JPH09125254A - Titanium-aluminum alloy parts and production thereof - Google Patents

Titanium-aluminum alloy parts and production thereof

Info

Publication number
JPH09125254A
JPH09125254A JP13275096A JP13275096A JPH09125254A JP H09125254 A JPH09125254 A JP H09125254A JP 13275096 A JP13275096 A JP 13275096A JP 13275096 A JP13275096 A JP 13275096A JP H09125254 A JPH09125254 A JP H09125254A
Authority
JP
Japan
Prior art keywords
layer
metal
tial
base material
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13275096A
Other languages
Japanese (ja)
Other versions
JP3536531B2 (en
Inventor
Kazuhiko Nishimura
和彦 西村
Harunori Itou
晴規 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP13275096A priority Critical patent/JP3536531B2/en
Priority to DE1996152876 priority patent/DE19652876A1/en
Priority to FR9615718A priority patent/FR2748034A1/en
Publication of JPH09125254A publication Critical patent/JPH09125254A/en
Application granted granted Critical
Publication of JP3536531B2 publication Critical patent/JP3536531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemically Coating (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide TiAl alloy parts, having a uniform high temp. oxidation resisting film on the whole surface even in the case of complicated shape and excellent in oxidation resistance, and a method for producing them. SOLUTION: The surface of a base material, composed of TiAl intermetallic compound, is coated with an oxide sol solution consisting of the oxide of any metallic element among tungsten, niobium, and tantalum, followed by vacuum heating in a vacuum atmosphere. TiAl alloy parts 10, obtained in the case where the tungsten is used as the metal, has a high temp. oxidation resisting film 12 on the surface of a base material 11. The high temp. oxidation resisting film 12 is constituted of a first layer 121 composed of WO3 .TiO2 .Al2 O3 , a second layer 122 composed of TiO2 .Al2 O3 , and a third layer 123 composed of Al2 O3 . Metallic W is dispersed in respective layers 121, 122, and 123.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,高温耐酸化性に優れたTiAl
系合金部品及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to TiAl excellent in high temperature oxidation resistance.
TECHNICAL FIELD The present invention relates to a system alloy component and a method for manufacturing the same.

【0002】[0002]

【従来技術】TiAl系金属間化合物は,Ti単体より
も軽量で,高温強度が非常に高いという優れた特性を有
する。そのため,TiAl系金属間化合物を主体とする
TiAl系合金部品は,ジェットエンジン部品,自動車
用エンジンのターボチャージャー部品等の軽量,高強度
が要求される部品への応用が期待されている。しかしな
がら,TiAl系金属間化合物は,800℃以上の高温
において耐酸化性が急激に劣化するという問題を有す
る。
2. Description of the Related Art TiAl-based intermetallic compounds have the excellent characteristics that they are lighter in weight than Ti alone and have very high high-temperature strength. Therefore, TiAl-based alloy parts mainly composed of TiAl-based intermetallic compounds are expected to be applied to parts requiring light weight and high strength such as jet engine parts and turbocharger parts for automobile engines. However, the TiAl-based intermetallic compound has a problem that the oxidation resistance rapidly deteriorates at a high temperature of 800 ° C. or higher.

【0003】この高温耐酸化性の劣化の原因は,高温下
においてはTiの表面への拡散が激しくなるからである
と考えられる。即ち,TiAl系金属間化合物は,大気
中において800℃以上で急激に酸化が進み,TiO2
が優先的に成長する。その結果,TiAl金属間化合物
からなる母材表面には,最表面からTiO2 層,Al2
3 層,TiO2 ・Al23 層という3層からなる酸
化スケールが形成される。
It is considered that the reason for the deterioration of the high temperature oxidation resistance is that the diffusion of Ti to the surface becomes severe under high temperature. That is, the TiAl-based intermetallic compound is rapidly oxidized at 800 ° C. or higher in the atmosphere, and TiO 2
Grow preferentially. As a result, the TiO 2 layer, the Al 2
An oxide scale consisting of three layers of O 3 layer and TiO 2 · Al 2 O 3 layer is formed.

【0004】そして,酸化の初期段階においては,第2
層目のAl23 層によって耐酸化性が確保される。こ
れは,酸化の初期段階においては,Al23 が連続し
て形成されているため,このAl23 層によって母材
から表面へのTiの拡散,及び表面から母材へのO(酸
素)の拡散が抑制されるからであると考えられる。しか
し,さらに酸化が進んだ場合には,Tiの拡散が進み,
上記第2層目のAl23 層の連続性が失われる。その
ため,Al23 層によるTi及びOの拡散抑制効果が
損なわれ,TiAl系金属間化合物の耐酸化性は低下す
る。
At the initial stage of oxidation, the second
Oxidation resistance is secured by the Al 2 O 3 layer of the layer. This is because Al 2 O 3 is continuously formed in the initial stage of oxidation, so that the Al 2 O 3 layer causes diffusion of Ti from the base material to the surface and O () from the surface to the base material. It is considered that this is because diffusion of oxygen) is suppressed. However, when the oxidation further progresses, the diffusion of Ti progresses,
The continuity of the second Al 2 O 3 layer is lost. Therefore, the effect of suppressing diffusion of Ti and O by the Al 2 O 3 layer is impaired, and the oxidation resistance of the TiAl-based intermetallic compound decreases.

【0005】これに対し,高温耐酸化性を改善する方法
として,以下の方法が提案されている。まず第1の方法
は,特公平4−63148号公報に示された,TiAl
系金属間化合物の表面にAl23 よりなる耐酸化皮膜
を形成する方法である。この方法は,低酸素雰囲気下で
加熱することにより,TiAl系金属間化合物の表面に
おいて選択的にAlを酸化させてAl23 層を形成
し,これを耐酸化皮膜として高温耐酸化性を向上させた
ものである。
On the other hand, the following method has been proposed as a method for improving the high temperature oxidation resistance. First, the first method is TiAl disclosed in Japanese Examined Patent Publication No. 4-63148.
This is a method of forming an oxidation resistant film made of Al 2 O 3 on the surface of the intermetallic compound. In this method, by heating in a low oxygen atmosphere, Al is selectively oxidized on the surface of the TiAl-based intermetallic compound to form an Al 2 O 3 layer, which is used as an oxidation resistant film to improve high temperature oxidation resistance. It is an improvement.

【0006】第2の方法は,特開平5−78817号公
報に示された,TiAl系金属間化合物の表面に深さ
0.5μm以上の厚さを有するMo,Wの少なくとも1
種の濃化層を形成する方法である。この方法は,TiA
l系金属間化合物表面に耐酸化性を有するTiAl−
(W,Mo)合金層を形成し,耐酸化性を向上させたも
のである。この濃化層を形成する手段として,スパッタ
リングと拡散処理による方法,粉末パック処理による方
法,粉末パック処理と拡散処理による方法が示されてい
る。
The second method is at least one of Mo and W having a thickness of 0.5 μm or more on the surface of a TiAl-based intermetallic compound disclosed in Japanese Patent Laid-Open No. 5-78817.
This is a method of forming a concentrated layer of seeds. This method is
TiAl- having oxidation resistance on the surface of l-type intermetallic compound
A (W, Mo) alloy layer is formed to improve the oxidation resistance. As means for forming this concentrated layer, a method by sputtering and diffusion treatment, a method by powder pack treatment, and a method by powder pack treatment and diffusion treatment are shown.

【0007】[0007]

【解決しようとする課題】しかしながら,上記従来の耐
酸化性改善方法においては,次の問題がある。まず,上
記第1の方法においては,母材の表面に形成されるAl
23 層の緻密性が不十分であり,Tiの表面への拡散
を十分に抑制できない。そのため,母材とAl23
との密着性や,Al23 層の長期安定性に劣る。
However, the above conventional methods for improving oxidation resistance have the following problems. First, in the first method, Al formed on the surface of the base material
The denseness of the 2 O 3 layer is insufficient, and diffusion of Ti to the surface cannot be sufficiently suppressed. Therefore, the adhesion between the base material and the Al 2 O 3 layer and the long-term stability of the Al 2 O 3 layer are poor.

【0008】上記第2の方法においては,スパッタリン
グ又は粉末パック処理によってW等をTiAl系金属間
化合物の表面に付着させている。そのため,複雑形状又
は大型形状の表面へW等を付着させることが難しく,W
等の濃化層を均一に形成することが困難である。それ
故,部品が複雑形状又は大型形状の場合には,部分的に
耐酸化性が低い部分が残ってしまう。
In the second method, W or the like is deposited on the surface of the TiAl-based intermetallic compound by sputtering or powder pack treatment. Therefore, it is difficult to attach W etc. to the surface of a complicated shape or a large shape, and W
It is difficult to uniformly form a concentrated layer such as. Therefore, when the component has a complicated shape or a large shape, a portion having low oxidation resistance remains partially.

【0009】本発明は,かかる従来の問題点に鑑みてな
されたもので,複雑な形状または大型形状であっても,
その表面全体に均一な高温耐酸化皮膜を有し,耐酸化性
に優れたTiAl系合金部品及びその製造方法を提供し
ようとするものである。
The present invention has been made in view of the above-mentioned problems of the related art. Even if the shape is complicated or large,
It is an object of the present invention to provide a TiAl-based alloy component having a uniform high-temperature oxidation resistant film on the entire surface thereof and excellent in oxidation resistance, and a manufacturing method thereof.

【0010】[0010]

【課題の解決手段】請求項1の発明は,タングステン,
ニオブ又はタンタルのいずれかの金属元素を含有する金
属化合物と溶媒とを出発原料として作製した上記金属元
素の酸化物よりなる酸化物ゾル溶液を調整し,該酸化物
ゾル溶液を,TiAl系金属間化合物よりなる母材の表
面にコーティングし,次いで,真空雰囲気中において真
空加熱を行うことにより,上記母材の表面に高温耐酸化
皮膜を形成することを特徴とするTiAl系合金部品の
製造方法にある。
The invention according to claim 1 is tungsten,
An oxide sol solution composed of an oxide of the above metal element prepared by using a metal compound containing a metal element of either niobium or tantalum and a solvent as a starting material is prepared, and the oxide sol solution is mixed with a TiAl-based intermetallic compound. A method for producing a TiAl-based alloy component, characterized in that a high temperature oxidation resistant film is formed on the surface of the base material by coating the surface of the base material made of a compound and then performing vacuum heating in a vacuum atmosphere. is there.

【0011】本発明において最も注目すべきことは,上
記酸化物ゾル溶液を用いたゾルゲル法を利用することで
ある。そして,上記真空加熱を行うことである。
What is most noticeable in the present invention is to utilize the sol-gel method using the above oxide sol solution. Then, the above vacuum heating is performed.

【0012】上記酸化物ゾル溶液は,ゾルゲル法によっ
て,WO3 (酸化タングステン),Nb2 5 (酸化ニ
オブ)又はTa2 5 (酸化タンタル)のいずれかの皮
膜を上記母材の表面に形成するためのゾル溶液である。
該酸化物ゾル溶液は,上記金属化合物と溶媒とを出発原
料として作製される。具体的には,アルコール等の溶媒
中に上記のタングステン,ニオブ又はタンタルの金属化
合物を混合して攪拌して溶解するという手順で作製す
る。また,上記溶媒は,金属化合物の種類に応じて,例
えば,アルコール,水,又はアルコールと水との混合
液,トルエン,キシレン等を用いることができるが,安
全性を考慮すると,アルコ−ルが好ましい。
[0012] The oxide sol solution by a sol-gel method, WO 3 (tungsten oxide), one of the film of Nb 2 O 5 (niobium oxide) or Ta 2 0 5 (tantalum oxide) on the surface of the base material It is a sol solution for forming.
The oxide sol solution is prepared by using the above metal compound and a solvent as starting materials. Specifically, the metal compound of the above-mentioned tungsten, niobium, or tantalum is mixed in a solvent such as alcohol and is dissolved by stirring. Further, as the above-mentioned solvent, for example, alcohol, water, a mixed solution of alcohol and water, toluene, xylene, or the like can be used depending on the kind of the metal compound. preferable.

【0013】次に,本発明の製造方法における作用につ
き説明する。本発明の製造方法においては,ゾルゲル法
を用いて,上記酸化物ゾル溶液を上記母材表面にコーテ
ィングする。そのため,母材が複雑形状または大型形状
である場合でも,母材表面全体に,均一な酸化物皮膜を
形成することができる。
Next, the operation of the manufacturing method of the present invention will be described. In the manufacturing method of the present invention, the surface of the base material is coated with the oxide sol solution by using the sol-gel method. Therefore, even if the base material has a complicated shape or a large shape, a uniform oxide film can be formed on the entire surface of the base material.

【0014】また,上記酸化物皮膜を母材表面に形成し
た後,上記真空加熱を行う。そのため,上記酸化物皮膜
中のW,Nb又はTaのいずれかと母材中のTiの拡散
が起こる。一方,酸化物皮膜中のO(酸素)と真空雰囲
気中に残存する微量のOによって,母材表面が酸化され
る。これにより,母材表面には,3つの層からなる高温
耐酸化皮膜が形成される。
After forming the oxide film on the surface of the base material, the vacuum heating is performed. Therefore, diffusion of either W, Nb, or Ta in the oxide film and Ti in the base material occurs. On the other hand, the surface of the base material is oxidized by O (oxygen) in the oxide film and a trace amount of O remaining in the vacuum atmosphere. As a result, a high temperature oxidation resistant film composed of three layers is formed on the surface of the base material.

【0015】該高温耐酸化皮膜は,WO3 ・TiO2
Al23 ,Ta2 5 ・TiO2・Al23 又はT
2 5 ・TiO2 ・Al23 のいずれかよりなる最
表面第1層と,TiO2 ・Al23 よりなる第2層
と,Al23 層よりなる第3層とにより構成される。
そして,各層には金属W,金属Nb又は金属Taのいず
れかが分散してなる。即ち,上記第1層がWO3 ・Ti
2 ・Al23 の場合には金属Wが,Nb25 ・T
iO2 ・Al23 の場合には金属Nbが,Ta 2 5
・TiO2 ・Al23 の場合には金属Taが,それぞ
れ各層に分散する。
The high temperature oxidation resistant coating is WOThree ・ TiOTwo ・
AlTwo OThree , TaTwoOFive・ TiOTwo・ AlTwo OThree Or T
aTwoOFive・ TiOTwo ・ AlTwo OThree Which consists of either
Surface first layer and TiOTwo ・ AlTwo OThree Second layer consisting of
And AlTwo OThree And a third layer composed of layers.
Each layer is made of metal W, metal Nb, or metal Ta.
Someone is dispersed. That is, the first layer is WOThree ・ Ti
OTwo ・ AlTwo OThree In the case of, the metal W is NbTwo OFive・ T
iOTwo ・ AlTwo OThree In the case of, the metal Nb is Ta TwoOFive
・ TiOTwo ・ AlTwo OThree In the case of, metal Ta is
It is dispersed in each layer.

【0016】次に,請求項2の発明のように,上記酸化
物ゾル溶液の出発原料として用いる上記金属化合物の種
類によっては,上記コーティング後,上記真空加熱前
に,コーティングした皮膜(WO3 皮膜,Nb25
膜又はTa2 5 皮膜のいずれか)を結晶化させるため
の加熱を行うことが必要である。
Next, according to the second aspect of the present invention, depending on the kind of the metal compound used as a starting material of the oxide sol solution, a coating film (WO 3 film) is formed after the coating and before the vacuum heating. , Nb 2 O 5 film or Ta 2 O 5 film) must be heated to crystallize.

【0017】この場合の加熱温度は,400℃以上であ
ることが好ましい。これにより,母材表面全体のWO3
皮膜,Nb25 皮膜又はTa2 5 皮膜のいずれかを
均一に結晶化させることができる。上記加熱温度が40
0℃未満の場合には,上記皮膜が,TiAl表面に水分
をわずかに含んだ非晶質の状態で存在し,真空加熱時に
TiAlの酸化が促進され,後述する高温耐酸化皮膜中
の第3層に位置するAl23 層の緻密性が低下すると
いう問題がある。
The heating temperature in this case is preferably 400 ° C. or higher. As a result, the WO 3 on the entire surface of the base metal is
Either the coating, the Nb 2 O 5 coating or the Ta 2 O 5 coating can be crystallized uniformly. The heating temperature is 40
When the temperature is lower than 0 ° C, the above-mentioned film exists in an amorphous state containing a small amount of water on the TiAl surface, the oxidation of TiAl is promoted during vacuum heating, and the third film in the high-temperature oxidation-resistant film described later is formed. There is a problem that the denseness of the Al 2 O 3 layer located in the layer is lowered.

【0018】次に,請求項3の発明のように,上記タン
グステンを含有する金属化合物としては,タングステン
系金属アルコキシド,タングステン系金属アセチルアセ
トナート,タングステン系塩化物,タングステン酸化合
物から選択される1種以上の化合物を用いることができ
る。具体的には,タングステン系金属アルコキシドとし
ては,W(OC256 ,W(OC376 ,W
(OC496 ,W(OC255 ,W(OC3
75 等がある。タングステン系金属アセチルアセトナ
ートとしては,W(O2 5 7 6 ,W(O2 5
7 5 等がある。タングステン系塩化物としては,WC
6 ,WCl5 ,WOCl4 等がある。タングステン酸
化合物としては,H2 WO4 ,Na2 WO4 ,Na2
4 ・2H2 O等がある。
Next, as in the invention of claim 3, the metal compound containing tungsten is selected from tungsten-based metal alkoxides, tungsten-based metal acetylacetonates, tungsten-based chlorides, and tungstic acid compounds. More than one compound can be used. Specifically, as the tungsten-based metal alkoxide, W (OC 2 H 5 ) 6 , W (OC 3 H 7 ) 6 , W
(OC 4 H 9 ) 6 , W (OC 2 H 5 ) 5 , W (OC 3 H
7 ) There are 5 etc. As the tungsten metal acetylacetonate, W (O 2 C 5 H 7 ) 6 , W (O 2 C 5 H)
7 ) There are 5 etc. As tungsten-based chloride, WC
1 6 , WCl 5 , WOCl 4 and the like. Examples of the tungstic acid compound include H 2 WO 4 , Na 2 WO 4 , and Na 2 W.
There are O 4 · 2H 2 O etc.

【0019】また,請求項4の発明のように,上記ニオ
ブを含有する金属化合物としては,ニオブ系金属アルコ
キシド,ニオブ系金属アセチルアセトナート,ニオブ系
塩化物から選択される1種以上の化合物を用いることが
できる。具体的には,ニオブ系金属アルコキシドとして
は,Nb(OCH3 5 ,Nb(OC2 5 5 ,Nb
(OC3 7 5 等がある。またニオブ系金属アセチル
アセトナートとしては,Nb(O2 5 7 5 等があ
る。またニオブ系塩化物としては,NbCl5,NbO
Cl3 等がある。
As the metal compound containing niobium, one or more compounds selected from niobium metal alkoxides, niobium metal acetylacetonates, and niobium chlorides may be used. Can be used. Specifically, as niobium-based metal alkoxides, Nb (OCH 3 ) 5 , Nb (OC 2 H 5 ) 5 , Nb
(OC 3 H 7 ) 5 etc. As the niobium-based metal acetylacetonate, there is Nb (O 2 C 5 H 7 ) 5 or the like. Further, as niobium chlorides, NbCl 5 , NbO
Cl 3 and the like.

【0020】また,請求項5の発明のように,上記タン
タルを含有する金属化合物としては,タンタル系金属ア
ルコキシド,タンタル系金属アセチルアセトナート,タ
ンタル系塩化物から選択される1種以上の化合物を用い
ることができる。具体的には,タンタル系金属アルコキ
シドとしては,Ta(OCH3 5 ,Ta(OC
2 5 5 ,Ta(OC3 7 5 等がある。またタン
タル系金属アセチルアセトナートとしては,Ta(O2
5 7 5 等がある。またタンタル系塩化物として
は,TaCl5 ,TaOCl3 等がある。
As the tantalum-containing metal compound according to the invention of claim 5, one or more compounds selected from tantalum-based metal alkoxides, tantalum-based metal acetylacetonates, and tantalum-based chlorides are used. Can be used. Specifically, as tantalum-based metal alkoxides, Ta (OCH 3 ) 5 , Ta (OC
2 H 5 ) 5 , Ta (OC 3 H 7 ) 5 and the like. Further, as the tantalum-based metal acetylacetonate, Ta (O 2
C 5 H 7 ) 5 etc. The tantalum chlorides include TaCl 5 , TaOCl 3 and the like.

【0021】また,請求項6の発明のように,上記酸化
物ゾル溶液は,上記金属化合物と錯体を形成するキレー
ト剤を添加していることが好ましい。これにより,上記
酸化物ゾル溶液を安定化させることができる。上記キレ
ート剤としては,アセチルアセトン,ジエタノールアミ
ン,トリエタノールアミン等がある。
Further, as in the invention of claim 6, it is preferable that the oxide sol solution contains a chelating agent which forms a complex with the metal compound. As a result, the oxide sol solution can be stabilized. Examples of the chelating agent include acetylacetone, diethanolamine and triethanolamine.

【0022】次に,上記コーティングは,ゾルゲル法を
用いて,いわゆるディップ法,スピン法,スプレー法等
により行うことができる。
Next, the above-mentioned coating can be performed by the so-called dip method, spin method, spray method, etc. using the sol-gel method.

【0023】また,請求項7の発明のように,上記真空
加熱は,真空度1.3Pa〜1.3×10-5Pa,温度
800〜1100℃で行うことが好ましい。これによ
り,高温耐酸化皮膜を,母材表面に均一に形成すること
ができる。
Further, it is preferable that the vacuum heating is performed at a vacuum degree of 1.3 Pa to 1.3 × 10 −5 Pa and a temperature of 800 to 1100 ° C. As a result, the high temperature oxidation resistant film can be uniformly formed on the surface of the base material.

【0024】上記真空度が1.3Paを越える場合に
は,高温耐酸化皮膜中の第3層に位置するAl23
層の緻密性が低下するという問題があり,1.3×10
-5Pa未満の場合には,TiAl母材中のAlが蒸発す
るという問題がある。また,上記温度が800℃未満の
場合には,高温耐酸化皮膜の形成に長時間かかり,生産
性が悪いという問題があり,一方1100℃を越える場
合には,TiAl母材中のAlが蒸発するという問題が
ある。
When the degree of vacuum exceeds 1.3 Pa, there is a problem that the denseness of the Al 2 O 3 layer located in the third layer in the high temperature oxidation resistant coating is lowered, and 1.3 × 10
If it is less than -5 Pa, there is a problem that Al in the TiAl base material is evaporated. Further, if the temperature is lower than 800 ° C, it takes a long time to form a high temperature oxidation resistant film, resulting in poor productivity, whereas if it exceeds 1100 ° C, Al in the TiAl base material is evaporated. There is a problem of doing.

【0025】次に,請求項8の発明のように,上記製造
方法により製造されたTiAl系合金部品としては,次
のものがある。即ち,TiAl系金属間化合物からなる
母材と,その表面に形成された高温耐酸化皮膜とよりな
るTiAl系合金部品であって,上記高温耐酸化皮膜
は,WO3 ・TiO2 ・Al23 ,Nb25 ・Ti
2 ・Al23 又はTa2 5 ・TiO2 ・Al2
3 のいずれかよりなる最表面に位置する第1層と,該第
1層の下に位置するTiO2 ・Al23 よりなる第2
層と,該第2層と上記母材との間に位置するAl23
よりなる第3層とから構成されており,かつ,上記高温
耐酸化皮膜を構成する各層には,それぞれ上記第1層に
対応する金属W,金属Nb又は金属Taのいずれかが分
散していることを特徴とするTiAl系合金部品があ
る。
Next, as the TiAl-based alloy parts manufactured by the above-described manufacturing method according to the invention of claim 8, there are the following. That is, a TiAl-based alloy component comprising a base material made of a TiAl-based intermetallic compound and a high-temperature oxidation-resistant coating formed on the surface thereof, wherein the high-temperature oxidation-resistant coating is WO 3 · TiO 2 · Al 2 O. 3 , Nb 2 O 5 · Ti
O 2 · Al 2 O 3 or Ta 2 O 5 · TiO 2 · Al 2 O
A first layer which is located on the outermost surface of any one of 3 and a second layer of TiO 2 · Al 2 O 3 which is located below the first layer.
Layer and Al 2 O 3 located between the second layer and the base material
And a metal W corresponding to the first layer are dispersed in each of the layers forming the high temperature oxidation resistant film. There is a TiAl-based alloy part characterized by the above.

【0026】本発明のTiAl系合金部品において最も
注目すべきことは,上記母材の表面には,上記特定の3
層よりなる高温耐酸化皮膜を有することである。
What is most noticeable in the TiAl-based alloy component of the present invention is that the above-mentioned specific 3
It is to have a high temperature oxidation resistant film composed of layers.

【0027】次に,本発明のTiAl系合金部品におけ
る作用につき説明する。本発明のTiAl系合金部品
は,上記高温耐酸化皮膜を有する。そして,高温耐酸化
皮膜における最表面に位置する第1層は,WO3 ・Ti
2 ・Al23,Nb25 ・TiO2 ・Al23
又はTa2 5 ・TiO2 ・Al23 のいずれかより
なると共に,これに対応する金属W,金属Nb又は金属
Taのいずれかが分散している。そのため,第1層は,
外表面から母材へのOの拡散,及び母材から表面へのT
iの拡散を抑制する。
Next, the operation of the TiAl alloy component of the present invention will be described. The TiAl-based alloy component of the present invention has the high temperature oxidation resistant film. The first layer located on the outermost surface of the high temperature oxidation resistant film is WO 3 .Ti.
O 2 · Al 2 O 3 , Nb 2 O 5 · TiO 2 · Al 2 O 3
Or Ta 2 O 5 · TiO 2 · Al 2 O 3 and corresponding metal W, metal Nb or metal Ta is dispersed. Therefore, the first layer is
O diffusion from the outer surface to the base metal, and T from the base metal to the surface
Suppress the diffusion of i.

【0028】また,上記第2層及び第3層は,上記酸化
物の層に金属W,金属Nb又は金属Taのいずれかが分
散している。そのため,上記第2層及び第3層は,緻密
化し,上記したようなO及びTiの拡散をさらに抑制す
る。それ故,TiAl系金属間化合物の酸化を抑制する
ことができ,TiAl系合金部品の高温耐酸化性を大幅
に向上させることができる。
Further, in the second layer and the third layer, any one of metal W, metal Nb, and metal Ta is dispersed in the oxide layer. Therefore, the second layer and the third layer are densified and further suppress the diffusion of O and Ti as described above. Therefore, the oxidation of the TiAl-based intermetallic compound can be suppressed, and the high temperature oxidation resistance of the TiAl-based alloy component can be significantly improved.

【0029】次に,請求項9の発明のように,上記高温
耐酸化皮膜の厚さは5.0μm以下であり,かつ,上記
第1層の厚さは0.001〜0.2μm,上記第3層の
厚さは0.1〜5.0μmであることが好ましい。上記
高温耐酸化皮膜の厚さが5.0μmを超える場合には,
高温耐酸化皮膜と母材の密着性が低下するという問題が
ある。
Next, according to the invention of claim 9, the high temperature oxidation resistant film has a thickness of 5.0 μm or less, and the first layer has a thickness of 0.001 to 0.2 μm. The thickness of the third layer is preferably 0.1 to 5.0 μm. When the thickness of the high temperature oxidation resistant film exceeds 5.0 μm,
There is a problem that the adhesion between the high temperature oxidation resistant film and the base material is reduced.

【0030】また,上記第1層の厚さが0.001μm
未満の場合には,母材から表面へのTiの拡散を抑制す
る効果が低下するという問題があり,一方,0.2μm
を超える場合には,第1層目の密着性が低下するという
問題がある。また,上記第3層の厚さが0.1μm未満
の場合には,O及びTiの拡散を抑制する効果が低下す
るという問題があり,一方,5.0μmを超える場合に
は,高温耐酸化皮膜の密着性が低下するという問題があ
る。
The thickness of the first layer is 0.001 μm.
If less than 0.2 μm, there is a problem that the effect of suppressing the diffusion of Ti from the base material to the surface decreases, while 0.2 μm
If it exceeds, there is a problem that the adhesiveness of the first layer decreases. In addition, when the thickness of the third layer is less than 0.1 μm, there is a problem that the effect of suppressing the diffusion of O and Ti is reduced, while when it exceeds 5.0 μm, high temperature oxidation resistance is present. There is a problem that the adhesion of the film is reduced.

【0031】[0031]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本発明の実施形態例にかかるTiAl系合金部品及びそ
の製造方法につき,図1を用いて説明する。本例のTi
Al系合金部品は,自動車用エンジンのターボチャージ
ャーロータである。該TiAl系合金部品10は,図1
に示すごとく,TiAl系金属間化合物からなる母材1
1と,その表面に形成された高温耐酸化皮膜12とより
なる。
Embodiment 1 A TiAl-based alloy component and a method for manufacturing the same according to an embodiment of the present invention will be described with reference to FIG. Ti in this example
The Al-based alloy component is a turbocharger rotor for an automobile engine. The TiAl-based alloy component 10 is shown in FIG.
As shown in Fig. 1, a base material 1 made of TiAl-based intermetallic compound
1 and a high temperature oxidation resistant film 12 formed on the surface thereof.

【0032】上記高温耐酸化皮膜12は,図1に示すご
とく,最表面に位置するWO3 ・TiO2 ・Al23
よりなる第1層121と,第1層121の下に位置する
TiO2 ・Al23 よりなる第2層122と,第2層
122と母材11との間に位置するAl23 よりなる
第3層123とから構成されている。また,高温耐酸化
皮膜12を構成する各層121,122,123には,
それぞれ金属Wが分散している。
As shown in FIG. 1, the high-temperature oxidation-resistant film 12 is formed on the outermost surface of WO 3 TiO 2 Al 2 O 3.
Al 2 O 3 which is located between the first layer 121 made more, a second layer 122 made of TiO 2 · Al 2 O 3, located below the first layer 121, second layer 122 and the base material 11 And a third layer 123 of. Further, in each of the layers 121, 122, 123 constituting the high temperature oxidation resistant film 12,
Each metal W is dispersed.

【0033】また,図1に示すごとく,高温耐酸化皮膜
12の厚さHは5.0μm以下である。また,第1層1
21の厚さH1は0.001〜0.2μm,第3層の厚
さH3は0.1〜5.0μmである。
Further, as shown in FIG. 1, the thickness H of the high temperature oxidation resistant film 12 is 5.0 μm or less. Also, the first layer 1
The thickness H1 of 21 is 0.001 to 0.2 μm, and the thickness H3 of the third layer is 0.1 to 5.0 μm.

【0034】次に,上記TiAl系合金部品10を製造
するに当たっては,下記のようにタングステン化合物と
溶媒とを出発原料として作製したWO3 ゾル溶液をTi
Al系金属間化合物よりなる母材の表面にコーティング
し,次いで,真空雰囲気中において真空加熱を行った。
また,本例においては,上記コーティング後,上記真空
加熱前に,コーティングした皮膜を結晶化させるための
加熱を行った。
Next, in manufacturing the above TiAl-based alloy component 10, a WO 3 sol solution prepared by using a tungsten compound and a solvent as starting materials as described below is used as Ti.
The surface of a base material made of an Al-based intermetallic compound was coated, and then vacuum heating was performed in a vacuum atmosphere.
In this example, heating for crystallizing the coated film was performed after the coating and before the vacuum heating.

【0035】以下,製造方法につき詳述する。まず,タ
ングステン化合物としてのヘキサエトキシタングステン
W(OC256 4gと,溶媒としての1−ブタノー
ル45.0gと,キレート剤としてのアセチルアセトン
1.0gを混合し,10分間攪拌する。次いで,この溶
液を117℃の温度で2時間還流した後冷却し,WO3
ゾル溶液とする。
The manufacturing method will be described in detail below. First, 4 g of hexaethoxytungsten W (OC 2 H 5 ) 6 as a tungsten compound, 45.0 g of 1-butanol as a solvent, and 1.0 g of acetylacetone as a chelating agent are mixed and stirred for 10 minutes. Then, this solution was refluxed at a temperature of 117 ° C. for 2 hours and then cooled, and WO 3
Use a sol solution.

【0036】次に,予めアセトンにより洗浄したTiA
l系合金部品の母材に対して,ディップコーティングに
より上記WO3 ゾル溶液をコーティングする。ディップ
コーティングの引き上げ速度は60mm/minにより
行う。コーティングの後,500℃の温度で30分間加
熱を行い,母材表面にWO3 皮膜を得る。
Next, TiA previously washed with acetone
The WO 3 sol solution is coated on the base material of the 1-based alloy part by dip coating. The dip coating pulling rate is 60 mm / min. After coating, heating is performed at a temperature of 500 ° C. for 30 minutes to obtain a WO 3 film on the surface of the base material.

【0037】次いで,真空度6.7×10-2Pa,温度
1000℃で24時間真空加熱を行う。これにより,上
記TiAl系合金部品10が得られる。
Next, vacuum heating is performed at a vacuum degree of 6.7 × 10 -2 Pa and a temperature of 1000 ° C. for 24 hours. As a result, the TiAl-based alloy component 10 is obtained.

【0038】次に本例の作用効果につき説明する。本例
の製造方法においては,ゾルゲル法を用いて,上記WO
3 ゾル溶液を母材11の表面にコーティングする。その
ため,母材11が,本例のターボチャージャーロータの
ごとく,複雑な形状である場合でも,母材11の表面全
体に,均一なWO3 皮膜を形成することができる。
Next, the function and effect of this example will be described. In the manufacturing method of this example, the above-mentioned WO
3 The surface of the base material 11 is coated with the sol solution. Therefore, even if the base material 11 has a complicated shape like the turbocharger rotor of this example, a uniform WO 3 film can be formed on the entire surface of the base material 11.

【0039】また,上記WO3 皮膜を母材11の表面に
形成した後,上記真空加熱を行う。そのため,上記WO
3 皮膜中のWと母材11中のTiの拡散が起こる。一
方,WO3 皮膜中のO(酸素)と真空雰囲気中に残存す
る微量のOによって,母材11の表面が酸化される。こ
れにより,図1に示すごとく,母材11の表面には,3
つの層からなる高温耐酸化皮膜12が形成される。
After forming the WO 3 film on the surface of the base material 11, the vacuum heating is performed. Therefore, the above WO
3 Diffusion of W in the film and Ti in the base material 11 occurs. On the other hand, the surface of the base material 11 is oxidized by O (oxygen) in the WO 3 film and a trace amount of O remaining in the vacuum atmosphere. As a result, as shown in FIG.
A high temperature oxidation resistant film 12 composed of two layers is formed.

【0040】高温耐酸化皮膜12は,上述したごとく,
最表面に位置するWO3 ・TiO2・Al23 よりな
る第1層121と,第1層121の下に位置するTiO
2 ・Al23 よりなる第2層122と,第2層122
と母材11との間に位置するAl23 よりなる第3層
123とから構成され,各層には金属Wが分散してい
る。
The high temperature oxidation resistant film 12 is, as described above,
A first layer 121 made of WO 3 · TiO 2 · Al 2 O 3 located on the outermost surface, and TiO located below the first layer 121.
Second layer 122 made of 2 · Al 2 O 3 and second layer 122
And a third layer 123 made of Al 2 O 3 located between the base material 11 and the base material 11, and the metal W is dispersed in each layer.

【0041】次に,上記製造方法により得られたTiA
l系合金部品10は,以下のごとく,優れた高温耐酸化
性を示す。即ち,本例のTiAl系合金部品10は,高
温耐酸化皮膜12を有する。そして,高温耐酸化皮膜1
2の最表面に位置する第1層121は,WO3 ・TiO
2・Al23 よりなると共に,金属Wが分散してい
る。そのため,第1層121は,外表面から母材11へ
のOの拡散,及び母材11から表面へのTiの拡散を抑
制する。
Next, the TiA obtained by the above manufacturing method
The l-based alloy component 10 exhibits excellent high temperature oxidation resistance as described below. That is, the TiAl-based alloy component 10 of this example has the high temperature oxidation resistant film 12. And high temperature oxidation resistant film 1
The first layer 121 located on the outermost surface of No. 2 is WO 3 · TiO
It is composed of 2 · Al 2 O 3 and has metal W dispersed therein. Therefore, the first layer 121 suppresses the diffusion of O from the outer surface to the base material 11 and the diffusion of Ti from the base material 11 to the surface.

【0042】また,上記第2層122及び第3層123
は,上記酸化物の層に金属Wが分散している。そのた
め,第2層122及び第3層123は,緻密化し,上記
したようなO及びTiの拡散をさらに抑制する。それ
故,TiAl系金属間化合物の酸化を抑制することがで
き,TiAl系合金部品10の高温耐酸化性を大幅に向
上させることができる。
Further, the second layer 122 and the third layer 123
The metal W is dispersed in the oxide layer. Therefore, the second layer 122 and the third layer 123 are densified and further suppress the diffusion of O and Ti as described above. Therefore, the oxidation of the TiAl-based intermetallic compound can be suppressed, and the high temperature oxidation resistance of the TiAl-based alloy component 10 can be significantly improved.

【0043】実施形態例2 本例においては,図2に示すごとく,実施例1において
得られたTiAl系合金部品10の高温連続酸化試験を
実施した。試験は,大気中において温度900℃に加熱
し,その加熱保持時間に対する酸化増量(g/m2 )を
測定した。
Embodiment 2 In this embodiment, as shown in FIG. 2, a high temperature continuous oxidation test of the TiAl-based alloy part 10 obtained in Embodiment 1 was carried out. In the test, the temperature was heated to 900 ° C. in the atmosphere, and the increase in oxidation (g / m 2 ) with respect to the heating and holding time was measured.

【0044】また,比較のために,以下の3種類の比較
品を準備し,上記高温連続酸化試験を実施した。比較品
1としては,TiAl系金属間化合物のままで表面処理
を何も施していない部品を用いた。
For comparison, the following three kinds of comparative products were prepared and the above high temperature continuous oxidation test was carried out. As the comparative product 1, a component which was a TiAl-based intermetallic compound and was not subjected to any surface treatment was used.

【0045】比較品2としては,実施形態例1のTiA
l系合金部品10と同様の手順により,ゾルゲル法によ
って母材表面にWO3 皮膜を形成したが,真空加熱処理
を行わなかった部品を用いた。比較品3としては,Ti
Al系合金部品の表面に実施形態例1のようなWO3
膜形成の処理を何ら行わず,実施形態例1と同様の条件
で真空加熱処理のみを施した部品を用いた。
As the comparative product 2, TiA of the first embodiment is used.
A WO 3 film was formed on the surface of the base material by the sol-gel method by the same procedure as that of the 1-based alloy component 10, but the component which was not subjected to the vacuum heat treatment was used. As Comparative product 3, Ti
The surface of the Al-based alloy component was not subjected to any treatment for forming a WO 3 film as in the first embodiment, and only the vacuum heat treatment was performed under the same conditions as in the first embodiment.

【0046】試験結果を図2に示す。図2は,横軸に9
00℃の加熱保持時間,縦軸に加熱前に比べて増加した
酸化量をとった。実線Eは実施形態例1において製造し
たTiAl系合金部品10を示し,破線C1は上記比較
品1,破線C2は上記比較品2,破線3は上記比較品3
を示す。
The test results are shown in FIG. Figure 2 shows 9 on the horizontal axis.
The heating and holding time at 00 ° C. was taken, and the ordinate shows the amount of oxidation increased compared to before heating. A solid line E indicates the TiAl-based alloy component 10 manufactured in the first embodiment, a broken line C1 is the comparative product 1, a broken line C2 is the comparative product 2, and a broken line 3 is the comparative product 3.
Is shown.

【0047】図2により知られるごとく,比較品1の表
面処理を施していない従来のTiAl系合金部品は,約
50時間まで急激に酸化量が増加し,その後も高い比率
で酸化が進んだ。また,比較品2,3は,いずれも比較
品1に比べて酸化増量の増加率が減少するものの,依然
高い比率で酸化が進んだ。これに対し,本例のTiAl
系合金部品10は,約50時間まで若干量酸化が進んだ
が,その後は,ほとんど酸化の進行がみられず,非常に
良好な高温耐酸化性を示すことが分かった。
As is known from FIG. 2, the conventional TiAl-based alloy component of Comparative Product 1 not subjected to the surface treatment showed a rapid increase in the amount of oxidation until about 50 hours, and thereafter the oxidation proceeded at a high rate. Further, in Comparative Products 2 and 3, the rate of increase in the amount of increased oxidation was smaller than that of Comparative Product 1, but the oxidation proceeded at a high rate. On the other hand, TiAl of this example
It was found that the system alloy part 10 slightly oxidized until about 50 hours, but thereafter the oxidation did not substantially progress, and showed very good high temperature oxidation resistance.

【0048】実施形態例3 本例においては,図3に示すごとく,TiAl金属間化
合物の母材11よりなるターボチャージャーロータの表
面に,実施形態例1とは別の高温耐酸化被膜22を形成
した。
Embodiment 3 In this embodiment, as shown in FIG. 3, a high temperature oxidation resistant coating 22 different from that of Embodiment 1 is formed on the surface of a turbocharger rotor made of a base material 11 of TiAl intermetallic compound. did.

【0049】即ち,本例における高温耐酸化被膜22
は,図3に示すごとく,最表面に位置するNb2 5
TiO2 ・Al2 3 よりなる第1層221と,その下
に位置するTi2 2 ・Al2 3 よりなる第2層22
2と,該第2層222と母相11との間に形成されたA
2 3 よりなる第3層223とよりなる。そして,こ
の第1〜第3層221,222,223には,それぞれ
金属Nbが分散している。
That is, the high temperature oxidation resistant film 22 in this example.
Is the Nb 2 O 5 · located on the outermost surface as shown in FIG.
The first layer 221 made of TiO 2 .Al 2 O 3 and the second layer 22 made of Ti 2 O 2 .Al 2 O 3 located below the first layer 221.
2 and A formed between the second layer 222 and the matrix 11
and a third layer 223 of l 2 O 3 . Then, the metal Nb is dispersed in each of the first to third layers 221, 222, and 223.

【0050】このTiAl系合金部品を製造するに当た
っては,実施形態例1におけるタングステン化合物に代
えて,ニオブ化合物を用いて調整した酸化ニオブゾル溶
液を用いる。即ち,まずニオブ化合物としてペンタエト
キシニオブNb(OC2 2 5 を10.8gと,キレ
ート剤としてのジエタノールアミンを3.6g準備し,
これらを混合した後,1時間攪拌する。これにより,酸
化ニオブゾル溶液が得られる。
In producing this TiAl alloy part, a niobium oxide sol solution prepared by using a niobium compound is used instead of the tungsten compound in the first embodiment. That is, first, 10.8 g of pentaethoxyniobium Nb (OC 2 H 2 ) 5 as a niobium compound and 3.6 g of diethanolamine as a chelating agent were prepared.
After mixing these, stir for 1 hour. As a result, a niobium oxide sol solution is obtained.

【0051】次に,予めアセトンにより洗浄したTiA
l系合金部品の母材に対して,ディップ法により上記酸
化ニオブゾル溶液をコーティングする。ディップ後の母
材の引き上げ速度は3mm/秒とした。次に,コーティ
ングした母材を,500℃の温度で30分間加熱し,母
材表面に酸化ニオブ膜を形成する。
Next, TiA previously washed with acetone
The base material of the l-based alloy component is coated with the niobium oxide sol solution by the dip method. The pulling rate of the base material after dipping was 3 mm / sec. Next, the coated base material is heated at a temperature of 500 ° C. for 30 minutes to form a niobium oxide film on the surface of the base material.

【0052】次いで,酸化ニオブ膜を有する母材を,真
空度1.3×10-4Pa,温度1000℃で24時間真
空加熱する。その他の条件等については,実施形態例1
と同様である。これにより,上記高温耐酸化被膜22を
有するTiAl系合金部品20が得られる。
Next, the base material having the niobium oxide film is vacuum heated at a vacuum degree of 1.3 × 10 -4 Pa and a temperature of 1000 ° C. for 24 hours. Regarding other conditions, etc., Embodiment 1
Is the same as As a result, the TiAl-based alloy component 20 having the high temperature oxidation resistant coating 22 is obtained.

【0053】本例により得られたTiAl系合金部品2
0の表面には,上記高温耐酸化被膜22が非常に均一に
形成されている。そのため,実施形態例1における高温
耐酸化被膜12と同様に,TiAl系合金部品の高温耐
酸化性を大きく向上させることができる。その他,実施
形態例1と同様の効果が得られる。
TiAl-based alloy part 2 obtained by this example
The high temperature oxidation resistant coating 22 is formed very uniformly on the surface of No. 0. Therefore, similar to the high temperature oxidation resistant coating 12 in the first embodiment, the high temperature oxidation resistance of the TiAl-based alloy component can be greatly improved. In addition, the same effects as those of the first embodiment can be obtained.

【0054】実施形態例4 本例においては,図4に示すごとく,実施形態例3にお
いて得られたTiAl系合金部品20の高温連続酸化試
験を実施した。試験の条件等については,実施形態例2
と同様にした。
Fourth Embodiment In this example, as shown in FIG. 4, a high temperature continuous oxidation test was performed on the TiAl-based alloy component 20 obtained in the third embodiment. Regarding the test conditions, etc., Embodiment 2
Same as.

【0055】また,本例においても,比較のために,以
下の3種類の比較品を準備し,これらも同様に試験し
た。比較品4は,実施形態例2における比較品1と同様
であり,TiAl系金属間化合物のままで表面処理を何
も施していない部品である。
Also in this example, the following three types of comparative products were prepared for comparison, and these were similarly tested. The comparative product 4 is the same as the comparative product 1 in the second embodiment, and is a component which is a TiAl-based intermetallic compound and is not subjected to any surface treatment.

【0056】比較品5は,実施形態例3と同様に母材の
表面に酸化ニオブ被膜を形成したが,真空熱処理を行わ
なかった部品である。比較品6は,母材表面に何ら被膜
形成の処理を行わず,実施形態例3と同様の条件で真空
加熱処理のみを施した部品である。
Comparative product 5 is a component in which a niobium oxide film was formed on the surface of the base material similarly to the third embodiment, but the vacuum heat treatment was not performed. Comparative product 6 is a component which was subjected to only vacuum heat treatment under the same conditions as in Embodiment 3 without any film forming treatment on the surface of the base material.

【0057】試験結果を図4に示す。図4における縦
軸,横軸は,図2と同様とし,実施形態例3の部品を実
線E3,比較品4,5,6をそれぞれ破線C4,C5,
C6により示した。図4より知られるごとく,上記高温
耐酸化被膜22を有する本発明品は,非常に優れた高温
耐酸化性を示すことが分かる。
The test results are shown in FIG. The vertical axis and the horizontal axis in FIG. 4 are the same as those in FIG.
Shown by C6. As can be seen from FIG. 4, the product of the present invention having the above-mentioned high temperature oxidation resistant coating 22 exhibits very high temperature oxidation resistance.

【0058】尚,上記各実施例においては,高温耐酸化
被膜を作製するための酸化物ゾル溶液としてタングステ
ン酸化物ゾル溶液又はニオブ酸化物ゾル溶液を用いた
が,これをタンタル酸化物ゾル溶液に代えた場合におい
ても,上記と同様の効果が得られる。
In each of the above examples, the tungsten oxide sol solution or the niobium oxide sol solution was used as the oxide sol solution for forming the high temperature oxidation resistant film. Even when it is replaced, the same effect as above can be obtained.

【0059】[0059]

【発明の効果】上述のごとく,本発明によれば,複雑な
形状または大型形状であっても,その表面全体に均一な
高温耐酸化皮膜を有し,耐酸化性に優れたTiAl系合
金部品及びその製造方法を提供することができる。
As described above, according to the present invention, a TiAl-based alloy component having a uniform high-temperature oxidation resistant film on the entire surface and excellent in oxidation resistance even if it has a complicated shape or a large shape. And a manufacturing method thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1のTiAl系合金部品の断面図を
示す説明図。
FIG. 1 is an explanatory view showing a cross-sectional view of a TiAl-based alloy component according to a first embodiment.

【図2】実施形態例2における,加熱保持時間と酸化増
量の関係を示す説明図。
FIG. 2 is an explanatory diagram showing a relationship between a heating holding time and an oxidation amount increase in Embodiment 2.

【図3】実施形態例3のTiAl系合金部品の断面を示
す説明図。
FIG. 3 is an explanatory view showing a cross section of a TiAl-based alloy component of Embodiment 3;

【図4】実施形態例4における,加熱保持時間と酸化増
量の関係を示す説明図。
FIG. 4 is an explanatory view showing a relationship between a heating holding time and an oxidation amount increase in Embodiment 4.

【符号の説明】[Explanation of symbols]

10,20...TiAl系合金部品, 11...母材, 12,22...高温耐酸化皮膜, 121...第1層(WO3 ・TiO2 ・Al23
に金属Wが分散した層), 122...第2層(TiO2 ・Al23 層に金属W
が分散した層), 123...第3層(Al23 層に金属Wが分散した
層), 221...第1層(Nb2 5 ・TiO2 ・Al2
3 層に金属Nbが分散した層), 222...第2層(TiO2 ・Al23 層に金属N
bが分散した層), 223...第3層(Al23 層に金属Nbが分散し
た層),
10, 20. . . TiAl-based alloy parts, 11. . . Base material, 12, 22. . . High temperature oxidation resistant film, 121. . . 1. First layer (layer in which metal W is dispersed in WO 3 · TiO 2 · Al 2 O 3 layer), 122. . . The second layer (metal W in the TiO 2 · Al 2 O 3 layer)
Dispersed layer), 123. . . Third layer (layer in which metal W is dispersed in Al 2 O 3 layer), 221. . . The first layer (Nb 2 0 5 · TiO 2 · Al 2 O
A layer in which metal Nb is dispersed in three layers), 222. . . The second layer (the TiO 2 · Al 2 O 3 layer has metal N
b, dispersed layer), 223. . . Third layer (layer in which metal Nb is dispersed in Al 2 O 3 layer),

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 タングステン,ニオブ又はタンタルのい
ずれかの金属元素を含有する金属化合物と溶媒とを出発
原料として作製した上記金属元素の酸化物よりなる酸化
物ゾル溶液を調整し,該酸化物ゾル溶液を,TiAl系
金属間化合物よりなる母材の表面にコーティングし,次
いで,真空雰囲気中において真空加熱を行うことによ
り,上記母材の表面に高温耐酸化皮膜を形成することを
特徴とするTiAl系合金部品の製造方法。
1. An oxide sol solution comprising an oxide of a metal element prepared by using a metal compound containing a metal element of any one of tungsten, niobium and tantalum and a solvent as a starting material, and preparing the oxide sol. A TiAl characterized in that a high temperature oxidation resistant film is formed on the surface of the base material by coating the surface of the base material made of a TiAl-based intermetallic compound with the solution and then performing vacuum heating in a vacuum atmosphere. For manufacturing alloy-based alloy parts.
【請求項2】 請求項1において,上記コーティング
後,上記真空加熱前に,コーティングした皮膜を結晶化
させるための加熱を行うことを特徴とするTiAl系合
金部品の製造方法。
2. The method for manufacturing a TiAl-based alloy component according to claim 1, wherein heating for crystallizing the coated film is performed after the coating and before the vacuum heating.
【請求項3】 請求項1又は2において,上記タングス
テンを含有する金属化合物は,タングステン系金属アル
コキシド,タングステン系金属アセチルアセトナート,
タングステン系塩化物,タングステン酸化合物から選択
される1種以上の化合物であることを特徴とするTiA
l系合金部品の製造方法。
3. The metal compound according to claim 1, wherein the metal compound containing tungsten is a tungsten metal alkoxide, a tungsten metal acetylacetonate,
TiA, which is one or more compounds selected from tungsten-based chlorides and tungstic acid compounds
Method for manufacturing l-based alloy component.
【請求項4】 請求項1又は2において,上記ニオブを
含有する金属化合物は,ニオブ系金属アルコキシド,ニ
オブ系金属アセチルアセトナート,ニオブ系塩化物から
選択される1種以上の化合物であることを特徴とするT
iAl系合金部品の製造方法。
4. The niobium-containing metal compound according to claim 1, wherein the niobium-containing metal compound is one or more compounds selected from niobium metal alkoxides, niobium metal acetylacetonates, and niobium chlorides. Characteristic T
Method for manufacturing iAl-based alloy component.
【請求項5】 請求項1又は2において,上記タンタル
を含有する金属化合物は,タンタル系金属アルコキシ
ド,タンタル系金属アセチルアセトナート,タンタル系
塩化物から選択される1種以上の化合物であることを特
徴とするTiAl系合金部品の製造方法。
5. The tantalum-containing metal compound according to claim 1 or 2, wherein the tantalum-containing metal compound is one or more compounds selected from tantalum-based metal alkoxides, tantalum-based metal acetylacetonates, and tantalum-based chlorides. A method for manufacturing a characteristic TiAl-based alloy component.
【請求項6】 請求項1〜5のいずれか1項において,
上記酸化物ゾル溶液には,上記金属化合物と錯体を形成
するキレート剤を添加していることを特徴とするTiA
l系合金部品の製造方法。
6. The method according to any one of claims 1 to 5,
A chelating agent that forms a complex with the above metal compound is added to the above oxide sol solution.
Method for manufacturing l-based alloy component.
【請求項7】 請求項1〜6のいずれか1項において,
上記真空加熱は,真空度1.3Pa〜1.3×10-5
a,温度800〜1100℃で行うことを特徴とするT
iAl系合金部品の製造方法。
7. The method according to any one of claims 1 to 6,
The above-mentioned vacuum heating is performed at a vacuum degree of 1.3 Pa to 1.3 × 10 −5 P
a, T which is performed at a temperature of 800 to 1100 ° C
Method for manufacturing iAl-based alloy component.
【請求項8】 TiAl系金属間化合物からなる母材
と,その表面に形成された高温耐酸化皮膜とよりなるT
iAl系合金部品であって,上記高温耐酸化皮膜は,W
3 ・TiO2 ・Al23 ,Nb25 ・TiO2
Al23 又はTa2 5 ・TiO2 ・Al23 のい
ずれかよりなる最表面に位置する第1層と,該第1層の
下に位置するTiO2 ・Al23 よりなる第2層と,
該第2層と上記母材との間に位置するAl23 よりな
る第3層とから構成されており,かつ,上記高温耐酸化
皮膜を構成する各層には,それぞれ上記第1層に対応す
る金属W,金属Nb又は金属Taのいずれかが分散して
いることを特徴とするTiAl系合金部品。
8. A T containing a base material made of a TiAl-based intermetallic compound and a high temperature oxidation resistant film formed on the surface of the base material.
In the case of iAl alloy parts, the high temperature oxidation resistant film is W
O 3 · TiO 2 · Al 2 O 3 , Nb 2 O 5 · TiO 2 ·
A first layer located either become more outermost surface of the Al 2 O 3 or Ta 2 O 5 · TiO 2 · Al 2 O 3, made of TiO 2 · Al 2 O 3, located below the first layer The second layer,
It is composed of a second layer and a third layer of Al 2 O 3 located between the base material, and each of the layers constituting the high temperature oxidation-resistant coating is the same as the first layer. A TiAl-based alloy component in which any of the corresponding metal W, metal Nb, or metal Ta is dispersed.
【請求項9】 請求項8において,上記高温耐酸化皮膜
の厚さは5.0μm以下であり,かつ,上記第1層の厚
さは0.001〜0.2μm,上記第3層の厚さは0.
1〜5.0μmであることを特徴とするTiAl系合金
部品。
9. The high temperature oxidation resistant film according to claim 8, wherein the thickness of the high temperature oxidation resistant film is 5.0 μm or less, and the thickness of the first layer is 0.001 to 0.2 μm. Sa is 0.
A TiAl-based alloy component having a thickness of 1 to 5.0 μm.
JP13275096A 1995-08-30 1996-04-29 TiAl-based alloy parts and method of manufacturing the same Expired - Fee Related JP3536531B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13275096A JP3536531B2 (en) 1995-08-30 1996-04-29 TiAl-based alloy parts and method of manufacturing the same
DE1996152876 DE19652876A1 (en) 1996-04-29 1996-12-18 Production of titanium@-aluminium@ part
FR9615718A FR2748034A1 (en) 1996-04-29 1996-12-20 TIAL ALLOY PART AND PROCESS FOR PREPARING THE SAME

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-246878 1995-08-30
JP24687895 1995-08-30
JP13275096A JP3536531B2 (en) 1995-08-30 1996-04-29 TiAl-based alloy parts and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09125254A true JPH09125254A (en) 1997-05-13
JP3536531B2 JP3536531B2 (en) 2004-06-14

Family

ID=26467260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13275096A Expired - Fee Related JP3536531B2 (en) 1995-08-30 1996-04-29 TiAl-based alloy parts and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3536531B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066934A1 (en) * 2002-02-08 2003-08-14 Center For Advanced Science And Technology Incubation, Ltd. Corrosion-resistant structure of metal material and method for surface treatment of metal material
JP2008001962A (en) * 2006-06-23 2008-01-10 Shimane Univ Oxidation-resistant material and manufacturing method thereof
JP2016012568A (en) * 2015-09-11 2016-01-21 株式会社半導体エネルギー研究所 Manufacture method of lithium ion secondary battery
US9799461B2 (en) 2011-09-02 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066934A1 (en) * 2002-02-08 2003-08-14 Center For Advanced Science And Technology Incubation, Ltd. Corrosion-resistant structure of metal material and method for surface treatment of metal material
JP2008001962A (en) * 2006-06-23 2008-01-10 Shimane Univ Oxidation-resistant material and manufacturing method thereof
US9799461B2 (en) 2011-09-02 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing electrode
JP2016012568A (en) * 2015-09-11 2016-01-21 株式会社半導体エネルギー研究所 Manufacture method of lithium ion secondary battery

Also Published As

Publication number Publication date
JP3536531B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
DE60121007T3 (en) SUBSTRATE WITH A PHOTOCATALYTIC COATING
EP0821076B1 (en) A method of aluminising a superalloy
JP3001161B2 (en) Aluminum coating for super alloy
US4554176A (en) Durable electrode for electrolysis and process for production thereof
RU2570054C2 (en) Outer coating from zirconium oxide, doped with gadolinium oxide and/or method of obtaining thereof
EP0853142B1 (en) Metal material having photocatalytic activity and method of manufacturing the same
EP2796588B1 (en) Method for producing a high temperature protective coating
US4358506A (en) Metal and carbon composites thereof
JP4588868B2 (en) Metal material for glass melting treatment and method for producing the same
JPH09125254A (en) Titanium-aluminum alloy parts and production thereof
DE3786779T2 (en) Ceramic support-provided, non-evaporable getter device and method of manufacture thereof.
TWI789656B (en) Adhesive layer, and method for depositing conductive layer on inorganic or organic-inorganic hybrid substrate and conductive structure
JPH07508561A (en) Structural component made of intermetallic compound with aluminum diffusion coating
JP4646395B2 (en) Metal material for glass melting treatment and method for producing the same
EP1184479A1 (en) Method of forming a reactive-element containing aluminide on a metallic substrate
JPWO2002027067A1 (en) Heat resistant material of niobium-based alloy
JPH11264084A (en) Heat resistant member and its production
JP2584626B2 (en) Manufacturing method of colored titanium material
JPH05320863A (en) Alloy member resistant against heat and corrosion and its production
DE3590538T1 (en) Process for applying coatings to metals and the product obtained in the process
JPH083673A (en) Aluminum foil for electrolytic capacitor and production of this aluminum foil
KR970005442B1 (en) Method of manufacturing two layers of coating steel sheet by al/ti vapour deposition
DE19634616C2 (en) TiAl alloy part and process for its production
JPH1161372A (en) Production of titanium oxidized coating and titanium oxidized coating
JPH05125515A (en) Manufacture of hot-dip zn-al plated steel sheet excellent in appearance, secular blackening resistance and corrosion resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

LAPS Cancellation because of no payment of annual fees