is rotatable around the optical axis. The main axis of the quarter-wave plate 45 is set to be 45 ° with respect to the P or S polarization direction of the light beams L 1 and L 2.
この 1/4波長板 45に入射した光束 L 1 (Pの直線偏光) , 光束 L 2 (Sの 直線偏光) は、 互いにその方向が反対の円偏光に変換される。 The light beam L 1 (linearly polarized light of P) and the light beam L 2 (of S (Linearly polarized light) is converted into circularly polarized light whose directions are opposite to each other.
このとき、 偏光板 3 5を回動させれば、 光束 L 1と光束 L 2との位相が変化す ο  At this time, if the polarizing plate 35 is rotated, the phase of the light beam L1 and the light beam L2 changes.
よって、 このシァリング干渉計によれば、 位相シフトを、 この偏光板 3 5の回 動により行うことができる。  Therefore, according to the shearing interferometer, the phase shift can be performed by rotating the polarizing plate 35.
また、 この位相シフトを適用する場合、 分割光学系 4 4のミラー M 4 4とビー ムスプリッ夕 P 4 4とを相対移動させる必要が無くなる。  Further, when this phase shift is applied, it is not necessary to relatively move the mirror M 44 of the split optical system 44 and the beam splitter P 44.
よって、 図 1 0中点線で示すようにミラ一 M 4 4とビームスプリッ夕 P 4 4と を固定してなる単一の分割光学素子 4 4 ' を、 分割光学系 4 4の代わりに使用す ることもできる。 .  Therefore, as shown by the dotted line in FIG. 10, a single split optical element 4 4 ′ having the mirror M 44 and the beam splitter P 44 fixed is used instead of the split optical system 44. You can also. .
なお、 図 9又は図 1 0に示すシァリング干渉計も、 図 7.中 Aに示したように波 面変換素子 3 8を用いれば曲面の被検面 4 ' を測定することもできる。  Note that the shearing interferometer shown in FIG. 9 or FIG. 10 can also measure the curved test surface 4 ′ by using the wavefront conversion element 38 as shown in A in FIG.
また、 図 7中 Bに示したように折り返し反射面 3 9を用いれば、 被検面 4の反 射波面だけでなく、 被検物 (投影光学系 P Lなど) 4 " の透過波面を測定するこ ともできる。  In addition, if the reflection surface 39 is used as shown in FIG. 7B, not only the reflection wavefront of the test surface 4 but also the transmission wavefront of the test object (such as the projection optical system PL) 4 "is measured. You can do that too.
[第 5実施形態]  [Fifth Embodiment]
図 1 1に基づいて本発明の第 5実施形態について説明する。  A fifth embodiment of the present invention will be described with reference to FIG.
第 3実施形態のシァリング干渉計、 第 4実施形態のシァリング干渉計は、 シァ 方向が横方向であるタイプであつたが、 本実施形態では、 シァ方向が径方向であ るものを説明する。  The shearing interferometer according to the third embodiment and the shearing interferometer according to the fourth embodiment are of the type in which the shear direction is the horizontal direction. In the present embodiment, the case where the shear direction is the radial direction will be described.
なお、 ここでは、 図 8に示したシァリング干渉計との相違点についてのみ説明 し、 その他の部分については説明を省略する。  Here, only the differences from the shearing interferometer shown in FIG. 8 will be described, and the description of the other parts will be omitted.
図 1 1は、 本実施形態のシァリング干渉計の構成図である。  FIG. 11 is a configuration diagram of the shearing interferometer of the present embodiment.
このシアリング干渉計の分割光学系 5 4は、 ビームスプリツ夕 P 3 4— 1、 ビ —ムスプリッ夕 (ここでは、 ハーフミラ一) H M 3 3、 ミラ一 M 3 4— 1、 ミラ — M 3 4— 2、 及び、 互いに倍率の異なるビームエキスパンダ R 5 4— 1, R 5 4 - 2からなる。  The splitting optical system 54 of this shearing interferometer is composed of a beam splitter P34-1 and a beam splitter (here, a half mirror) HM33, a mirror M34-1, and a mirror M34-2. , And beam expanders R 54-1 and R 54-2 having different magnifications from each other.
測定光束 Lは、 ハーフミラ一 H M 3 3にて透過光束と反射光束と (以下、 透過 光束を光束 L l, 反射光束を光束 L 2とする。 ) に分割される。 光束 L Iは、 ミラ一 M 3 4— 1により反射した後、 ビームエキスパンダ R 5 4 ― 1を介してビ一ムスプリッ夕 P 3 4— 1に入射する。 The measurement light beam L is divided into a transmitted light beam and a reflected light beam (hereinafter, the transmitted light beam is referred to as a light beam Ll and the reflected light beam is referred to as a light beam L2) by a half mirror HM33. The light beam LI is reflected by the mirror M 34-1, and then enters the beam splitter P 34-1 via the beam expander R 54-1.
光束 L 2は、 ハーフミラ一 H M 3 3において反射した後、 ビームエキスパンダ R 5 4— 2を介してミラー M 3 4 - 2に入射し、 そのミラー M 3 4 - 2にて反射 してビームスプリヅ夕 P 3 4— 1に入射する。  The light beam L 2 is reflected by the half mirror HM 33, then enters the mirror M 34-2 via the beam expander R 54-2, is reflected by the mirror M 34-2, and is reflected by the beam splitter 224. It is incident on P 3 4—1.
ビームスプリヅ夕 P 3 4— 1は、 光束 L 1を透過して被検面 4に投光すると共 に、 光束 L 2を反射して被検面 4に投光する。  The beam splitter P 34-1 transmits the light beam L 1 and emits the light to the surface 4 to be measured, and also reflects the light beam L 2 and emits the light to the surface 4 to be measured.
この分割光学系 5 4において、 被検面 4に入射する光束 L 1と光束 L 2とは、 互いの光軸が一致しているが、 ビームエキスパンダ R 5 4— 1 , R 5 4— 2の倍 率が異なるので、 その光束径がずれている。  In the split optical system 54, the light beam L1 and the light beam L2 incident on the surface 4 to be inspected have the same optical axis, but the beam expanders R54-1 and R54-2. Since the magnifications are different, the luminous flux diameter is shifted.
ビームエキスパンダ R 5 4 - 1を往復する光束 L 1と、 ビームエキスパンダ R 5 4— 2を往復する光束 L 2とは、 その往復により互いの波面のずれ (光束径の ずれ) が吸収され、 その往復後には。 互いの波面は重なり合う。  The light beam L 1 reciprocating in the beam expander R 54-1 and the light beam L 2 reciprocating in the beam expander R 54-2 absorb the mutual wavefront deviation (beam diameter deviation) due to the reciprocation. After the round trip. The wavefronts of each other overlap.
その結果、 第 3実施形態において述べたのと同じ理由で、 C C Dカメラ 3の撮 像面上に上記光束 L 1と光束 L 2とが成す干渉縞は、 被検面 4の凹凸に相当する 反射波面 (信号波面) の影響を受ける一方で、 光源側 (ビームエキスパンダ 6、 光源 5 ) の外乱や収差によるノィズ波面の影響を受けない。  As a result, for the same reason as described in the third embodiment, the interference fringes formed by the light flux L1 and the light flux L2 on the image plane of the CCD camera 3 are reflected by the unevenness of the surface 4 to be measured. While being affected by the wavefront (signal wavefront), it is not affected by the noise wavefront due to disturbances and aberrations on the light source side (beam expander 6, light source 5).
よって、 C C Dカメラ 3の出力に基づけば、 光源側の外乱や収差の影響を受け ない測定が可能となる。  Therefore, based on the output of the CCD camera 3, it is possible to perform measurement without being affected by disturbance or aberration on the light source side.
[第 6実施形態]  [Sixth embodiment]
図 1 2に基づいて本発明の第 6実施形態について説明する。  A sixth embodiment of the present invention will be described based on FIG.
第 3実施形態のシァリング干渉計、 第 4実施形態のシァリング干渉計は、 シァ のさせ方が光軸をシフ卜させるものであつたが、 光軸を傾斜させるタイプのシァ リング干渉計を説明する。  The shearing interferometer according to the third embodiment and the shearing interferometer according to the fourth embodiment have a structure in which the shear is used to shift the optical axis, but a shearing interferometer in which the optical axis is inclined will be described. .
なお、 ここでは、 図 8に示したシァリング干渉計との相違点についてのみ説明 し、 その他の部分については説明を省略する。  Here, only the differences from the shearing interferometer shown in FIG. 8 will be described, and the description of the other parts will be omitted.
図 1 2は、 本実施形態のシァリング干渉計の構成図である。  FIG. 12 is a configuration diagram of the shearing interferometer of the present embodiment.
このシァリング干渉計の分割光学系 6 4は、 図 8に示した分割光学系 3 4, と 同様、 ビームスプリツ夕 (ここでは、 ハーフミラ一) H M 6 4、 ビームスプリツ 夕 (ここでは、 ハーフミラー) HM33、 ミラ一 M34— l、 ミラー M34— 2 を配置している。 The splitting optical system 64 of this shearing interferometer has a beam splitter (here, a half mirror) HM64 and a beam splitter similar to the splitting optical system 34 shown in FIG. Evening (here, half mirror) HM33, Mira M34-l, and Mirror M34-2 are arranged.
但し、 ミラー M34— 2やハーフミラ一HM 64の姿勢は、 これら光束 L 1と 光束 L 2とが互いの光軸を 0だけ傾斜させた状態で被検面 4に入射するよう、 調 整されている。  However, the postures of the mirror M34-2 and the half-mirror HM64 are adjusted so that the light beam L1 and the light beam L2 are incident on the surface 4 to be inspected with their optical axes inclined by 0. I have.
また、 本実施形態では、 ハーフミラー HM64の位置に偏光ビームスプリツ夕 を使用する必要は無い (なお、 図 8のシァリング干渉計の場合、 光束 L 1と光束 L 2とを分離するために偏光ビームスプリッ夕を使用した。.) 。 これに伴い、 図 8に示した偏光板 35は不要である。  Further, in this embodiment, it is not necessary to use a polarizing beam splitter at the position of the half mirror HM64 (in the case of the shearing interferometer in FIG. 8, the polarizing beam splitter is used to separate the light beam L1 and the light beam L2). I used the evening ..). Accordingly, the polarizing plate 35 shown in FIG. 8 is unnecessary.
被検面 4に入射した光束 L 1と光束 L 2とは、 光軸を傾斜させたまま分割光学 系 64内の別の光路をそれぞれ戻り、 結像光学系 7、 CCDカメラ 3に順に入射 する。  The light beam L1 and the light beam L2 that have entered the surface 4 to be inspected return to another optical path in the split optical system 64 while keeping the optical axis inclined, and enter the imaging optical system 7 and the CCD camera 3 in that order. .
本実施形態のシァリング干渉計においては、 被検面 4に入射する時点における 光束 1と光束 L 2との光軸の傾斜は分割光学系 64を往復しても吸収されない c しかし、 撮像面上では、 光束 L 1の波面に重畳されているノイズ波面と光束 L 2の波面に重畳されているノイズ波面とが丁度重なり合い、 光束 L 1に重畳され ている、 被検面 4の凹凸に相当する反射波面 (信号波面) と、 光束 L 2に重畳さ れているその信号波面とは互いにずれる。 In Shiaringu interferometer of the present embodiment, the inclination of the optical axis of the light beam 1 and the light beam L 2 at the time of entering the test surface 4 not being absorbed back and forth division optical system 64 c, however, is on the imaging surface The noise wavefront superimposed on the wavefront of the light beam L1 and the noise wavefront superimposed on the wavefront of the light beam L2 just overlap, and the reflection corresponding to the unevenness of the surface 4 to be measured, which is superimposed on the light beam L1 The wavefront (signal wavefront) and the signal wavefront superimposed on the light beam L2 deviate from each other.
したがって、 その撮像面上にそれら光束 L 1と光束 L 2とが成す干渉縞は、 被 検面 4の凹凸に相当する反射波面 (信号波面) の影響を受ける一方でノイズ波面 の影響を受けない。  Therefore, the interference fringes formed by the light flux L1 and the light flux L2 on the imaging surface are affected by the reflected wavefront (signal wavefront) corresponding to the unevenness of the test surface 4 but not by the noise wavefront. .
よって、 CCDカメラ 3の出力に基づけば、 光源側の外乱や収差の影響を受け ない測定が可能となる。  Therefore, based on the output of the CCD camera 3, measurement can be performed without being affected by disturbance or aberration on the light source side.
また、 このシァリング干渉計では、 その結像光学系 7の焦点面にマスク M61 が配置されることが望ましい。  Further, in this shearing interferometer, it is desirable that a mask M61 be disposed on the focal plane of the imaging optical system 7.
マスク M61には、 2つの開口が設けられ、 2つの開口の間隔 dは、 d = 2 f 0に設定される ( は、 結像光学系 7の焦点距離) 。  The mask M61 is provided with two openings, and the distance d between the two openings is set to d = 2f0 (where is the focal length of the imaging optical system 7).
また、 2つの開口の並ぶ方向は、 前記した光軸の傾斜方向に対応するよう設定 される。 このようにすれば、 前記した光束 L 1 , 光束 L 2は、 2つの開口の一方及び他 方を個別に透過して C C Dカメラ 3の撮像面上に干渉縞を形成する。 The direction in which the two openings are arranged is set so as to correspond to the above-described inclination direction of the optical axis. In this way, the light beams L 1 and L 2 individually transmit one of the two openings and the other, and form interference fringes on the imaging surface of the CCD camera 3.
よって、 光束 L 1と光束 L 2とによる干渉縞は、 他の光の影響を受けることな く高精度に検出される。  Therefore, interference fringes caused by the light beams L1 and L2 are detected with high accuracy without being affected by other light.
[各実施形態の補足]  [Supplement to each embodiment]
上記各実施形態において、 投影光学系 P L又は被検面 4を正確に評価するため には、 干渉縞の検出が、 波面分割の方向を変更した上で少なくとももう 1回行わ れる必要がある。  In each of the above embodiments, in order to accurately evaluate the projection optical system PL or the test surface 4, it is necessary to detect interference fringes at least once after changing the direction of wavefront division.
因みに、 第 1実施形態又は第 2実施形態において分割の方向を変更するには、 分割光学素子 (回折光学素子) とマスク (開口部を 2つ有している方のマスク) とをそれぞれ光軸の回りに等角度だけ回転させればよい。  Incidentally, in order to change the direction of division in the first embodiment or the second embodiment, the division optical element (diffractive optical element) and the mask (the mask having two openings) are respectively set along the optical axis. Can be rotated by an equal angle.
[第 7実施形態]  [Seventh embodiment]
図 1 3に基づいて本発明の第 7実施形態について説明する。  A seventh embodiment of the present invention will be described based on FIG.
本実施形態では、 上記各実施形態を利用して製造された投影露光装置について 説明する。  In the present embodiment, a description will be given of a projection exposure apparatus manufactured using the above embodiments.
図 1 3は、 本実施形態の投影露光装置の概略構成図である。  FIG. 13 is a schematic configuration diagram of the projection exposure apparatus of the present embodiment.
この投影露光装置に搭載された投影光学系 P Lの全部又は一部の光学系は、 そ の製造時、 上記各実施形態の何れかの干渉測定によって検査されている。  The whole or a part of the projection optical system PL mounted on the projection exposure apparatus is inspected at the time of its manufacture by the interference measurement according to any of the above embodiments.
そして、 投影光学系 P Lの少なくとも何れかの面、 及び/又は投影露光装置の 何れかの箇所は、 その測定結果に応じて調整されている。  Then, at least one surface of the projection optical system PL and / or any part of the projection exposure apparatus are adjusted according to the measurement result.
上記各実施形態によれば、 測定が高精度に行われるので、 前記調整の方法がた とえ従来と同じであったとしても、 投影光学系 P L及び/又は投影露光装置は高 性能になる。  According to the above embodiments, since the measurement is performed with high accuracy, the projection optical system PL and / or the projection exposure apparatus have high performance even if the adjustment method is the same as the conventional one.
なお、 投影露光装置には、 投影光学系 P L、 ウェハ wを載置するウェハステー ジ 1 0 8、 レチクル rを載置するレチクルステージ 1 0 5、 レチクル rに光を供 給する光源部 1 0 1などが備えられる。  The projection exposure apparatus includes a projection optical system PL, a wafer stage 108 for mounting a wafer w, a reticle stage 105 for mounting a reticle r, and a light source section 101 for supplying light to the reticle r. And so on.
投影光学系 P Lの物体面、 及び像面に、 それぞれレチクル r、 ウェハ wが配置 される。  A reticle r and a wafer w are arranged on the object plane and the image plane of the projection optical system PL, respectively.
また、 投影露光装置には、 ゥヱハステージ 1 0 8の位置を制御するステージ制 御系 1 0 7が備えられる。 The projection exposure apparatus has a stage control for controlling the position of the stage 108. Control 107 is provided.
また、 投影光学系 P Lは、 スキャンタイプの投影露光装置に応用されるァライ メント光学系を有する。  Further, the projection optical system PL has an alignment optical system applied to a scan type projection exposure apparatus.
また、 照明光学系 1 0 2は、 レチクル rとウェハ wとの間の相対位置を調節す るためのァライメント光学系 1 0 3を有する。  The illumination optical system 102 has an alignment optical system 103 for adjusting the relative position between the reticle r and the wafer w.
また、 レチクルステ ジ 1 0 5は、 ウェハステージ 1 0 8の表面 1 0 8 aに対 してレチクル rを平行移動させることが可能である。  Further, reticle stage 105 can move reticle r in parallel with respect to surface 108 a of wafer stage 108.
さらに、 投影露光装置には、 レチクルステージ 1 0 5上にセッ トされたレチク ル rを交換し運搬するレチクル交換系 1 0 4が備えられる。  Further, the projection exposure apparatus is provided with a reticle exchange system 104 for exchanging and transporting the reticle r set on the reticle stage 105.
レチクル交換系 1 0 4は、 ウェハステージ 1 0 8の表面 1 0. 8 aに対し、 レチ クルステージ 1 0 5を相対移動させるためのステージドライバ一 (不図示) を有 する。  The reticle exchange system 104 has a stage driver (not shown) for relatively moving the reticle stage 105 with respect to the surface 10.8a of the wafer stage 108.
また、 投影露光装置には、 位置合わせから露光までの」連の処理に関する制御 を行う主制御部 1 0 9も備えられる。
Figure imgf000026_0001
Further, the projection exposure apparatus is also provided with a main control unit 109 which performs control relating to a series of processes “from alignment to exposure”.
Figure imgf000026_0001
以上本発明によれば、 光源側の外乱や収差の影響を受けずに測定することの可 能なシァリング干渉測定方法及びシァリング干渉計が実現する。  As described above, according to the present invention, a shearing interferometer and a shearing interferometer capable of performing measurement without being affected by disturbance or aberration on the light source side are realized.
さらに、 本発明によれば、 そのシァリング干渉測定方法を適用することにより 高性能な投影光学系の製造方法、 高性能な投影光学系、 及び高性能な投影露光装 置が実現する。  Further, according to the present invention, a high-performance projection optical system manufacturing method, a high-performance projection optical system, and a high-performance projection exposure apparatus are realized by applying the shearing interference measurement method.
このように、 本発明は、 半導体製造技術の向上に寄与する。  Thus, the present invention contributes to improvement of semiconductor manufacturing technology.

Claims

請求の範囲 The scope of the claims
( 1 ) 光源から射出した測定光束を分割して互いに波面のずれた 2光束を生成 すると共に、 それら 2光束をその波面のずれた状態で被検物に投光し、 (1) The measurement light beam emitted from the light source is divided to generate two light beams with wavefronts shifted from each other, and the two light beams are projected on the test object with the wavefront shifted,
前記被検物を経由した前記 2光束の波面が重なり合う位置に生起する干渉縞を 検出する  Detecting an interference fringe that occurs at a position where the wavefronts of the two light beams passing through the object overlap each other.
ことを特徴とするシァリング干渉測定方法。  A method for measuring shearing interference.
( 2 ) 請求項 1に記載のシァリング干渉測定方法において、  (2) In the shearing interference measurement method according to claim 1,
前記 2光束の位相をシフ卜させつつ前記干渉縞を複数回検出する位相シフト干 渉法を適用する  Applying a phase shift interference method for detecting the interference fringes a plurality of times while shifting the phase of the two light beams
ことを特徴とするシァリング干渉測定方法。  A method for measuring shearing interference.
( 3 ) 光源から射出した測定光束の光路中に配置され、 かつその測定光束を分 割して互いに波面のずれた 2光束を生成すると共に、 それら 2光束をその波面の ずれた状態で被検物に投光する分割光学系と、  (3) It is arranged in the optical path of the measurement light beam emitted from the light source, and splits the measurement light beam to generate two light beams whose wavefronts are shifted from each other, and the two light beams are tested with the wavefronts shifted. A split optical system that projects light onto an object,
前記被検物を透過した前記 2光束の波面が重なり合う位置に配置された検出器 と  A detector disposed at a position where the wavefronts of the two light beams transmitted through the test object overlap with each other; and
を備えたことを特徴とするシアリング干渉計。  A shearing interferometer comprising:
( 4 ) 請求項 3に記載のシァリング干渉計において、  (4) In the shearing interferometer according to claim 3,
前記検出器の配置位置は、  The arrangement position of the detector,
前記分割光学系の分割面と共役な位置である  It is a position conjugate with the division plane of the division optical system.
ことを特徴とするシァリング干渉計。  A shearing interferometer.
( 5 ) 請求項 3に記載のシァリング干渉計において、  (5) In the shearing interferometer according to claim 3,
前記被検物を透過し前記検出器に入射する前記 2光束の光路には、  In the optical path of the two light beams that pass through the test object and enter the detector,
前記 2光束を再分割してそれら 2光束の波面を前記検出器上に重ね合わせる分 割光学系が配置される  A splitting optical system is arranged, which divides the two light beams and superposes the wavefronts of the two light beams on the detector.
ことを特徴とするシアリング干渉計。  A shearing interferometer.
( 6 ) 請求項 5に記載のシァリング干渉計において、  (6) In the shearing interferometer according to claim 5,
前記測定光束を分割する分割光学系と、 前記 2光束を再分割する分割光学系と は、 共役関係にある A splitting optical system for splitting the measurement light beam, and a splitting optical system for splitting the two light beams again Are conjugated
ことを特徴とするシァリング干渉計。  A shearing interferometer.
( 7 ) 請求項 3〜請求項 6の何れか一項に記載のシァリング干渉計において、 前記 2光束の光路に、  (7) In the shearing interferometer according to any one of claims 3 to 6, in the optical path of the two light beams,
前記検出器上で波面が重なり合う前記 2光束以外の光を力ッ トするマスクが配 置される  A mask is arranged to focus light other than the two light beams whose wavefronts overlap on the detector.
ことを特徴とするシアリング干渉計。  A shearing interferometer.
( 8 ) 請求項 3〜請求項 7の何れか一項に記載のシァリング干渉計において、 前記分割光学系は、  (8) In the shearing interferometer according to any one of claims 3 to 7, the split optical system includes:
回折光学素子からなる  Consisting of a diffractive optical element
ことを特徴とするシアリング干渉計。  A shearing interferometer.
( 9 ) 光源から射出した測定光束の光路中に配置され、 かつその測定光束を分 割して互いに波面のずれた 2光束を生成すると共に、 それら 2光束をその波面の ずれた状態で被検物に投光する分割光学系と、  (9) It is placed in the optical path of the measurement light beam emitted from the light source, and splits the measurement light beam to generate two light beams whose wavefronts are shifted from each other, and the two light beams are inspected with the wavefronts shifted. A split optical system that projects light onto an object,
前記被検物から前記分割光学系に戻った前記 2光束の波面が重なり合う位置に 配置された検出器と  A detector arranged at a position where the wavefronts of the two light beams returned from the test object to the split optical system overlap each other;
を備えたことを特徴とするシァリング干渉計。  A shearing interferometer comprising:
( 1 0 ) 請求項 9に記載のシァリング干渉計において、  (10) In the shearing interferometer according to claim 9,
前記分割光学系は、  The split optical system includes:
前記測定光束を透過光束と反射光束との 2光束に分割するビームスプリッ夕と、 前記ビームスプリッ夕にて分割された前記 2光束を、 互いに波面のずれた状態 で被検物に投光する偏向光学系とを備える  A beam splitter that splits the measurement light beam into two light beams of a transmitted light beam and a reflected light beam; and a deflection device that projects the two light beams split by the beam splitter onto a test object in a state where their wavefronts are shifted from each other. Optical system
ことを特徴とするシアリング干渉計。  A shearing interferometer.
( 1 1 ) 請求項 1 0に記載のシァリング干渉計において、  (11) In the shearing interferometer according to claim 10,
前記ビームスプリツ夕には、  In the beam split evening,
偏光ビームスプリッ夕が使用され、  Polarized beam splitters are used,
前記分割光学系と前記検出器との間の前記 2光束の光路には、  In the optical path of the two light beams between the split optical system and the detector,
偏光板が配置される  Polarizer is arranged
ことを特徴とするシァリング干渉計。 A shearing interferometer.
(12) 請求項 9又は請求項 10に記載のシァリング干渉計において、 前記検出器の配置位置は、 (12) In the shearing interferometer according to claim 9 or claim 10, the arrangement position of the detector is:
前記被検物の被検面と共役な位置である  It is a position conjugate with the surface to be inspected of the object.
ことを特徴とするシァリング干渉計。  A shearing interferometer.
(13) 請求項 12に記載のシァリング干渉計において、  (13) In the sealing interferometer according to claim 12,
前記 2光束の光路に、  In the optical path of the two light beams,
前記検出器上で波面が重なり合う前記 2光束以外の光を力ッ トするマスクが配 置される  A mask is arranged to focus light other than the two light beams whose wavefronts overlap on the detector.
ことを特徴とするシァリング干渉計。  A shearing interferometer.
(14) 請求項 1又は請求項 2に記載のシァリング干渉測定方法により投影光 学系の一部又は全部を検査する手順を含む  (14) Including a procedure for inspecting part or all of the projection optical system by the shearing interference measurement method according to claim 1 or 2.
ことを特徴とする投影光学系の製造方法。  A method of manufacturing a projection optical system.
(15) 請求項 14に記載の投影光学系の製造方法により製造されたことを特 徴とする投影光学系。  (15) A projection optical system manufactured by the method for manufacturing a projection optical system according to claim 14.
(16) 請求項 15に記載の投影光学系を含む  (16) Including the projection optical system according to claim 15
ことを特徴とする投影露光装置。  A projection exposure apparatus characterized by the above-mentioned.
PCT/JP2003/000897 2002-02-07 2003-01-30 Shearing interference measuring method and shearing interferometer, production method of projection optical system, projection optical system, and projection exposure system WO2003067182A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003244344A AU2003244344A1 (en) 2002-02-07 2003-01-30 Shearing interference measuring method and shearing interferometer, production method of projection optical system, projection optical system, and projection exposure system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-030413 2002-02-07
JP2002030413 2002-02-07
JP2002-221765 2002-07-30
JP2002221765A JP2003302205A (en) 2002-02-07 2002-07-30 Shearing interference measuring method and shearing interferometer, method of manufacturing for projection optical system, and projection optical system, and projection exposure device

Publications (1)

Publication Number Publication Date
WO2003067182A1 true WO2003067182A1 (en) 2003-08-14

Family

ID=27736453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000897 WO2003067182A1 (en) 2002-02-07 2003-01-30 Shearing interference measuring method and shearing interferometer, production method of projection optical system, projection optical system, and projection exposure system

Country Status (3)

Country Link
JP (1) JP2003302205A (en)
AU (1) AU2003244344A1 (en)
WO (1) WO2003067182A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508488B2 (en) 2004-10-13 2009-03-24 Carl Zeiss Smt Ag Projection exposure system and method of manufacturing a miniaturized device
CN102878935A (en) * 2012-09-25 2013-01-16 东南大学 Device and method for measuring optical off-plane displacement field based on shearing speckle interference

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333175B2 (en) * 2004-09-13 2008-02-19 Asml Netherlands, B.V. Method and system for aligning a first and second marker
JP4769448B2 (en) * 2004-10-08 2011-09-07 キヤノン株式会社 Exposure apparatus having interferometer and device manufacturing method
JP4731951B2 (en) * 2005-02-28 2011-07-27 キヤノン株式会社 Interference fringe analysis method and apparatus, measurement apparatus, exposure apparatus, and device manufacturing method
JP4904708B2 (en) * 2005-03-23 2012-03-28 株式会社ニコン Wavefront aberration measuring method, wavefront aberration measuring apparatus, projection exposure apparatus, and projection optical system manufacturing method
JP2006303370A (en) 2005-04-25 2006-11-02 Canon Inc Aligner and device manufacturing method using it
US7518703B2 (en) * 2005-06-28 2009-04-14 Asml Netherlands B.V. Lithographic apparatus and method
JP5336890B2 (en) * 2009-03-10 2013-11-06 キヤノン株式会社 Measuring apparatus, exposure apparatus, and device manufacturing method
WO2014088089A1 (en) * 2012-12-06 2014-06-12 合同会社3Dragons Three-dimensional shape measuring device, method for acquiring hologram image, and method for measuring three-dimensional shape
US11892292B2 (en) 2017-06-06 2024-02-06 RD Synergy Ltd. Methods and systems of holographic interferometry
US10725428B2 (en) * 2017-06-06 2020-07-28 RD Synergy Ltd. Methods and systems of holographic interferometry
WO2020089900A1 (en) 2018-10-30 2020-05-07 RD Synergy Ltd. Methods and systems of holographic interferometry

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149719A (en) * 1991-11-29 1993-06-15 Toshiba Corp Property measuring instrument
JPH07248261A (en) * 1994-03-10 1995-09-26 Toshiba Corp Phase difference measuring apparatus
JP2000097664A (en) * 1998-09-21 2000-04-07 Nikon Corp Shearing interferometer
JP2000097622A (en) * 1998-09-22 2000-04-07 Nikon Corp Interferometer
JP2003014415A (en) * 2001-06-29 2003-01-15 Canon Inc Point diffraction interferometer and aligner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149719A (en) * 1991-11-29 1993-06-15 Toshiba Corp Property measuring instrument
JPH07248261A (en) * 1994-03-10 1995-09-26 Toshiba Corp Phase difference measuring apparatus
JP2000097664A (en) * 1998-09-21 2000-04-07 Nikon Corp Shearing interferometer
JP2000097622A (en) * 1998-09-22 2000-04-07 Nikon Corp Interferometer
JP2003014415A (en) * 2001-06-29 2003-01-15 Canon Inc Point diffraction interferometer and aligner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508488B2 (en) 2004-10-13 2009-03-24 Carl Zeiss Smt Ag Projection exposure system and method of manufacturing a miniaturized device
CN102878935A (en) * 2012-09-25 2013-01-16 东南大学 Device and method for measuring optical off-plane displacement field based on shearing speckle interference

Also Published As

Publication number Publication date
AU2003244344A1 (en) 2003-09-02
JP2003302205A (en) 2003-10-24

Similar Documents

Publication Publication Date Title
US7286245B2 (en) Method and apparatus for determining the influencing of the state of polarization by an optical system; and an analyser
US7499178B2 (en) Oblique incidence interferometer
JP3237309B2 (en) System error measuring method and shape measuring device using the same
EP0902874B1 (en) Interferometer for measuring thickness variations of semiconductor wafers
WO2003067182A1 (en) Shearing interference measuring method and shearing interferometer, production method of projection optical system, projection optical system, and projection exposure system
JP4265404B2 (en) Point diffraction type interference measurement method and point diffraction type interference measurement apparatus
JP2006343121A (en) Light beam measuring device
JP2005062012A (en) Vibration-proof type interferometer device
JPH10160582A (en) Interferometer for measuring transmitted wave front
JP2002286408A (en) Optical system for oblique-incidence interferometer and device using the same
WO2003076872A1 (en) Shape measuring method, interference measuring device, porduction method for projection optical system, and porjectionj aligner
JP2000097622A (en) Interferometer
JP2004198348A (en) Interferometer and manufacturing method for projection exposure device
US6081335A (en) Phase difference measuring device with visible light source for providing easy alignment of optical axes and method therefor
JPS6365882B2 (en)
JP2000097664A (en) Shearing interferometer
JPH0210208A (en) Minute angle measuring apparatus
JP2000088513A (en) Aspherical wave generating lens system assembling adjusting equipment
JPH11325848A (en) Aspherical surface shape measurement device
JP2902417B2 (en) Interferometer for measuring wavefront aberration
JP2003014415A (en) Point diffraction interferometer and aligner
JPH05157532A (en) Computer hologram for measurement and measuring method using same
JP2022042645A (en) Shape measuring device and shape measuring method
JP2003185409A (en) Method for measuring interference, device of controlling interferometer, method for manufacturing projection lens, and projection exposure apparatus
JP2005156446A (en) Method for measuring aspherical surface shape, and manufacturing method of projection optical system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase