JP3884538B2 - Surface-treated metal material excellent in corrosion resistance and surface treatment method of metal material - Google Patents

Surface-treated metal material excellent in corrosion resistance and surface treatment method of metal material Download PDF

Info

Publication number
JP3884538B2
JP3884538B2 JP23291097A JP23291097A JP3884538B2 JP 3884538 B2 JP3884538 B2 JP 3884538B2 JP 23291097 A JP23291097 A JP 23291097A JP 23291097 A JP23291097 A JP 23291097A JP 3884538 B2 JP3884538 B2 JP 3884538B2
Authority
JP
Japan
Prior art keywords
metal material
titanium oxide
corrosion resistance
film
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23291097A
Other languages
Japanese (ja)
Other versions
JPH1171684A (en
Inventor
茂男 辻川
知義 小西
新 須田
哲生 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP23291097A priority Critical patent/JP3884538B2/en
Publication of JPH1171684A publication Critical patent/JPH1171684A/en
Application granted granted Critical
Publication of JP3884538B2 publication Critical patent/JP3884538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
本発明は、耐食性に優れた表面処理金属材料、特に表面処理鋼材、及び表面処理方法に関するものである。より詳しく述べるならば、本発明は、金属材料の表面に、下層としてV 及び Cu からなる群から選ばれる少なくとも1種の金属元素をチタン酸化物皮膜中に5〜20重量%の割合で含有し、光遮断後のカソード防食効果を有する第1の皮膜層を有し、その上にチタン酸化物からなる光照射時のカソード防食効果を有する第2の皮膜層を有し、耐食性に優れた鋼材、及びこの鋼材を得る表面処理方法に関するものである。
【0002】
【従来の技術】
チタン酸化物を鋼材などの金属の防食に適用する技術は、現在までほとんどなく、僅かに次の二つがあげられる。第1の技術は、「材料と環境」(第44巻(1995年)p.539)に記載された、炭素鋼を500℃以上に加熱し不特定な酸化皮膜を形成させ、上層にゾル−ゲル法を用いてチタン酸化物皮膜層を形成させ、光照射下において電気化学的な方法により耐食性を向上をさせるものである。
また第2の技術は、特開平6−10153号公報にて開示された、ステンレス鋼からなる基材の表面に、チタン含有量に換算して1mg/m2 以上のチタン酸化物含有皮膜層を形成して、光照射下において耐食性を向上させたステンレス鋼板を提供するものである。
しかしながら、従来の第1の技術及び第2の技術ともにチタン酸化物皮膜層による持続した防食効果を得るには、光照射が不可欠であり、通常の成膜技術を用いて製造した表面処理鋼材は、自然環境下の夜間などは防食効果が得られないために夜間には腐食が進行するという本質的な問題点を有していた。
【0003】
【発明が解決しようとする課題】
本発明は、従来技術の抱える問題点、即ち、夜間などの光源の乏しい状態、あるいは光源から遮断された状態ではカソード防食効果が得られないという問題点を解決し、一旦光照射を受けた後であれば、光が遮断されてもカソード防食効果が持続(いわゆる記憶効果)し、高い耐食性を有するような表面処理金属材料、及びその表面処理方法を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明者らは上記問題点を解決するための手段について鋭意検討した結果、鋼材などの金属材料の表面に、下層としてV 及び Cu からなる群から選ばれる少なくとも1種の金属元素をチタン酸化物皮膜中に5〜20重量%の割合で含有し、光遮断後のカソード防食効果を有する第1の皮膜層を有し、その上にチタン酸化物からなる光照射時のカソード防食効果を有する第2の皮膜層を有することを特徴とする耐食性に優れた表面処理金属材料は、光照射後に光が消失してもカソード防食効果が持続し、夜間などにおいても耐食性が飛躍的に向上することを新たに見出し、本発明を完成するに至った。即ち本発明の表面処理金属材料は、金属材料の表面に、下層としてV 及び Cuから成る群から選ばれる少なくとも一種の金属元素をチタン酸化物皮膜中に5〜20重量%含有し、光遮断後のカソード防食効果を有する第1の皮膜層を有し、その上にチタン酸化物からなる光照射時のカソード防食効果を有する第2の皮膜層を有することを特徴とするものである。
次に金属材料の表面処理方法は、金属材料の表面に、チタン酸化物ゾルーゲル液中に、V 及び Cu からなる群から選ばれる少なくとも1種の金属のアルコキシドまたは該金属酸化物のアルコキシドを含有する薬剤を塗布し加熱して第1の皮膜層を形成させ、その上にチタン酸化物からなる皮膜を形成させることを特徴とする方法である。
【0005】
本発明が利用するチタン酸化物によるアノード防食効果が適用される金属材料は、炭素鋼、ステンレス鋼などの鋼材の他に、銅、アルミ、チタン、マグネシウムなどの非鉄金属も対象とし、さらに、亜鉛めっき、亜鉛合金めっき鋼などのめっき鋼材なども対象とする。
【0006】
以下に、本発明の内容を鋼材防食の例について詳しく説明する。鋼材に下層として形成する第1の皮膜層は、チタン酸化物と、V 及び Cu からなる群から選ばれる少なくとも一種の金属元素とからなり、金属元素の量は該皮膜中において5〜20重量%の割合である。第1の皮膜層のベースとなるチタン酸化物皮膜は、従来技術のところで述べたようにゾルーゲル法のものを鋼材に塗布して乾燥させるのが好ましい。前記金属元素をチタン酸化物に均一に分散させるためには、金属アルコキシド又は金属酸化物アルコキシドをチタン‐ゾルゲル処理剤と混合し、皮膜形成後加熱乾燥して金属のみを皮膜中に残す方法が好ましい。アルコキシドは例えば C 10 H 14 O 5 V、C10H14O4Cuの形で配合するのが好ましい。これらの金属を配合したチタン酸化物ゾルーゲル処理剤を例えば400℃、10分加熱乾燥させ、皮膜を形成させる。第1の皮膜層の皮膜量は、特に限定しないが全体として50〜5000mg/m2の範囲が好ましい。50 mg/m2以下であるとカソード防食能が劣り、5000 mg/m2以上であっても性能上問題は無いが、カソード防食能が飽和し、向上が認められなくなるのでコストの面から不利である。
【0007】
下層のV Cu などの金属元素の添加量をチタン酸化物との合計量に対して5〜20重量%としたのは、5重量%未満では光遮断後のカソード防食効果(記憶効果)が得られず、20重量%を超えると光照射時のカソード防食能自体が著しく低下するからである。第2の皮膜層は、チタン酸化物からなる皮膜であり、特開平6−10153号公報で開示されたPVD、CVD法やチタン酸化物ゾルーゲル処理法により形成する100%チタン酸化物皮膜を形成させる。皮膜量はチタン酸化物として50〜5000 mg/m2とするのが好ましい。この範囲外での50 mg/m2以下であると第2の皮膜層のカソード防食能が劣り、5000 mg/m2以上であるとカソード防食能が飽和し、向上が認められなくなるのでコストの面で不利である。
【0008】
本発明の表面処理鋼材は、光の照射後にその防食性が向上するが、特に波長が400nm以下の紫外線を多く含む500ルクス以上の照射時において耐食性の向上効果をもたらすものである。また、光照射後であれば、光が遮断されてもカソード防食効果は持続するという特徴がある。
【0009】
【作用】
本発明の表面処理鋼材の耐食性が格段に向上するのは、チタン酸化物のn型半導体電極としての光電気化学的性質によるものと考えられる。即ち、チタン酸化物の光電気化学的性質により、素材の鋼材がカソード、チタン酸化物(例えばTiO2 )がアノードになり、鋼材をカソード防食することにより、耐食性を向上させるのである。さらに、この際のアノード反応はチタン酸化物表面で起こる、
2H2 O→O2 +4H+ +4e- ・・・・・(1)
で示される水の電気分解反応であるために、チタン酸化物は全く消費されず、劣化しない。このことからチタン酸化物による防食効果は光の存在下で半永久的に持続する。
【0010】
本発明において最も特長があるのは、一時的に光が照射された後であれば、下層の添加V Cu 元素による記憶効果により、光照射の無い暗い環境でもカソード防食能を維持することができる点である。この記憶効果については、添加元素が下記 2 )〜( 3 式に示したように、価数が変化(充放電)するためと推定され、各々の元素がチタン酸化物皮膜中で光照射時に低価数に還元され、光遮断時に高価数へ酸化される。したがって夜間は 2 )〜( 3 式で電子の消滅が起こり、この現象は(1)式右辺の電子の消滅を招くことになるから、カソード防食効果が持続するものと考えられる。
V3+ ⇔V5++2e-・・・・(2)
Cu+ ⇔Cu2++e-・・・・(3)
これらの元素の添加により、第1の皮膜層において光遮断時の記憶効果は生じ、かつ第1の皮膜層のチタン酸化物も防食効果をもつので、第1の皮膜層のみでも防食効果がある。しかし、カソード防食能自体は、無添加のゾルーゲルチタン酸化物皮膜の方が良好であることと、昼間に(1)式で第2の被覆層内で発生する電子を第1の被覆層に供給することが記憶効果発生に有効であることから、チタン酸化物を上層皮膜としてこれを用いることにより、鋼材の防食性能を飛躍的に高める二層皮膜構造とした。
【0011】
【実施例】
本発明の効果をより詳しく説明するために、実施例を比較例とともに挙げて具体的に説明する。また、その耐食性の評価結果を図1(表1)に示す。使用したチタン酸化物皮膜用ゾルーゲル液の組成及び調製法は、横尾らの方法(日本金属学会会報、28,176(1989))と同じものを用い、これを上層皮膜用のチタン酸化物皮膜処理剤とした。また、下層の V Cu 及び参考例としての Feの各元素を添加した皮膜は、このゾルーゲル液に所定量のC15H21O5Fe, C10H14O5V、C10H14O4Cuの金属アルコキシドまたは金属酸化物アルコキシドを各元素として0、5、10、20重量%加えた処理剤を調整して用いた。以上の処理剤を、SUS430ステンレス鋼材に浸漬引き上げ法で塗布し(引き上げ速度0.15mm/s)、引き上げ後に室温で10分間乾燥後、下層については400℃で10分間焼成を6回繰り返し、上層については200℃で10分間の焼成を1度行った。この試験片に、カッターで素地まで達するようにクロスカット傷を付与し、屋外で太陽光を60分間照射した後に、光を遮断した状態でJISZ2371の塩水噴霧試験に1500時間かけて、外観観察により耐食性を評価した。
【0011】
図2(表2)の結果から明らかなように、本発明の表面処理鋼材および表面処理剤を用いた実施例1〜9については腐食がわずかであるが、本発明の範囲外である比較例2〜4は腐食面積が大きいことがわかる。
【0012】
【発明の効果】
本発明の表面処理金属材料は光照射下において記憶作用のために持続した耐食性を示すから、屋外で使用される各種建材、構造材などに使用すると優れた性能を発揮する。特に、従来、重防食用塗料を厚く塗装していた鋼材などに対して本発明を適用することにより、安価な表面処理剤で無公害で効果的に半永久的な防食を行うことが可能になった。
【図面の簡単な説明】
【図1】 本発明実施例及び比較例の皮膜層構造を示す図表(表1)である。
【図2】 本発明実施例及び比較例の塩水噴霧試験結果を示す図表(表2)である。
[0001]
The present invention relates to a surface-treated metal material excellent in corrosion resistance, in particular, a surface-treated steel material, and a surface treatment method. More specifically, the present invention contains at least one metal element selected from the group consisting of V and Cu as a lower layer on the surface of the metal material in a proportion of 5 to 20% by weight in the titanium oxide film. A steel material having a first coating layer having a cathodic protection effect after light blocking and having a second coating layer having a cathodic protection effect upon irradiation with light, and having excellent corrosion resistance. And a surface treatment method for obtaining the steel material.
[0002]
[Prior art]
There is almost no technology to apply titanium oxide to corrosion protection of metals such as steel, and there are only the following two techniques. The first technique is described in “Materials and Environment” (Vol. 44 (1995) p. 539). Carbon steel is heated to 500 ° C. or more to form an unspecified oxide film, and a sol- A titanium oxide film layer is formed using a gel method, and the corrosion resistance is improved by an electrochemical method under light irradiation.
The second technique is disclosed in JP-A-6-10153, on the surface of a base material made of stainless steel, a titanium oxide-containing coating layer of 1 mg / m 2 or more in terms of titanium content. The present invention provides a stainless steel plate that is formed and has improved corrosion resistance under light irradiation.
However, in order to obtain a sustained anticorrosion effect by the titanium oxide film layer in both the conventional first technique and the second technique, light irradiation is indispensable, and the surface-treated steel material manufactured using a normal film forming technique is However, since the anticorrosion effect cannot be obtained at nighttime in a natural environment, there is an essential problem that corrosion proceeds at nighttime.
[0003]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art, that is, the problem that the cathodic protection effect cannot be obtained when the light source is poor, such as at night, or when it is cut off from the light source. Then, an object of the present invention is to provide a surface-treated metal material and a surface treatment method thereof that maintain the cathodic protection effect even when light is blocked (so-called memory effect) and have high corrosion resistance.
[0004]
[Means for Solving the Problems]
As a result of intensive studies on means for solving the above problems, the present inventors have found that titanium oxide contains at least one metal element selected from the group consisting of V and Cu as a lower layer on the surface of a metal material such as steel. The first coating layer, which is contained in the film at a rate of 5 to 20% by weight and has a cathodic protection effect after light blocking, has a first anticorrosive effect at the time of light irradiation made of titanium oxide. The surface-treated metal material with excellent corrosion resistance, characterized by having a coating layer of 2, maintains the cathodic protection effect even if light disappears after light irradiation, and dramatically improves the corrosion resistance even at night. A new headline has been reached and the present invention has been completed. That is, the surface-treated metal material of the present invention contains 5 to 20% by weight of at least one metal element selected from the group consisting of V and Cu as a lower layer on the surface of the metal material, and after light blocking. of having a first coating layer which have a cathodic protection effect, it is characterized in that it has a second coating layer having a cathodic protection effect during irradiation of titanium oxide thereon.
Next, the surface treatment method of a metal material contains at least one metal alkoxide selected from the group consisting of V and Cu or an alkoxide of the metal oxide in a titanium oxide sol-gel solution on the surface of the metal material. and drug is coated heated to form a first coating layer, a method characterized by forming a film comprising titanium oxide thereon.
[0005]
The metal material to which the anode anticorrosion effect by the titanium oxide used in the present invention is applied is not only for steel materials such as carbon steel and stainless steel, but also for non-ferrous metals such as copper, aluminum, titanium and magnesium, and zinc. It also covers plated steel materials such as plating and zinc alloy plated steel.
[0006]
Below, the content of this invention is demonstrated in detail about the example of steel material corrosion prevention. The first film layer formed as a lower layer on the steel material is composed of titanium oxide and at least one metal element selected from the group consisting of V and Cu , and the amount of the metal element is 5 to 20% by weight in the film Is the ratio. The titanium oxide film serving as the base of the first film layer is preferably coated with a sol-gel method on a steel material and dried as described in the prior art. In order to uniformly disperse the metal element in the titanium oxide, a method in which a metal alkoxide or a metal oxide alkoxide is mixed with a titanium-sol-gel treatment agent and heated and dried after the film is formed to leave only the metal in the film is preferable. . The alkoxide is preferably blended in the form of, for example, C 10 H 14 O 5 V or C 10 H 14 O 4 Cu. The titanium oxide sol-gel treatment agent containing these metals is dried by heating at, for example, 400 ° C. for 10 minutes to form a film. The coating amount of the first coating layer is not particularly limited, but is preferably in the range of 50 to 5000 mg / m 2 as a whole. If it is 50 mg / m 2 or less, the cathodic protection performance is inferior, and even if it is 5000 mg / m 2 or more, there is no problem in performance, but the cathodic protection ability is saturated and no improvement is observed, which is disadvantageous in terms of cost It is.
[0007]
The amount of addition of metal elements such as V and Cu in the lower layer is 5 to 20% by weight based on the total amount of titanium oxide. If the amount is less than 5% by weight, the cathodic protection effect (memory effect) after light blocking is reduced. This is because when it exceeds 20% by weight, the cathodic protection performance itself at the time of light irradiation is remarkably lowered. The second film layer is a film made of titanium oxide, and forms a 100% titanium oxide film formed by PVD, CVD method or titanium oxide sol-gel treatment method disclosed in JP-A-6-10153. . The coating amount is preferably 50 to 5000 mg / m 2 as titanium oxide. If it is 50 mg / m 2 or less outside this range, the cathodic protection ability of the second coating layer is inferior, and if it is 5000 mg / m 2 or more, the cathodic protection ability is saturated and no improvement is observed. It is disadvantageous in terms.
[0008]
The surface-treated steel material of the present invention is improved in corrosion resistance after irradiation with light, but has an effect of improving corrosion resistance particularly at irradiation of 500 lux or more containing a lot of ultraviolet rays having a wavelength of 400 nm or less. Moreover, if it is after light irradiation, even if light is interrupted | blocked, there exists the characteristic that a cathodic protection effect continues.
[0009]
[Action]
The remarkable improvement in the corrosion resistance of the surface-treated steel of the present invention is considered to be due to the photoelectrochemical properties of titanium oxide as an n-type semiconductor electrode. That is, due to the photoelectrochemical properties of titanium oxide, the material steel material becomes the cathode and titanium oxide (for example, TiO 2 ) becomes the anode, and the corrosion resistance is improved by cathodic protection of the steel material. Furthermore, the anodic reaction at this time occurs on the titanium oxide surface,
2H 2 O → O 2 + 4H + + 4e - ····· (1)
In this case, the titanium oxide is not consumed at all and does not deteriorate. For this reason, the anticorrosive effect of titanium oxide lasts semipermanently in the presence of light.
[0010]
The most characteristic feature of the present invention is that, after light is temporarily irradiated, the anticorrosive ability of the cathode can be maintained even in a dark environment without light irradiation due to the memory effect of the added V and Cu elements in the lower layer. This is a possible point. This memory effect is presumed to be due to the valence changing (charge / discharge) as shown in the following formulas ( 2 ) to ( 3 ) , and each element is irradiated with light in the titanium oxide film. It is sometimes reduced to a low valence and is oxidized to an expensive number when light is blocked. Therefore, at night, the disappearance of electrons occurs according to the equations ( 2 ) to ( 3 ) , and this phenomenon leads to the disappearance of the electrons on the right side of the equation (1). Therefore, it is considered that the cathodic protection effect is sustained.
V 3+ ⇔V 5+ + 2e - ···· (2)
Cu + ⇔Cu 2+ + e -... (3)
By adding these elements, the first coating layer has a memory effect at the time of light blocking, and the titanium oxide of the first coating layer also has an anticorrosion effect, so only the first coating layer has an anticorrosion effect. . However, the cathodic protection performance itself is better with the additive-free sol-gel titanium oxide film, and supplies the electrons generated in the second coating layer to the first coating layer in the formula (1) in the daytime. Since this is effective for generating a memory effect, a titanium oxide is used as an upper layer film, thereby forming a two-layer film structure that dramatically improves the anticorrosion performance of the steel material.
[0011]
【Example】
In order to explain the effects of the present invention in more detail, examples will be described together with comparative examples. In addition, the evaluation results of the corrosion resistance are shown in FIG. 1 (Table 1). The composition and preparation method of the sol-gel solution for titanium oxide film used was the same as that of Yokoo et al. (Journal of the Japan Institute of Metals, 28, 176 (1989)). did. In addition, a film in which each element of V , Cu and Fe as a reference example is added to the sol-gel solution in a predetermined amount of C 15 H 21 O 5 Fe, C 10 H 14 O 5 V, C 10 H 14 O A treatment agent was prepared by adding 0, 5, 10, or 20% by weight of 4 Cu metal alkoxide or metal oxide alkoxide as each element. Apply the above treatment agent to SUS430 stainless steel by dip pulling method (pickup speed 0.15mm / s), dry for 10 minutes at room temperature after pulling, and repeat firing for 6 minutes at 400 ° C for the lower layer 6 times for the upper layer Baked once at 200 ° C. for 10 minutes. This test piece was cross-cut so that it reached the substrate with a cutter, irradiated with sunlight for 60 minutes outdoors, and then subjected to a salt spray test of JISZ2371 for 1500 hours with the light blocked. Corrosion resistance was evaluated.
[0011]
As is clear from the results in FIG. 2 (Table 2), Examples 1 to 9 using the surface-treated steel material and the surface treatment agent of the present invention have little corrosion but are comparative examples outside the scope of the present invention. 2-4 show that the corrosion area is large.
[0012]
【The invention's effect】
Since the surface-treated metal material of the present invention exhibits sustained corrosion resistance due to memory action under light irradiation, it exhibits excellent performance when used for various building materials and structural materials used outdoors. In particular, by applying the present invention to a steel material, etc., to which a heavy anticorrosion coating has been conventionally applied, it becomes possible to effectively and semipermanently prevent corrosion with an inexpensive surface treatment agent. It was.
[Brief description of the drawings]
FIG. 1 is a table (Table 1) showing film layer structures of Examples and Comparative Examples of the present invention.
FIG. 2 is a table (Table 2) showing the results of salt spray tests of examples of the present invention and comparative examples.

Claims (4)

金属材料の表面に、下層としてV 及び Cu からなる群から選ばれる少なくとも1種の金属元素をチタン酸化物皮膜中に5〜20重量%の割合で含有し、光遮断後のカソード防食効果を有する第1の皮膜層を有し、その上にチタン酸化物からなる光照射時のカソード防食効果を有する第2の皮膜層を有することを特徴とする耐食性に優れた表面処理金属材料。The surface of the metal material contains at least one metal element selected from the group consisting of V and Cu as a lower layer in the titanium oxide film in a proportion of 5 to 20% by weight, and has a cathodic protection effect after light blocking. A surface-treated metal material having excellent corrosion resistance, comprising a first film layer, and a second film layer made of titanium oxide and having a cathodic protection effect upon irradiation with light . 前記金属材料が鋼材である請求項1記載の耐食性に優れた表面処理金属材料。  2. The surface-treated metal material having excellent corrosion resistance according to claim 1, wherein the metal material is a steel material. 金属材料の表面に、酸化チタンゾルーゲル液中に、V 及び Cu からなる群から選ばれる少なくとも1種の金属のアルコキシドまたは該金属酸化物のアルコキシドを含有する薬剤を塗布して加熱して第1の皮膜層を形成させ、その上にチタン酸化物からなる皮膜を形成させることを特徴とする金属材料の表面処理方法。The surface of the metal material is coated with at least one metal alkoxide selected from the group consisting of V and Cu or an agent containing the metal oxide alkoxide in a titanium oxide sol-gel solution, and heated to apply the first to form a coating layer, the surface treatment method of a metal material, characterized in that to form a film made of titanium oxide thereon. 前記金属材料が鋼材である請求項3記載の耐食性に優れた表面処理金属材料の表面処理方法。  4. The surface treatment method for a surface-treated metal material having excellent corrosion resistance according to claim 3, wherein the metal material is a steel material.
JP23291097A 1997-08-28 1997-08-28 Surface-treated metal material excellent in corrosion resistance and surface treatment method of metal material Expired - Fee Related JP3884538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23291097A JP3884538B2 (en) 1997-08-28 1997-08-28 Surface-treated metal material excellent in corrosion resistance and surface treatment method of metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23291097A JP3884538B2 (en) 1997-08-28 1997-08-28 Surface-treated metal material excellent in corrosion resistance and surface treatment method of metal material

Publications (2)

Publication Number Publication Date
JPH1171684A JPH1171684A (en) 1999-03-16
JP3884538B2 true JP3884538B2 (en) 2007-02-21

Family

ID=16946763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23291097A Expired - Fee Related JP3884538B2 (en) 1997-08-28 1997-08-28 Surface-treated metal material excellent in corrosion resistance and surface treatment method of metal material

Country Status (1)

Country Link
JP (1) JP3884538B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623502B2 (en) * 2005-02-28 2011-02-02 財団法人電力中央研究所 Radiation resistant member and nuclear power generation system using the same
JP4623510B2 (en) * 2005-06-08 2011-02-02 財団法人電力中央研究所 Reactor structural material

Also Published As

Publication number Publication date
JPH1171684A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
JPH035024B2 (en)
JP3884538B2 (en) Surface-treated metal material excellent in corrosion resistance and surface treatment method of metal material
Llopis Corrosion of platinum metals and chemisorption
IS1141B6 (en) Metallic anode coated with an improved protective material
JP3860632B2 (en) Surface-treated steel with excellent corrosion resistance
JP3686472B2 (en) Surface-treated steel material excellent in corrosion resistance and its surface treatment method
JP4088078B2 (en) Anticorrosion structure of metal material and surface treatment method of metal material
JPS55110783A (en) Surface treated steel plate with excellent spot weldability
JPS6024197B2 (en) Pb alloy insoluble anode for electroplating
JP3150427B2 (en) Light and corrosion resistant stainless steel
JPH10158857A (en) Galvanized steel sheet excellent in blackening resistance
JP2001262368A (en) Surface treated and plated steel products having excellent corrosion resistance and method for manufacturing the same
Mukhopadhyay et al. Surface characterisation of anodic films of Pb-Sn alloy electrodes: the effect of Sn on the photoelectrochemical properties
JPH0430712B2 (en)
Jaén et al. Mössbauer studies on electrodeposited tin—copper alloys
JPS5842740A (en) Zinc alloy for electrode
Sarkar Application of potentiokinetic hysteresis technique to characterize the chloride corrosion of high-copper dental amalgams
JPS58171548A (en) Aluminum alloy for galvanic anode and its manufacture
RU2179770C2 (en) Lead accumulator plate
JPH09143679A (en) Black zinc-magnesium plated steel sheet and its production
JPS62182247A (en) Aluminum alloy for sacrificial anode
Siqueira et al. The effect of tartrate on the morphological and structural characteristics of lead–tin electrodeposit from an alkaline bath
JPS6053426B2 (en) Primary battery using aluminum or its alloy for the negative electrode
JPS6177265A (en) Zinc alkaline battery
JPS6372844A (en) Zinc alloy for voltaic corrosion protection

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees