WO2003066934A1 - Corrosion-resistant structure of metal material and method for surface treatment of metal material - Google Patents

Corrosion-resistant structure of metal material and method for surface treatment of metal material Download PDF

Info

Publication number
WO2003066934A1
WO2003066934A1 PCT/JP2003/001169 JP0301169W WO03066934A1 WO 2003066934 A1 WO2003066934 A1 WO 2003066934A1 JP 0301169 W JP0301169 W JP 0301169W WO 03066934 A1 WO03066934 A1 WO 03066934A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
oxide
corrosion
titanium oxide
metal
Prior art date
Application number
PCT/JP2003/001169
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Shinohara
Atsushi Ueda
Tamao HAYAKAWA
Original Assignee
Center For Advanced Science And Technology Incubation, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center For Advanced Science And Technology Incubation, Ltd. filed Critical Center For Advanced Science And Technology Incubation, Ltd.
Priority to AU2003207220A priority Critical patent/AU2003207220A1/en
Publication of WO2003066934A1 publication Critical patent/WO2003066934A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer

Definitions

  • the present invention relates to a corrosion prevention structure for a metal material and a surface treatment method for the metal material.
  • the anticorrosion structure and the surface treatment method according to the present invention are preferably used for anticorrosion of an outer wall of a large structure such as a building or a bridge. Background art
  • T i 0 2 When light is applied to the n-type semiconductor T i 0 2 , the anode current increases and the potential becomes lower accordingly. Moreover, since the anodic reaction on the surface is the oxidation of water, it does not dissolve or deteriorate itself. Therefore, research and development of a force-sword anticorrosion method using a TiO 2 coating has been attempted by using this. However, the T i 0 2 only coatings, anticorrosion effect as capable of withstanding practical use can not be obtained. For example, in order to obtain the anticorrosive effect was sustained by T i O 2 film layer is indispensable light irradiation, be formed much trouble T i 0 2 coating layer, progresses corrosion during the night light irradiation can not be obtained There is a problem of doing it.
  • Japanese Patent Application Laid-Open No. 117-16844 discloses that at least one metal element selected from the group consisting of Fe, V, and Cu is provided as a lower layer on the surface of a metal material in a titanium oxide film.
  • a technique is described in which a first coating layer containing 5 to 20% is contained, and a second coating layer containing titanium oxide is provided thereon, even if light is blocked. The anticorrosion effect is maintained and high corrosion resistance is ensured.
  • T i 0 2 in the plus F e 2 0 3 3-layer coated between T i 0 2 coating layer and the underlying metal Some have a structure.
  • 2000-26239 describes an anticorrosion structure including a titanium oxide film and a conductive film laminated so as to be in contact with the main surface of the film.
  • the electrons are generated in the coating when the coating is irradiated with light, the electrons are collected by the conductive coating and injected into the metal material through the conductive coating. Which are lower than the oxidation potential.
  • the present invention provides an anticorrosion structure for a metal material and a surface treatment method for a metal material having a simple structure, yet having an advantageous anticorrosion effect and maintaining the anticorrosion effect even when light is blocked.
  • the purpose is to do so.
  • Another object of the present invention is to carry out a baking treatment at a relatively low temperature, yet to provide an advantageous anticorrosion effect and to maintain the anticorrosion effect of a metal material even when light is blocked. And a method for surface treatment of a metal material. Disclosure of the invention
  • the technical means employed in the present invention is a corrosion prevention structure for a metal material, wherein a coating layer made of titanium oxide and a conductive metal oxide is formed on the surface of the metal material.
  • the conductive metal oxide employed in the present invention is preferably a Sn oxide Objects (e.g., tin oxide S n 0 2) is, in the present specification, the S n oxide, ITO (Indium Tin Oxide) are also included.
  • Sn oxide Objects e.g., tin oxide S n 0 2
  • ITO Indium Tin Oxide
  • the conductive metal oxide other than the Sn oxide an Fe oxide or another conductive metal oxide may be used.
  • the metal serving as the base material of the anticorrosion structure according to the present invention is not particularly limited, but preferred examples include stainless steel, iron, and aluminum. Further, the metal surface serving as the base material may be plated. For example, the base material may be a zinc-plated steel plate.
  • the coating layer comprising the titanium oxide and the conductive metal oxide according to the present invention is produced by applying the metal oxide / titanium oxide sol to the surface of a metal material and firing the surface. You.
  • the method of applying the metal oxide / titanium oxide sol is not particularly limited, and dip coating, spray coating, spin coating, brush coating, or the like can be employed.
  • the coating method using an airbrush or the like is advantageous. It is difficult to employ dip coating, which is commonly used in the conventional sol-gel method, for coating structures.
  • the ordinary sol-gel method generally has a baking temperature of 200 ° C. to 400 ° C. or higher, which is a relatively high temperature. Not suitable for doing.
  • the firing temperature may range from 100 ° C. to 350 ° C., but in one preferred range, the firing temperature is 100 ° C. (: to 200 ° C.).
  • the coating formed by the low-temperature baking treatment exhibited an advantageous anticorrosion effect. Work can be performed relatively easily.
  • the film method is not limited to a method in which a sol solution is applied and baked, but may be a method such as a thermal spraying method, a CVD method, or a PVD method (including sputtering).
  • a titanium oxide film may be further formed on the film layer made of titanium oxide and the conductive metal oxide.
  • the method of forming the titanium oxide film constituting the surface layer is not limited, and includes a method of applying a titanium oxide sol solution (spray coat or dip coating), a thermal spray method, a CVD method, a PVD method (including sputtering). And so on.
  • FIG. 1 is a diagram showing a change in a natural potential and a photopotential
  • FIG. 2 is a diagram showing a change in a potential after holding a constant voltage (after holding at 600 mV for 30 minutes).
  • a substrate coated with a film composed of titanium oxide and a conductive metal oxide is ITO glass having a size of 2 ⁇ 3 cm, a thickness of about 1 mm, and a surface having a particle size of 0.05 ⁇ .
  • Polished stainless steel 304 which was puffed and finished with aluminum, was used.
  • ITO glass was chosen as a comparison for stainless steel.
  • Tin chloride (S n C l 2) 0. 0 1 mo 1 in an electric furnace in air atmosphere, and baked for 30 minutes at 3 5 0 ° C, was ground in a mortar.
  • Electrochemical measurements were performed as follows: (1) To measure the polarization curve of the prepared sample in the dark and under light irradiation (sweep rate: 10 mV / 10 sec) and to confirm the reproducibility Then, it was reciprocated three times in the ⁇ state (100 mV to 500 mV vs. SCE-10 mVZ 10 sec). (2) Potential nobleness To confirm the delay characteristics, after holding the constant potential in the ⁇ state (60 OmV ⁇ 30 min), apply a constant current (1 ⁇ A / cm 2 ) to the sample and measure the potential over time. The change was measured.
  • Figure 1 shows the zeta potential and photopotential of the prepared sample.
  • the ⁇ potential was about 1 374 024 mV for ITO glass and about 1 360 280 mV for stainless 304 steel.
  • the photopotential dropped to about 182,733 mV for ITO glass and to 1,680,550 mV for stainless steel 304. This is well below the 400 mV required for stainless steel corrosion protection.
  • the light potential when coated with only T i 0 2 sol stainless steel is about a 2 0 about 0 mV, for industrial sol was found to be advantageous added addition of S n OX.
  • the firing temperature was 200 ° C.
  • Figure 2 shows the change over time in the potential when a constant current is applied after holding the ⁇ state constant potential.
  • the substrate is stainless 304 steel. From this result, it was found that the coating of the Ti O 2 sol to which SnO x was added (especially in the case of firing at 150 ° C.) also had the potential noble delay property. About 1 for 5 hours did not substantially change from the potential one 5 0 0 mV around, accumulated electrostatic load volume that is obtained by accumulating this result was approximately 5. 6 X 1 0- 2 CZ c m2. This order is extremely large It is a thing.
  • T i O 2 sol On the film coated with S n OX ⁇ T i O 2 sol, further coated with T i O 2 sol may be formed a three-layer structure.
  • the manufacturing method of the S n OX ⁇ T i 0 2 sols such is limited to the above-les.
  • the S n C 1 2 was dissolved in a small amount water added to HC 1, there was sufficiently dried the precipitate obtained was left by adding T i 0 2 sol solution, which in a ball mill May be crushed and suspended in water.
  • S n (OH) 2 may be used as a starting material.
  • S n OX ⁇ T i 0 2 alone film is not limited to by airbrush, for example, may be coated with a S n OX ⁇ T i 0 2 sol on a substrate using a brush, It does not exclude the sol-gel method.
  • the coating method using an airbrush is advantageous.
  • the conventional sol-gel method mainly employs dip coating, and it is difficult to employ this for structures.
  • the sol-gel method generally has a baking temperature of 200 ° C. to 400 ° C. or higher, which is a relatively high temperature, and is not suitable for on-site coating work. It is.
  • the firing temperature is 200 ° C or less. Effect was obtained.
  • This invention can be used for corrosion prevention of the outer wall of large structures, such as a building and a bridge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Chemically Coating (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A corrosion-resistant structure of a metal material, characterized in that it comprises a metal material and, formed thereon, a coating layer comprising titanium oxide and an electroconductive metal oxide. In a preferred embodiment, said electroconductive metal oxide is an Sn oxide. A method for treating a surface of a metal material, wherein the surface of the metal material is coated with an SnOx · TiO2 sol and then is fired, for example, at 150˚C, to form a corrosion-resistant structure. The corrosion-resistant structure can be formed through a firing at a relatively low temperature, and has advantageous corrosion-resistance effect, and further exhibits the persistence of the corrosion-resistance effect even after a light is cut off.

Description

明 細 書 金属材料の防食構造及び金属材料の表面処理方法 技術分野  Description Corrosion protection structure for metal materials and surface treatment method for metal materials
本発明は、 金属材料の防食構造および金属材料の表面処理方法に関 するものである。 本発明に係る防食構造および表面処理方法は、 好適 な例では、 建物や橋梁等の大型構造物の外壁の防食に利用される。 背景技術  The present invention relates to a corrosion prevention structure for a metal material and a surface treatment method for the metal material. The anticorrosion structure and the surface treatment method according to the present invention are preferably used for anticorrosion of an outer wall of a large structure such as a building or a bridge. Background art
n型半導体である T i 0 2に光を照射すると、 アノード電流が増大し- それに伴い電位が卑化する。 しかもその表面でのアノード反応は水の 酸化であるので、 それ自身の溶解、 あるいは劣化を伴わない。 したが つて、 これを利用することで、 T i O 2被膜による力ソード防食法の研 究 ·開発が試みられている。 しかしながら、 T i 0 2のみの被膜では、 実用化に耐え得るような防食効果は得られない。 例えば、 T i O 2被膜 層による持続した防食効果を得るには、 光照射が不可欠であり、 折角 T i 0 2被膜層を形成しても、 光照射が得られない夜間には腐蝕が進行 してしまうという不具合がある。 When light is applied to the n-type semiconductor T i 0 2 , the anode current increases and the potential becomes lower accordingly. Moreover, since the anodic reaction on the surface is the oxidation of water, it does not dissolve or deteriorate itself. Therefore, research and development of a force-sword anticorrosion method using a TiO 2 coating has been attempted by using this. However, the T i 0 2 only coatings, anticorrosion effect as capable of withstanding practical use can not be obtained. For example, in order to obtain the anticorrosive effect was sustained by T i O 2 film layer is indispensable light irradiation, be formed much trouble T i 0 2 coating layer, progresses corrosion during the night light irradiation can not be obtained There is a problem of doing it.
特開平 1 1一 7 1 6 8 4号には、 金属材料の表面に、 下層として F e , Vおよび C uから成る群から選ばれた少なく とも 1種の金属元素 をチタン酸化物被膜中に 5〜 2 0 %の割合で含有する第 1 被膜層を有 し、 その上にチタン酸化物を含有する第 2の被膜層を有する技術が記 載されており、 光が遮断されても力ソード防食効果が持続し、 高い耐 食性を有するようにしている。 また、 電位貴化遅延特性を発現するよ うなその他の技術としては、 T i 0 2に F e 2 0 3を加えたものを、 T i 0 2被膜層と下地金属間に被覆して 3層構造とするものもある。 特開 2 0 0 1— 2 6 2 3 7 9号には、 チタン酸化物被膜と、 該被膜 の主面に接触するように積層されている導電性被膜とを備えた防食構 造が記載されており、 被膜に対して光が照射されたときに被膜内で生 成する電子を導電性被膜によって集電し、 導電性被膜を介して金属材 料へと注入することによって、 金属材料の電位をその酸化電位よりも 低くするものが開示されている。 Japanese Patent Application Laid-Open No. 117-16844 discloses that at least one metal element selected from the group consisting of Fe, V, and Cu is provided as a lower layer on the surface of a metal material in a titanium oxide film. A technique is described in which a first coating layer containing 5 to 20% is contained, and a second coating layer containing titanium oxide is provided thereon, even if light is blocked. The anticorrosion effect is maintained and high corrosion resistance is ensured. Further, as other techniques Una by expressing potential Takashika delay characteristic, T i 0 2 in the plus F e 2 0 3, 3-layer coated between T i 0 2 coating layer and the underlying metal Some have a structure. Japanese Unexamined Patent Publication No. 2000-26239 describes an anticorrosion structure including a titanium oxide film and a conductive film laminated so as to be in contact with the main surface of the film. When electrons are generated in the coating when the coating is irradiated with light, the electrons are collected by the conductive coating and injected into the metal material through the conductive coating. Which are lower than the oxidation potential.
これらの方法はいずれも基材の上に 2層以上の被膜を形成するもの であり、 その分だけ成膜工程が多くなる。 また、 基材上に設けた被膜 の焼成温度が比較的高く、 大型構造物等に現場で塗膜形成することを 考えると、 実用化には不利である。  In each of these methods, two or more layers are formed on a substrate, and the number of film forming steps is increased accordingly. In addition, the baking temperature of the film provided on the base material is relatively high, and it is disadvantageous for practical use, considering that a film is formed on a large structure or the like on site.
本発明は、 シンプルな構成でありながら、 有利な防食効果を有し、 かつ光が遮断された状態でも防食効果が持続するような金属材料の防 食構造及び金属材料の表面処理方法を提供することを目的とするもの である。  The present invention provides an anticorrosion structure for a metal material and a surface treatment method for a metal material having a simple structure, yet having an advantageous anticorrosion effect and maintaining the anticorrosion effect even when light is blocked. The purpose is to do so.
本発明の他の目的は、 比較的低温で焼成処理を行なうものでありな がら、 有利な防食効果を有し、 かつ光が遮断された状態でも防食効果 が持続するような金属材料の防食構造および金属材料の表面処理方法 を提供することにある。 発明の開示  Another object of the present invention is to carry out a baking treatment at a relatively low temperature, yet to provide an advantageous anticorrosion effect and to maintain the anticorrosion effect of a metal material even when light is blocked. And a method for surface treatment of a metal material. Disclosure of the invention
本発明が採用した技術手段は、 金属材料の表面に、 酸化チタンと導 電性金属酸化物とからなる被膜層を形成したことを特徴とする金属材 料の防食構造である。 金属材料の表面に、 酸化チタンと導電性金属酸 化物とからなる被膜層を形成することによって、 金属の防食効果が発 現されると共に、 その防食効果が光照射を遮断した後においても持続 することがわかった。  The technical means employed in the present invention is a corrosion prevention structure for a metal material, wherein a coating layer made of titanium oxide and a conductive metal oxide is formed on the surface of the metal material. By forming a coating layer composed of titanium oxide and a conductive metal oxide on the surface of a metal material, the anticorrosion effect of the metal is exhibited, and the anticorrosion effect is maintained even after light irradiation is blocked. I understand.
本発明に採用される導電性金属酸化物は、 好適な例では、 S n酸化 物 (例えば、 酸化錫 S n 0 2 ) であり、 本明細書において、 S n酸化物 には、 I T O (Indium Tin Oxide)も含まれる。 S n酸化物以外の導電性 金属酸化物としては、 F e酸化物、 あるいはその他の導電性金属酸化 物も採用し得る。 The conductive metal oxide employed in the present invention is preferably a Sn oxide Objects (e.g., tin oxide S n 0 2) is, in the present specification, the S n oxide, ITO (Indium Tin Oxide) are also included. As the conductive metal oxide other than the Sn oxide, an Fe oxide or another conductive metal oxide may be used.
本発明に係る防食構造の基材となる金属は特には限定されないが、 好適な例としては、 ステンレス鋼、 鉄、 アルミニウムが挙げられる。 また、 基材となる金属表面がめっきされていてもよく、 例えば、 基材 は亜鉛めつき鋼板であってもよい。  The metal serving as the base material of the anticorrosion structure according to the present invention is not particularly limited, but preferred examples include stainless steel, iron, and aluminum. Further, the metal surface serving as the base material may be plated. For example, the base material may be a zinc-plated steel plate.
本発明に係る酸化チタンと導電性金属酸化物とからなる被膜層は、 好適な例では、 該金属酸化物 ·酸化チタンゾルを金属材料の表面に塗 布し、 該表面を焼成することによって作製される。  In a preferred example, the coating layer comprising the titanium oxide and the conductive metal oxide according to the present invention is produced by applying the metal oxide / titanium oxide sol to the surface of a metal material and firing the surface. You.
該金属酸化物 ·酸化チタンゾルの塗布方法は、 特には限定されず、 ディップコート、 スプレーコート、 スピンコート、 刷毛塗り等が採用 され得る。 しかしながら、 建物や橋梁等の比較的大型の構造物に防食 構造を設けることを考えると、 エアブラシ等を用いたコーティング法 が有利である。 従来のゾル · ゲル法で一般に用いられているディップ コーティングを構造物の被膜に採用することは困難である。 また、 通 常のゾル ·ゲル法は一般に焼成温度が 2 0 0 °Cから 4 0 0 °C、 あるい はそれ以上の温度であって、 比較的高い温度であり、 現場において被 膜作業を行なうには不向きである。  The method of applying the metal oxide / titanium oxide sol is not particularly limited, and dip coating, spray coating, spin coating, brush coating, or the like can be employed. However, considering the provision of anti-corrosion structures on relatively large structures such as buildings and bridges, the coating method using an airbrush or the like is advantageous. It is difficult to employ dip coating, which is commonly used in the conventional sol-gel method, for coating structures. In addition, the ordinary sol-gel method generally has a baking temperature of 200 ° C. to 400 ° C. or higher, which is a relatively high temperature. Not suitable for doing.
焼成温度は、 1 0 0 °Cから 3 5 0 °Cの範囲を採り得ると考えられる が、 一つの好ましい範囲では、 該焼成温度は、 1 0 0 °(:から 2 0 0 ° の範囲である。 後述する実験例から明らかなように、 低温焼成処理に よって形成された被膜が、 有利な防食効果を奏することがわかった。 さらに、 低温焼成処理が可能なことにより、 現場における構造体表面 への被膜.作業を比較的容易に行なうことができる。  It is believed that the firing temperature may range from 100 ° C. to 350 ° C., but in one preferred range, the firing temperature is 100 ° C. (: to 200 ° C.). As is evident from the experimental examples described below, it was found that the coating formed by the low-temperature baking treatment exhibited an advantageous anticorrosion effect. Work can be performed relatively easily.
本発明に係る酸化チタンと導電性金属酸化物とからなる被膜層の成 膜方法は、 ゾル溶液を塗布して焼成するものに限定されるものではな く、 溶射法、 CVD法、 PVD法 (スパッタ リ ングを含む) 等による ものであってもよレヽ。 Formation of a coating layer comprising the titanium oxide and the conductive metal oxide according to the present invention. The film method is not limited to a method in which a sol solution is applied and baked, but may be a method such as a thermal spraying method, a CVD method, or a PVD method (including sputtering).
酸化チタンと導電性金属酸化物とからなる被膜層の上に、 さらに酸 化チタン被膜を形成してもよい。 この表面層を構成する酸化チタン被 膜の成膜方法は限定されず、 酸化チタンゾル溶液を塗布するもの (ス プレーコ―トやディップコート)、 溶射法、 CVD法、 PVD法 (スパ ッタリングを含む) 等いずれであってもよい。 図面の簡単な説明  A titanium oxide film may be further formed on the film layer made of titanium oxide and the conductive metal oxide. The method of forming the titanium oxide film constituting the surface layer is not limited, and includes a method of applying a titanium oxide sol solution (spray coat or dip coating), a thermal spray method, a CVD method, a PVD method (including sputtering). And so on. BRIEF DESCRIPTION OF THE FIGURES
図 1は自然電位 '光電位の変化を示す図であり、 図 2は定電保持 (一 60 0 mVにて 3 0分保持後) 後の電位の変化を表す図である。 発明を実施するための最良の形態  FIG. 1 is a diagram showing a change in a natural potential and a photopotential, and FIG. 2 is a diagram showing a change in a potential after holding a constant voltage (after holding at 600 mV for 30 minutes). BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の形態について説明する。 酸化チタンと導電性金属酸 化物とからなる膜が被覆される基板としては、 大きさが 2 X 3 c m、 厚さが約 1 mm I T Oガラス、 及び、 表面を粒径 0. 0 5 μ πιのアル ミナにてパフ研磨仕上げした研磨ステンレス 3 0 4鋼を用いた。 I T Oガラスは、 ステンレス鋼の比較対象として選択したものである。 塩化錫 (S n C l 2) 0. 0 1 m o 1 を空気雰囲気中の電気炉中で、 3 5 0°Cで 3 0分間焼成し、 乳鉢ですりつぶした。 これに H2O 4 0 ml を加え、 さらに固形分 4 w t %T i 02ゾル 2 0 m 1 (T i 02含有 量約 0. 0 1 mo 1 )を加え、 ー晚マグネッ トスタ一ラーで攪拌し S n 酸化物と T i O 2の混合物 (以下、 S η θ χ · T i 02ゾルと呼ぶ) を 作製し、 これを被覆材料とした。 An embodiment of the present invention will be described. A substrate coated with a film composed of titanium oxide and a conductive metal oxide is ITO glass having a size of 2 × 3 cm, a thickness of about 1 mm, and a surface having a particle size of 0.05 μππι. Polished stainless steel 304, which was puffed and finished with aluminum, was used. ITO glass was chosen as a comparison for stainless steel. Tin chloride (S n C l 2) 0. 0 1 mo 1 in an electric furnace in air atmosphere, and baked for 30 minutes at 3 5 0 ° C, was ground in a mortar. To this was added 40 ml of H 2 O, and 4 ml of solids 4 wt% Ti 0 2 sol 20 m 1 (Ti 0 2 content about 0.01 mo 1) was added. in stirring S n a mixture of oxides and T i O 2 (hereinafter, referred to as S η θ χ · T i 0 2 sol) was prepared, which was used as a coating material.
ホッ トプレート上で基板の I TOガラス、 ステンレス 3 04鋼を熱 し、 エアブラシを用いてそれぞれの基板上に S n O X · T i 02ゾルを 被覆した。 その後、 所定の温度 ( 1 5 0°Cから 2 5 0°C) の空気雰囲 気中にて 2 0分間焼成処理を行なった。 作製した試料は 2 4時間以上 放置した。 Hot plate substrate on I TO glass, stainless 3 04 steel and heat, S n OX · T i 0 2 sol on the respective substrate using an airbrush Coated. Thereafter, a baking treatment was performed for 20 minutes in an air atmosphere at a predetermined temperature (150 ° C. to 250 ° C.). The prepared sample was left for 24 hours or more.
電気化学的測定として、 ( 1 ) 作製した試料の暗状態下、 及び、 光照 射下での分極曲線を測定した (掃引速度: 1 0 mV/ 1 0 s e c )o ま た再現性を確認するために、 喑状態で 3回往復分極した (一 1 0 0 0 mV〜 5 0 0 mVvs. S C E - 1 0 mVZ l 0 s e c)。 (2 ) 電位貴化 遅延特性を確認するため、 喑状態にて定電位保持後 (6 0 O mV · 3 0 m i n)、 定電流 ( 1 μ A/ c m2) を試料に流しその電位の経時変 化を測定した。 Electrochemical measurements were performed as follows: (1) To measure the polarization curve of the prepared sample in the dark and under light irradiation (sweep rate: 10 mV / 10 sec) and to confirm the reproducibility Then, it was reciprocated three times in the 喑 state (100 mV to 500 mV vs. SCE-10 mVZ 10 sec). (2) Potential nobleness To confirm the delay characteristics, after holding the constant potential in the 喑 state (60 OmV · 30 min), apply a constant current (1 μA / cm 2 ) to the sample and measure the potential over time. The change was measured.
図 1に作成した試料の喑電位及び光電位を示す。 喑電位は I TOガ ラスで約一 3 7 4 2 0 4 mV、 ステンレス 3 0 4鋼で約一 3 6 0 2 8 O mVであった。 一方、 光電位は I T Oガラスで約一 8 2 0 6 7 3 mV、 ステンレス 3 0 4鋼では一 6 8 0 5 5 0 mVま で下がった。 これは、 ステンレス鋼防食に必要とされる一 4 0 0 mV よりも十分低い。 T i 02ゾルのみをステンレス鋼に被覆した場合の光 電位は約一 2 0 0 mV程度であるので、 工業的ゾルには S n O Xの添 加が有利であることがわかった。 また、 喑状態にて 3回にわたって往 復分極したときその軌道に殆ど変化はなく、 その再現法も確認できた。 また、 図 1から明らかなように、本実験では、焼成処理温度が 2 0 0°C の場合に最も良好な結果が得られた。 Figure 1 shows the zeta potential and photopotential of the prepared sample. The 喑 potential was about 1 374 024 mV for ITO glass and about 1 360 280 mV for stainless 304 steel. On the other hand, the photopotential dropped to about 182,733 mV for ITO glass and to 1,680,550 mV for stainless steel 304. This is well below the 400 mV required for stainless steel corrosion protection. The light potential when coated with only T i 0 2 sol stainless steel is about a 2 0 about 0 mV, for industrial sol was found to be advantageous added addition of S n OX. In addition, when going back and forth three times in the 喑 state, there was almost no change in the orbit, and the method of reproducing the orbit was also confirmed. As is clear from FIG. 1, in this experiment, the best results were obtained when the firing temperature was 200 ° C.
図 2に、 喑状態定電位保持後、 定電流を与えた際の電位の経時変化 を示す。 基板はステンレス 3 0 4鋼である。 この結果より、 S n O x を添加した T i 02ゾル (特に、 1 5 0°C焼成の場合) の被覆が電位貴 化遅延特性をも有することが分かった。 約 1 5時間の間は電位が一 5 0 0 mV付近から殆ど変化せず、 この結果から積算し得られた蓄積電 荷量は約 5. 6 X 1 0— 2 CZ c m2であった。 このオーダは極めて大き いものである。例えば、従来技術に記載した T i 02に F e 2O3を加え たものを、 T i 02被膜層と下地金属間に被覆して 3層構造としたもの では、 最大でも蓄積電荷量は 1 · 2 X 1 0— 2CZc πι2であった。 しか も、 ゾル 'ゲル法で、 1. 2 X 1 0— 2 ノ c m2を得るためには、 1 0 回塗り (デイツビング—焼成を 1 0回繰り返す) の必要があった。 本 発明では、 塗る層も 1層で済み、 しかも塗る回数が 1回で、 蓄積電荷 量も多く、 従来のものに比べて有利な効果を奏する。 Figure 2 shows the change over time in the potential when a constant current is applied after holding the 喑 state constant potential. The substrate is stainless 304 steel. From this result, it was found that the coating of the Ti O 2 sol to which SnO x was added (especially in the case of firing at 150 ° C.) also had the potential noble delay property. About 1 for 5 hours did not substantially change from the potential one 5 0 0 mV around, accumulated electrostatic load volume that is obtained by accumulating this result was approximately 5. 6 X 1 0- 2 CZ c m2. This order is extremely large It is a thing. For example, the plus F e 2 O 3 to T i 0 2 described in the prior art, T i 0 In 2 as was coated with three-layer structure between the coating layer and the underlying metal, also accumulated charge amount at the maximum was 1 · 2 X 1 0- 2 CZc πι2. However even in sol 'gel method, 1. To obtain a 2 X 1 0- 2 Bruno c m @ 2 is 1 0 coats - it is necessary for (Deitsubingu repeated firing 1 0 times). In the present invention, only one layer is applied, and the number of times of application is one, the amount of accumulated electric charge is large, and an advantageous effect is obtained as compared with the conventional one.
S n O X · T i O 2ゾルを被覆した膜の上に、 さらに T i O2ゾルを 被覆して、 3層構造を形成してもよい。 S ηθ X · T i 02/T i 02 からなる膜は、 S n O x · T i 02単独の膜に比べて、 光特性が高いと 考えられる。 On the film coated with S n OX · T i O 2 sol, further coated with T i O 2 sol may be formed a three-layer structure. S ηθ X · T i 0 2 / T i 0 2 made of film, compared to S n O x · T i 0 2 alone film, the optical characteristics can be considered high.
また、 S n O X · T i 02ゾルの作製方法についても、 上述のものに 限定されなレ、。例えば、 S n C 1 2を、 HC 1を少量加えた水に溶解し、 そこに T i 02ゾル溶液を加えて放置して得られた沈殿を十分に乾燥 させた後、 これをボールミルにて粉砕し、 これを水に懸濁させてもよ い。 あるいは、 出発物質として、 S n (OH) 2を用いてもよい。 As for the manufacturing method of the S n OX · T i 0 2 sols, such is limited to the above-les. For example, the S n C 1 2, was dissolved in a small amount water added to HC 1, there was sufficiently dried the precipitate obtained was left by adding T i 0 2 sol solution, which in a ball mill May be crushed and suspended in water. Alternatively, S n (OH) 2 may be used as a starting material.
また、 S n O X · T i 02単独の膜の形成は、 エアブラシによるもの に限定されず、 例えば、 刷毛を用いて S n O X · T i 02ゾルを基板上 に塗布してもよく、 またゾル ·ゲル法を排除するものでもない。 しか しながら、 建物や橋梁等の比較的大型の構造物に防食構造を設けるこ とを考えると、 エアブラシを用いたコーティング法は有利である。 こ れに対して、 従来のゾル ·ゲル法では主としてディップコ一ティング が採用されており、構造物にこれを採用することは困難である。また、 ゾル ·ゲル法は一般に焼成温度が 2 0 0°Cから 4 0 0°C、 あるいはそ れ以上の温度であって、 比較的高い温度であり、 現場において被膜作 業を行なうには不向きである。 これに対して、 今回実験で行なったェ アブラシにおける塗布では、 焼成温度が 2 0 0°C以下であっても有利 な効果が得られた。 The formation of S n OX · T i 0 2 alone film is not limited to by airbrush, for example, may be coated with a S n OX · T i 0 2 sol on a substrate using a brush, It does not exclude the sol-gel method. However, considering the provision of anticorrosion structures on relatively large structures such as buildings and bridges, the coating method using an airbrush is advantageous. In contrast, the conventional sol-gel method mainly employs dip coating, and it is difficult to employ this for structures. In addition, the sol-gel method generally has a baking temperature of 200 ° C. to 400 ° C. or higher, which is a relatively high temperature, and is not suitable for on-site coating work. It is. On the other hand, in the application using the air brush performed in this experiment, it is advantageous even if the firing temperature is 200 ° C or less. Effect was obtained.
本発明によれば、 シンプルな構成で、 かつ、 比較的低温で焼成処理 を行なうものでありながら、 有利な防食効果を有し、 かつ光が遮断さ れた状態でも防食効果が持続するような金属材料の防食構造および金 属材料の表面処理方法を得ることができる。 産業上の利用可能性  ADVANTAGE OF THE INVENTION According to this invention, while having a simple structure and performing a baking process at a relatively low temperature, it has an advantageous anticorrosion effect, and the anticorrosion effect is maintained even in a state where light is blocked. The anticorrosion structure of the metal material and the method of surface treatment of the metal material can be obtained. Industrial applicability
本発明は、 建物や橋梁等の大型構造物の外壁の防食に用いられ得る。  INDUSTRIAL APPLICATION This invention can be used for corrosion prevention of the outer wall of large structures, such as a building and a bridge.

Claims

請 求 の 範 囲 The scope of the claims
1. 金属材料の表面に、酸化チタンと導電性金属酸化物とからなる被 膜層を形成したことを特徴とする金属材料の防食構造。 1. An anticorrosion structure for a metal material, wherein a coating layer made of titanium oxide and a conductive metal oxide is formed on the surface of the metal material.
2. 請求項 1において、 該導電性金属酸化物は、 S n酸化物を含むも のであることを特徴とする金属材料の防食構造。  2. The corrosion prevention structure for a metal material according to claim 1, wherein the conductive metal oxide contains a Sn oxide.
3. 請求項 1, 2いずれかにおいて、 前記酸化チタンと導電性金属酸 化物からなる被膜層の上に、さらに酸化チタン被膜が形成されて いることを特徴とする金属材料の防食構造。  3. The anticorrosion structure for a metal material according to claim 1, wherein a titanium oxide film is further formed on the film layer made of the titanium oxide and the conductive metal oxide.
4. 金属材料の表面に、酸化チタンと導電性金属酸化物とからなる被 膜層を形成することを特徴とする金属材料の表面処理方法。  4. A method for treating a surface of a metal material, comprising forming a film layer made of titanium oxide and a conductive metal oxide on the surface of the metal material.
5. 請求項 4において、 該被膜層は、 該導電性金属酸化物 ·酸化チタ ンゾルを金属材料の表面に塗布し、該表面を焼成することによつ て作製されることを特徴とする金属材料の表面処理方法。  5. The metal according to claim 4, wherein the coating layer is produced by applying the conductive metal oxide / titanium oxide sol to a surface of a metal material and firing the surface. Material surface treatment method.
6. 請求項 4, 5いずれかにおいて、 該導電性金属酸化物は S n酸化 物を含むものであることを特徴とする金属材料の表面処理方法。 6. The surface treatment method for a metal material according to claim 4, wherein the conductive metal oxide contains a Sn oxide.
7. 請求項 4, 5 , 6いずれかにおいて、 該焼成温度は、 1 00°Cか ら 3 50°Cであることを特徴とする金属材料の表面処理方法。7. The method according to claim 4, wherein the firing temperature is from 100 ° C. to 350 ° C.
8. 請求項 7において、 該焼成温度は、 1 00°Cから 250°Cである ことを特徴とする金属材料の表面処理方法。 8. The surface treatment method for a metal material according to claim 7, wherein the firing temperature is from 100 ° C to 250 ° C.
9. 請求項 8において、該焼成温度は、 1 50°Cから 250°Cである ことを特徴とする金属材料の表面処理方法。  9. The method of claim 8, wherein the firing temperature is from 150 ° C to 250 ° C.
1 0. 請求項 8において、 該焼成温度は、 100°Cから 200°Cであ ることを特徴とする金属材料の表面処理方法。  10. The method according to claim 8, wherein the firing temperature is from 100 ° C to 200 ° C.
1 1. 請求項 4乃至 1 0いずれかにおいて、 前記酸化チタンと導電性 金属酸化物からなる被膜層の上に、 さらに酸化チタン被膜を形成 することを特徴とする金属材料の表面処理方法。  11. The method according to any one of claims 4 to 10, wherein a titanium oxide film is further formed on the film layer comprising the titanium oxide and the conductive metal oxide.
PCT/JP2003/001169 2002-02-08 2003-02-05 Corrosion-resistant structure of metal material and method for surface treatment of metal material WO2003066934A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003207220A AU2003207220A1 (en) 2002-02-08 2003-02-05 Corrosion-resistant structure of metal material and method for surface treatment of metal material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002031673A JP4088078B2 (en) 2002-02-08 2002-02-08 Anticorrosion structure of metal material and surface treatment method of metal material
JP2002-31673 2002-02-08

Publications (1)

Publication Number Publication Date
WO2003066934A1 true WO2003066934A1 (en) 2003-08-14

Family

ID=27677943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001169 WO2003066934A1 (en) 2002-02-08 2003-02-05 Corrosion-resistant structure of metal material and method for surface treatment of metal material

Country Status (3)

Country Link
JP (1) JP4088078B2 (en)
AU (1) AU2003207220A1 (en)
WO (1) WO2003066934A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673456B2 (en) 2005-11-15 2014-03-18 Meisei Industrial Company Limited Composite plated film and laminated film
JP4547487B2 (en) * 2005-11-15 2010-09-22 明星工業株式会社 Anticorrosion coating for metal used in the dark, method for metal anticorrosion in the dark and composite coating
CN103614712B (en) * 2013-12-04 2016-05-18 淮南师范学院 Sol-gel process is prepared Sb, Ce codope SnO2The method in intermediate layer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913980A (en) * 1981-11-27 1990-04-03 S R I International Corrosion resistant coatings
JPH09125254A (en) * 1995-08-30 1997-05-13 Aisin Seiki Co Ltd Titanium-aluminum alloy parts and production thereof
JPH09302479A (en) * 1996-05-15 1997-11-25 Nippon Parkerizing Co Ltd Surface treated steel excellent in corrosion resistance and its surface treating method
JPH10158860A (en) * 1996-12-04 1998-06-16 Nippon Parkerizing Co Ltd Surface treated steel excellent in corrosion resistance
JPH10195680A (en) * 1997-01-13 1998-07-28 Ishikawajima Harima Heavy Ind Co Ltd Method for inhibiting corrosion of stainless steel
JPH10317178A (en) * 1997-05-15 1998-12-02 Dainippon Toryo Co Ltd Corrosion-proof method of steel
JP2001247985A (en) * 2000-03-08 2001-09-14 Akira Fujishima Corrosion inhibiting method for metallic material
US20020047134A1 (en) * 2000-09-01 2002-04-25 Akira Fujishima Photoreactive devices, translucent members, ornaments, anticorrosive devices, devices for reducing oxygen and devices for controlling growth of microorganisms

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913980A (en) * 1981-11-27 1990-04-03 S R I International Corrosion resistant coatings
JPH09125254A (en) * 1995-08-30 1997-05-13 Aisin Seiki Co Ltd Titanium-aluminum alloy parts and production thereof
JPH09302479A (en) * 1996-05-15 1997-11-25 Nippon Parkerizing Co Ltd Surface treated steel excellent in corrosion resistance and its surface treating method
JPH10158860A (en) * 1996-12-04 1998-06-16 Nippon Parkerizing Co Ltd Surface treated steel excellent in corrosion resistance
JPH10195680A (en) * 1997-01-13 1998-07-28 Ishikawajima Harima Heavy Ind Co Ltd Method for inhibiting corrosion of stainless steel
JPH10317178A (en) * 1997-05-15 1998-12-02 Dainippon Toryo Co Ltd Corrosion-proof method of steel
JP2001247985A (en) * 2000-03-08 2001-09-14 Akira Fujishima Corrosion inhibiting method for metallic material
US20020047134A1 (en) * 2000-09-01 2002-04-25 Akira Fujishima Photoreactive devices, translucent members, ornaments, anticorrosive devices, devices for reducing oxygen and devices for controlling growth of microorganisms

Also Published As

Publication number Publication date
AU2003207220A1 (en) 2003-09-02
JP2003231973A (en) 2003-08-19
JP4088078B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
CN102677092B (en) Preparation method of titanium anode
JP6152139B2 (en) Electrodes for electrolysis applications
Saito et al. Selective deposition of ZnF (OH) on self-assembled monolayers in Zn− NH4F aqueous solutions for micropatterning of zinc oxide
ES2182566T3 (en) BARRIER COAT AGAINST THE ALKALINE METAL DIFFUSION.
US4039400A (en) Method of forming electrodes
TW200540297A (en) Anode for oxygen evolution
EP0853142B1 (en) Metal material having photocatalytic activity and method of manufacturing the same
KR100355999B1 (en) Metal substrate coating method and battery formation method with current collector
CN1798878B (en) Electrode
TW556278B (en) Method and system of preventing corrosion of conductive structures
WO2003066934A1 (en) Corrosion-resistant structure of metal material and method for surface treatment of metal material
US5354444A (en) Electrode for electrolytic processes
Rajagopalan et al. Corrosion performance of polyaniline–polypyrrole composite coatings applied to low carbon steel
JP2979691B2 (en) Manufacturing method of anode for oxygen generation
CN107829109A (en) A kind of titanium-based iridium dioxide coated electrode and preparation method thereof
JP3860632B2 (en) Surface-treated steel with excellent corrosion resistance
JP3894700B2 (en) Surface-treated plated steel material with excellent corrosion resistance and method for producing the same
JP2584626B2 (en) Manufacturing method of colored titanium material
JPH06192870A (en) Electrolytic electrode
JP2001145971A (en) Laminate, and method and equipment of manufacturing the same
JP3884538B2 (en) Surface-treated metal material excellent in corrosion resistance and surface treatment method of metal material
JP3114306B2 (en) Corrosion protection method for corrosive metals
JP3150427B2 (en) Light and corrosion resistant stainless steel
CA2170332C (en) Cathodically protected concrete article, anode, and process for production thereof
JPH06128781A (en) High durable electrode for electrolysis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase