WO2003066914A1 - High-purity spongy titanium material and its production method - Google Patents

High-purity spongy titanium material and its production method Download PDF

Info

Publication number
WO2003066914A1
WO2003066914A1 PCT/JP2002/001118 JP0201118W WO03066914A1 WO 2003066914 A1 WO2003066914 A1 WO 2003066914A1 JP 0201118 W JP0201118 W JP 0201118W WO 03066914 A1 WO03066914 A1 WO 03066914A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum separation
temperature
reaction vessel
center
oxygen
Prior art date
Application number
PCT/JP2002/001118
Other languages
French (fr)
Japanese (ja)
Inventor
Hisayuki Wada
Original Assignee
Sumitomo Titanium Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000238487A priority Critical patent/JP3756047B2/en
Application filed by Sumitomo Titanium Corporation filed Critical Sumitomo Titanium Corporation
Priority to EA200401055A priority patent/EA006077B1/en
Priority to US10/502,732 priority patent/US20050145072A1/en
Priority to AU2002232157A priority patent/AU2002232157A1/en
Priority to CNB028274539A priority patent/CN100487144C/en
Priority to PCT/JP2002/001118 priority patent/WO2003066914A1/en
Publication of WO2003066914A1 publication Critical patent/WO2003066914A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1295Refining, melting, remelting, working up of titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • C22B34/1272Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/14Refining in the solid state

Definitions

  • the present invention relates to a high-purity sponge titanium material suitable for a material for an evening gate material for sputtering and a method for producing the same.
  • the Kroll method consists of a reduction step in which molten Mg reacts with titanium tetrachloride in a reaction vessel, and after reduction, heats the reaction vessel in a vacuum state to heat unreacted Mg contained in the material in the vessel. And a vacuum separation step of evaporating and removing residual by-products.
  • titanium metal is as a wiring material in semiconductor devices such as LSI.
  • This wiring is formed by performing sputtering using high-purity metallic titanium as a target material. It is required that the sputter material for sputtering has a small amount of impurities.
  • the sponge titanium material which is a material of the sputter material, has an oxygen content of 20 ppm or less, Fe, Ni, Cr, and A. The content of each metal element of 1 and Si is required to be 10 ppm or less.
  • the crawl method is a method that prioritizes productivity, it is not easy to secure an impurity level required for an evening gate material for sputtering. Therefore, the following method has been proposed.
  • One is the top and bottom of the titanium sponge material obtained in the reaction vessel after vacuum separation. Centering method to commercialize the part near the center excluding the outer part and outer periphery
  • Another method is a low-moisture crushing method in which a sponge titanium material taken out of the reaction vessel is cut and crushed in a low-humidity atmosphere (Japanese Patent No. 2863469). No. 2,179,900).
  • the former method of centering can secure the level required for the evening getter material for sputtering for each of the metal elements Fe, Ni, Cr, A1, and Si.
  • the latter method of low-moisture crushing as for oxygen, a force capable of securing a level required for a target material for sputtering ⁇ Fe, Ni, Cr, A1, and Si. It is difficult to secure the level of each metal element.
  • both the Fe, Ni, Cr, A1, and Si metal elements, and oxygen the former should be selected as the center. It is necessary to combine this method with the latter method of low-moisture crushing.
  • the former method of centering is easy to implement, while the latter method of low-moisture crushing has a stable oxygen level actually required for the target material for sputtering.
  • a very large isolated work space with a low humidity inside is required, and the construction and maintenance of the atmosphere require a great deal of expense. I can not say.
  • An object of the present invention is to provide a high-purity titanium sponge material which is low in both the amount of oxygen and the amount of a metal element and which is excellent in economical efficiency, and a method for producing the same. Disclosure of the invention
  • FIG. 1 is a longitudinal sectional view of a titanium sponge material in a reaction vessel in a vacuum separation step.
  • the reaction vessel 20 is housed in a heating furnace 30. Since the titanium sponge material 10 in the reaction vessel 20 causes precipitation of titanium on the rostrol 21 in the reaction vessel 20 and on the inner surface of the side wall of the reaction vessel 20 in the previous reduction step, the middle part is narrowed. Shape.
  • the content of each of the metal elements Fe, Ni, Cr, A1, and Si decreases as the distance from the upper surface, the lower surface, and the outer peripheral surface increases. This is because the content of each metal element is mainly due to contamination from the reaction vessel 20. For this reason, by removing the upper, lower, and outer peripheral portions of the sponge titanium material 10 and collecting the remaining portion 11 near the center, the level of the metal element required for the evening getter material for sputtering can be reduced. Can be relatively easily secured.
  • the oxygen content particularly the oxygen content after cutting and crushing, surprisingly decreases in the surface layer of the sponge titanium material 10.
  • the oxygen amount increases closer to 1/2 part C.
  • 1/4 part B is about 300 ppm, that is, 1/2 part. Then it becomes about 3501 m. Due to this tendency, even if the portion 11 near the center of the titanium sponge material 10 is sampled, it becomes difficult to secure the level of oxygen required for the sputtering target material after cutting and crushing.
  • the present inventors have investigated the cause of the decrease in the amount of oxygen in the surface layer of the titanium sponge material 10 from both the physical properties and the production method. As a result, the following facts became clear.
  • Figure 2 shows the temperature change of the titanium sponge material in the vacuum separation process.
  • the upper part A, 1Z4 part B and 1Z2 part C are shown.
  • the temperature in either part tends to drop temporarily after the start of vacuum separation, then rises and reaches a stable temperature close to the furnace temperature. This is because the residual Mg starts to evaporate together with the vacuum separation, and the temperature temporarily decreases due to the heat of vaporization.However, the temperature starts to increase as the residual Mg decreases, and the furnace temperature increases when the evaporation is completed. Due to temperature stabilization at a level close to
  • the surface portion far from the center of the titanium sponge material is continuously heated for a long time even after the evaporation of Mg is completed, and becomes a so-called dry-fired state.
  • the present inventor believes that the heating time after the evaporation of the Mg is related to the oxygen amount after the cutting and crushing, and conducted various investigations. As a result, the farther from the center of the titanium sponge material, the more the empty firing state The sintering proceeds during the heating of the steel to reduce the specific surface area, and the smaller the specific surface area, the more the increase in the amount of oxygen due to oxidation in the cutting and crushing process is suppressed.
  • the high-purity titanium sponge material is a titanium sponge material produced by the chlorine method, and has a specific surface area of 0.05 m measured by the BET method. 2 Zg or less, and the content of each metal element of Fe, Ni, Cr, A1, and Si is 10 ppm or less.
  • the oxygen content of titanium particles is 300 ppm or less. Is suppressed. It is preferably at most 0.04 m 2 Zg, more preferably at most 0.03 m 2 / g, whereby the oxygen content is further reduced.
  • the preferred oxygen content after cutting and crushing is 200 ppm or less, more preferably 100 ppm or less.
  • each of the metal elements Fe, Ni, Cr, A1, and Si is limited to 10 ppm or less in order to eliminate the upper, lower, and outer peripheral portions of the titanium sponge material.
  • These surface layers for example, the uppermost portion A shown in Fig. 1, have been heated in the dry state, and the specific surface area by the BET method has been reduced.
  • the content of each metal element exceeds 1 O ppm.
  • a particularly preferred content of each metal element is 7 ppm or less.
  • the vacuum separation time t By setting the vacuum separation time t to (to +15) hours or more, the specific surface area of the material in the reaction vessel near the center excluding the upper, lower, and outer peripheral parts is reduced, and low oxygen after cutting and crushing is reduced. Is realized.
  • the content of each of the metal elements Fe, Ni, Cr, A1, and Si is also reduced. It is suppressed to a low level.
  • the particularly preferable vacuum separation time t has a lower limit of (t 0 +20) hours or more and an upper limit of (t 0 +30) hours or less.
  • the temperature at the center of the titanium sponge material is not measured. From the temperature change data obtained by test operation and temperature analysis for each operating facility, determine the time until the center temperature reaches a stable temperature, and set the heating time in the vacuum separation process based on this time.
  • Fig. 1 is a vertical cross-sectional view of the titanium sponge material in the reaction vessel in the vacuum separation process.
  • Fig. 2 shows the time-dependent temperature change of the titanium sponge material in the vacuum separation process.
  • B s 1/2
  • Fig. 3 is a graph showing the preferred vacuum separation time in the vacuum separation process with the diameter of the reaction vessel (retort diameter) as a parameter, and
  • Fig. 4 shows the different vacuum separation times. It is a micrograph of the sample taken from the central part of various kinds of sponge titanium materials.
  • the sponge titanium material is manufactured by melting Mg in a reaction vessel and dropping a titanium tetrachloride solution. When this reduction step is completed, the process proceeds to the vacuum separation step. In the vacuum separation process, the unreacted Mg and by-products are removed by evacuating the inside of the reaction vessel and heating it to a predetermined temperature with a heating furnace.
  • the temperature Ta at the top A of the titanium sponge material in the reaction vessel slightly decreases at the beginning of the vacuum separation, but immediately rises and reaches a stable temperature in about 20 to 30 hours after the start of the vacuum separation.
  • the temperature Tc at the center (1/2 part C) continues to drop for about 30 hours from the start of vacuum separation, and then rises to reach a stable temperature T0 70 hours after the start of vacuum separation.
  • the central portion temperature Tc reaches the stable temperature To
  • heating is continued for another 15 to 35 hours, preferably 20 to 30 hours.
  • the specific surface area by the BET method is reduced to 0.05 m 2 / g or less due to the progress of sintering.
  • cutting near the center after vacuum separation The increase in the amount of oxygen due to oxidation during the crushing process is suppressed, and the impurity level required for the evening getter material for sputtering can be achieved in both the amount of oxygen and the amount of metal elements.
  • the lump height of sponge titanium material 10 is H
  • the lump diameter is D
  • the thickness h1 from the upper surface is 0.1 H or more.
  • the thickness h2 from the lower surface is 0.25 H or more
  • the lower part is 0.18 D or more from the outer peripheral surface, and the outer peripheral part is 0.18 D or more.
  • the sample near the center 11 is usually cut and crushed in an air atmosphere to obtain titanium sponge particles having a predetermined particle size. Despite cutting and crushing in the air atmosphere, the amount of oxygen is suppressed to 300 ppm or less, and the amounts of metallic elements Fe, Ni, Cr, A1, and Si are also reduced. It is suppressed below 10 p pm.
  • the average particle size after crushing is preferably 10 to 300 mm.
  • FIG. 3 shows the result of investigation of a preferable vacuum separation time in the vacuum separation step.
  • a preferable vacuum separation time is a region indicated by hatching in FIG. The vacuum separation time is affected by the diameter (retort diameter) of the reaction vessel, and the longer the diameter, the longer the time.
  • the vacuum separation time in the present invention is +15 hours to +35 hours compared to the conventional vacuum separation time indicated by the solid line.
  • the specific surface area by the BET method in the vicinity of the center becomes less than 0.05 m 2 / g, and the oxygen content after cutting and breaking becomes less than 300 ppm.
  • the specific surface area by the BET method in the vicinity of the center becomes less than 0.03 m 2 Zg in more than +20 hours, and the oxygen content after cutting and crushing becomes less than 200 ppm.
  • the diameter (retort diameter) of the reaction vessel is preferably 135 to 200 mm. If it is less than 135 mm, metal impurities tend to increase even if the center is used. If it exceeds 2000 mm, equipment problems such as thermal deformation of the reaction vessel may occur.
  • the temperature change shown in Fig. 2 is when the diameter (retort diameter) of the reaction vessel is 100 mm, the conventional vacuum separation time is 70 hours, and in this case, the vacuum separation time in the present invention is 85 1105 hours, with 90-100 hours being especially preferred.
  • high-purity titanium sponge material of the present invention by limiting the specific surface area by BET method is less than 0. 05 m 2 Zg, cut crushed in the atmosphere means pursuant also the amount of oxygen in the low It is possible to economically secure the impurity level required for the evening getter material for sputtering, in combination with the reduction of metal impurities by centering.
  • the vacuum separation time t in the vacuum separation step is set such that the temperature Tc at the center of the material in the reaction vessel from the start of vacuum separation is set to a stable temperature To near the furnace temperature.

Abstract

A high-purity spongy titanium material containing less amounts of oxygen and metal elements is economically produced. The vacuum separation time t in a vacuum separation step is t = tO + 15 to + 35 hour where tO is the time from the start of the vacuum separation till the time when the temperature of the central part of the material in a reaction vessel reaches to a stable temperature. At and near the central part of the material where the amounts of metal elements are a little, the specific area measured by the BET method is below 0.05 m2/g. The amount of oxygen after cutting and crushing is suppressed to a low level even if the cutting and crushing are carried out in the atmosphere.

Description

明 細 書 高純度スポンジチタン材及びその製造方法 技術分野  Description High purity titanium sponge material and method for producing the same
本発明は、 スパッタリング用夕一ゲッ ト材の素材に適した高純度スポ ンジチタン材及びその製造方法に関する。 背景技術  TECHNICAL FIELD The present invention relates to a high-purity sponge titanium material suitable for a material for an evening gate material for sputtering and a method for producing the same. Background art
金属チタンの工業的な製造方法として、 クロール法により製造された スポンジチタン材を切断破砕した後、 ブリゲットに固め、 これを溶解 · 铸造する方法が多用されている。 クロール法は、 反応容器内で溶融 M g と四塩化チタンを反応させる還元工程と、 還元後、 その反応容器内を真 空状態として加熱することにより、 容器内の材料に含まれる未反応 M g 及び残留副生物を蒸発させて除去する真空分離工程とからなる。  As an industrial production method of titanium metal, a method of cutting and crushing a sponge titanium material produced by the Kroll method, hardening it into a briguet, and dissolving and producing the same is often used. The Kroll method consists of a reduction step in which molten Mg reacts with titanium tetrachloride in a reaction vessel, and after reduction, heats the reaction vessel in a vacuum state to heat unreacted Mg contained in the material in the vessel. And a vacuum separation step of evaporating and removing residual by-products.
一方、 金属チタンの新しい用途として、 L S I等の半導体素子におけ る配線材料がある。 この配線は、 高純度の金属チタンをターゲット材と してスパッタリングを行うことにより形成される。 このスパッタリング 用夕一ゲッ ト材には、 不純物の少ないことが要求され、 その素材である スポンジチタン材には、 酸素含有量については 2 0 O p p m以下、 F e 、 N i、 C r、 A 1及び S iの各金属元素の含有量については 1 0 p p m以下が求められている。  On the other hand, a new use of titanium metal is as a wiring material in semiconductor devices such as LSI. This wiring is formed by performing sputtering using high-purity metallic titanium as a target material. It is required that the sputter material for sputtering has a small amount of impurities. The sponge titanium material, which is a material of the sputter material, has an oxygen content of 20 ppm or less, Fe, Ni, Cr, and A. The content of each metal element of 1 and Si is required to be 10 ppm or less.
しかしながら、 クロール法は、 生産性を優先させた方法であるため、 スパッタリング用夕一ゲッ ト材に要求されるような不純物レベルを確保 することが容易でない。 そこで、 次のような方法が提案されている。一 つは、 真空分離後、 反応容器内に得られたスポンジチタン材の上部、 下 部及び外周部を除いた中心近傍部分を製品化する中心採りの方法でありHowever, since the crawl method is a method that prioritizes productivity, it is not easy to secure an impurity level required for an evening gate material for sputtering. Therefore, the following method has been proposed. One is the top and bottom of the titanium sponge material obtained in the reaction vessel after vacuum separation. Centering method to commercialize the part near the center excluding the outer part and outer periphery
(特許第 2 8 6 3 4 6 9号公報) 、 いま一つは、 その反応容器から取り 出したスポンジチタン材を低湿度の雰囲気中で切断破碎する低湿破碎の 方法である (特許第 2 9 2 1 7 9 0号公報) 。 Another method is a low-moisture crushing method in which a sponge titanium material taken out of the reaction vessel is cut and crushed in a low-humidity atmosphere (Japanese Patent No. 2863469). No. 2,179,900).
しかしながら、 前者の中心採りの方法では、 F e、 N i、 C r、 A 1 及び S iの各金属元素については、 スパッタリング用夕一ゲッ ト材に要 求されるレベルを確保できることができるが、 酸素については、 そのレ ベルを確保することが難しい。 これに対し、 後者の低湿破砕の方法では 、 酸素については、 スパッタリング用タ一ゲッ ト材に要求されるレベル を確保できることができる力^ F e、 N i、 C r、 A 1及び S iの各金 属元素については、 そのレベルを確保すること力難しい。  However, the former method of centering can secure the level required for the evening getter material for sputtering for each of the metal elements Fe, Ni, Cr, A1, and Si. However, it is difficult to maintain the level of oxygen. On the other hand, in the latter method of low-moisture crushing, as for oxygen, a force capable of securing a level required for a target material for sputtering ^ Fe, Ni, Cr, A1, and Si. It is difficult to secure the level of each metal element.
従って、 F e、 N i、 C r、 A 1及び S iの各金属元素、 並びに酸素 の両方について、 スパッタリング用夕一ゲッ ト材に要求されるレベルを 確保するためには、 前者の中心採りの方法と後者の低湿破碎の方法を組 み合わせることが必要になる。 しかしながら、 現実的な問題として、 前 者の中心採りの方法は実施が容易であるが、 後者の低湿破砕の方法の場 合は、 実際にスパッタリング用ターゲッ ト材に要求される酸素レベルを 安定的に確保しょうとすると、 内部を低湿度に保持した非常に大きな隔 絶された作業空間が必要になり、 その空間の構築及び雰囲気保持に多大 の経費が必要となるので、 現実的な方法とは言えない。  Therefore, in order to secure the levels required for the evening getter material for sputtering, both the Fe, Ni, Cr, A1, and Si metal elements, and oxygen, the former should be selected as the center. It is necessary to combine this method with the latter method of low-moisture crushing. However, as a practical matter, the former method of centering is easy to implement, while the latter method of low-moisture crushing has a stable oxygen level actually required for the target material for sputtering. In order to secure such a space, a very large isolated work space with a low humidity inside is required, and the construction and maintenance of the atmosphere require a great deal of expense. I can not say.
本発明の目的は、 酸素量及び金属元素量の両方が少なく、 しかも経済 性に優れた高純度スポンジチタン材及びその製造方法を提供することに める。 発明の開示  An object of the present invention is to provide a high-purity titanium sponge material which is low in both the amount of oxygen and the amount of a metal element and which is excellent in economical efficiency, and a method for producing the same. Disclosure of the invention
上記目的を達成するために、 本発明者らはクロ一ル法により製造され たスポンジチタン材のサンプル採取位置と酸素量の関係に着目した。 図 1は真空分離工程における反応容器内のスポンジチタン材の縦断面 図である。 反応容器 2 0は加熱炉 3 0内に収容される。 反応容器 2 0内 のスポンジチタン材 1 0は、 先の還元工程で反応容器 2 0内のロストル 2 1上及び反応容器 2 0の側壁部内面にチタンの析出を生じることから 、 中段部がくびれた形状になっている。 In order to achieve the above object, the present inventors have produced by the chlorine method. We focused on the relationship between the sampling position of the sponge titanium material and the oxygen content. FIG. 1 is a longitudinal sectional view of a titanium sponge material in a reaction vessel in a vacuum separation step. The reaction vessel 20 is housed in a heating furnace 30. Since the titanium sponge material 10 in the reaction vessel 20 causes precipitation of titanium on the rostrol 21 in the reaction vessel 20 and on the inner surface of the side wall of the reaction vessel 20 in the previous reduction step, the middle part is narrowed. Shape.
真空分離工程後のスポンジチタン材 1 0において、 F e、 N i、 C r 、 A 1及び S iの各金属元素は、 上面、 下面及び外周面から離れた部分 ほど含有量が少なくなる。 これは、 各金属元素の含有が主に反応容器 2 0からの汚染によるためである。 このため、 スポンジチタン材 1 0の上 部、 下部及び外周部を除去し、 残った中心近傍部分 1 1を採取すること により、 金属元素については、 スパッタリング用夕一ゲット材に要求さ れるレベルを比較的簡単に確保できる。  In the sponge titanium material 10 after the vacuum separation step, the content of each of the metal elements Fe, Ni, Cr, A1, and Si decreases as the distance from the upper surface, the lower surface, and the outer peripheral surface increases. This is because the content of each metal element is mainly due to contamination from the reaction vessel 20. For this reason, by removing the upper, lower, and outer peripheral portions of the sponge titanium material 10 and collecting the remaining portion 11 near the center, the level of the metal element required for the evening getter material for sputtering can be reduced. Can be relatively easily secured.
ところが、 酸素量、 特に切断破砕後の酸素量については、 意外にもス ポンジチタン材 1 0の表層部で少なくなる。 例えば、 スポンジチタン材 1 0の中心位置において最上部 Aから 1 Z 2部 Cに至る部分の、 切断破 砕後の酸素量分布を調査すると、 1 / 2部 Cに近づくほど酸素量が増大 する。 例えば最上部 Aから得たチタン粒の酸素量が 2 5 0 p p mの場合 、 1 / 4部 Bでは 3 0 0 p p m程度になり、 1 / 2部。では3 5 0 1) m程度になる。 この傾向のため、 スポンジチタン材 1 0の中心近傍部分 1 1を採取しても、 切断破碎後の酸素量はスパッタリング用ターゲッ ト 材に要求されるレベルを確保するのが困難になる。  However, the oxygen content, particularly the oxygen content after cutting and crushing, surprisingly decreases in the surface layer of the sponge titanium material 10. For example, when examining the oxygen content distribution after cutting and crushing at the center of the sponge titanium material 10 from the uppermost part A to the 1Z2 part C, the oxygen amount increases closer to 1/2 part C. . For example, when the oxygen content of the titanium particles obtained from the uppermost part A is 250 ppm, 1/4 part B is about 300 ppm, that is, 1/2 part. Then it becomes about 3501 m. Due to this tendency, even if the portion 11 near the center of the titanium sponge material 10 is sampled, it becomes difficult to secure the level of oxygen required for the sputtering target material after cutting and crushing.
本発明者らは、 スポンジチタン材 1 0の表層部で酸素量が少なくなる 原因を、 物性及び製法の両面から調査した。 その結果、 次の事実が判明 した。  The present inventors have investigated the cause of the decrease in the amount of oxygen in the surface layer of the titanium sponge material 10 from both the physical properties and the production method. As a result, the following facts became clear.
図 2は真空分離工程におけるスポンジチタン材の温度変化を、 中心位 置の最上部 A、 1Z4部 B、 1Z2部 Cについて示したものである。 い ずれの部分の温度も、 傾向としては真空分離開始から一時的に低下した 後、 上昇に転じ、 炉温に近い安定温度に達する。 これは、 真空分離開女 と共に残留 Mgの蒸発が始まり、 その気化熱により温度が一時的に低下 するが、 残留 M gが少なくなることにより温度の上昇が始まり、 蒸発が 完了することにより炉温に近いレベルに温度が安定することによる。 Figure 2 shows the temperature change of the titanium sponge material in the vacuum separation process. The upper part A, 1Z4 part B and 1Z2 part C are shown. The temperature in either part tends to drop temporarily after the start of vacuum separation, then rises and reaches a stable temperature close to the furnace temperature. This is because the residual Mg starts to evaporate together with the vacuum separation, and the temperature temporarily decreases due to the heat of vaporization.However, the temperature starts to increase as the residual Mg decreases, and the furnace temperature increases when the evaporation is completed. Due to temperature stabilization at a level close to
この傾向は最上部 A、 1/4部 B、 1/2部 Cのいずれにおいても共 通するが、 最低温度は最上部 A、 1/4部 B、 1Z2部 Cの順に低く、 真空分離開始から上昇に転じ始めるまでの時間、 安定温度に達するまで の時間は、 最上部 A、 1/4部 B、 1/2部 Cの順に長くなる。 これは スポンジチタン材の中心に近い部分ほど残留 Mgが抜けにくいためであ り、 その残留 Mgが最も抜けにくい中心部、 即ち 1/2部 Cの残留 Mg が除去され、 この部分の温度 T cが安定温度 T 0に達した時点が真空分 離の終了時とされる。 なお、 安定温度が最上部 A、 1Z4部 B、 1/2 部 Cの順に低いのは反応容器の開口部側 (上方) への放熱が顕著なこと による。  This tendency is common in the top section A, 1/4 section B, and 1/2 section C, but the lowest temperature is lower in the order of the top section A, 1/4 section B, 1Z2 section C, and vacuum separation starts. The time from when the temperature starts to rise and when the temperature reaches the stable temperature increases in the order of top A, 1/4 B, and 1/2 C. This is because the portion nearer to the center of the titanium sponge material is more difficult for residual Mg to escape, and the central portion where the residual Mg is most difficult to escape, that is, 1/2 part of the residual Mg is removed, and the temperature Tc The point at which the temperature reaches the stable temperature T 0 is the end of the vacuum separation. The reason that the stable temperature is lower in the order of the uppermost part A, the 1Z4 part B, and the 1/2 part C is due to the remarkable heat radiation toward the opening (upper side) of the reaction vessel.
このようなプロセスで真空分離が行われる結果、 スポンジチタン材の 中心から遠い表層部分は、 Mgの蒸発が終了した後も長い時間、 加熱が 継続され、 いわゆる空焚きの状態となる。 本発明者は、 この Mgが蒸発 した後の加熱時間が、 切断破碎後の酸素量に関係すると考え、 各種の調 査を行ったところ、 スポンジチタン材の中心から遠い部分ほど、 この空 焚き状態の加熱中に焼結が進んで比表面積が小さくなること、 比表面積 が小さい部分ほど切断破砕工程での酸化による酸素量の増大が抑制され ること、 その結果、 1/2部 C、 1Z 4部 B、 最上部 Aの順に切断破碎 後の酸素量が少なくなること、 1 Z 2部 Cの M gの蒸発が完了した後も 加熱を継続するならば、 この部分の焼結が進んで比表面積が小さくなり 、 低酸素化が実現されることを知見した。 As a result of performing vacuum separation in such a process, the surface portion far from the center of the titanium sponge material is continuously heated for a long time even after the evaporation of Mg is completed, and becomes a so-called dry-fired state. The present inventor believes that the heating time after the evaporation of the Mg is related to the oxygen amount after the cutting and crushing, and conducted various investigations. As a result, the farther from the center of the titanium sponge material, the more the empty firing state The sintering proceeds during the heating of the steel to reduce the specific surface area, and the smaller the specific surface area, the more the increase in the amount of oxygen due to oxidation in the cutting and crushing process is suppressed. As a result, 1/2 part C, 1Z4 If the amount of oxygen after cutting and crushing decreases in the order of part B and top A, 1Z 2 If heating is continued even after evaporation of Mg in part C, sintering of this part proceeds and The surface area becomes smaller It was found that hypoxia was realized.
本発明はかかる知見を基礎として完成されたものであり、 その高純度 スポンジチタン材は、 クロ一ル法で製造されたスポンジチタン材であつ て、 BET法により測定された比表面積を 0. 05m2 Zg以下とし、 且つ F e、 N i、 C r、 A 1及び S iの各金属元素含有量を 10 p pm 以下としたものである。 The present invention has been completed based on this finding, and the high-purity titanium sponge material is a titanium sponge material produced by the chlorine method, and has a specific surface area of 0.05 m measured by the BET method. 2 Zg or less, and the content of each metal element of Fe, Ni, Cr, A1, and Si is 10 ppm or less.
8£丁法にょる比表面積を0. 05m2 /g以下に制限することによ り、 通常の大気雰囲気中で切断破砕を行っても、 そのチタン粒の酸素含 有量が 30 0 ppm以下に抑制される。 好ましくは 0. 04 m2 Zg以 下、 更に好ましくは 0. 03m2 /g以下であり、 これにより酸素含有 量がより低減される。 好ましい切断破砕後の酸素含有量は 200 p pm 以下であり、 更に好ましくは 10 0 p p m以下である。 比表面積の下限 については、 酸素量低減の点からは低いほどよいが、 余りに比表面積が 小さいと切断破砕が困難になるので、 0. 01 m2 Zg以上が好ましい By limiting the specific surface area to 0.05 m 2 / g or less according to the 8-patch method, even when cutting and crushing in a normal air atmosphere, the oxygen content of titanium particles is 300 ppm or less. Is suppressed. It is preferably at most 0.04 m 2 Zg, more preferably at most 0.03 m 2 / g, whereby the oxygen content is further reduced. The preferred oxygen content after cutting and crushing is 200 ppm or less, more preferably 100 ppm or less. The lower limit of the specific surface area, but the lower, the better in terms of oxygen content reduced, since it is difficult to cut fracture and too small specific surface area, 0. 01 m 2 Zg more preferably
F e、 N i、 C r、 A 1及び S iの各金属元素含有量を 10 p p m以 下に制限したのは、 スポンジチタン材の上部、 下部及び外周部を排除す るためである。 これらの表層部分、 例えば図 1に示す最上部 Aは、 従来 からも空焚き状態の加熱を受けて、 B E T法による比表面積が小さくな つている。 但し、 この部分は各金属元素含有量が 1 O ppmを超える。 特に好ましい各金属元素の含有量は 7 p pm以下である。 The content of each of the metal elements Fe, Ni, Cr, A1, and Si is limited to 10 ppm or less in order to eliminate the upper, lower, and outer peripheral portions of the titanium sponge material. These surface layers, for example, the uppermost portion A shown in Fig. 1, have been heated in the dry state, and the specific surface area by the BET method has been reduced. However, in this part, the content of each metal element exceeds 1 O ppm. A particularly preferred content of each metal element is 7 ppm or less.
また、 本発明の高純度スポンジチタン材の製造方法は、 クロール法に よりスポンジチタン材を製造する際に、 真空分離工程における真空分離 時間 tを、 真空分離開始から反応容器内の材料の中心部温度 T cが炉温 近傍の安定温度 Toに到達までの時間を t 0時間として、 t = t o + ( 15〜35) 時間に設定し、 真空分離終了後、 反応容器内の材料の上部 、 下部及び外周部を除く中心近傍部分を製品化するものである。 In addition, the method for producing a high-purity titanium sponge material of the present invention is characterized in that, when producing a titanium sponge material by the Kroll method, the vacuum separation time t in the vacuum separation step is set at the center of the material in the reaction vessel from the start of the vacuum separation. The time until the temperature Tc reaches the stable temperature To near the furnace temperature is defined as t0, and t = to + (15 to 35) hours.After the vacuum separation is completed, the upper part of the material in the reaction vessel is set. A part near the center excluding the lower part and the outer peripheral part is commercialized.
真空分離時間 tを (t o + 1 5 ) 時間以上とすることにより、 反応容 器内の材料の上部、 下部及び外周部を除く中心近傍部分の比表面積が小 さくなり、 切断破砕後の低酸素化が実現される。 そして、 反応容器内の 材料の上部、 下部及び外周部を除く中心近傍部分を製品化することより 、 F e、 N i、 C r、 A 1及び S iの各金属元素についても、 含有量が 低位に抑制される。  By setting the vacuum separation time t to (to +15) hours or more, the specific surface area of the material in the reaction vessel near the center excluding the upper, lower, and outer peripheral parts is reduced, and low oxygen after cutting and crushing is reduced. Is realized. By commercializing the upper and lower parts of the material in the reaction vessel and the part near the center excluding the outer peripheral part, the content of each of the metal elements Fe, Ni, Cr, A1, and Si is also reduced. It is suppressed to a low level.
真空分離時間 t力 ( t 0 + 3 5 ) 時間を超えると、 比表面積が小さく なりすぎ、 切断破砕が困難になる。 また、 熱経済性が必要以上に悪化す る。 特に好ましい真空分離時間 tは、 下限については ( t 0 + 2 0 ) 時 間以上であり、 上限については (t 0 + 3 0 ) 時間以下である。  If the vacuum separation time exceeds the t force (t 0 +35) time, the specific surface area becomes too small, and cutting and crushing becomes difficult. Also, the thermoeconomics will be worse than necessary. The particularly preferable vacuum separation time t has a lower limit of (t 0 +20) hours or more and an upper limit of (t 0 +30) hours or less.
なお、 実際の操業では、 スポンジチタン材の中心部温度を実測しない 。 操業設備毎に試験操業や温度解析で得た温度変化データから、 中心部 温度が安定温度に到達までの時間を求め、 この時間を基準にして真空分 離工程における加熱時間を設定する。 図面の簡単な説明  In actual operation, the temperature at the center of the titanium sponge material is not measured. From the temperature change data obtained by test operation and temperature analysis for each operating facility, determine the time until the center temperature reaches a stable temperature, and set the heating time in the vacuum separation process based on this time. BRIEF DESCRIPTION OF THE FIGURES
図 1は真空分離工程における反応容器内のスポンジチタン材の縦断面 図、 図 2は真空分離工程におけるスポンジチタン材の経時的な温度変化 を、 中心位置の最上部 A、 l / 4 §|5 B s 1 / 2部 Cについて示したダラ フ、 図 3は真空分離工程における好ましい真空分離時間を、 反応容器の 直径 (レトルト径) をパラメータとして示したグラフ、 図 4は真空分離 時間が異なる 2種類のスポンジチタン材の中心部から採取したサンプル の顕微鏡写真である。 発明を実施するための最良の形態 以下に本発明の実施形態を説明する。 Fig. 1 is a vertical cross-sectional view of the titanium sponge material in the reaction vessel in the vacuum separation process. Fig. 2 shows the time-dependent temperature change of the titanium sponge material in the vacuum separation process. B s 1/2 The part shown for part C, Fig. 3 is a graph showing the preferred vacuum separation time in the vacuum separation process with the diameter of the reaction vessel (retort diameter) as a parameter, and Fig. 4 shows the different vacuum separation times. It is a micrograph of the sample taken from the central part of various kinds of sponge titanium materials. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described.
反応容器内で M gを溶融し、 四塩化チタン液を滴下することにより、 スポンジチタン材を製造する。 この還元工程が終わると、 真空分離工程 に移行する。 真空分離工程では、 反応容器内を真空状態にすると共に、 加熱炉により所定温度に加熱することにより、 未反応 M g及び副生物を 除去する。  The sponge titanium material is manufactured by melting Mg in a reaction vessel and dropping a titanium tetrachloride solution. When this reduction step is completed, the process proceeds to the vacuum separation step. In the vacuum separation process, the unreacted Mg and by-products are removed by evacuating the inside of the reaction vessel and heating it to a predetermined temperature with a heating furnace.
この真空分離工程を図 2の試験操業例について詳細に説明する。 反応 容器内のスポンジチタン材の最上部 Aの温度 T aは、 真空分離開始当初 は若干下がるが、 直ちに上昇に転じ、 真空分離開始から約 2 0〜3 0時 間で安定温度に達する。 これに対し、 中心部 ( 1 / 2部 C ) の温度 T c は真空分離開始から約 3 0時間下がり続け、 その後、 上昇に転じて真空 分離開始から 7 0時間後に安定温度 T 0に達する。  This vacuum separation step will be described in detail for the test operation example in FIG. The temperature Ta at the top A of the titanium sponge material in the reaction vessel slightly decreases at the beginning of the vacuum separation, but immediately rises and reaches a stable temperature in about 20 to 30 hours after the start of the vacuum separation. On the other hand, the temperature Tc at the center (1/2 part C) continues to drop for about 30 hours from the start of vacuum separation, and then rises to reach a stable temperature T0 70 hours after the start of vacuum separation.
従来は、 中心部温度 T cが安定温度 T oに達する約 7 0時間をもって 真空分離を終了しており、 この時間を短縮する試みはありこそすれ、 こ れをわざわざ延長するようなことは考えられていなかった。 その結果、 金属元素量の少ない中心近傍部分において、 M g蒸発後の空焚き状態で の加熱が行われず、 焼結が進行しないため、 比表面積が十分に低減しな い。 このため、 真空分離後、 中心近傍部分を採取しても、 大気雰囲気中 の切断破砕では酸ィ匕による酸素量の増大が顕著になり、 スパッタリング 用夕一ゲッ ト材に要求されるレベルの低酸素化を実現することは困難で めつた o  In the past, vacuum separation was completed when the center temperature Tc reached the stable temperature To about 70 hours, and attempts to reduce this time are undeniable, and it is considered that this will be extended. Had not been. As a result, in the vicinity of the center where the amount of metal elements is small, heating in an empty state after evaporation of Mg is not performed, and sintering does not proceed, so that the specific surface area is not sufficiently reduced. For this reason, even if the portion near the center is sampled after vacuum separation, the increase in the amount of oxygen due to oxidization becomes remarkable in the cutting and crushing in the air atmosphere, and the level required for the evening getter for sputtering is low. Oxygenation is difficult to achieve o
そこで、 本実施形態では、 中心部温度 T cが安定温度 T oに達した後 、 更に 1 5〜 3 5時間、 好ましくは 2 0〜 3 0時間、 加熱を継続する。 これにより、 金属元素量の少ない中心近傍部分においても、 焼結の進行 により、 B E T法による比表面積が 0 . 0 5 m 2 / g以下に低減される 。 その結果、 真空分離後に中心近傍部分を採取することにより、 切断破 碎工程での酸化による酸素量の増大が抑制され、 酸素量及び金属元素量 の両方について、 スパッタリング用夕一ゲット材に要求される不純物レ ベルの実現が可能になる。 Therefore, in the present embodiment, after the central portion temperature Tc reaches the stable temperature To, heating is continued for another 15 to 35 hours, preferably 20 to 30 hours. Thereby, even in the vicinity of the center where the amount of the metal element is small, the specific surface area by the BET method is reduced to 0.05 m 2 / g or less due to the progress of sintering. As a result, cutting near the center after vacuum separation The increase in the amount of oxygen due to oxidation during the crushing process is suppressed, and the impurity level required for the evening getter material for sputtering can be achieved in both the amount of oxygen and the amount of metal elements.
真空分離後の中心近傍部分の採取では、 図 1に示すように、 スポンジ チタン材 1 0の塊高を H、 塊径を Dとして、 上面からの厚さ h 1が 0. 1 H以上の上部、 下面からの厚さ h 2が 0. 2 5 H以上の下部、 及び外 周面からの厚さ dが 0. 1 8 D以上の外周部を切断除去し、 その残りで 、 且つスポンジチタン材 1 0の塊重量の 3 0 %未満の中心近傍部分 1 1 を採取する。  In the sampling near the center after vacuum separation, as shown in Fig. 1, the lump height of sponge titanium material 10 is H, the lump diameter is D, and the thickness h1 from the upper surface is 0.1 H or more. The thickness h2 from the lower surface is 0.25 H or more, and the lower part is 0.18 D or more from the outer peripheral surface, and the outer peripheral part is 0.18 D or more. Collect a portion 11 near the center of less than 30% of the lump weight of 10.
採取された中心近傍部分 1 1に対しては、 通常に大気雰囲気中で切断 破砕を行い、 所定粒径のスポンジチタン粒とする。 通常に大気雰囲気中 で切断破砕を行うにもかかわらず、 酸素量は 3 0 0 p pm以下に抑制さ れ、 且つ F e、 N i、 C r、 A 1及び S iの各金属元素量も 1 0 p pm 以下に抑制される。 破砕後の粒径は平均で 1 0〜 3 0 0 mmが好ましい 真空分離工程における好ましい真空分離時間を調査した結果を図 3に 示す。 好ましい真空分離時間は、 図 3中の斜線で示された領域である。 真空分離時間は、 反応容器の直径 (レトルト径) の影響を受け、 この 直径が大きくなるほど長時間となる。 実線で示す従来の真空分離時間に 対し + 1 5時間〜 + 3 5時間が本発明おける真空分離時間である。 + 1 5時間以上で中心近傍部分の BET法による比表面積が 0. 0 5m2 / g以下になり、 切断破碎後の酸素量が 3 0 0 p pm以下になる。 また、 + 2 0時間以上で中心近傍部分の B E T法による比表面積が 0. 0 3m 2 Zg以下になり、 切断破砕後の酸素量が 2 0 0 p pm以下になる。 B ET法による比表面積が 0. 0 1 m2 /g未満の場合は、 切断破碎が困 難になる。 反応容器の直径 (レトルト径) については、 13 5 0〜 20 0 0 mm が好ましい。 1 3 5 0 mm未満の場合は中心採りを行っても金属不純物 が増大する傾向となる。 2 0 0 0 mmを超える場合は反応容器の熱変形 などの設備上の問題が生じるおそれがある。 The sample near the center 11 is usually cut and crushed in an air atmosphere to obtain titanium sponge particles having a predetermined particle size. Despite cutting and crushing in the air atmosphere, the amount of oxygen is suppressed to 300 ppm or less, and the amounts of metallic elements Fe, Ni, Cr, A1, and Si are also reduced. It is suppressed below 10 p pm. The average particle size after crushing is preferably 10 to 300 mm. FIG. 3 shows the result of investigation of a preferable vacuum separation time in the vacuum separation step. A preferable vacuum separation time is a region indicated by hatching in FIG. The vacuum separation time is affected by the diameter (retort diameter) of the reaction vessel, and the longer the diameter, the longer the time. The vacuum separation time in the present invention is +15 hours to +35 hours compared to the conventional vacuum separation time indicated by the solid line. After more than 15 hours, the specific surface area by the BET method in the vicinity of the center becomes less than 0.05 m 2 / g, and the oxygen content after cutting and breaking becomes less than 300 ppm. In addition, the specific surface area by the BET method in the vicinity of the center becomes less than 0.03 m 2 Zg in more than +20 hours, and the oxygen content after cutting and crushing becomes less than 200 ppm. When the specific surface area by the BET method is less than 0.01 m 2 / g, cutting and breaking becomes difficult. The diameter (retort diameter) of the reaction vessel is preferably 135 to 200 mm. If it is less than 135 mm, metal impurities tend to increase even if the center is used. If it exceeds 2000 mm, equipment problems such as thermal deformation of the reaction vessel may occur.
ちなみに、 図 2に示した温度変化は反応容器の直径 (レトルト径) が 1 0 0 mmの場合であり、 従来の真空分離時間は 7 0時間、 この場合 の本発明おける真空分離時間は 8 5〜1 0 5時間であり、 9 0〜1 0 0 時間が特に好ましい。  By the way, the temperature change shown in Fig. 2 is when the diameter (retort diameter) of the reaction vessel is 100 mm, the conventional vacuum separation time is 70 hours, and in this case, the vacuum separation time in the present invention is 85 1105 hours, with 90-100 hours being especially preferred.
反応容器の直径 (レトルト径) が 1 7 0 Q mmの場合にスポンジチタ ン材の中心部から採取したサンプルの顕微鏡写真を、 真空分離時間が 7 0時間の場合と 9 5時間の場合について、 図 4 (a) (b) に同じ倍率 で示す。  Micrographs of samples taken from the center of the sponge titanium material when the diameter (retort diameter) of the reaction vessel is 170 Qmm are shown for the cases where the vacuum separation time is 70 hours and 95 hours. 4 (a) and (b) show the same magnification.
B E T法による比表面積は、 真空分離時間が 70時間の場合 0. 1 m 2 /gであるのに対し、 真空分離時間が 9 5時間の場合は 0. 0 3m2 /gとなる。 この違いは図 4 (a) (b) からも明らかである。 この比 表面積の相違の結果、 大気雰囲気中で平均粒径 65 mmに切断破碎した 段階での酸素量は、 真空分離時間が 7 0時間の場合 3 2 0 p pm、 真空 分離時間が 9 5時間の場合は 1 9 0 p pmになった。 また、 金属元素量 については、 いずれの場合も F e、 N i、 C r、 A 1及び S iの各金属 元素含有量が 1 0 p p m以下であつた。 Specific surface area by the BET method, vacuum separation time whereas a case 0. 1 m 2 / g of 70 hours and the vacuum separation time is 9 5 hours a 0. 0 3m 2 / g. This difference is also evident from Figs. 4 (a) and 4 (b). As a result of this difference in specific surface area, the amount of oxygen at the stage of cutting and crushing to an average particle size of 65 mm in the air atmosphere was 320 ppm when the vacuum separation time was 70 hours, and the vacuum separation time was 95 hours. In this case, it became 190 ppm. In each case, the content of each of Fe, Ni, Cr, A1, and Si was 10 ppm or less.
なお、 図 3中の斜線で示された領域を数式で表現すると次のとおりで ある。  The shaded area in FIG. 3 is expressed by the following equation.
真空分離時間 = (0. 0 6 9 8 X 〔レトルト径〕 — 2 4) ± 1 0 B ET法とは、 液体窒素の吸収量から比表面積を計算する方法であり 、 吸着剤などでは広く一般に用いられている。 産業上の利用可能性 Vacuum separation time = (0.06 9 8 X [retort diameter] — 24) ± 10 BET method is a method of calculating the specific surface area from the absorbed amount of liquid nitrogen, which is widely used for adsorbents and the like. Used. Industrial applicability
以上に説明したとおり、 本発明の高純度スポンジチタン材は、 BET 法による比表面積を 0. 05 m2 Zg以下に制限することにより、 大気 雰囲気中で切断破砕を行つても酸素量を低位に抑制でき、 中心採りによ る金属不純物の低減とあいまって、 スパッタリング用夕一ゲッ ト材に要 求される不純物レベルを経済的に確保できる。 As explained above, high-purity titanium sponge material of the present invention, by limiting the specific surface area by BET method is less than 0. 05 m 2 Zg, cut crushed in the atmosphere means pursuant also the amount of oxygen in the low It is possible to economically secure the impurity level required for the evening getter material for sputtering, in combination with the reduction of metal impurities by centering.
また、 本発明の高純度スポンジチタン材の製造方法は、 真空分離工程 における真空分離時間 tを、 真空分離開始から反応容器内の材料の中心 部温度 T cが炉温近傍の安定温度 T oに到達までの時間を t 0時間とし て t = t 0 + (15〜35) 時間に設定することにより、 BET法によ る比表面積を 0. 05 m2 Zg以下に簡単に制限でき、 これによる酸素 量の低減と、 中心採りによる金属不純物の低減とにより、 スパッタリン グ用ターゲッ ト材に要求される不純物レベルを経済的に確保できる。 In the method for producing a high-purity sponge titanium material of the present invention, the vacuum separation time t in the vacuum separation step is set such that the temperature Tc at the center of the material in the reaction vessel from the start of vacuum separation is set to a stable temperature To near the furnace temperature. By setting the time until the arrival at t 0 to t = t 0 + (15 to 35), the specific surface area by the BET method can be easily limited to 0.05 m 2 Zg or less, The reduction of the amount of oxygen and the reduction of metal impurities by taking the center can economically secure the impurity level required for the target material for sputtering.

Claims

請 求 の 範 囲 The scope of the claims
1. クロール法で製造されたスポンジチタン材であって、 BET法によ り測定された比表面積が 0. 05m2 /g以下であり、 且つ F e、 N i 、 C r、 A 1及び S iの各金属元素含有量が 10 p pm以下である高純 1. A sponge titanium material manufactured by the Kroll method, having a specific surface area measured by the BET method of 0.05 m 2 / g or less, and Fe, Ni, Cr, A1, and S High purity in which the content of each metal element in i is 10 ppm or less
2. クロール法によりスポンジチタン材を製造する際に、 真空分離工程 における真空分離時間 tを、 真空分離開始から反応容器内の材料の中心 · 部温度 T cが炉温近傍の安定温度 T 0に到達までの時間を t 0時間とし て t = t o + (15〜35) 時間に設定し、 真空分離終了後、 反応容器 内の材料の上部、 下部及び外周部を除く中心近傍部分を製品化する高純 2. When producing titanium sponge material by the Kroll method, the vacuum separation time t in the vacuum separation process is set to the stable temperature T 0 near the furnace temperature, which is the temperature at the center of the material in the reaction vessel from the start of vacuum separation. Set the time until arrival to t0 to t = to + (15 to 35) hours, and after vacuum separation, commercialize the parts near the center excluding the upper, lower, and outer peripheral parts of the material in the reaction vessel High purity
)製造方法。  )Production method.
PCT/JP2002/001118 2000-08-07 2002-02-08 High-purity spongy titanium material and its production method WO2003066914A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000238487A JP3756047B2 (en) 2000-08-07 2000-08-07 High purity titanium sponge material and method for producing the same
EA200401055A EA006077B1 (en) 2000-08-07 2002-02-08 High-purity spongy titanium material and its production method
US10/502,732 US20050145072A1 (en) 2002-02-08 2002-02-08 High-purity sponge titanium material and its production method
AU2002232157A AU2002232157A1 (en) 2000-08-07 2002-02-08 High-purity spongy titanium material and its production method
CNB028274539A CN100487144C (en) 2000-08-07 2002-02-08 High-purity spongy titanium material and its production method
PCT/JP2002/001118 WO2003066914A1 (en) 2000-08-07 2002-02-08 High-purity spongy titanium material and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000238487A JP3756047B2 (en) 2000-08-07 2000-08-07 High purity titanium sponge material and method for producing the same
PCT/JP2002/001118 WO2003066914A1 (en) 2000-08-07 2002-02-08 High-purity spongy titanium material and its production method

Publications (1)

Publication Number Publication Date
WO2003066914A1 true WO2003066914A1 (en) 2003-08-14

Family

ID=29272093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001118 WO2003066914A1 (en) 2000-08-07 2002-02-08 High-purity spongy titanium material and its production method

Country Status (5)

Country Link
JP (1) JP3756047B2 (en)
CN (1) CN100487144C (en)
AU (1) AU2002232157A1 (en)
EA (1) EA006077B1 (en)
WO (1) WO2003066914A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100383266C (en) * 2006-08-11 2008-04-23 遵义钛业股份有限公司 Titanium tetrachloride atomization method of preparing titanium sponge using magnesium
CN102534261A (en) * 2012-01-18 2012-07-04 深圳市新星轻合金材料股份有限公司 Process method for preparing titanium sponge
JP2019085599A (en) * 2017-11-02 2019-06-06 東邦チタニウム株式会社 Method for producing sponge titanium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3756047B2 (en) * 2000-08-07 2006-03-15 住友チタニウム株式会社 High purity titanium sponge material and method for producing the same
JP4766931B2 (en) * 2005-06-16 2011-09-07 Ntn株式会社 Dielectric ceramics and method for manufacturing the same
LV13528B (en) * 2006-09-25 2007-03-20 Ervins Blumbergs Method and apparatus for continuous producing of metallic tifanium and titanium-bases alloys
CN101948961B (en) * 2010-10-08 2011-11-30 洛阳双瑞万基钛业有限公司 Manufacturing method of magnesium chloride discharge pipe of reactor for producing sponge titanium
CN113718104A (en) * 2021-08-31 2021-11-30 新星轻合金材料(洛阳)有限公司 Preparation process of low-oxygen high-titanium-iron alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160839A (en) * 1984-08-29 1986-03-28 Hiroshi Ishizuka Refining method refractory metal
JPH07258765A (en) * 1994-03-24 1995-10-09 Sumitomo Sitix Corp Production of high-purity titanium material
JP2001262246A (en) * 2000-03-17 2001-09-26 Toho Titanium Co Ltd Method for producing sponge titanium
JP2001279345A (en) * 2000-03-30 2001-10-10 Toho Titanium Co Ltd Method for producing titanium
JP2002053922A (en) * 2000-08-07 2002-02-19 Sumitomo Sitix Of Amagasaki Inc High purity sponge titanium material and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160839A (en) * 1984-08-29 1986-03-28 Hiroshi Ishizuka Refining method refractory metal
JPH07258765A (en) * 1994-03-24 1995-10-09 Sumitomo Sitix Corp Production of high-purity titanium material
JP2001262246A (en) * 2000-03-17 2001-09-26 Toho Titanium Co Ltd Method for producing sponge titanium
JP2001279345A (en) * 2000-03-30 2001-10-10 Toho Titanium Co Ltd Method for producing titanium
JP2002053922A (en) * 2000-08-07 2002-02-19 Sumitomo Sitix Of Amagasaki Inc High purity sponge titanium material and its production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100383266C (en) * 2006-08-11 2008-04-23 遵义钛业股份有限公司 Titanium tetrachloride atomization method of preparing titanium sponge using magnesium
CN102534261A (en) * 2012-01-18 2012-07-04 深圳市新星轻合金材料股份有限公司 Process method for preparing titanium sponge
JP2019085599A (en) * 2017-11-02 2019-06-06 東邦チタニウム株式会社 Method for producing sponge titanium

Also Published As

Publication number Publication date
AU2002232157A1 (en) 2003-09-02
EA006077B1 (en) 2005-08-25
CN100487144C (en) 2009-05-13
JP2002053922A (en) 2002-02-19
JP3756047B2 (en) 2006-03-15
EA200401055A1 (en) 2004-12-30
CN1633511A (en) 2005-06-29

Similar Documents

Publication Publication Date Title
CN100457615C (en) Method of removing impurities from metallurgical grade silicon to produce solar grade silicon
JP5076137B2 (en) Products such as high purity tantalum and sputter targets containing it
EP2730355B1 (en) Molybdenum metal powder
RU2346891C2 (en) Obtaining high-purity niobium monoxide and manufacturing of capacitor out of it
US7674441B2 (en) Highly pure hafnium material, target and thin film comprising the same and method for producing highly pure hafnium
WO2003066914A1 (en) High-purity spongy titanium material and its production method
JP5088927B2 (en) Manufacturing method of high purity titanium ingot
JP4722403B2 (en) Silicon purification apparatus and silicon purification method
JP2003013115A (en) Method for manufacturing niobium and/or tantalum powder
JP3866792B2 (en) Titanium / titanium alloy casting mold material
US20050145072A1 (en) High-purity sponge titanium material and its production method
JP3952303B2 (en) Reaction vessel for producing sponge titanium, heat shielding plate used for the same, and method for producing sponge titanium
JP3735060B2 (en) Method for producing low-oxygen titanium material
JP2000327488A (en) Production of silicon substrate for solar battery
JP5879369B2 (en) Silicon purification apparatus and silicon purification method
JP4900350B2 (en) Manufacturing method to obtain high purity manganese
JP3129709B2 (en) Method for producing low oxygen high purity titanium material
Choi et al. Purification of niobium by multiple electron beam melting for superconducting RF cavities
JP5406157B2 (en) Manufacturing method of high purity chromium, manufacturing method of sputtering target made of high purity chromium, and manufacturing method of thin film made of high purity chromium
US690520A (en) Process of obtaining metallic lead from lead ores.
JP3979518B2 (en) Manufacturing method of high purity metal
JP7106372B2 (en) METHOD FOR MANUFACTURING METAL REDUCTION REACTION VESSEL, METHOD FOR MANUFACTURING METAL REDUCTION REACTION VESSEL, AND TITANIUM
US4381941A (en) Method for improving surface defect of specific steel resistant to concentrated nitric acid
JP2006037133A (en) Method for producing high purity hafnium material, high purity hafnium material obtained by the method, and sputtering target
JP4007447B2 (en) Method for producing high purity chromium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20028274539

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 200401055

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 10502732

Country of ref document: US

122 Ep: pct application non-entry in european phase